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, assuming that serially correlated shocks allow a dynamic representation of the production function, and we use the system generalized method of moments for estimation. Splitting capital operating time into shiftwork patterns and working time, our results show that shiftwork patterns matter for the estimation of a production function while working time is less informative. Specifically, our estimates yield identical output elasticities for shiftwork and capital: thus, doubling the shifts is equivalent to doubling the stock of capital. In addition, we cannot reject the hypothesis of constant returns to scale and the Cobb-Douglas specification is accepted when taking into account the capital operating time and/or the working time. Otherwise, a Translog production function is more appropriate.

Introduction

Since the beginning of the 1960s, numerous studies have addressed the importance to economic analysis of factor utilization, both for the analysis of factor demands [START_REF] Ball R | Short-term Employment Functions in British Manufacturing Industry[END_REF][START_REF] Brechling | Short-run Employment Functions in Manufacturing Industries : an International Comparison[END_REF][START_REF] Nadiri | The Effects of Relative Prices and Capacity on the Demand for Labour in the U.S. Manufacturing Sector[END_REF][START_REF] Nadiri | The Effects of Relative Prices and Capacity on the Demand for Labour in the U.S. Manufacturing Sector[END_REF][START_REF] Nadiri | Interrelated Factor Demand Functions[END_REF][START_REF] Craine R | On the Service Flow from Labour[END_REF] and fluctuations in productivity [START_REF] Foss | The Utilization of Capital Equipement[END_REF] or for formalizing relationships in the input mix [START_REF] Feldstein | Specification of the Labor Input in the Aggregate Production Function[END_REF][START_REF] Craine R | On the Service Flow from Labour[END_REF][START_REF] Leslie | The Productivity of Hours in U.K. Manufacturing and Production Industries[END_REF]Hart and McGregor, 1987).

Although all of these studies demonstrate the importance of factor utilization to economic analysis, none has used the factor utilizations to estimate a production function at the firm level. Furthermore, while it is generally acknowledged that the two primary dimensions of factor utilization are intensity and duration [START_REF] Bosworth | La Mesure de la Durée d'Utilisation des Équipements[END_REF] -the intuition being that the services provided by factors of production depend on how intensely and how long they are used -the impact of operating hours and hours of work in the production function remains largely overlooked. This oversight appears particularly unfortunate for France, where both capital operating time and working time have changed considerably in recent years. In this paper, we estimate, for the first time, a production function incorporating capital operating time and working time using firms panel data in the case of France. 1

Our contribution is both empirical and methodological. On the one hand, we derive a general specification for a Cobb-Douglas production function incorporating working time and shiftwork 2 using the framework of [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF]. We also extend this approach to a "flexible" Translog production function. On the other hand, we highlight the standard problems encountered in the literature and suggest, as in [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF], and Blundell, Bond, and [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF], to exploit the better finite sample properties of the system GMM (GMMS) estimator developed by Arellano and[START_REF] Arellano | Another Look at the Instrumental-Variable Estimation of Error-Components Models[END_REF]Blundell and[START_REF] Blundell R | Initial conditions and moment restrictions in dynamic panel data models[END_REF]. In the presence of unobserved heterogeneity and simultaneity, ordinary least squares (OLS) and Within estimators generally prove unsatisfactory. In this case, although the first-differenced generalized method of moments (GMMD) is frequently used, the properties of this estimator are quite weak when, for example, the variables are strongly persistent. The basic idea is thus to This paper is organized as follows. In section 2, we review the primary fields of economic analysis in which considering factor utilization seems most necessary. In section 3, we present the data. In section 4, the theoretical framework and the methodology are explained. In section 5, we discuss the results of the estimations. In section 6, we show that the Cobb-Douglas specification is a good approximation of the true technology in our sample. Finally, concluding remarks are in section 7.

Factor Utilization and Analysis of the Input Mix

The incorporation of factor utilization into economic analysis is based on the intuition that the services provided by factors of production depend on how intensely and how long they are used.

Several studies have addressed the importance of factor utilization for analyses of both factor demands and short-term productivity fluctuations or the input mix [START_REF] Ball R | Short-term Employment Functions in British Manufacturing Industry[END_REF][START_REF] Brechling | Short-run Employment Functions in Manufacturing Industries : an International Comparison[END_REF][START_REF] Nadiri | The Effects of Relative Prices and Capacity on the Demand for Labour in the U.S. Manufacturing Sector[END_REF]. Therefore, by creating a theoretical link between traditional factor-demand models and factor utilization, the model developed by [START_REF] Nadiri | A Desequilibrium Model of the Demand for Factors of Production[END_REF] made a significant contribution to economic theory. Estimations of the factordemand model reveal that, in response to cyclical fluctuations in demand, adjustments to the desired levels occur more quickly for factor utilization than for stock variables. Several studies performed on French data that drew on this work also emphasized the impact of factor utilization [START_REF] Cette G | Degrés d'Utilisation des Facteurs et Demande d'Investissement et de Travail[END_REF][START_REF] Cueva S | Modèle Dynamique de Production avec Degrés d'Utilisation: Analyse Théorique et Econométrique[END_REF][START_REF] Cueva | Demande de Facteurs et Degrés d'Utilisation du Capital et du Travail[END_REF]. Analyses of long-term productivity changes also benefited from inclusion of variations in the capital utilization. [START_REF] Foss | The Utilization of Capital Equipement[END_REF] pioneering work revealed a significant positive contribution of the capital utilization to the evolution of productivity growth in the United States. In France, Cette (1990) underscored the cyclical profile of capital operating time and its consequences for the apparent productivity of capital.

On the other hand, including factor utilization in production functions is also important: adjustments to factor stocks take time while the extent to which they are used can vary rapidly.

Several studies on data from the United States [START_REF] Craine R | On the Service Flow from Labour[END_REF], the United Kingdom [START_REF] Feldstein | Specification of the Labor Input in the Aggregate Production Function[END_REF][START_REF] Leslie | The Productivity of Hours in U.K. Manufacturing and Production Industries[END_REF], Germany (Hart and McGregor, 1987), and France [START_REF] Cueva | Fonction de Production et Degrés d'Utilisation du Capital et du Travail : une Analyse Econométrique[END_REF][START_REF] Heyer | Rigidités de l'Offre et Degrés d'Utilisation des Facteurs de Production[END_REF] have estimated production functions incorporating factor utilization.

In France, the policy of working time reduction stimulated reflection on the role of factor utilization in the economy [START_REF] Cahuc | La Réduction du Temps de Travail. Une Solution pour l'Emploi ? Ouvrage collectif[END_REF][START_REF] Gianella | Productivity of Hours in the Aggregate Production Function: An Evatuation on a Panel of French Firms from the Manufacturing Sector[END_REF].

Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 However, studies that have validated the importance of factor utilization in economic analysis have rarely considered the capital utilization. This imbalance is illustrated in Table 1, where estimation results for a Cobb-Douglas function incorporating factor utilization are summarized.

Moreover, even when capital utilization is included in the production function, heterogeneous indicators are used: some studies have used measures of capital utilization while others retained a utilization rate that is nearer to an intensity of use. Thus, the capital operating time is rarely used.

Furthermore, the only study integrating both operating hours and hours of work into a production function [START_REF] Cueva | Fonction de Production et Degrés d'Utilisation du Capital et du Travail : une Analyse Econométrique[END_REF] was conducted on macrosectoral data and yielded unsatisfactory results. The output elasticity of capital operating time shows little significance and the output elasticity of capital exceeds the output elasticity of labour. Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 In this respect, using firm-level data is of particular interest for analyzing working time and ng time. Their greater variability along with their microeconomic character give pa capital operating time and working time. 

The Data

The sample used for the estimations was generated by combining two of the Banque de nce's data files: data from the Balance-Sheet Data Office and the Annual Survey of Capital erating Time in Industry. 3

The dependent variable, Y data from the Balance-Sheet Data Office.

• Owing to the absence of information on the evolution of equipment efficiency o 3 See Appendix 1.

accounting data from the Balance-Sheet Data Office and the Perpetual Inventory Method.

rvey) provides the total workforce (L) as

We consider a constant rate of depreciation.

• The annual survey of capital operating time (COT su well as the shiftwork patterns at the firm level. This allows computation of a synthetic shiftwork indicator (NOP) which provides the capital operating time (DUE) when combined with working time according to the following relationship: 4

DUE NOP DHT = ×
.

Despite its reliance on strong assumptions, this type of measure for the operating hours is widely used in empirical analyses [START_REF] Bosworth | La Mesure de la Durée d'Utilisation des Équipements[END_REF]. In our case, this formulation also allows estimation of the output elasticity of working time and shiftwork. 5

Working time at the firm level comes from ble th e fro the Acemo-Dares survey, suggesting eements that affect working time and overtime may not be taken into consideration.

ombining these two sources yields an unbalanced panel of 386 industrial firms covering all tim ethod ion tor utilization, we assume that output depends on the ervices of labour (SL) and of capital (SK). For the sake of sim to assess the robustness of our results, we estimate a "flexible" Translog production function and 

The Estimated Relationships and the Es ation M ology

Parameter estimates for the production funct

In keeping with the literature on fac s plicity, and since it is commonly used in the literature and seems to provide a good approximation to the structure of a two-factor production function [START_REF] Hamermesh | Labor Demand[END_REF], a Cobb-Douglas specification is assumed. In Section 6,

Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 test our specification against this more general specification. Therefore, we seek to estimate the following relationship:

,, ,

L K it it it YS L S K β β =× (1)
with Y i,t representing the real value added at factor cost for firm i at time t, and SL i,t and SK i,t the ervices supplied by labour and capital, and s

1 L β ≤ ; 1 K β ≤ .
We further assume that the services provided by a factor depend upon its stock and duration of utilization, and can be expressed as:

DUE SK K DUE α =× (2)
and

DHT SL L DH =× T α , (3) 
where L represents the workforce, K the stock of capital, DHT the working time, and DUE the capital operating time. We also assume that DUE Combining equations ( 2) and (3) yields:

,, , , ,

K DUE L K L DHT it it it it it Y L K DHT DUE ββ ββ β α × × =× × × . ( 4 
)
Note that in the context of a production function including factor utilization such as equation ( 4), the notion of constant returns to scale pertains only to stocks [START_REF] Nadiri | Interrelated Factor Demand Functions[END_REF]. Hence, returns to scale will be constant if, holding factor utilization unchanged, doubling stocks of capital and labour yields twice the output. 7

If we now assume that the capital operating time is the product of working time by a shiftwork indicator reflecting the development of shiftwork within the firm (NOP), we obtain:

(5) with ,, , , ,

NOP L K DHT it it it it it Y L K DHT NOP β ββ β =× × × DHT L DHT K DUE L K β βα β β β β =× + × ≤+; NOP K DUE K β βα β = ×≤
.

