
HAL Id: hal-00972793
https://sciencespo.hal.science/hal-00972793

Submitted on 3 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Annex A5 : A model of the stochastic convergence
between euro area business cycles

Matthieu Lemoine

To cite this version:
Matthieu Lemoine. Annex A5 : A model of the stochastic convergence between euro area business
cycles. 2006. �hal-00972793�

https://sciencespo.hal.science/hal-00972793
https://hal.archives-ouvertes.fr


EUROFRAME-EFN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
Matthieu Lemoine   
 
 
OFCE  
Observatoire Francais des Conjonctures 
Economiques  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Autumn Report 2006 

 
A MODEL OF THE STOCHASTIC  

 
CONVERGENCE BETWEEN EURO AREA  

 
BUSINESS CYCLES  

 



A model of the stochastic convergence between euro area

business cycles

Matthieu Lemoine∗

OFCE

Euroframe EFN Report, Autumn 2006

Abstract

A new non-linear parametric model, the Stochastic Cyclical Convergence Model

(SCCM), is used for measuring the convergence of business cycles between euro area

countries and the euro area aggregate. The model combines unobserved component

models with time-varying parameter models. The convergence between the two cy-

cles is characterised by two time-varying parameters, the phase-shift and a weight,

which is related to the phase-adjusted correlation. A Kalman filter-based iterative

procedure is used for the model estimation. SCCM models are applied to the GDP

of euro area countries, the United Kingdom and of the euro area aggregate over the

period 1963:1-2002:4. When the euro was launched, the convergence was already

achieved for most of euro area countries, but Finland, Greece and Ireland had still

not converged in 2002:4. The British cycle is also divergent with a lead equal to 3

quarters in 2002:4 and a weight equal to 0.6 in 2002:4. UK shocks have asynchronous

asymmetric effects and this suggests that it would be delicate for the UK to join the

euro area.
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1 Introduction

Empirical studies simply based on correlation coefficients (e.g. Artis and Zhang, 1997, Angeloni and

Dedola, 1999 and Wynne and Koo, 2000) have generally established the existence of an increased

convergence between euro area business cycles during the Exchange Currency Mechanism (ECM)

period. Belo (2001) has confirmed the existence of convergence within the euro area using annual

data from 1960 to 1999. He has also shown a persistent lead of the UK cycle over that of the euro

area and a strong association between the two cycles, after correcting for this lead. Now, we would

like to adress such an issue for the recent period, which follows the launch of the euro area. Has

the convergence between business cycles been reinforced since 1999? To answer to this question,

we try to improve on sub-sample correlation analysis, by modelling the convergence dynamics with

time-varying parameters. Such techniques have the interest to measure the recent evolution of the

cyclical convergence.

We use a stochastic cyclical convergence model (SCCM) developed in Lemoine (2005) to measure

the degree of convergence between cycles of euro area countries and of the rest of the euro area.

By analogy with the main concepts of cross-spectral analysis, i.e. the phase and the gain, this

time-domain parametric model descibes the convergence between two cycles with two time-varying

(tv) parameters: the tv-phase and the tv-weight. A cycle is converging toward the other one if

the tv-phase converges toward 0 and the tv-weight converges toward 1: in such a case, cycles get

synchronised, their amplitudes converge toward each other and the correlation of their innovations

converge toward 1.

Cycles are estimated with Baxter-King (BK) filters applied to quarterly GDP series on the

period 1960:1-2005:4. Each bivariate SCCM model is applied to the cycles of a euro area country

and to the one of the rest of the euro area, considered as an aggregate. As three years are truncated

by the BK filter at the beginning and at the end of the cycle, SCCM models are estimated on the

period 1963:1-2002:4. This analysis is supplemented by a comparison with the convergence of UK

and euro area business cycles, in order to try to verify the first test proposed by the Chancellor of

the Exchequer for UK entry into the euro area.

Section 2 reviews the literature related to the cyclical convergence. Section 3 contains a de-

scription of the unobserved component models of the phase-shifted cycles, the SCCM model and

its estimation procedure. Empirical results are presented in Section 4.

2 Literature overview

Many growth cycle models are available. In this paper, growth cycles are modelled with mul-

tivariate unobserved components models even if, for limiting the number of parameters, they

are pre-estimated with the band-pass Baxter-King (BK) filter. Other growth cycle models, like

Beveridge-Nelson decomposition or Structural Vector Auto-Regressive models (SVAR), are not

considered, since their results are more difficult to interpret: the transitory components do not

show enough persistence, a property that is generally expected from a cycle, and are sometimes
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negatively correlated with the capacity utilization rate, which is assumed to be closely related to

the business cycle (Camba-Mendez and Rodriguez-Palenzuela, 2003).

As shown by Belo (2001), the phase-shift among business cycles of different countries might

change the diagnosis concerning the correlation. Rünstler (2004) extends the multivariate unob-

served component model, in order to take into account such phase-shifts and to measure phase-

adjusted correlation coefficients. This extension is presented in Section ?? and will be used in this

paper.

The association degree between business cycles in a group of countries has first been defined

by the presence of common components in Vector Auto-Regressive (VAR) models. Cofeature tests

proposed by Engle and Kozicki (1993) and Vahid and Engle (1993) have been applied, for example,

by Mills and Holmes (1999) to European countries over different exchange-rate-regime time periods.

