ESEO-Tech est le centre de Recherche, Developpement et Innovation de l'ESEO. L'activité de recherche est centrée sur la thématique des systèmes intelligents et communicants, du capteur à la décision.
ESEO-Tech regroupe 4 équipes de recherche : AGE : Automatique et Génie électrique prend appui sur le développement des énergies renouvelables (EnR) dans le paysage de la production d’énergie électrique et travaille au pilotage et à l’optimisation des réseaux électriques intelligents, en partenariat avec l’IREENA – EA 4642, Institut de recherche en Énergie Électrique de Nantes Atlantique. ERIS : L'équipe de Recherche en Informatique et Systèmes s’articule avec un premier axe autour de l'intelligence artificielle pour créer et améliorer des systèmes d'aide à la décision pour les systèmes d'information. Son deuxieme axe s'interesse à l'ingénierie logicielle et en particulier l'ingénierie des modèles en développant des outils de transformation, synchronisation, interprétation ou éxécution de modèles avec un focus particulier sur les systèmes embarqués. L'équipe est partiellement rattachée au LERIA-EA2645 (Laboratoire d’étude et de recherche en informatique de l’Université d’Angers). GSII : Groupe Signal Image et Instrumentation s’intéresse aux domaines du traitement du signal et de l’image et de l’intelligence artificielle pour la mesure, l’instrumentation et le développement de capteurs, sur des applications en géophysique, contrôle non destructif et biomédical, en lien avec le LAUM UMR 6613 –CNRS, le laboratoire d’Acoustique de Le Mans Université. RF-EMC : L'équipe Radio-Fréquences et Compatibilité Électromagnétique travaille à la fois à l’échelle du composant électronique et du système. Elle crée de nouvelles architectures de systèmes et dispositifs de transmission, de récupération/transmission d’énergie électromagnétique et mène des travaux sur la compatibilité électromagnétique : modélisation et caractérisation prédictive des comportements. Ses membres sont associés à l’IETR - Institut d’Electronique et des Technologies du numérique UMR CNRS 6164.
Le laboratoire accueille 35 permanents, dont 27 enseignants-chercheurs, qui élaborent dans leurs domaines respectifs de nouveaux concepts, expérimentent et mènent leurs projets jusqu’à la démonstration en environnement réel. ESEO-Tech accueille également chaque année une trentaine de doctorants et post-doctorants. |
Mots clés
Binary sequence
Ultrasound
Nonlinearity
Dairy cows
Temperature distribution
Active Front Steering
Calibration
Classification
Pathophysiology
Monitoring
Accelerometer
Capacitors
Mapping
Immunity testing
Systèmes embarqués
Equations
Simulation
Independent chaotic attractors
MDE
Integrated circuit modeling
Malai
FDTD
Accelerometry
Switching piecewise-constant controller
Concrete
Active transformation
Chaos
Apprentissage par Renforcement
Machine Learning
Near field
Entropy
Metamaterial
Antioxidant activity
Malan
Calf pain
Model-checking
Pins
Vehicle dynamics
GTEM cell
Super-Twisting Sliding Mode Control
Aging
Analytical model
Interaction
Reliability
IEC
IDM
Instrument
Modélisation
Modelling
PCB
Bifurcation
Anti-diabetic properties
Claudication
IC
Genetic algorithm
Accelerométrie
Emission
Conducting materials
OCL
Full-wave simulation
Initial conditions
Cable shielding
Optimization
Susceptibility
Autonomous Vehicles
Action
Thoracic outlet syndrome
Machine learning
Microembolus
Coda Wave Interferometry
Model Driven Engineering
Anticontrol of chaos
Acoustoelasticity
Prediction
Microstrip
Electromagnetic compatibility
Modeling
UML
Field-to-trace coupling
Integrated circuit
EMC
Field-to-line coupling
Big Data
Peripheral artery disease
Integrated circuits
Radio frequency
DPI
Symmetry
Bandits-Manchots Combinatoires
Damage detection
Optimal command
Sleep apnea
Diagnosis
Transcutaneous oximetry
Model transformation
Structural health monitoring
Immunity
Artefact rejection
Ischemia
Temperature measurement
|
|
Nos dernières publications
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Lifetime reliability modeling on EMC performance of digital ICs influenced by the environmental and aging constraints: A case study. Microelectronics Reliability, 2024, Microelectronics Reliability 159 (2024), 159, pp.115447. ⟨10.1016/j.microrel.2024.115447⟩. ⟨hal-04622696⟩
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Degradation and Reliability Modeling of EM Robustness of Voltage Regulators Based on ADT: An Approach and A Case Study. IEEE Transactions on Device and Materials Reliability, 2024, 24 (1), pp.2-13. ⟨10.1109/TDMR.2023.3340426⟩. ⟨hal-04334074⟩
-
Lokesh Devaraj, Qazi Mashaal Khan, Alastair Ruddle, Alistair Duffy, Richard Perdriau, et al.. Improvements Proposed to Noisy-OR Derivatives for Multi-Causal Analysis: A Case Study of Simultaneous Electromagnetic Disturbances. International Journal of Approximate Reasoning, 2024, 164, pp.109068. ⟨10.1016/j.ijar.2023.109068⟩. ⟨hal-04301458⟩
-
Safae Ouahabi, Nour Elhouda Daoudi, El Hassania Loukili, Hbika Asmae, Mohammed Merzouki, et al.. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine drugs, 2024, 22 (6), pp.240. ⟨10.3390/md22060240⟩. ⟨hal-04616809⟩
-
Nathan Fradet, Nicolas Gutowski, Fabien Chhel, Jean-Pierre Briot. Byte Pair Encoding for Symbolic Music. The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP 2023), Association for Computational Linguistics, Dec 2023, Singapore, Singapore. pp.2001-2020, ⟨10.18653/v1/2023.emnlp-main.123⟩. ⟨hal-03976252v2⟩