After taking logs in equation ( 5 

β ββ β =×+×+ × + × . ( 6 
)
Drawing on the framework defined by [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF], the relationship to be estimated assumes the following form: Incorporating an autoregressive error term into the global error term thus yields a dynamic relation. 8 Indeed, from equations ( 7) and ( 8), we can write: 

( ) ( ) ( ) ( ) ( ) ,, 1 , , 1 ,, 1 , , 1 ,, 1 1 , , , () 1 ( 
It is important to note that the error term w it is an MA(0) process if there is no measurement error, and an MA(1) process if the variance of the error term is not nil.

Therefore, estimation of the output elasticities requires several steps. We estimate first Eq.

(10) and test whether the common factor restrictions (11) are binding. These restrictions can then be imposed using minimum distance to obtain the restricted parameter vector.

The estimators

Estimating a production function on firm-level data creates several problems when we allow for unobserved heterogeneity and examine the finite sample properties of the standard estimators. As [START_REF] Griliches | Production functions: The Search for Identification[END_REF] emphasize, the OLS estimator provides plausible parameter estimates for the factors' shares in the economy, and these are generally consistent with the assumption of constant returns to scale. In the presence of unobserved heterogeneity and

Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 simultaneity, however, the performance of this estimator becomes somewhat less impressive. 9 In the same vein, the Within estimator generates unsatisfactory and downwardly biased estimates, especially to the extent that the time dimension is small relative to the cross-section dimension, which is often the case in microeconomic panels [START_REF] Anderson | Estimation of dynamics models with error compoents[END_REF][START_REF] Nickell | Biases in Dynamic Models with Fixed Effects[END_REF].

In this context, the GMMD, which eliminates unobserved individual effects by taking first differences, should yield more satisfactory results. This estimator can be described as follows.

Assume that equation ( 9) satisfies the following conditions [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF]:

(i) , [] it Ez 0 χ ≠ ,
where and ,, , ,

,, ,

it it it it it z l k nop dht = , ,,
,,

ii t i t em χ η = , respectively; (ii) ,, , , [] 0 ,[ ] [ ] 0 ,[ ] [ ] 0 ii t i ti t i i t i EE v E m E v E m η η == = = η = 0 0 0 0 = ∀ i = 1,…,N and ∀ t = 2,…,T; (iii) ,, [] it is Em m = ∀ i = 1,…,N and s ≠ t; (iv) ,, [] it is Ev m = ∀ i = 1,…,N and ∀ t = 1,…,T; (v) ,, , , [] 0 , [ ] it jt it jt Ev v Em m == ∀ i = 1,…,N and j ≠ i; (vi) 1 , 1, 1 , 1, [] [ ] [] [ ] ii t i i t ii t i i t Eyv Eym Exv Exm == = ∀ i = 1,…,N and ∀ t = 2,…,T.
Condition (i) captures any eventual correlation between the explanatory variables and the individual effect, the autoregressive error term, and the measurement error. Condition (ii)

establishes that the individual effect, the autoregressive term, and the measurement error have a zero mean and that the error terms are not correlated with the individual effect. Condition (iii) implies that the measurement error is not serially correlated. Condition (iv) assumes that the autoregressive error and the measurement error are not correlated. Condition (v) means that the 9 For instance, Marschak and Andrews (1944) demonstrate that the exogenous variables cannot be considered independent and that the assumption of exogeneity no longer obtains if we consider the choice of production factors to be the result of profit maximization by the firm.

measurement errors and the autoregressive errors of two different firms are not correlated at time t. Finally, condition (vi) imposes that the initial conditions for the dependent variable and the explanatory variables are predetermined.

Conditions (vi) yield the following moment conditions: 

s i s i s i s i s i s i s t i i s t i s t i s t i dht nop l k y x x x x x x = = = - - - -
with when and when .

s ≥

, ~( 0

it wM A ) ) 3 s ≤ , ~( 1 it wM A
Therefore, suitable lagged variables in levels serve as instruments in the first-difference equations. These conditions can be written more compactly as:

, (M1) [' ]0 ii EZ w ∆=
where and is the matrix of level instruments.

)' ,..., ( , , , T i s i t i w w w ∆ ∆ = ∆ i Z
The GMMD estimator is thus consistent when and T is fixed. However, this estimator has weak finite sample properties. In particular, on the basis of Monte Carlo simulations, [START_REF] Arellano | Some tests of specification for panel data : Monte Carlo evidence and an application to employment equations[END_REF], [START_REF] Kiviet | On bias, Inconsistency, and Efficiency of Various Estimators in Dynamic Panel Data Models[END_REF], [START_REF] Ziliak | Efficient Estimation with Panel Data when Instruments are Predetermined: An Empirical Comparison of Moment-Condition Estimators[END_REF], and Blundell and Bond (1998), among others, show that the GMMD estimator may be severely biased when (a) N is finite and T is small, (b) the number of moments is relatively large compared to the cross-section dimension, and (c) the instruments are weak in the sense of [START_REF] Staiger | Instrumental Variables Regression with Weak Instruments[END_REF]. In addition, [START_REF] Alvarez | The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Econometrics[END_REF] derive the asymptotic bias under more general assumptions. All these results pertain to a simple autoregressive model without explanatory variables. The inclusion of explanatory variables may reduce this bias. Similarly, when the explanatory variables (and the dependent variable) are highly persistent (possibly following a random walk), [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF] draw attention to the bias and imprecision of the GMMD estimator.

N →∞ 10 10 The difficulty here is to establish the size of the finite sample bias. A simple method consists of comparing the GMMD estimator with the OLS and Within estimators. In the framework of a first-order autoregressive model (without explanatory variables), [START_REF] Hsiao | Analysis of Panel Data[END_REF] shows that the OLS estimator is biased upwards, while [START_REF] Anderson | Estimation of dynamics models with error compoents[END_REF] and [START_REF] Nickell | Biases in Dynamic Models with Fixed Effects[END_REF] demonstrate that the Within estimator is biased downwards (when the time dimension is small). In addition, a consistent estimator of the autoregressive term ( ρ ) should lie between these two limiting cases. Consequently, if GMMD estimates are near to, or below, Within estimates, we can conclude that the estimations are biased, because of weak instruments, for example. [START_REF] Sevestre | Linear Dynamic Models[END_REF] demonstrate that

Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 The possibility that GMMD estimations might introduce a non-negligible bias into our study thus led us to choose the GMMS method, especially since [START_REF] Mairesse | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF] show that the GMMD estimator does not yield significantly better results in the case of a production function, while Blundell, Bond, and [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF] demonstrate that the GMMS estimator yields highly significant increases in precision and also substantially cuts the sampling bias in comparison with the GMMD estimator when the regressors are weakly exogenous and correlated with the individual effect. 11

Indeed, in the case of strongly persistent series, [START_REF] Arellano | Another Look at the Instrumental-Variable Estimation of Error-Components Models[END_REF] and Blundell andBond (1998, 2000) illustrate that it is preferable to use a GMMS estimator. 12 This involves combining the GMMD estimator with additional conditions on the equations in levels. Assume that the following conditions hold:

(i) ; ** * * ,, , , [] [] [ ] [ ] it i it i it i it i Ek El En o p Ed h t ηη η η ∆= ∆= ∆ = ∆ = 0 0 . ) ) (ii) * ,2 [] ii Eyη ∆=
The first condition establishes that the explanatory variables in first differences (except the dependent variable in lagged first differences) are not correlated with the individual effect. The second condition specifies that the dependent variable in first differences at t = 2 is not correlated with the individual effect.

These assumptions imply the additional moment conditions:

(M2) * ,, [( )(1, )] 0 ii t i t s Ewx η - +∆= with when and when . 1 = s , ~( 0 it wM A 2 = s , ~( 1 it wM A
Therefore, suitable lagged first differences of the variables are used as instruments for the equations in levels (M2). These moment conditions these results also obtain when there are explanatory variables (except the lagged dependent variable) that are not correlated with the individual effect and are strictly exogenous with respect to .

2004). 13 Specifically, the joint stationary of the and processes is sufficient (but not necessary) for the validity of (M1).

t i y , t i x ,
As previously, the moment conditions can be written

[ ] 0 ' = + i i w Z E ( M 2 )
where is the matrix of first-differenced instruments.