Because such an association criterion is very restrictive, Kose, Prasad, and Terrones (2003), Stock

and Watson (2003) and Bordo and Helbling (2003) have preferred to use factor models (initially

developed by Stock and Watson, 1991) and their extended versions for measuring the share of

variance explained by a common factor. As this seems to be an interesting way to formulate an

association indicator in a multivariate model, the Rünstler model is reformulated here in a common

factor framework (Section 3.1).

Cyclical convergence is generally studied with ad hoc indicators (for example correlation coeffi-

cients in Artis and Zhang, 1997) applied to estimated cycles on various sub-samples. As far as we

know, few models have been developed for studying the cyclical convergence dynamics. Recently,

Koopman and Azevedo (2004) have proposed a multivariate unobserved components model that

tries to incorporate these dynamics: the convergence is associated with a progressive reduction of

the phase-shift and an increase in the correlation between the two cycles. Koopman and Azevedo

(2004) have modelled convergence dynamics using logistic functions, by extending a model initially

developed by Rünstler (2004). But logistic functions are monotonous and do not allow transitory

divergences, thus they do not allow convergence and divergence movements to occur successively.

Indeed, each turning point is an opportunity for divergence, for example some countries might

have begun their recoveries, while others remain in deep recession.

Such recurrent divergences require a stochastic model of phase-shift and correlation coefficients,

for example a random walk model. Models with stochastic variation of regression parameters

were first proposed in Cooley and Prescott (1976). In the unobserved component framework,

a stochastic covariance model is proposed by Harvey, Ruiz, and Shepard (1994). Boone (1997)

uses time-varying parameter (TVP) regressions for measuring convergence of supply and demand

shocks, in a SVAR model. Engle (2002) formalises this mechanism in a multivariate Generalised

Auto-Regressive Conditional Heteroskedastic (GARCH) model of dynamic conditional correlation.

Although they do not take into account any phase-shift, Hallett and Richter (2004) propose an

interesting approach of the convergence between US and European business cycles: they use TVP

models for studying the evolution of the coherence (a frequency-domain concept).

In Lemoine (2005), a new bivariate model is proposed, the Stochastic Cyclical Convergence

Model (SCCM), in which the phase-shift and the correlation between the two cycles follow random
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walk dynamics. Contrary to the logistic function specification of Koopman and Azevedo (2004),

the random walk processes allow for successive convergence and divergence movements. As this

model is non-linear, a local version of the Iterative Extended Kalman Filter (IEKF) is used for its

estimation. This estimation method has been checked on simulated data.

3 A model of stochastic cyclical convergence

In this section, the bivariate stochastic cycle model with phase-shifts (Section 3.1) is presented

before introducing the SCCM model (Section 3.2).

3.1 Bivariate stochastic cycle model with phase-shifts

To model cyclical dynamics of a stationary time series vector yt and to take into account possible

phase-shifts, we first consider the multivariate stochastic cycle model with phase-shifts developed

by Rünstler (2004). This model is an extension of the multivariate model developed in Harvey

and Koopman (1997). It is interesting to reformulate the Rünstler model in a single common

factor model1. Both models are statistically equivalent (Koopman and Azevedo, 2004), but such

a formulation allows to distinguish common from idiosyncratic shocks. The aim of this section is

only to describe the main properties of the Rünstler model. Their proofs are provided in Rünstler

(2004) and Koopman and Azevedo (2004).

The bivariate case will be sufficient for the analysis carried out in this article. Each series yi,t

can be decomposed into a common cycle (a transformation of the vector ψ̄
c

t), a specific cycle (a

transformation of the vector ψ̄
∗
i,t) and an irregular component (εi,t). The state equations have a

similar iterative form for both cyclical components (ψ̄
c

t and ψ̄
∗
i,t). For i = 1, 2 and t = 1, ..., n,

measurement and state equations are written as follows:














yi,t = ai [cos(λξi), sin(λξi)] ψ̄
c

t + [1, 0]ψ̄
∗
i,t + εi,t

ψ̄
c

t = φTλψ̄
c

t−1 + κ̄c
t

ψ̄
∗
i,t = φTλψ̄

∗
i,t−1 + κ̄∗

i,t

(1)

with

ψ̄i,t =

[

ψi,t

ψ+
i,t

]

, κ̄i,t =

[

κi,t

κ+
i,t

]

and Tλ =

[

cosλ sinλ

− sinλ cosλ

]

.

Processes εi,t, κ
c
t , κ

+c
t , κ∗i,t, κ

+∗
i,t , γi,t and δi,t are white independent Gaussian noises, with standard

errors σε,i, σκ,c, σκ,c, hi, hi, σγ,i and σδ,i. Parameters λ ∈ [0;π] and φ ∈ [0; 1[ are the frequency

and the damping factor of both cycles. The damping factor φ and the frequency λ are the same

in both series. Parameters ai and ξi are respectively the weights and the phases of the common

cycle in each series yi,t.

