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Abstract. The aim of this paper is to provide simple nonparametric methods to estimate finite-

mixture models from data with repeated measurements. Three measurements suffice for the

mixture to be fully identified and so our approach can be used even with very short panel

data. We provide distribution theory for estimators of the mixing proportions and the mixture

distributions, and various functionals thereof. We also discuss inference on the number of

components. These estimators are found to perform well in a series of Monte Carlo exercises.

We apply our techniques to document heterogeneity in log annual earnings using PSID data

spanning the period 1969–1998.

Keywords: finite-mixture model, nonparametric estimation, series expansion, simultaneous-

diagonalization system.

Introduction

Finite-mixture models are widely used in statistical analysis. Popular applications include

modeling unobserved heterogeneity in structural models, learning about individual behavior

from grouped data, and dealing with corrupted data. As univariate mixtures are not non-

parametrically identified from cross-sectional data, the conventional approach to inference

is parametric; see, e.g., McLachlan and Peel (2000) for an overview. Recently, following

the seminal work of Hall and Zhou (2003), a number of studies have shown that data on

repeated measurements provide a powerful source of identification in mixture models; see

Hall et al. (2005), Hu (2008), Allman et al. (2009), and Kasahara and Shimotsu (2009),

among others.1

In this paper we present a simple and constructive identification argument and develop

a practical procedure to nonparametrically estimate finite mixtures from data on repeated

†Address for correspondence: Sciences Po, Department of Economics, 28 rue des Saints-Pères,
75007 Paris, France. E-mail: koen.jochmans@sciences-po.org. Replication material is available
at econ.sciences-po.fr/staff/koen-jochmans.

1 In related work, Henry et al. (2013) study the identifying power of exclusion restrictions in
conditional models.
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measurements. We show that finite mixtures are generically identified from panel data when

three or more measurements are available, and the component distributions are stationary

and linearly independent. Our conditions are of a similar nature as those assumed by

Allman et al. (2009). However, our approach is constructive. The resulting estimators are

attractive from a computational point of view, even when the number of components is

large, and have desirable large-sample properties.

We will focus on the case where outcomes are continuous and component densities are

square-integrable. Our analysis is based on projections of the marginal densities and mixture

components onto an orthonormal basis of functions. The mixture structure imposes a set of

multilinear restrictions on the generalized Fourier coefficients of these densities, which takes

the form of a joint-diagonalization problem for a set of commuting symmetric matrices. The

eigenvalues of these matrices identify the Fourier coefficients of the component densities up

to arbitrary relabeling. The component densities are therefore identified almost everywhere

on their support. The mixing proportions are then identified as the solution to a linear

system of equations.

To turn this identification result into an operational estimation procedure we appeal

to the literature on blind source separation, which has extensively investigated numerical

methods for the joint diagonalization of a set of matrices. Specifically, we propose estimating

the Fourier coefficients of the component densities via the joint approximate-diagonalization

algorithm developed by Cardoso and Souloumiac (1993). This procedure is straightforward

to implement, highly stable, and computationally extremely fast. Given estimates of the

projection coefficients, we then construct bona fide series estimators of the component

densities and a least-squares estimator of the mixing proportions. In addition, while most

of the analysis is conducted under the assumption that the number of components is known,

we also construct an estimator of the number of components using a sequential-testing

approach.

We derive integrated squared-error and uniform convergence rates of the estimator of

the component densities, and provide conditions for pointwise asymptotic normality. The

convergence rates coincide with those that would be obtained if the data could be sampled

directly from the component distributions. We further show that our estimator of the mixing

proportions converges at the parametric rate, and present distribution theory for two-step

semiparametric GMM estimators of finite-dimensional parameters defined through moment

restrictions involving the mixture components. Extensive numerical experimentation, which

we report on through a series of Monte Carlo illustrations, provides encouraging evidence

on the small-sample performance of our procedures.

As an empirical application, we investigate the presence of unobserved heterogeneity

in earnings data from the PSID for the period 1969–1998. This application illustrates

the usefulness of our approach as a tool to decompose earnings inequality into within-

group and between-group components, where group membership is unobserved and inferred

from the longitudinal dimension of the data. We find evidence of substantial unobserved
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heterogeneity that goes beyond what is captured by the location-scale models commonly

used in this literature. We further document the evolution of earnings inequality over time

and compare it to the recent work by Moffitt and Gottschalk (2012).