+ i Z
Thus, it is possible to construct the (linear) GMMD estimator by considering the moment conditions (M1) and (M2), which simultaneously use the equations in levels and the equations in first differences. It should also be noted that only the lagged variables in first differences t -s are used in the equations in levels, since the other conditions are redundant with the moment conditions. The matrix of instruments for the GMMS estimator is thus defined as:

0 0 i S i i Z Z Z + ⎛⎞ = ⎜⎟ ⎜⎟ ⎝⎠ .
The moment conditions become: Following their framework, we use the GMMS estimator as a benchmark. To fully appreciate the results this estimator yields and to compare them with those from other methods, OLS, Within, and GMMD results are also reported.

Specification tests

We perform two Wald tests for each estimation: the first is a minimum distance test of the non-linear common factor restrictions imposed on the restricted model and the second tests the null hypothesis of constant returns to scale. The validity of the moment conditions on the ) 13 In particular, when the processes , ( it x and are jointly stationary, then the moment conditions for the equations in levels obtain. This is a sufficient, but unnecessary, condition. In our study, these conditions obtain if the , it y Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 equations in levels can be tested using [START_REF] Sargan | The Estimation of Economic Relationships using Instrumental Variables[END_REF] standard test for overidentification, the difference Sargan test, or the Hausman test comparing the results of the GMMD and GMMS estimations [START_REF] Arellano | Some tests of specification for panel data : Monte Carlo evidence and an application to employment equations[END_REF]. In our study, we use the first two tests. First, [START_REF] Arellano | Some tests of specification for panel data : Monte Carlo evidence and an application to employment equations[END_REF] suggest using the statistics m 1 and m 2 to test the null hypothesis of no correlation between the first-order (second-order) residuals of the GMMD estimator (and the GMMS estimator). Under the null hypothesis that the moment conditions obtain, the Sargan statistic (denoted s diff and s sy, , respectively, for the GMMD and GMMS estimators) is given by:

2 1 ˆ'' ( N a ) s wZ W Z w m k N χ =∆ ∆ - under H 0,
where

1 1 1 ˆ' N Ni i i i WZ w w Z N - = ⎛ ⎜ =∆ ∆ ⎜ ⎝⎠ ∑ i ⎞ ⎟ ⎟
is the matrix of optimal weights, are the estimation residuals from the second step, '' ' 12 ˆˆ' ( , ,..., )

N ww w w ∆= ∆ ∆ ∆ '' ' 12 ' ( , ,..., ) N Z ZZ Z =
, m is the number of moment conditions, and k is the number of estimated parameters.

The validity of the moment conditions in the equations in levels is obtained by the difference Sargan test, defined as: estimations, we use a formula proposed by [START_REF] Windmeijer | A Finite Sample Correction for the Variance of Linear Two-Step GMM Estimators[END_REF] to correct the variances in the second step. 14

The finite sample properties of the different estimators

This section presents the performance of the different estimators presented above for time and cross-section dimensions and for degrees of persistence of the explanatory variable and the dependent variable resembling those of the sample in our study. Indeed, the results in the literature obtain only asymptotically (see [START_REF] Alvarez | The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Econometrics[END_REF]. In this respect, it may be first moments of the explanatory variables (with the exception of the lagged dependent variable) are invariant with time (conditional on the time indexes). 14 [START_REF] Windmeijer | A Finite Sample Correction for the Variance of Linear Two-Step GMM Estimators[END_REF] used Monte Carlo simulations to demonstrate that the asymptotic standard errors estimated by the two-step GMM technique can contain a significant downward bias in finite samples.

useful to compare the finite sample properties of the different estimators for N and T close to our sample 15 . To do so, we follow the procedure in Blundell, Bond, and [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF].

Consider the following process with a single explanatory variable:

it it i it it it i it it it e v x x v x y y + + + = + + + = - θ τη ρ η β α 1 where ) , 0 ( ), , 0 ( 2 2 e it v it N e N v σ σ → → , and . ) , 0 ( 2 η σ η N i →
The initial observations are obtained from the second-order stationary conditions. The process is potentially correlated with the firm-specific effects and with both the autoregressive shocks and the measurement errors

) ( it x ) 0 ( 〈 θ . Thus, for example, if 1 → ρ
, the process is very persistent and the instruments are weak.

) ( it x

We assume that the following parameters are fixed in the Monte Carlo simulations 16 :

1 , 1 . 0 , 25 . 0 2 2 = = - = = v σ σ θ τ η and 16 . 0 2 = e σ
Thus, unlike Blundell, Bond, and [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF], we estimate the parameter β, as well as the two autoregressive coefficients, α and ρ. Seven cases are considered for the triplet ) , , ( β ρ α :

(0.5, 0.5,1), (0.95, 0.5, 1), (0.5, 0.95, 1), (0.95, 0.95, 1), (0.99, 0.99, 1), (0.5, 0.99, 1), and (0.99, 0.5, 1). The cross-section dimension is N = 200, and the results of the estimations are presented for T = 4, 8, and 12. For each case, the number of repetitions is set to 10.000 and the standard error and the square root of the mean squared error are computed for the OLS, Within, GMMD, and GMMS. 17 ρ and/or α = 0.50, case 1, 2, 3, 6, and 7), the OLS and GMMS estimators perform better than the Within and GMMD estimators. In particular, the GMMS estimator yields better results for the three parameters, the OLS estimator tending to be upwardly biased for the Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 parameter ρ and downwardly biased for the parameter β. This better behaviour of the OLS and GMMD estimators is even more pronounced when T is small. It should be noted that the GMMD estimator is most sensitive to biases caused by weak instruments (when ρ is close to 1) and has the highest standard errors and mean squared errors among the four estimators considered in the Monte Carlo simulations. This result can also be found in [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF]. When both processes are highly persistent (i.e., ρ and α = 0.95, 0.99, cases 4 and 5), the GMMS estimator always perform better in terms of point inference, standard error, and mean squared error. This remains the case as T decreases (T = 4 or 8).

Thus, the results reveal that inference on the parameter β is generally very sensitive to the persistence properties of the process ( ). In particular, the standard error and the mean squared error are larger than for the other parameters. For the other two parameters, there is a nonnegligible bias, depending on the case considered and the estimator used. At the same time, the precision (standard error) increases with the time dimension.

it x

These results of the Monte Carlo simulations lead us to prefer the GMMS estimator. With this method, however, we cannot rule out the possibility that, at best, the parameter β is upwardly biased.

Results

Constant returns to scale and elasticity of capital near 0.3 in the case of a two-factor production function

We first estimate a production function containing only stocks of factors. For the GMMD and GMMS estimators, the levels of the variables y, k, and l for t -3 to t -5, and the growth rates for t -2, were used as instruments18 . Overall, this leads to reduce the sample size to 949 observations. 19 For all models, the test for dynamic representation is statistically accepted at standard significance level (Table 3).

These initial results suggest an autoregressive coefficient that is upwardly biased for the OLS estimator and downwardly biased for the Within estimator (see Appendix 2). This is consistent with standard results in the literature and our Monte-Carlo simulations. As to the GMMD estimator, we obtain a very small and statistically insignificant autoregressive coefficient.

In keeping with the usual results obtained with OLS and Within estimators, we find output elasticities of labour and capital that are plausible (with regard to their share in the economy) and consistent with the assumption of constant returns to scale (Table 3). The GMMD estimator yields an output elasticity of capital that is near zero and not significant. This result is similar to those in [START_REF] Mairesse | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF]. The results from the GMMD estimation lead us to question the nature of the instruments. In particular, one condition for the parameters to be correctly identified is that the instruments be correlated with the endogenous variable in first differences. When that is not the case, the instruments are weak in the sense of Staiger and Watson (1997), and the GMMD estimator is not reliable. 20 In addition, [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF] demonstrate that when the series are strongly persistent, the instruments used to estimate the GMMD are weak and this estimator is not appropriate.

To pursue the analysis of our results more deeply, we examine the persistence properties of the various series and test the unit root hypothesis using OLS regressions. This choice is motivated by the work of Bond, Nauges, and [START_REF] Bond S | Unit Root and Identification in Autoregressive Panel Data Models : A Comparison of Alternative Tests[END_REF] Therefore, it appears more appropriate to use the GMMS estimator, which also yields a more satisfactory estimate of the autoregressive parameter 22 . The GMMS estimator yields elasticities for labour and capital that are statistically significant, on the order of 0.47 and 0.42, respectively (Table 4). These output elasticities are comparable with those obtained by Blundell and Bond (2000) using data on U.S. firms. The largest standard errors reported hereafter are those generated by the correction to the variance using [START_REF] Windmeijer | A Finite Sample Correction for the Variance of Linear Two-Step GMM Estimators[END_REF] method. Since the assumption of constant returns to scale is accepted, we perform a constrained estimation. It yields elasticities for labour and capital that are slightly different, the output elasticity of labour being close to 0.7 and that of capital, 0.3. These results are equivalent to those obtained from the OLS and Within estimations.

Shiftwork and capital: Identical output elasticities within the production function?

We subsequently estimate a production function integrating shiftwork and working time. For the GMMD and GMMS estimators, the levels of the variables y, k, l, and nop for t -3 to t -5, 21 However, Bond, Nauges, and [START_REF] Bond S | Unit Root and Identification in Autoregressive Panel Data Models : A Comparison of Alternative Tests[END_REF] note that the strength of this test decreases as the variance of the individual effect increases. It therefore becomes more difficult to reject H 0 .

22 The dependent variable's high degree of persistence can be mitigated by replacing the value added with the value added per unit of labour (the autocorrelation coefficient is 0.93). The results, however, are equivalent and are not presented. They can be obtained from the authors. and the growth rates for t -2 are used as instruments. 23 Given the uncertainty surrounding measurements of the working time, we opt not to retain it as an instrument. As previously, the test for dynamic representation is statistically accepted for all estimations (Appendix 2). Table 4 presents the results for the various estimations.