The only difference between this model and the model of Harvey and Koopman (1997) consists

in defining the cyclical component as a function of hidden cycles ψ2,t and ψ+
2,t, since ξ2 6= 0. As

1Factor models were initially used in a SVAR framework (Stock and Watson, 1991).
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shown below, ψ1,t and ψ2,t are synchronised, but the transformation of ψ2,t and ψ+
2,t creates a

“phase-shift” equal to ξ2 − ξ1 periods between the second cycle and the first one. The constraints

ai ≥ 0 and −π < λξ2 < π are assumed2.

For identifying the model, the normalisation constraints (ξ1 = 0, a1 = 1, h1 = 0) are imposed.

Thus, the two series play different roles in the model: conventionally, a cycle of interest is distin-

guished from a reference cycle. The properties of the cycle of interest are studied in comparison

with the reference cycle. The relationship between the two cycles is characterised by their phase-

shift ξ2 and the weight a2. The phase-shift is the lag relative to the reference cycle. The weight

is a sort of amplitude ratio of the cycle of interest in comparison with the reference cycle. The

relation between cycles can equivalently be characterised by the phase-shift and the phase-adjusted

correlation ρ, which can be computed with the following formula:

ρ = a2/

√

a2
2 + h

2
2/σ

2
κ,c. (2)

The correlation ρ between cyclical innovations is called the phase-ajusted correlation, because

it relates the series y1,t to the series y2,t adjusted from its phase-shift. The contemporaneous

correlation between both cycles is equal to ρ cos (λξ2). As explained in Rünstler (2004), the phase-

shift, the weight and the phase-adjusted correlation concepts are closely related to frequency-

domain concepts (the phase, the gain and the coherence). But the model-based approach avoid

potential distortions of the filter-based approach, as documented by Harvey and Trimbur (2003).

The cross-covariance function allow to determine identification conditions and to show that the

covariance between the two cycles is maximised when the second series is shifted floor(ξ2) times.

The cycles are stationary processes with the following cross-covariance function3:

Γ(τ) =
φ|τ |

1 − φ2

[

σ2
κ,1 cos(λτ) ρσκ,1σκ,2 cos [λ(τ + ξ2)]

ρσκ,1σκ,2 cos [λ(τ − ξ2)] σ2
κ,2 cos(λτ)

]

(3)

If φ = 0, λ = 0, λ = π or ρ = 0, the cross-covariance does not depend on ξ2 and the phase-shift ξ2

is not identifiable. On the contrary, if the identification conditions (0 < φ < 1, 0 < λ < π, 0 < ρ)

are assumed, the cross-covariance between the series y1,t and y2,t−τ is maximised when the lag

operator is applied floor(ξ2) times on the second cycle4.

Finally, it can be noticed that both series can share a common cycle in the sense of Engle and

Kozicki (1993), i.e. it is possible in some cases to find a linear combination of both series that

would be equal to a white noise. The conditions are a perfect synchronisation (ξ2 = 0) and the

absence of specific shocks (h2 = 0). In this case, the correlation between the two phase-adjusted

cycles is equal to one (ρ = 1).

3.2 Stochastic Cyclical Convergence Model (SCCM)

The previous bivariate model (i.e. a multivariate stochastic cycle model with phase-shifts expressed

in a single common factor framework) is extended in Lemoine (2005), in order to incorporate the

2Using basic trigonometric identities, it can be shown that such constraints are equivalent to the constraint

−π/2 < λξ2 < π/2 assumed in Rünstler (2004).
3Proof of the auto-covariance expression is given by Rünstler (2004).
4For a real x, the floor function returns the largest integer not greater than x.
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convergence dynamics. This extension differs from that of Koopman and Azevedo (2004). Each

property of the cycle of interest, regard to the reference cycle, is modelled with a time-varying

(tv) parameter: the convergence is characterised by the tv-phase ξ2,t and the tv-weight a2,t. These

tv-parameters are random walk processes. The stochastic cyclical convergence model (SCCM) is

written as follows:

yi,t = ai,t

[

cos(λξi,t), sin(λξi,t)
]

ψ̄c
t + [1, 0] ψ̄

∗
i,t + εi,t

ψ̄
c

t = φTλψ̄
c

t−1 + κ̄c
t

ψ̄
∗
i,t = φTλψ̄

∗
i,t−1 + κ̄∗

i,t

ai,t = ai,t−1 + γi,t

ξi,t = ξi,t−1 + δi,t

(4)

εi,t, κ
c
t , κ

+c
t , κ∗i,t, κ

+∗
i,t , γi,t and δi,t are white independent Gaussian noises, with standard errors

σε,i, σκ,c, σκ,c, hi, hi, σγ,i and σδ,i. Using the normalisation constraints,

a1,t = 1, ξ1,t = 0, h1 = 0, (5)

in this particular formulation, the second cycle is generated by the propagation of the first cycle.