The paper is organized as follows. Section 1 formalizes the setup and presents our

identification results. Section 2 contains an exposition of the resulting estimators while

Section 3 is devoted to a derivation of their large-sample properties. Section 4 presents

simulation evidence on the performance of the various estimators, and Section 5 contains

our application to earnings dynamics. Three appendices collect auxiliary theorems and

technical proofs.

1. Identification

Let x be a latent discrete random variable, normalized to take on value k 2 {1, 2, ...,K}
with probability !k > 0. Let y be an observable outcome variable with probability density

function (PDF)

f(y) =
KX

k=1

fk(y) !k,

where fk denotes the PDF of y conditional on x = k. We assume that the component

densities fk are supported on the interval [−1, 1]. This is without loss of generality because

we can always transform the outcome by means of a suitably chosen strictly-monotonic

function.

Let ⇢ be an almost everywhere positive and integrable function on the interval [−1, 1].

Let {χi, i ≥ 0} be a complete system of functions that are orthonormal on this interval with

respect to the weight function ⇢.2

Assume that the fk are square-integrable with respect to ⇢ on [−1, 1]. The projection

of fk onto {χ0, χ1, ..., χJ} is given by

ProjJ [fk] ⌘
JX

j=0

bjkχj , bjk ⌘
ˆ 1

−1

χj(y)fk(y)⇢(y) dy = E[χj(y)⇢(y)|x = k],

and converges to fk in L2
⇢-norm, that is,

kProjJ [fk]− fkk2 ⌘
✓
ˆ 1

−1

⇥
ProjJ [fk](y)− fk(y)

⇤2
⇢(y) dy

◆1/2

−! 0

as J ! 1.

Let y1, y2, . . . , yT be a set of repeated measurements on y that are independent and

identically distributed conditional on x. In a similar fashion as before, the joint density of

2Orthonormality with respect to ρ means that, for all pairs (i, j),
´

1

−1
χi(y)χj(y)ρ(y) dy = δij ,

where δij is Kronecker’s delta.
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y1, y2, . . . , yH for any H  T can be projected onto the tensor basis {χ0, χ1, ..., χI}⌦H , with

associated Fourier coefficients

ai1i2···iH ⌘ E [χi1(y1)⇢(y1)χi2(y2)⇢(y2) · · ·χiH (yH)⇢(yH)] ,

where (i1, i2, . . . , iH) ranges over all H-tuples from the set {0, 1, . . . , I}. The data reveal

the coefficients {ai1i2···iH , i1, i2, . . . , iH ≥ 0}, which are linked to the Fourier coefficients

of component densities {bjk, j ≥ 0} and to the mixing proportions !k through the set of

multilinear restrictions

ai1i2···iH =

KX

k=1

bi1k bi2k · · · biHk !k, (1.1)

for each H  T and all i1, i2, . . . , iH ≥ 0. Below we will show that, under weak restrictions,

the relations in (1.1) can be uniquely solved for the Fourier coefficients of the component

densities bjk and their associated mixing proportions !k up to arbitrary relabeling of the

components, which we maintain as our definition of identification for the remainder of the

paper. It is well known that nonparametric point-identification fails when T < 3—see Hall

and Zhou (2003), for example—and so we set T = 3 throughout the remainder of this

section.

For any non-negative integer I, let

B ⌘

0
BBB@

b01 b02 · · · b0K
b11 b12 · · · b1K
...

...
. . .

...
bI1 bI2 · · · bIK

1
CCCA

be the (I +1)⇥K matrix whose kth column contains the leading I +1 Fourier coefficients

of fk. Impose the following condition.

Assumption 1 (rank). For sufficiently large I, rank[B] = K.

Assumption 1 states that the component densities are linearly independent.

Moving on, let a ⌘ (a0, a1, . . . , aI)
0, and introduce the symmetric (I + 1) ⇥ (I + 1)

matrices

A⇤ ⌘

0
BBB@

a00 a01 · · · a0I
a10 a11 · · · a1I
...

...
. . .

...
aI0 aI1 · · · aII

1
CCCA , and Aj ⌘

0
BBB@

a00j a01j · · · a0Ij
a10j a11j · · · a1Ij

...
...

. . .
...

aI0j aI1j · · · aIIj

1
CCCA , j ≥ 0,

which contain the Fourier coefficients of the bivariate and of the trivariate joint densities

of pairs and triples of measurements, respectively. The restrictions in (1.1) can then be

written as

a = B!, A⇤ = BΩB0, Aj = BΩ1/2DjΩ
1/2B0, (1.2)

for ! ⌘ (!1, !2, . . . , !K)0, Ω ⌘ diag[!], and Dj ⌘ diag[bj1, bj2, . . . , bjK ].