Incorporating shiftwork and working time into the production function does not modify the output elasticities of labour or capital for the OLS, Within, and GMMD estimators. Conversely, for the GMMS estimator, the elasticity of labour reaches 0.69 and that of capital 0.35 (Table 5).

The working time proves disappointing, because, regardless of the estimator, its output elasticity is particularly small-it is only significant for the Within estimator. This result appears to be attributable to the uncertainty surrounding its measurement. In effect, this variable does not take into account potential redefinitions of the time worked resulting from the substantial reduction in working time starting in 1997, or for agreements to annualize time worked, or for overtime. The unique profile of this variable, notably its limited variance and the existence of accumulation points, also may justify our results (Figure 1). Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 Note : 949 observations. The mean and the standard deviation are 38.30 and 2.16, respectively.

Incorporating shiftwork appears more promising. The output elasticity of shiftwork is significant for all estimators except the GMMD estimator. In the case of the GMMS estimator, the value of this elasticity is near that of capital, and we cannot statistically preclude the possibility that they are identical. This would mean that an increase in shiftwork has the same impact on production as an increase in the stock of capital.

As in the case of the two-factor production function, the assumption of constant returns to scale is accepted for all estimators except the GMMD. The imposition of constant returns slightly modifies the results of the GMMS estimator, since the elasticity of the working time rises (from 0.28 to 0.46). As to the elasticity of shiftwork, though it increases slightly (from 0.30 to 0.52), it remains statistically equivalent to that of capital. Note : Year and sectoral dummies included in all models * Corrected two-step standard errors in parentheses [START_REF] Windmeijer | A Finite Sample Correction for the Variance of Linear Two-Step GMM Estimators[END_REF] ** Results are not reported when the Wald test of the constant returns to scale hypothesis is not accepted in the restricted models.

Since taking hours of work into consideration leads to the counterintuitive result of output elasticities that are statistically insignificant and lower than those of labour alone-in contrast to the results in the literature [START_REF] Hamermesh | Labor Demand[END_REF])-we proceed to new estimations without this variable.

Estimating a Cobb-Douglas type production function with three factors (capital, labour, and shiftwork) yields results similar to the foregoing for all estimators. In the case of the GMMS estimator, we find an elasticity of shiftwork that is statistically equivalent to that of capital (Table 6). To test the robustness of this result, the estimations were performed using alternative indicators of the use of shiftwork. Again, we find equality between the output elasticity of capital and of shiftwork (Table 6). Finally, as we show, the GMMD estimator behaves poorly in our sample due to the persistence of each factor and the measurement errors. Therefore, since the GMMS estimator is a linear combination of the two-stage least squares GMMS and level GMM estimators -the latter using all first-differenced instruments -it also means that the equations in levels are much more informative than the first-differenced equations. In this respect, a simpler GMM levels estimator will yield similar results. 24

The contribution of operating hours and hours of work in the production function

The statistical contribution of operating hours and hours of work can be evaluated with the test proposed by [START_REF] Bond S | Criterion-based inference for GMM in autoregressive panel-data models[END_REF], which compares the value of the function to be minimized to obtain the GMMS estimator under the null hypothesis ( ) 

iN iN ii i N ii i ii JZ y m X W Z y m X NN β β == - == ′ ⎡⎤ ⎡⎤ ′′ =- - ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎣⎦ ⎣⎦ ∑∑ β .
The results (Table 6) confirm that the measure of the hours of work we use does not contribute any information statistically, since we accept the null hypothesis (H 0 )

0 DHT β = , unlike
in the case of the intensity of the use of shiftwork, for which we reject the null hypothesis 0 NOP β = .

24 We estimate the models using a GMM levels estimator. Results are close to the GMMS estimators and thus our conclusions remain valid. Results are not reported here but are available on request. (2001). It follows a Chi-squared distribution with one degree of freedom under the null hypothesis of no contribution of the hours of work or shiftwork. Estimates are obtained by GMMS.

Comparison with previous studies

A comparison of Table 1 with our results reveals that considering shiftwork substantially improves estimates of factors' share in the economy. The corresponding coefficients are, for the most part, significant and allow estimation of marginal productivities of capital and labour that are more significant and more consistent with these factors' compensation in the value added.

The assumption of constant returns to scale with respect to stocks of capital and labour cannot be rejected.

In particular, studies using French data tend to underestimate the share of capital in the economy and to overestimate the share of labour in value added, especially when firm-level data are not considered. A further debate surrounding the estimation of production functions pertains to the relative productivity of the workforce and working time. The values of these parameters come into play in discussions of potential productivity gains associated with changes to the length of the workweek. They can also be used to evaluate the feasibility of a firm's practice of Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 perennially drawing on overtime. Empirical results are strongly divided on this matter. Various studies [START_REF] Feldstein | Specification of the Labor Input in the Aggregate Production Function[END_REF] on British data, or Craine (1973) on U.S. data) obtain output elasticities with respect to individual hours of work that exceed unity. Others have found less dramatic results, either because they differentiate between behaviours according to the sector of the economy [START_REF] Leslie | The Productivity of Hours in U.K. Manufacturing and Production Industries[END_REF] for the United Kingdom), or because they introduce cyclical indicators or incorporate the productive services of capital [START_REF] Hart R | The Return to Labour Services in West German Manufacturing Industry[END_REF]McGregor 1988, Anxo andBigsten1989). Under these conditions, our results show that omitting the capital operating time may introduce a bias into the results. Indeed, for a given shiftwork organization, increasing the hours worked leads to a rise in the capital operating time, which will allow an increase in production. If this effect is not considered, the output elasticity of working time may be overestimated. [START_REF] Anxo | Working hours and productivity in Swedish manufacturing[END_REF], lacking a measure of the capital operating time, propose estimating a production function for Swedish industry that integrates capital, the workforce, the working time, and a capacity utilization rate. They observe a negative output elasticity of the capacity utilization rate. This paradoxical result-since they retained this indicator a priori as a business cycle measure of the gap between the supply of, and demand for, goods-could be explained if the most productive equipment is used first, and the remainder only brought into service to deal with substantial recoveries in economic activity. This could be attributable to the existence of several generations of equipment or, more generally, by heterogeneity of capital. In this event, we would be observing a "saturation effect," explained by [START_REF] Cette | Capacités de Production et Degrés d'Utilisation : la Mise en Evidence des Effets de Saturation[END_REF], as full production capacity is approached. Since we have data on the capital operating time, we obtain, following [START_REF] Hart R | The Return to Labour Services in West German Manufacturing Industry[END_REF], identical output elasticities of capital and its operating hours.

Robustness Analysis

In this section, we discuss the specification of the production function. We consider a flexible translog production function and analyze to what extent our results are driven by the Cobb-Douglas formulation of the production mix. The Translog specification is retained since it can be considered as a second order approximation of any twice differentiable technology (Fuss, McFadden, and Mundlack, 1978;[START_REF] Chambers R | Applied Production Analysis[END_REF] and the Cobb-Douglas production function is a restricted case of the Translog specification. The results in this section are discussed in details in [START_REF] Heyer E | Translog ou Cobb-Douglas? Le Rôle des Durées d'Utilisation des Facteurs[END_REF].

Estimation of a Translog production function

We consider the following relation [START_REF] Christensen | Conjugate Duality and the Transcendental Logarithmic Production Function[END_REF]: 

( ) ( ) ( ) ( ) 44 
β β µ δ η == = == = =+ + + + + + ∑∑ ∑ m , e (12) 
where x 1 = L represents the workforce, x 2 =K, the stock of capital, x 3 =DUE the capital operating time, x 4 =DHT the working time, µ t a time effect capturing an exogenous Hicksian technical progress, and δ s is an individual sectoral effect.

We also assume that ,,

.

it it it it it vv em M A ρ - =× + ( 1 3 ) 
Incorporating an autoregressive error term into the global error term thus yields a dynamic relation. Finally, in order to avoid multicolinearity from the cross-terms, we assume that the logarithms of the factors are centered [START_REF] Aiken | Multiple Regression: Testing and Interpreting Interactions[END_REF]. Therefore, from equations ( 12) and ( 13), we can write:
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ln jj j it it x xx =- () 1 ln it it x x nobs = ∑∑ , , and 
1 iN i i nobs t = = = ∑ ;
where t i , is the number of successive years of presence of the firm i in the sample.

In order to estimate (14), we need to take into account two limitations of the Translog specification (Diewert, 1971). First, this representation is only valid at the unknown approximation point or its neighborhood. Generally, the median or average point is used in empirical studies. Following [START_REF] Biscourp | How do Firms Respond to Cheaper Computers? Microeconometric Evidence for France Based on a Production Function Approach[END_REF] and [START_REF] Chambers R | Applied Production Analysis[END_REF], we report here the distribution of the different elasticities (output and substitution elasticities) as well as the median

Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 estimates. Second, while Cobb-Douglas or CES production functions satisfy regularity conditions (positive marginal productivities, decreasing returns to scale for each factor, convexity of the isoquants, and positive owned-elasticities), this might not be the case for the Translog specification. There is a trade-off between the flexibility of the functional form and the respect of the validity conditions. Therefore, we impose, when necessary, these conditions and follow the approaches developed by [START_REF] Lau | Testing and Imposing Monotonicity, Convexity and Quasi-convexity Constraints[END_REF], [START_REF] Gallant | Imposing Curvature Restrictions on Flexible Functional Forms[END_REF] and [START_REF] Ryan | Imposing Local Concavity in the Translog and Generalized Leontief Cost Functions[END_REF].