The propagation is characterised by the tv-phase (ξ2,t) and the tv-weight (a2,t), which should again

verify −π < λξ2,t < π and a2,t ≥ 0. But it can equivalently be characterised by the tv-phase (ξ2,t)

and the phase-adjusted tv-correlation (ρt), by computing:

ρt = a2,t/
√

a2
2,t + h

2

2
/σ2

κ,c (6)

In this case, the auto-covariance function5 of the cycles at a lag τ and a date t > τ , conditional

on a realisation of the tv-correlation time series ρ1:t = [ρ2,1, ..., ρ2,t]
′ and of the tv-phase one

ξ1:n = [ξ2,1, ..., ξ2,n]′ is:

Γa,ξ(τ ; t) =
φτ

1 − φ2

[

σ2
κ,1 cos(λτ) ρ̃τ,tσκ,1σκ,2 cos

[

λ(τ + ξ2,t)
]

ρ̃τ,tσκ,1σκ,2 cos
[

λ(τ − ξ2,t−τ )
]

σ2
κ,2 cos(λτ)

]

, (7)

with ρ̃τ,t the exponential smoother (with a parameter φ2) of ρt−τ or ρt below the sign of τ :

ρ̃τ,t =















(1 − φ2)
t−τ
∑

i=0

φ2iρt−τ−i if τ > 0

(1 − φ2)
t
∑

i=0

φ2iρt−i if τ < 0
.

At time t, if φ = 0, λ = 0, λ = π or (ρ1:t = 0t), the autocovariance matrix Γρ,ξ(τ , t) does not

depend on ξ2,t and the phase-shift ξ2,t is not identifiable. Thus, the identification conditions φ > 0,

0 < λ < π and (ρt > 0, ∀t) are assumed.

The cyclical convergence at a date t is defined in this paper by the two following conditions:

perfect synchronisation (ξ2,t = 0) and perfect correlation (ρt = 1). In the case of a perfect and

permanent synchronisation, the phase-shift is assumed constant (σδ,2 = 0) and equal to zero

(ξ2,0 = 0). For the perfect symmetric case, the correlation is assumed constant and equal to one,

5Proof of the auto-covariance expression is given in Appendix A.
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which is equivalent to assuming (σγ,2 = 0, h2 = 0). Finally, if σδ,2 = 0, ξ2,0 = 0, σγ,2 = 0 and

h2 = 0 simultaneously, cycles are synchronised and symmetric. This is the common cycle case,

initially defined by Engle and Kozicki (1993): a linear combination of the cycles is a white noise;

the only difference between the two cycles is their amplitude.

3.3 Estimation methodology

As the issue raised does not directly concern the trend/cycle decomposition, if series of interest

xi,t and x2,t have a trend, they are detrended and smoothed with band-pass BK filters before the

iterative estimation procedure:

yi,t = BK
α,β

(xi,t) (8)

where the operator BK transforms a series x into its trend, using a Baxter-King filter. The choice

of the parameter of the operator (here α or β) depends on the considered series. For the empirical

application in section 4, where series of interest are quarterly GDP time series, periods between

1.5 and 8 years are filtered by setting α = 6 and β = 32.

The parameter vector of the SCCM model, denoted by p =
[

φ, λ, h2, σκ,c, ξ2,0, σδ,2, θ2,0, σγ,2

]′

for convenience6 contains: the damping factor (φ), the frequency (λ), the specific and common

standard deviations (h2, σκ,c), the tv-shift parameters (ξ2,0, σδ,2) and the tv-weight parameters

(θ2,0, σγ,2). The tv-parameters (ξ2,t, a2,t) and p are transformed, in order to facilitate their esti-

mation and to take into account constraints. The transformed parameters and tv-parameters are

called θp = [θφ, θλ, θh, θκ,c, θξ,0, θδ, θa,0, θγ ]
′
and (θξ,t, θa,t). The parameters can then be calculated

by the following formula:

φ =
|θφ|

√

1 + θ2φ

, λ =
2π

2 + |θλ|
, h2 = θh, σκ,c = θκ,c,

ξ2,0 =
2 + |θλ|

2π
θξ,0, σδ,2 =

2 + |θλ|
2π

θδ√
n
, a2,0 = θa,0, σγ,2 =

θγ√
n
.

and the tv-parameters by

ξ2,t =
2 + |θλ|

2π
θξ,t, a2,t = θ2,t.

The damping factor (φ) is not allowed to be negative or higher than 1. The tv-phase parameters

(ξ2,0 and σδ) are rescaled with the frequency λ. This transformation implies a simpler constraint

−π < θξ,t < π, instead of −π/λ < ξ2,t < π/λ. The standard deviations σδ,2 and σγ,2 are rescaled

with the square root of the sample size (
√
n). This transformation, used in Stock and Watson

(1998), allows the direct definition of the order of magnitude of θξ,t and θa,t (instead of their

innovations) by the parameters θδ and θγ .

The difficulty in estimating the SCCM model with the filtered series y1,t and y2,t, then, comes

from the non-linear transformation of the tv-parameters θξ,t and θa,t in the measure equation.

The model cannot be written in a linear state-space form and a linear Kalman filter cannot be

6There is no irregular component (σε,1 = σε,2 = 0), as irregular components are pre-filtered from the real data

sets.
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directly applied to approximate maximum likelihood estimates. An iterative extended Kalman

filter procedure (described in Appendix B and called IEKF), in which the equation is linearly

approximated7 at each step n around previous step estimates, is therefore used to estimate the

parameters θp and the tv-parameters (θξ,t, θa,t). The procedure is initialised by pre-modelling the

business cycles in a common factor Rünstler model. The procedure is iterated by applying the

Kalman smoothers with diffuse initialisation at each step, until the estimates are stabilised, i.e.

until the iteration error e(n) is lower than a fixed value. The iteration error is computed as the

standard error of the difference between estimates at iteration (k) and (k + 1).

4 Empirical results

After a short presentation of the data sources, the estimated models are presented and the cyclical

convergence is described with its two components, the tv-phase and the tv-weight. In Section 4.2,

we use the SCCM models outlined above to assess whether the first OCA criterion is met for euro

area countries, that is whether the national business cycles have converged towards the euro area

cycle.

4.1 Data sources

The GDP time series are taken from the Eurostat database and have been retropolated to 1960 with

the OECD Business Sector Database (BSDB). Countries of interest are Germany (GE), France

(FR), Spain (ES), Italy (IT), the Netherlands (NL), Austria (AU), Finland (FI), Greece (GR),

Portugal (PR) and Ireland (IR). The United Kingdom (UK) is also considered, as this country

could meet the official criteria for entering in the euro area. Luxembourg is not considered, because

the economy is very specialised in the banking sector and has a very low weight in the euro area

GDP. The series are quarterly and expressed in 1995 value of euro from 1960:1 to 2005:4. They

have been seasonally adjusted and, after a logarithm transformation, they have been detrended

with band-pass BK filters (parameters equal to 6 and 32). Because of the detrending step, results

results are provided from 1963:1 to 2002:4. Estimation of SCCM models has been carried out using

algorithms and routines written on EViews.

4.2 On the convergence between euro area cycles

The bivariate SCCM model has been estimated with the IEKF procedure applied to the cycles

of euro area member states and the UK. If the reference cycle had been that of the euro area

aggregate, a direct bias would affect the comparison of convergence processes. In the case of a big

country, a high weight in the euro area GDP would induce an artificial over-estimation of cyclical

convergence, regard to that of a little one. Therefore, except for the UK which does not belong to

7For estimating non-linear models, Durbin and Koopman (2001) proposed such a method. However, they also

recommend improving the estimation with importance sampling techniques. This improvement is let for further

research.
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the euro area, the euro area cycle is not chosen as reference cycle. For each euro area member, the

reference cycle is computed from a euro area aggregate, which excludes the considered member.

Parameter estimates are reported in Table 1 and tv-parameter estimates are presented in the

Figure 1. Cycle parameters estimates (φ and λ) are standard for BK filtered GDP series. In

particular, the estimated frequency implies a period between 18 and 22 quarters, i.e. approximately

equal to 6 years.

In a first group that includes Germany, France and Belgium, business cycles converge early

toward the euro area business cycle. Their tv-weights stay between 0.7 and 1.4. Since 1980, the

tv-phases stay between -1 and 2 quarters in France and Belgium. In Germany, a transitory lag

appears equal to 3 quarters in 1991, because the recession takes place after the re-unification.

In a second group that includes Italy, Spain, the Netherlands, Austria and Portugal, business

cycles converge only at the end of the sample. The tv-weights still take values lower than 0.5 or

higher than 1.5 until 1995, but the tv-phases stay between -3 and 3 quarters since 1980. Since the

launch of the euro in 1999, the tv-weights stay between 0.9 and 1.2.

In a third group that includes Finland, Greece and Ireland, convergence has still not occurred

at the end of the sample. Tv-weights are equal to 1.7 in Finland, 0.4 in Greece and 2.4 in Ireland.

These cycles are quite synchronised with the euro area one: tv-phases stay between 0 and 2

quarters.

The United Kingdom would belong to the third group. Indeed, its tv-weight is equal to 0.6

in 2002:4. Moreover, since 1980, the UK cycle shows a persisting lead, relative to the euro area

cycle. This lead is maximal in 1991:3 with a value equal to 6 quarters, because of the German

reunification. Since 1994, the lead is stable approximately equal to 3 quarters.

Until the end of the 1990s, the results are generally consistent with the previous papers, which

use a similar approach of the cyclical convergence (Belo, 2001 and Koopman and Azevedo, 2004),

but the approach is improved at the end of the 1990s and at the beginning of the 2000s. Both papers

characterise the cyclical convergence by the evolution of the phase-shift and of the phase-adjusted

correlation. Below equation (6), the phase-adjusted correlation should have the same evolution as

the tv-weight considered in this section. With simple correlation coefficients, Belo (2001) describes

the three same groups, but finds that Greece would belong to the second group. He also shows a

persisting lead of the UK cycle relative to that of the euro area and, after a correction for this lead,

a strong association between the two cycles. These results have been confirmed by Koopman and

Azevedo (2004) with an extended unobserved component model. However, as explained previously,

Koopman and Azevedo (2004) model monotonous evolution of the phase and the phase-adjusted

correlation. Their model does not allow for a succession of convergence and divergence movements.