Results are presented in Tables 8a and8b. 25 They show that the median output elasticities of factors are close to the coefficients of the Cobb-Douglas production function, except for the elasticity of the shiftwork variable, 0.19, which is less than the capital elasticity, 0.30, and the elasticity of the working time which is largely inferior to the output elasticity of labour. At the same time, the partial elasticities of substitution provide evidence that pairwise production's factors are substitutable: ceteris paribus, an increase of a factor's price leads to a decrease of this factor in the input mix and thus an increase of other factors. This confirms that the development of shiftwork is a credible alternative to investment. Moreover, if we assume that the adjustment of shiftwork is more immediate than the adjustment of capital, then shiftwork will allow more flexibility in the production process during unexpected changes of factors cost. Nevertheless, as we point out in Section 5, the substitutability of the couple (labour, working time) should be interpreted with caution due to the imprecision and the measurement issues of the hours of work. As previously, we proceed to new estimations without the hours of work. Results show that the working time does not affect our results -elasticities and qualitative interpretations are the same. Note, however, that the dynamic representation is now accepted while it was statistically rejected with the four-factor specification. 26 

Note:

The degrees of freedom of the Chi-Squared is 10, 6 and 3, respectively, for the four-, three-, and two-factor models.

Conclusion

Our analysis shows that shiftwork has a significant impact on wealth creation, and the output elasticity of is equivalent to that of capital. All else being equal, and assuming a homogeneous capital stock, there is full equivalence between increasing the capital stock or developing shiftwork. Moreover, these results are obtained using an estimation method (the GMMS) that appears more efficient than traditional methods (OLS, Within, and the GMMD), which bolsters our conclusion. At the same time, GMMD estimations suggest that the results obtained depend essentially on account being taken of the equations in levels, and thus of the instruments in first differences. Conversely, we are unable to identify a truly significant impact of working time, probably because of measurement errors on that variable and its limited variance. In addition, we show that our results are robust to the choice of the functional form. Interestingly, the Cobb-Douglas production function is the true technology if we take into account factor utilization whereas the Translog production function matters if labour and capital are the unique inputs.

Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989Period -2001 Appendix 1: Data used and construction of the variables

A1.1 Shiftwork and Capital Operating Time

Shiftwork is a way of working in relays in which several teams succeed one another in time, with overlap either nonexistent or limited to conveying information on the status of the work.

Traditionally, we distinguish between:

-discontinuous work (2X8), which permits extended operation during the day, but retains nights and weekends as downtime;

-semi-continuous work (3x8), which permits work to be uninterrupted except on weekends;

-continuous work, organized without any stops at all, generally with 4 or 5 teams (4x8 or 5x8).

Thus, all else being equal, the more extensive the use of shifts, the longer the capital operating time will be. The operating time for a given piece of equipment will be doubled when two successive teams use it (compared to the situation without alternation), tripled when there are three teams, and so on. .

DUE NOP DHT =×

A1.2 Construction of the variables

The value added at factor cost at current price (VACF_VAL) is computed using data from the Balance-Sheet Data Office with the following relationship: 

  value added at factor cost. It is computed using accounting ver time(OECD 2001), the capital stock considered is the gross capital stock. It is computed using capital operati nel data a clear edge over aggregate macroeconomic series for studying the choices and behaviour of firms. However, to our knowledge, there are no studies on individual data that estimate a production function including both here appears to be two reasons for this lack, at least in the case of France. The first is the ence of data on capital operating time.estimating a production function on individual data. Considering simultaneity bias and bserved heterogeneity generally yields particularly disappointing results. Thus, as phasized by[START_REF] Griliches | Production functions: The Search for Identification[END_REF], "In empirical practice, the application of panel thods to micro-data produced rather unsatisfa coefficients and unreasonably low estimates of returns to scale." Nonetheless, (i)[START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF] define a formal framework allowing the estimation Cobb-Douglas type production function which yields particularly interesting results, and (ii) are able to combine two databases of the Banque de Fra Having overcome these two limitations, we propose the first estimation of a Cobb-Douglas

  the possibility of decreasing returns in the use of capital and labour.

,

  

  of estimator, Blundell and Bond (2000) obtain particularly satisfactory estimates of output elasticities for labour and capital in the framework of a Cobb-Douglas production function.

  [START_REF] Blundell R | Estimation in dynamic panel data models : improving on the performance of the standard GMM estimator[END_REF], who use the robust variances generated by the first step as robust variances of the estimator from the second step of the GMMD and GMMS

  Figure 1 Distribution of Working Time

  hypothesis, and for r constraints of the type ( ) 0 r β = , the computed statistic (), which follows a Chi-squared distribution with r degrees of freedom, is given by

  Stat" indicates the statistic developed by Bond, Bowsher, and Windmeijer

6. 2 .

 2 Cobb-Douglas or Translog?Since the Cobb-Douglas production function can be seen as a constrained version of the Translog specification, we test to what extent our results are robust to the functional form by using the methodology proposed by[START_REF] Bond S | Criterion-based inference for GMM in autoregressive panel-data models[END_REF]. 27 Specifically, we compare the constrained two-step GMMS estimator (Cobb-Douglas technology) and the unconstrained one (Translog technology). Results reported in Table10show that the null hypothesis of a Cobb-Douglas production function is not rejected at standard significance level, e.g. the factors of production are substitutable and elasticities of substitution are unitary.Interestingly, the Cobb-Douglas formulation is ruled out if durations of factor utilization are not taken into consideration in the specification: the p-values are less than 0.01 in both cases -the Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over thePeriod 1989Period -2001 unconstrained and the constrained estimations. The same result emerges when considering a static representation of the production function. Except when we impose the regularity condition for the three-factor model, the null hypothesis of a Cobb-Douglas production function is not accepted at standard levels. Therefore, our empirical evidence suggest that a Cobb-Douglas production function is a correct functional form of the technology in our sample, especially when studying the contribution of durations of factor utilization.

  Measures of the capital operating time (DUE) are based on the shiftwork patterns and the hours of work. They usually correspond to the product of a synthetic shiftwork indicator (NOP) times the average working time (DHT):

Table 1 : Estimates of a Cobb-Douglas with Factor Utilization in the Literature

 1 

		β	K	β	L	β	DHT	β	NOP	Methodology	Data
	Feldstein (1967) 0.26	0.73	1.71			Instrumental	Panel "Industry", The
		(0.01) (0.009)	(2.19)			variables	United Kingdom
	Craine (1973)	-0.07	0.80	1.98			OLS	Panel "Industry", The
		(0.07)	(0.04)	(0.13)				United States
	Leslie and Wise	0.24	0.78	1.61			OLS	Panel "Industry", The
	(1980)	(0.01)	(0.01)	(0.18)				United Kingdom
	Leslie and Wise	0.32	0.64	0.64			OLS	Panel "Industry", The
	(1980)	(0.03)	(0.04)	(0.11)			(sectorial fixed	United Kingdom
										effects)
	Anxo and	0.56	0.61					Instrumental	Panel "Industry",
	Bigsten (1989)	(0.09)	(0.02)					variables	Sweden
	Anxo and	0.46	0.68	0.98			Instrumental	Panel "Industry" ,
	Bigsten (1989)	(0.02) (0.014)	(0.12)			variables	Sweden
	Anxo et alii	0.51	0.63	0.91	-0.21*	Instrumental	Panel "Industry",
	(1989)	(0.02)	(0.014)	(0.15)	(0.08)	variables	Sweden
	Hart and Mac	0.47	0.73	0.55			Instrumental	Panel "Industry",
	Gregor (1988)	(0.20)	(0.16)	(0.15)			variables	Germany
	Hart and Mac	0.73	0.31	0.82	0.32	Instrumental	Panel "Industry",
	Gregor (1988)	(0.16)	(0.12)	(0.36)	(0.01)	variables	Germany
	Cueva and	0.19	0.72	1.54			OLS	Sectoral Panel, France
	Heyer (1997)	(0.12)	(0.11)	(0.47)			
	Cueva and	0.73	1.89	0.88 1.59**	OLS	Sectoral Panel, France
	Heyer (1997)	(0.11)	(0.50)	(0.10)	(0.87)	
	Gianella and	0.21	0.83	0.22*			OLS	Sectoral Panel, France
	Lagarde (1999)	(0.00)	(0.00)	(0.10)			
	Gianella and	0.19	0.83	0.88*			GMMS	Sectoral Panel, France
	Lagarde (1999)	(0.08)	(0.10)	(1	.82)			
	Blundell and	0.23	0.77					GMMS	Panel "Industry", The
	Bond (2000)	(0.07)	(0.09)						United Kingdom
	Note : Standard deviations parentheses					
	* capital utilization is approximated by the utilization capacity rate.	