Thus, in the IT, ES and UK cases, they estimate a global increase of the phase-adjusted correlation

since 1970 and do not detect the decreases that appear in Figure 1. The decrease of the correlation

between the UK and the euro area cycles is also undetected by Belo (2001). He computes moving-

average indicators with a window of 12 years. With the annual sample 1960-1999, such indicators

become useless for detecting any variation occurring after 1993 (12/2 = 6 years before the end of

the sample).
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Table 1: Parameters estimates for euro area countries, relative to the rest of the euro area

Cases φ̂ λ̂ ĥ2 σ̂κ,c ξ̂2,0 σ̂δ,2 â2,0 σ̂γ,2

GE 0.97 0.33 0.18 0.23 0.54 0.75 0.83 0.15

FR 0.96 0.33 0.15 0.23 -4.10 0.11 3.88 0.05

IT 0.97 0.35 0.21 0.22 2.10 0.75 2.04 1.70

ES 0.97 0.30 0.19 0.23 -2.91 1.75 1.29 0.49

BE 0.96 0.36 0.17 0.22 -0.09 0.41 0.04 0.00

NL 0.96 0.32 0.18 0.22 -1.70 0.11 2.34 0.30

AU 0.96 0.35 0.19 0.22 -7.17 0.84 1.00 0.19

FI 0.97 0.29 0.22 0.22 -2.64 0.90 2.79 2.16

GR 0.96 0.35 0.30 0.22 4.67 0.55 0.27 2.12

PR 0.97 0.32 0.32 0.22 0.11 0.00 1.18 0.62

IR 0.97 0.31 0.26 0.22 6.67 1.15 2.50 0.92

UK 0.97 0.31 0.12 0.22 -3.71 0.72 1.07 1.84

Legend: parameter estimates (p̂) are presented for models of

euro area countries cycles, relative to the cycle of the rest of

the euro area. For the United Kingdom, the reference is the

cycle of the aggregated euro area.

Source: Eurostat, OECD and computations of the author.
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Figure 1: Tv-parameters estimates for euro area countries, relative to the rest of the euro area
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Legend: estimates of the tv-parameters (ξ̂2,t,â2,t) are presented for models of euro area countries

cycles, relative to the cycle of the rest of the euro area. For the United Kingdom, the reference is

the cycle of the aggregated euro area.

Note: The Belgian tv-weight and the Portugese tv-shift are constant, because the estimates of

their innovation variances are not significantly different from zero.

Source: Eurostat, OECD and computations of the author.
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5 Conclusion

SCCM models have been applied to the cycle of each euro area country, relative to the rest of the

euro area, from 1963:1 to 2002:4. The SCCM model is an extension of the models developed by

Rünstler (2004) and Koopman and Azevedo (2004), in which the evolution of the relation between

two cycles is characterised by the tv-phase and the tv-weight.

Empirical results are twofold. Firstly, the cycles of the euro area have synchronised: their tv-

phases have generally converged toward low values (between -2 and 2 quarters) before the launch of

the euro. Concerning the tv-weights, results are more ambiguous. Germany, France and Belgium

have converged toward the euro area cycle since 1980. The convergence is more recent for Italy,

Spain, the Netherlands, Austria and Portugal. Despite the launch of the euro in 1999, Finland,

Greece and Ireland have still not converged. Thus, in terms of business cycle convergence, being

in a monetary union might raise problems especially for the third group, which represents 5.8 %

of the euro area GDP.

For the United Kingdom, the convergence was not achieved in 2002: the UK cycle is dampened

and has the biggest lead (3 quarters), relative to other euro area countries. Thus, if the UK entered

into the euro area, it would belong to the third group, which would represent 17.5 % of the euro

area aggregated GDP. Our results suggest that it would be delicate for the UK to join the euro

area.

Although our convergence model has proved to be an interesting starting point for testing the

stochastic convergence of business cycles in a probabilistic framework, some improvements have

been left for future research. The estimation procedure of our non-linear model could be made

more precise by using importance sampling techniques. In particular, such techniques would make

it possible to simulate posterior distribution of the tv-parameters and to estimate their confidence

bands. The model could be applied with a higher multivariate dimension. An explanation of the

convergence could be given by including other variables, like economic policy indicators (interest

rates, exchange rates and fiscal indicators) in the convergence mechanism.
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Appendices

A Auto-covariance of business cycles in a SCCM model

A.1 Simple multivariate form of the SCCM model

The SCCM model (4) is statistically equivalent (has the same cross-autocovariance functions) to

the following model:

y1,t = [1, 0] ψ̄1,t + ε1,t,

y2,t =
[

cos(λξ2,t), sin(λξ2,t)
]

ψ̄2,t + ε2,t,

ψ̄i,t = φTλψ̄i,t−1 + κ̄i,t,

with ψ̄1,t =
[

ψi,t, ψ
+
i,t

]′
and κ̄i,t =

[

κi,t, κ
+
i,t

]′
. The initial conditions at t = 0 are defined by

ψ̄i,0 = κ̄i,0. κt = [κ1,t, κ2,t]
′

and κ+
t =

[

κ+
1,t, κ

+
2,t

]′
are bivariate normal disturbances mutually

uncorrelated at all time periods and have covariance matrices Σκ,t :

[

κ1,t

κ2,t

]

∼ NID(0,Σκ),

[

κ+
1,t

κ+
2,t

]

∼ NID(0,Σκ), with Σκ,t =

[

σ2
κ,1 ρtσκ,1σκ,2

ρtσκ,1σκ,2 σ2
κ,2

]

.

κ̄i,t are bivariate normal disturbances and have 2× 2 covariance matrices σ2
κ,iI2 (with I2 the 2× 2

identity matrix).

Given that

E
(

ψ1,0ψ2,0

∣

∣ρ1:t

)

= E (κ1,0κ2,0|ρ1:t) = E
(

κ+
1,0κ

+
2,0

∣

∣ρ1:t

)

= E
(

ψ+
1,0ψ

+
2,0

∣

∣ρ1:t

)

,

we can prove recursively that

E
(

ψ1,tψ2,t

∣

∣ρ1:t

)

= E
(

ψ+
1,tψ

+
2,t

∣

∣ρ1:t

)

(A.1)

for each t.

A.2 Cross-autocovariance between bivariate cycles

Before considering the covariance matrix of business cycles, conditional on the tv-parameters, since

(Tλ)
τ

= Tλτ for all integer τ , we compute the cross-autocovariance Ωρ(τ , t) between the bivariate

cycles ψ̄1,t and ψ̄2,t−τ at a lag τ > 0, conditional on ρ1:t = [ρ1, ..., ρt]
′:

Ωρ(τ , t) = E
(

ψ̄1,tψ̄
′

2,t−τ

∣

∣

∣
ρ1:t

)

(A.2)

= E

[(

φτTλτ ψ̄1,t−τ +
τ−1
∑

i=0

φiTλiκ̄1,t−i

)

ψ̄
′

2,t−τ

∣

∣

∣

∣

∣

ρ1:t

]

= φτTλτΩρ(0, t− τ),

with E [ ·|ρ1:t] the “conditional on ρ1:t” expectation. Given that ψ̄1,t−1 ⊥κ̄2,t and ψ̄2,t−1 ⊥κ̄1,t,

the cross-covariance Ωρ(0, t) between ψ̄1,t and ψ̄2,t, conditional on ρ1:t, is given by

Ωρ(0, t) = E
(

ψ̄1,tψ̄
′

2,t

∣

∣

∣
ρ1:t

)

= E
[

(

φTλψ̄1,t−1 + κ̄1,t

) (

φTλψ̄2,t−1 + κ̄2,t

)′
∣

∣

∣
ρ1:t

]

= φ2TλΩρ(0, t− 1)T ′
λ + ρtσκ,1σκ,2I2,
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Since ψ+
1,t ⊥ ψ2,t, ψ1,t ⊥ ψ+

2,t and from (A.1), it follows that

Ωρ(0, t) =

[

E
(

ψ1,tψ2,t

∣

∣ρ1:t

)

E
(

ψ1,tψ
+
2,t

∣

∣ρ1:t

)

E
(

ψ+
1,tψ2,t

∣

∣ρ1:t

)

E
(

ψ+
1,tψ

+
2,t

∣

∣ρ1:t

)

]

= E
(

ψ1,tψ2,t

∣

∣ρ1:t

)

I2

Hence, Ωρ(0, t− 1) commutes with the matrix Tλ which is orthogonal (TλT
′

λ = I2),

Ωρ(0, t) = φ2Ωρ(0, t− 1) + ρtσκ,1σκ,2I2. (A.3)

Since Ωρ(0, 0) = ρ0σκ,1σκ,2I2 and given equation (A.3),

Ωρ(0, t) = (1 − φ2)−1ρ̃tσκ,1σκ,2I2, (A.4)

with ρ̃t = (1 − φ2)
∑t

i=0 φ
2iρt−i the exponential smoother of ρt (the parameter is equal to φ2).

From equations (A.2) and (A.4), we derive the cross-autocovariance Ωρ(τ , t) between bivariate

cycles ψ̄1,t and ψ̄2,t−τ at a lag τ > 0, conditional on ρ1:t = [ρ1, ..., ρt]
′:

Ωρ(τ , t) = (1 − φ2)−1φτ ρ̃t−τσκ,1σκ,2Tλτ , (A.5)

A.3 Auto-covariance matrix between business cycles

From (A.5), the cross-autocovariance γρ,ξ(τ , t) between business cycles y1,t and y2,t at a lag τ > 0,

conditional on ρ1:t and ξ1:n = [ξ1, ..., ξn]′, is given by

γρ,ξ(τ , t) = E

[

[

1 0
]

ψ̄1,tψ̄
′

2,t−τ

[

cos ξ2,t−τ

sin ξ2,t−τ

]
∣

∣

∣

∣

∣

ρ1:t, ξ1:n

]

=
[

1 0
]

Ωρ(τ , t)

[

cos ξ2,t−τ

sin ξ2,t−τ

]

= (1 − φ2)−1φτ ρ̃t−τσκ,1σκ,2 cos
[

λ(τ − ξ2,t−τ )
]

.

with E( ·|ρ1:t, ξ1:t) the “conditional on ρ1:t and ξ1:n” expectation.