** denotes that the coefficient is not significant at the 10% level.

Table 2

 2 

	suggests the following results. When the	( it x	)	and	( it y	)	processes are not too
	persistent (i.e.,						

Table 2 : Monte-Carlo Simulation Results

 2 .871 1.105 0.719 1.061 0.832 1.159 0.711 1.061 0.721 0.903 0.785 1.053 Std-dev. 0.030 0.054 0.317 0.052 0.040 0.084 0.407 0.076 0.079 0.150 0.987 0.217 RMSE 0.132 0.118 0.424 0.081 0.173 0.179 0.499 0.098 0.290 0.178 1.010 0.223 Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989-2001

	Coefficients OLS Within GMMD GMMS OLS Within GMMD GMMS OLS Within GMMD GMMS
					T = 12	T = 8	T = 4
	Case 1 : α	( α	,	) 1 ; 5 0.778 0.549 0.878 1.014 0.780 0.545 0.857 1.022 0.780 0.576 0.914 1.085 . 0 ; 5 . 0 ( ) , = β ρ
	Std-dev. 0.045 0.054 0.163 0.151 0.059 0.073 0.228 0.205 0.106 0.129 0.556 0.404
	RMSE 0.226 0.454 0.204 0.152 0.228 0.460 0.269 0.206 0.237 0.443 0.562 0.413
	ρ				0.818 0.392 0.471 0.527 0.817 0.302 0.457 0.529 0.812 -0.092 0.449 0.541
	Std-dev. 0.010 0.020 0.049 0.034 0.013 0.027 0.070 0.045 0.022 0.040 0.181 0.101
	RMSE 0.318 0.109 0.056 0.044 0.317 0.200 0.083 0.054 0.313 0.594 0.188 0.108
	β				0.761 0.343 0.491 0.500 0.761 0.240 0.485 0.500 0.762 -0.161 0.488 0.500
	Std-dev. 0.017 0.022 0.037 0.031 0.020 0.028 0.056 0.041 0.032 0.036 0.143 0.085
	RMSE 0.262 0.158 0.038 0.031 0.262 0.262 0.058 0.041 0.264 0.662 0.143 0.085
	Case 2: ( α α	,	ρ	) 1 ; 5 . 0.685 0.617 0.833 1.067 0.689 0.658 0.877 1.087 0.644 0.717 1.016 1.134 0 ; 95 . 0 ( ) , = β
	Std-dev. 0.050 0.056 0.174 0.153 0.064 0.080 0.219 0.206 0.112 0.142 0.578 0.420
	RMSE 0.318 0.386 0.242 0.167 0.317 0.351 0.251 0.224 0.373 0.317 0.579 0.441
	ρ				0.986 0.830 0.899 0.966 0.985 0.709 0.903 0.963 0.986 0.100 0.904 0.957
	Std-dev. 0.001 0.014 0.050 0.007 0.001 0.023 0.064 0.008 0.002 0.045 0.211 0.018
	RMSE 0.036 0.121 0.072 0.017 0.036 0.242 0.079 0.015 0.036 0.851 0.216 0.019
	β				0.761 0.343 0.491 0.500 0.761 0.240 0.486 0.500 0.762 -0.160 0.488 0.499
	Std-dev. 0.017 0.022 0.038 0.032 0.021 0.028 0.056 0.041 0.032 0.037 0.146 0.087
	RMSE 0.262 0.159 0.039 0.032 0.262 0.261 0.058 0.041 0.264 0.661 0.146 0.087
	Case 3 : α	( α	,	) 1 ; 95 0.831 0.877 0.681 1.095 0.832 0.878 0.596 1.093 0.833 0.730 0.365 1.097 . 0 ; 95 . 0 ( ) , = β ρ
	Std-dev. 0.029 0.044 0.347 0.065 0.037 0.069 0.508 0.086 0.067 0.135 1.690 0.204
	RMSE 0.171 0.131 0.471 0.115 0.172 0.140 0.649 0.126 0.180 0.301 1.805 0.225
	ρ				0.649 0.458 0.473 0.524 0.649 0.360 0.463 0.526 0.648 -0.090 0.447 0.525
	Std-dev. 0.012 0.018 0.041 0.025 0.016 0.025 0.056 0.033 0.028 0.040 0.150 0.070
	RMSE 0.150 0.046 0.049 0.035 0.150 0.142 0.068 0.042 0.151 0.592 0.159 0.074
	β				0.997 0.692 0.597 0.971 0.997 0.539 0.459 0.970 0.997 -0.017 0.251 0.965
	Std-dev. 0.002 0.019 0.267 0.029 0.002 0.026 0.354 0.043 0.004 0.041 0.900 0.125
	RMSE 0.047 0.258 0.442 0.036 0.047 0.412 0.606 0.047 0.047 0.968 1.139 0.126

0

Table 3 : Cobb-Douglas Production Function with 2 Factors

 3 

			OLS	Within	GMMD*	GMMS*
	β	L	0.650	0.658	0.436	0.466
			(0.057)	(0.071)	(0.221)	(0.152)
	β	K	0.307	0.203	-0.111	0.422
			(0.048)	(0.065)	(0.196)	(0.163)
	Constant returns to scale			
	β	L	0.679	0.726	**	0.720
			(0.046)	(0.056)		(0.126)
	β	K	0.321	0.274		0.280

Note : Year and sectoral dummies included in all models * Corrected two-step standard errors in parentheses

[START_REF] Windmeijer | A Finite Sample Correction for the Variance of Linear Two-Step GMM Estimators[END_REF] 

** Results are not reported when the Wald test of the constant returns to scale hypothesis is not accepted in the restricted models.

  in which robust micro panel Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over the Period 1989-2001 unit root tests are conducted, based on (one-tailed) t-tests from OLS regressions. Our resultsindicate that the series are strongly persistent but fail to show a unit root (Table4) 21 .

Table 4 : Persistence and Unit Root Tests

 4 

				Y t	L t		K t	NOP t	Dht
	Lagged variable *		0.99	0.99		0.99	0.90	0.54
				(0.003)	(0.002)	(0.02)	(0.01)	(0.03)
		t-test **		0.04	0.05		0.00	0.00	0.00
	* Results are based on the following OLS regressions:	it ZZ α =	,1 i t -	, i t ++++, s t i µηνε
	with	,,, Z YKLN o pD h t , =	(respectively) and s µ are sectoral dummies (level NAF
	16), and t η are time dummies;		
	** t-test (p-value) : 0 : H	1 α = and 1 : H	1 α < (see Bond, Nauges, and Windmeijer,
	2002).				

Table 5 : Production Function with Capital Operating Time and Working Time

 5 

				OLS	Within	GMMD*	GMMS*
	β	L	0.649	0.653	0.481	0.686
				(0.056)	(0.071)	(0.208)	(0.122)
	β	K	0.301	0.204	-0.105	0.344
				(0.048)	(0.065)	(0.19)	(0.108)
	β	DHT	0.148	0.283	0.185	0.275
				(0.096)	(0.104)	(0.344)	(0.231)
	β	NOP	0.112	0.135	0.024	0.301
				(0.038)	(0.042)	(0.146)	(0.145)
	K β = NOP β	9.11	0.76	0.37	0.05
	[p-value]	[0.00]	[0.38]	[0.54]	[0.83]
	Constant returns to scale		
	β	L	0.685	0.724	**	0.655
				(0.045)	(0.055)		(0.154)
	β	K	0.315	0.276		0.345
	β	DHT	0.155	0.296		0.459
				(0.097)	(0.104)		(0.215)
	β	NOP	0.107	0.129		0.519
				(0.039)	(0.042)		(0.134)
	K β = NOP β	11.45	4.24		1.06
	[p-value]	[0.00]	[0.04]		[0.30]

Table 6 : Cobb-Douglas Production Function with Shiftwork OLS Within GMMD* GMMS* Shiftwork indicator Arithmetic Harmonic

 6 Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over thePeriod 1989Period -2001 *** Wald Test for the null hypothesis H 0 : K

	β	L	0.64	0.65	0.48	0.67	0.67	0.67
				(0.06)	(0.07)	(0.21)	(0.13)	(0.13)	(0.12)
	β	K	0.30	0.20	-0.11	0.34	0.34	0.32
				(0.05)	(0.07)	(0.18)	(0.11)	(0.11)	(0.10)
	β	NOP	0.11	0.13	0.02	0.30	0.29	0.40
				(0.04)	(0.04)	(0.15)	(0.14)	(0.13)	(0.22)
	K β = NOP β	9.37	0.73	0.37	0.04	0.09	0.11
	[p-value]	[0.00]	[0.39]	[0.54]	[0.84]	[0.76]	[0.74]
	Constant returns to scale				
	β	L	0.68	0.72	**	0.62	0.62	0.61
				(0.05)	(0.06)		(0.14)	(0.14)	(0.10)
	β	K	0.319 0.28		0.38	0.38	0.39
	β	NOP	0.11	0.13		0.53	0.51	0.70
				(0.04)	(0.04)		(0.12)	(0.11)	(0.20)
	K β = NOP β	11.95	4.46		0.68	0.60	1.69
	[p-value]	[0.00]	[0.03]		[0.41]	[0.44]	[0.19]
	Note : Year and sectoral dummies included in all models	

* Corrected two-step standard errors in parentheses

[START_REF] Windmeijer | A Finite Sample Correction for the Variance of Linear Two-Step GMM Estimators[END_REF] 

** Results are not reported when the Wald test of the constant returns to scale hypothesis is not accepted in the restricted models.

Table 7 : Contribution of Operating Hours and Working Time in the Production Function
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Table 8a : Distribution of Output Elasticities -4-factors Translog Production Function.

 8a 

		L	K	NOP	DH
	95%	0.75	0.42	0.28	0.35
	75%	0.67	0.36	0.23	0.30
	50%	0.62	0.30	0.19	0.25
	25%	0.57	0.26	0.14	0.19
	5%	0.50	0.21	0.10	0.13

Table 8b : Distribution of Partial Elasticities of Substitution

 8b Under the regularity conditions, 945 observations are available.