By using similar arguments, it might be proved more generally that the autocovariance matrix

Γρ,ξ(τ , t) of [ψ1,t; cos(λξ2,t)ψ2,t + sin(λξ2,t−τ )ψ+
2,t]

′ at a lag τ ≥ 0, conditional on ρ1:t and ξ1:n, is

given by

Γρ,ξ(τ , t) = (1−φ2)−1φτ

[

σ2
κ,1 cos(λτ) ρ̃t−τσκ,1σκ,2 cos

[

λ(τ + ξ2,t)
]

ρ̃t−τσκ,1σκ,2 cos
[

λ(τ − ξ2,t−τ )
]

σ2
κ,2 cos(λτ)

]

;

at a lag τ < 0, it can also be shown that

Γρ,ξ(τ , t) = (1 − φ2)−1φ−τ

[

σ2
κ,1 cos(λτ) ρ̃tσκ,1σκ,2 cos

[

λ(τ + ξ2,t)
]

ρ̃tσκ,1σκ,2 cos
[

λ(τ − ξ2,t−τ )
]

σ2
κ,2 cos(λτ)

]

.

At time t, if φ = 0, φ = 1, λ = 0, λ = π or ρ1:t = 0t, the autocovariance matrix Γρ,ξ(τ , t) does

not depend on ξ2,t and the phase-shift ξ2,t is not identifiable. Thus, the identification conditions

(φ > 0), (0 < λ < π) and (ρt > 0, ∀t) are assumed.
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B Iterative extended Kalman filter (IEKF)

The local version of the iterative extended Kalman filter (IEKF) is an iterative procedure, designed

for estimating a linear approximate of the SCCM model. The notations are defined in Section 3.2

and Section 3.3.

Initialisation k = 0

• Estimation of ψ̄c
t , ψ̄

∗
2,t, θ̂ξ

, θ̂a in the common factor Rünstler model, by applying the Kalman

and EM algorithms to the equation system (??), where transformed parameters θp have

been integrated. The phase-shift θξ and the weight a are also deduced from transformed

parameters: (ξ = θξ, a = θa)

• θ̂
(0)

ξ,t = θ̂ξ,θ̂
(0)

a,t = θ̂a.

• e(0) = 1.

Iteration k+1

• If the iteration error e(k) > 10−7, Kalman and EM algorithms (with diffuse initialisation)

are applied to models (B.1) and (B.2), otherwise the algorithm is stopped. First, a
(k+1)
t is

estimated conditional to ξ̂
(k)

t :


























y1,t = [1, 0]ψ̄c
t

y2,t = θ
(k+1)
a,t

[

cos θ̂
(k)

ξ,t , sin θ̂
(k)

ξ,t

]

ψ̄c
t + [1, 0]ψ̃

∗(k+1)

2,t

ψ̄
∗(k+1)
2,t =

|θφ|√
1+θ2

φ

T 2π

2+|θλ|
ψ̄

∗(k+1)
2,t−1 + κ̃∗2,t

θ
(k+1)
a,t = θ

(k+1)
a,t−1 + γ2,t, θ

(k+1)
a,0 = θa,0

. (B.1)

with κc
t ∼ N(0, θκ,c), κ

+c
t ∼ N(0, θκ,c), κ

∗
2,t ∼ N(0, θh), κ+∗

2,t ∼ N(0, θh), γ2,t ∼ N(0,
θγ√

n
).

• Then, ξ
(k+1)
t is estimated conditional to â

(k+1)
t and ξ̂

(k)

t :


























y1,t = [1, 0]ψ̄c
t

ỹ2,t = θ̂
(k+1)

a,t θ̂
(k+1)

ξ,t

[

− sin θ̂
(k)

ξ,t , cos θ̂
(k)

ξ,t

]

ψ̄1,t + [1, 0]ψ̃
∗∗(k+1)

2,t

ψ̄
∗∗(k+1)
2,t =

|θφ|√
1+θ2

φ

T 2π

2+|θλ|
ψ̄

∗∗(k+1)
2,t−1 + κ̃∗2,t

θ
(k+1)
ξ,t = θ

(k+1)
ξ,t−1 + 2π

2+|θλ|δ2,t, θ
(k+1)
ξ,0 = θξ,0

, (B.2)

with κc
t ∼ N(0, θκ,c), κ

+c
t ∼ N(0, θκ,c), κ

∗
2,t ∼ N(0, θh), κ+∗

2,t ∼ N(0, θh), δ2,t ∼ N(0, 2+|θλ|
2π

θδ√
n
),

ψ̃
∗∗(k+1)

2,t the specific cycle of the linearised model (B.2) at the iteration (k + 1) and ỹ2,y the

adjusted series defined by:

ỹ2,t = y2,t − θ̂
(k+1)

a,t

[

cos θ̂
(k)

ξ,t , sin θ̂
(k)

ξ,t

]

ψ̄1,t + θ̂
(k+1)

a,t θ̂
(k)

ξ,t

[

− sin θ̂
(k)

ξ,t , cos θ̂
(k)

ξ,t

]

ψ̄1,t.

• Finally, the iteration error e(k+1) is computed:

e(k+1) = 0.5 ×

√

√

√

√

1

n

n
∑

t=0

(

θ̂
(k+1)

a,t −θ̂(k)

a,t

)2

+ 0.5 ×

√

√

√

√

1

n

n
∑

t=0

(

θ̂
(k+1)

ξ,t −θ̂(k)

ξ,t

)2

.
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