		K,L	L,NOP	L,DHT	K,NOP	K,DHT	N,DHT
	95%	3.4	0.8	0.2	3.7	1.6	1.1
	75%	2.8	0.7	0.1	2.6	1.4	1.0
	50%	2.6	0.5	0.0	2.1	1.3	0.9
	25%	2.5	0.2	-0.1	1.9	1.2	0.9
	5%	2.3	-0.7	-0.4	1.6	1.1	0.8

Note :

Table 9 : Translog versus Cobb-Douglas production function

 9 

			Unconstrained Estimation Regularity Conditions
		Dynamic Representation:	
	Four factors (K,L, NOP, DHT)	Stat	14.40	12.90
		p-value	0.16	0.23
	Three factors (K,L, NOP)	Stat	6.40	5.10
		p-value	0.38	0.53
	Two factors (K,L)	Stat	17.70	15.90
		p-value	< 0.01	< 0.01
		Static Representation:	
	Three factors (K,L,NOP)	Stat	12.00	8.50
		p-value	0.06	0.20
	Two factors (K,L)	Stat	14.00	13.40
		p-value	< 0.01	< 0.01

Cobb-Douglas Production Function with Capital Operating Time and Working Time

  Sargan and Dsar are the statistics for the overidentification tests. Comfac is a minimum distance test of the non-linear common factor restrictions imposed in the restricted models. Crs is a Wald test of the constant returns to scale hypothesis under the restricted model.2. Asymptotic standard errors in parentheses for OLS and Within, and corrected twostep standard errors for GMMD and GMMS. Year and sectoral dummies included in all models.

	VACF_VAL = FL + FM + FN -( FS + FT + FU + FV + FW ) + FO -FX, where FL is net sales; FM, stored production; FN, capitalized production; FS, purchases of goods; FT, variation in the stock of goods; FU, purchases of commodities and other supplies; FV, variation in the stock of commodities and other supplies; FW, other purchases and external expenses; FO, operating subsidies; FX, sales and income taxes and related payments. 0.912 0.513 0.039 0.118 0.787 0.875 (0.018) (0.044) (0.11) (0.12) (0.078) (0.073) t l 0.595 0.653 0.475 0.412 0.666 0.369 (0.066) (0.069) (0.181 (0.23 (0.193 (0.133 1 t l --0.531 -0.284 0.151 -0.005 -0.409 -0.277 (0.065) (0.079) (0.210) (0.185) (0.179) (0.147) t k 0.202 0.235 -0.069 -0.128 0.374 0.296 (0.072) (0.068) (0.219) (0.209) (0.300) (0.186) 1 t k --0.176 -0.201 -0.098 0.094 -0.398 -0.263 (0.071) (0.078) (0.240) (0.183) (0.286) (0.171) m1 1 -1.40 3.33 -1.13 -1.64 -5.70 -5.46 p-value (0.161) (0.001) (0.261) (0101) (0.00) (0.00) m2 1 -0.77 -0.12 -1.16 -0.9 -0.76 -0.55 p-value (0.442) (0.907) (0.248) (0.370) (0.448) (0.584) Comfac 1 5.53 1.85 0.74 0.29 4.68 1.15 p-value (0.063) (0.396) (0.692) (0.866) (0.096) (0.563) Sargan 1 72.24 64.96 111.28 85.17 p-value (0.601) (0.738) (0.271) (0.855) Dsar 1 39.04 20.21 p-value (0.063) (0.822) Dynamic Representation ρ 0.907 0.518 0.03 0.126 0.768 0.878 (0.017) (0.044) (0.105) (0.120) (0.062) (0.069) L β 0.65 0.658 0.48 0.436 0.884 0.466 (0.057) (0.071) (0.169) (0.221) (0.137) (0.152) K β 0.307 0.203 -0.084 -0.111 0.171 0.422 (0.048) (0.065) (0.149) (0.196) (0.164) (0.163) Crs 1 0.94 2.99 11.71 6.43 0.2 0.53 p-value (0.331) (0.084) (0.001) (0.011) (0.655) (0.466) Constrained Estimation 1 LK β β + = ρ 0.901 0.508 0.105 0.069 0.602 0.649 (0.016) (0.043) (0.105) (0.113) (0.129) (0.121) L β 0.679 0.726 0.859 0.89 0.843 0.72 (0.046) (0.056) (0.155) (0.164) (0.134) (0.126) Notes: 1. m1 and m2 are tests for the first-and second-order serial correlation, asymptotically over the Period 1989-2001 A2.2 : Ols Within GMMD (t-2/t-4) GMMD (t-3/t-5) GMMS (t-2/t-4) GMMS (t-3/t-5) 1 t y -0.909 0.5 0.033 0.126 0.784 0.759 (0.017) (0.044) (0.091) (0.117) (0.068) (0.083) t l 0.59 0.648 0.498 0.495 0.644 0.569 (0.066) (0.069) (0.178) (0.217) (0.15) (0.147) 1 t l --0.522 -0.274 0.086 -0.025 -0.415 -0.379 (0.066) (0.077) (0.203) (0.193) (0.142) (0.145) t 0.191 0.228 -0.103 -0.098 0.373 0.316 (0.072) (0.066) (0.223) (0.199) (0.242) (0.201) 1 t k --0.167 -0.183 -0.089 0.062 -0.381 -0.239 (0.07) (0.078) (0.235) (0.187) (0.229) (0.183) t dht 0.184 0.362 0.606 0.272 0.507 0.413 (0.113) (0.114) (0.275) (0.333) (0.389) (0.307) 1 t dht --0.084 0.085 0.3 0.256 -0.572 0.034 (0.093) (0.104) (0.363) (0.294) (0.348) (0.357) t nop 0.116 0.139 -0.018 0.025 0.196 0.305 (0.038) (0.045) (0.137) (0.139) (0.112) (0.13) 1 t nop --0.095 -0.059 0.007 -0.185 -0.051 -0.279 (0.036) (0.046) (0.093) (0.124) (0.081) (0.133) m1 -1.37 3.43 -1.25 -1.87 -5.82 -5.13 p-value (0.172) (0.001) (0.212) (0.062) 0 0 m2 -0.64 -0.08 -1.71 -1.27 -0.78 -0.45 p-value (0.522) (0.935) (0.087) (0.203) (0.438) (0.651) Comfac 7.27 7.27 1.24 3.01 4.87 2.14 p-value (0.122) (0.123) (0.871) (0.556) (0.301) (0.71) Sargan 97.54 85.01 149.71 124.4 p-value (0.523) (0.759) (0.183) (0.646) Dsar 52.17 39.39 p-value (0.04) (0.321) Dynamic Representation ρ 0.904 0.503 0.031 0.083 0.777 0.768 (0.017) (0.043) (0.082) (0.114) (0.071) (0.073) L β 0.649 0.653 0.463 0.481 0.826 0.686 (0.056) (0.071) (0.171) (0.208) (0.102) (0.122) K β 0.301 0.204 -0.115 -0.105 0.158 0.344 (0.048) (0.065) (0.151) (0.19) (0.112) (0.108) DHT β 0.148 0.283 0.53 0.185 0.493 0.275 (0.096) (0.104) (0.291) (0.344) (0.277) (0.231) NOP β 0.112 0.135 0.003 0.024 0.052 0.301 (0.038) (0.042) (0.123) (0.146) (0.091) (0.145) Crs 1.33 3.24 11.08 5.67 0.02 0.11 N(0,1). Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms p-value (0.249) (0.072) (0.001) (0.017) (0.894) (0.735)
	K ββ =	NOP	9.11	0.756	0.49	0.37	0.55	0.05
	p-value	(0.00)	(0.384)	(0.49)	(0.54)	(0.46)	(0.83)

The real value added (Y) is then obtained by deflating with a sectoral price index (level naf36).

Table A2 .2 (Con't): Cobb-Douglas Production Function with Capital Operating Time and Working Time Constrained Estimation 1

 A2 Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over thePeriod 1989Period -2001 

	A2.4 :		A2.3 : Cobb-Douglas Production Function with Shiftwork
					Ols	Within	GMMD (t-2/t-4)	LK β β + GMMD (t-3/t-5)	=	(t-2/t-4)	GMMS (t-3/t-5)
	1 y -t		0.909	0.509	GMMD 0.03	GMMD 0.135	GMMS 0.786	GMMS 0.787
					Ols (0.018)	Within (0.043)	(t-2/t-4) (0.091)	(t-3/t-5) (0.113)	(t-2/t-4) (0.068)	(t-3/t-5) (0.073)
		ρ t l		0.898 0.585	0.493 0.64	0.097 0.518	0.062 0.483	0.594 0.654	0.538 0.568
		L 1 l -t β		(0.016) (0.066) -0.518 0.685 (0.066)	(0.042) (0.069) -0.272 0.724 (0.078)	(0.084) (0.181) 0.094 0.817 (0.198)	(0.114) (0.221) -0.027 0.901 (0.189)	(0.122) (0.155) -0.43 0.833 (0.155)	(0.154) (0.118) -0.41 0.655 (0.149)
		t k		(0.045) 0.2	(0.055) 0.236	(0.137) -0.102	(0.159) -0.136	(0.098) 0.367	(0.154) 0.334
	DHT 1 t k -β	0.155 (0.071) (0.097) -0.176 (0.07)	0.296 (0.067) (0.104) -0.208 (0.078)	(0.196) (0.3) -0.086 (0.227)	0.298 (0.198) (0.357) 0.104 (0.18)	0.619 (0.236) (0.304) -0.381 (0.22)	(0.201) 0.459 -0.264 (0.215) (0.183)
	NOP t nop β	0.107 0.114	0.129 0.137	0.015 0.022	0.097 0.015	0.206 0.221	0.519 0.296
	K ββ = t nop -1 NOP	(0.039) (0.039) 11.45 -0.097 (0.037)	(0.042) (0.047) 4.24 -0.065 (0.046)	(0.129) (0.123) 0.94 0.018 (0.092)	(0.155) (0.138) 0.00 -0.19 (0.123)	(0.086) (0.112) 0.15 -0.059 (0.086)	(0.126) (0.134) -0.297 1.06 (0.118)
	p-value m1	(0.00) -1.34	(0.04) 3.44	(0.33) -1.17	(0.99) -1.94	(0.70) -5.63	(0.30) -5.32
	p-value Note: See Table A2.1 (0.181) m2 -0.54	(0.001) 0.16	(0.240) -1.15	(0.052) -1.01	(0.00) -0.5	(0.00) -0.27
	p-value	(0.591)	(0.876)	(0.249)	(0.312)	(0.615)	(0.785)
	Comfac	5.74	2.19	0.58	2.75	4.52	1.6
	p-value	(0.125)	(0.535)	(0.9)	(0.433)	(0.211)	(0.659)
	Sargan			99.14	85.92	156.17	124.3
	p-value			(0.534)	(0.782)	(0.126)	(0.693)
	Dsar					57.03	38.37
	p-value					(0.014)	(0.362)
		ρ		0.905	Dynamic Representation 0.513 0.034 0.09	0.788	0.774
					(0.017)	(0.043)	(0.083)	(0.110)	(0.062)	(0.071)
	β	L		0.644	0.646	0.509	0.482	0.836	0.674
					(0.056)	(0.071)	(0.176)	(0.212)	(0.104)	(0.125)
	β	K		0.303	0.202	-0.11	-0.113	0.143	0.338
					(0.048)	(0.065)	(0.147)	(0.183)	(0.116)	(0.11)
	β	NOP	0.111	0.133	0.031	0.017	0.053	0.299
					(0.038)	(0.042)	(0.113)	(0.146)	(0.091)	(0.138)
	Crs	1.5	3.69	9.58	5.99	0.03	0.02
	p-value	(0.220)	(0.055)	(0.002)	(0.014)	(0.866)	(0.896)
					9.37	0.73	0.72	0.37	0.36	0.04
	p-value	(0.000)	(0.390)	(0.400)	(0.540)	(0.550)	(0.840)
					Constrained Estimation	LK β β +	=	1
		ρ		0.898	0.504	0.085	0.062	0.578	0.534
					(0.016)	(0.042)	(0.09)	(0.113)	(0.114)	(0.132)
	β	L		0.681	0.721	0.846	0.921	0.82	0.616
					(0.045)	(0.056)	(0.141)	(0.155)	(0.1)	(0.141)
	β	NOP	0.106	0.127	0.046	0.089	0.231	0.523
					(0.039)	(0.043)	(0.121)	(0.161)	(0.092)	(0.119)
	K ββ =	NOP	11.95	4.46	0.40	0.00	0.22	0.68
	p-value	(0.00)	(0.030)	(0.530)	(0.970)	(0.640)	(0.410)

Cobb-Douglas Production Function with Alternative Shiftwork indicators (GMMS estimates) Arithmetic Approach Harmonic Approach

  Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms over thePeriod 1989Period -2001 A2.

			1 t -y		0.788 (0.072)	0.789 (0.078)
				l t		0.56 (0.154)	0.551 (0.149)
				1 t -l		(0.15)	-0.387 (0.155)
				k t		0.334 (0.2)	0.296 (0.2)
			1 k -t		-0.263 (0.184)	-0.236 (0.185)
			t nop	0.285	0.345
							(0.119)	(0.207)
		1 nop -t	-0.289 (0.112)	-0.35 (0.177)
			m1		-5.32	-5.23
	p-value	(0..00)	(0.00)
			m2		-0.27	-0.32
	p-value	(0.787)	(0.747)
	Comfac	1.7	2.01
	p-value	(0.637)	(0.57)
	Sargan	124.49	119.95
	p-value	(0.689)	(0.784)
		Dsar	38.28	36.69
	p-value	(0.366)	(0.437)
							Dynamic Representation
				ρ		0.774	0.778
							(0.071)	(0.07)
			β	L		0.671	0.672
							(0.127)	(0.116)
			β	K		0.343	0.319
							(0.111)	(0.103)
		β	NOP	0.288	0.397
							(0.131)	(0.222)
			Crs	0.02	0.01
	p-value	(0.880)	(0.922)
	β	K	=	β	NOP	0.09	0.11
	p-value	(0.760)	(0.740)
				ρ	Constrained Estimation 0.537	LK β β +	1 0.542 =
							(0.128)	(0.123)
			β	L		0.618	0.611
							(0.135)	(0.100)
		β	NOP	0.507	0.7
							(0.112)	(0.204)
	β	K	=	β	NOP	0.60	1.69
	p-value	(0.44)	(0.19)

5 Four-factors Translog Production Function -GMMS Estimates Unconstrained Estimation

  Corrected two-step standard errors. Year and sectoral dummies included in all models.

	A2.6 Three-factors Translog Production Function
	ρ		Regularity Conditions Unconstrained Estimation Regularity Conditions 0.698 0.697
	ρ L L β K K β N N β D LL β β β β β LL KK β β KK NN β β NN KL β β DD KN β β KL LN β β	0.701 (0.061) (0.058) 0.612 0.601 (0.081) (0.084) 0.315 0.326 (0.050) (0.054) 0.139 0.132 (0.075) (0.074) 0.16 0.117 (0.078) (0.168) 0.128 0.074 (0.050) (0.083) 0.073 0.116 (0.112) (0.053) 0.111 -0.221 (0.116) (0.117) -0.132 -0.117 (0.077) (1.125) 0.207 -0.218 (0.107)	(0.075) 0.694 (0.078) 0.623 0.607 (0.092) (0.089) 0.307 0.314 (0.053) (0.053) 0.187 0.196 (0.076) (0.077) 0.244 0.06 (0.085) (0.188) 0.062 0.035 (0.056) (0.092) 0.033 -0.011 (0.103) (0.060) 0.005 -0.126 (0.125) (0.102) -0.160 -0.024 (0.08) (1.207) 0.08 -0.121 (0.105)
			(0.125)	(0.139)
	β	KN	-0.113	-0.026
			(0.074)	(0.072)
	β	LN	0.198	0.083
			(0.106)	(0.100)
	β	LD	0.488	0.122
			(0.307)	(0.333)
	β	KD	-0.288	-0.063
			(0.202)	(0.207)
	β	ND	0.144	-0.036
			(0.531)	(0.594)

Note:

Note: Corrected two-step standard errors. Year and sectoral dummies included in all models.

Note that it has not yet been done, to our knowledge, for another country at the firm level.

We define capital operating time as the product of working time by a shiftwork indicator synthesizing shiftwork patterns at the firm level.

See Appendix 1 for a definition of shiftwork.

Retaining a synthetic measure for DUE does, in fact, lead to the problem of estimating the elasticity of hours of work, since DUE depends directly on this value.

Descriptive statistics are not included here but are available from the authors.

This assumption guarantees consistency when only factors stocks are considered, since then, the stability of factor utilization is implicitly assumed.

An identical formulation is obtained by assuming that global factor productivity follows a stationary process (Dupaigne 2002).

For the finite sample properties, see section 4.4.

There are other method-of-moment-based estimators in the literature that may perform better than the GMMS estimator, as for instance the symmetrically normalized first-differenced GMM estimator developed by Alonso-Borrego andArellano (1999), the non-linear GMM estimator proposed byAhn and Schmidt (1995, 1997).

To be consistent with our estimation method, we use the same set of instruments, namely the levels of the variables y, x for t -2 to t -4, and the growth rates of these variables at period t -1.

We also conduct Monte-Carlo simulations for other parameter values. The main conclusions remain robust. They are not reported here but are available on request.

Results for the GMM estimation in levels are not reported but are available from the authors.

We also conduct estimations when the instruments are lagged levels at t -2 to t -4 and growth rates at t -1, are presented in the Appendix 2. However, the difference Sargan test rejects the validity of these instruments.

Thus, one limitation of our study may be that the cross-section dimension is relatively small, while the time dimension covers the entire period of the estimation for some firms.

The intuition is as follows. If we consider the extreme case of a random walk, there is no correlation between the variables in first differences and the lagged levels. It follows that the autoregressive parameter is not identified, the rank condition is not satisfied, and the instruments do not add any information.

Results for the GMMS estimator are reported in Table 8. Estimates are presented in Appendix A2.6. Other results are available on request.

Results are not reported here but are available on request.

See Section 5.3.

Owing to the absence of information on the equipment's efficiency over time, the real stock of capital (K) computed at the firm level is a gross stock of capital. Because of the nature of the available data, this is close to the entirety of all tangible assets. It is calculated using the following relationship:

where δ represents the constant rate of depreciation, fixed at 5 per cent (Sylvain 2003a).

The initial volume of capital is computed under the assumption that it was all acquired on the initial date, with an adjustment for its age at that date. The age of capital is determined from the share of amortized capital, assuming that the amortization is linear. The time series of investments and the initial stock of capital are deflated by sectoral price indexes for investment (level NAF36).

The total workforce (L) and the working time (DHT) are taken from the annual survey of capital operating time.

The synthetic shiftwork indicator (NOP) is computed from information on the shiftwork patterns supplied by the annual survey of capital operating time. For each firm, this indicator is defined such that:

where n is the number of teams; , the proportion of the workforce working in n teams; and

Given the available data, we assume that discontinuous, semi-continuous, and continuous work correspond to two, three, and five teams.

The retained coefficients yield the usual measures for the intensity of the use of shiftwork (Table A). The harmonic approach defines the intensity of the use of shiftwork as the harmonic mean of the number of teams, and the arithmetic approach as the arithmetic mean of the number of teams. The econometric indicator used in this study retains the coefficients generated by econometric estimations on individual data (Sylvain, 2003b).