The next theorem shows that Assumption 1 suffices for identification of the mixture

structure on the basis of repeated measurements.
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Theorem 1 (identification). Let I be chosen in such a way that Assumption 1 is

satisfied. Then (i) the number of components K, (ii) the component densities fk, and (iii)

the mixing proportions !k are all identified.

The proof of Theorem 1 is constructive, and is therefore given here. By Assumption 1, the

matrix A⇤ has rank K. As this matrix is known, so is its rank and, hence, the number of

mixture components. This proves Theorem 1(i). To establish Theorem 1(ii), note that A⇤ is

real and symmetric, and that it has rank K. Therefore, it admits the spectral decomposition

A⇤ = V ΛV 0,

where V is the (I + 1) ⇥ K orthonormal matrix containing the eigenvectors of A⇤, and

Λ is the K ⇥ K diagonal matrix containing the associated eigenvalues. Construct the

K ⇥ (I + 1) whitening matrix W ⌘ Λ−1/2V 0, and subsequently form the set of K ⇥ K

matrices Cj ⌘ WAjW
0, for j ≥ 0. Then, using (1.2), we obtain the system

Cj = UDjU
0, (1.3)

where U ⌘ WBΩ1/2. As WA⇤W
0 = UU 0 = IK , where IK denotes the K ⇥ K identity

matrix, U is a full-rank orthonormal matrix. Observe that V , and thus W , is not unique if

the eigenvalues of A⇤ are multiple. Nevertheless, in this case (1.3) holds irrespective of the

choice of V . Now, by (1.3) the set of matrices {Cj , j ≥ 0} are simultaneously diagonalizable

in the same orthonormal basis; namely, the columns of U . The eigenvalues of Cj are

given by the diagonal coefficients of Dj , that is, the Fourier coefficients of the component

densities fk. Because B and U have full column rank and eigenvectors are orthonormal,

the decomposition in (1.3) is unique up to relabeling of the eigenvectors and eigenvalues,

and up to the directions of eigenvectors (see, e.g., De Lathauwer et al. 2004). Thus, for

each k, ProjJ [fk] is identified for all J . Because kfk − gkk2 = 0 if and only if the function

gk has the same Fourier coefficients as fk, this implies that the densities fk are identified

almost everywhere on [−1, 1]. Finally, to show Theorem 1(iii), note that identification of

the matrices Dj implies identification of B. As B has maximal column rank, (1.2) identifies

! = (B0B)−1B0a. This concludes the proof of Theorem 1.

We make the following remarks on the proof of Theorem 1. First, identification of the

mixture components implies identification of all their functionals. Furthermore, Bayes’ rule

implies that the posterior latent-class probabilities Pr{x = k|yt = y}, as a function of y,

are also identified. This is a key object of interest in latent-class analysis, as it allows to

classify observations based on marginal information.

Second, the proof of Theorem 1 shows that identification does not require calculating

the whole sequence {ai1i2i3 , i1, i2, i3 ≥ 0} to recover {bjk, j ≥ 0}. Only one dimension out of

all three indices i1, i2, i3 has to diverge. This observation will be important when deriving

distribution theory, and is key in obtaining univariate convergence rates for our estimator

of the component densities fk.
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Finally, note that simultaneous-diagonalization arguments have also been used elsewhere

to establish identification in related contexts; see Hu (2008), Hu and Schennach (2008), and

Kasahara and Shimotsu (2009), for example. Our approach here differs in two aspects. First,

we work with a discretization of the component densities in the frequency domain rather

than with a discretization of their support. Second, we explicitly construct an estimator

based on the joint-eigenvector decomposition. The development of this estimator is the

topic of the next section.

2. Estimation

Let {yn1, yn2, . . . , ynT , n = 1, 2, . . . , N} denote a random sample of size N . From now on,

we set T ≥ 3 and assume that an upper bound I > K is available so that Assumption 1 is

satisfied.

2.1. Number of components

Because the number of components equals the rank of A⇤, a natural way to proceed is

to estimate K by sequentially testing the rank of its empirical analog.3 To describe the

procedure, note that a plug-in estimator of A⇤, say bA⇤, has (i1, i2)th-entry

bai1i2 ⌘ 1

N

(T − 2)!

T !

NX

n=1

X

(t1,t2)

χi1(ynt1)⇢(ynt1)χi2(ynt2)⇢(ynt2),

where (t1, t2) ranges over all ordered pairs from the set {1, 2, . . . , T}. The averaging across

all ordered pairs is done to exploit the stationarity restrictions across measurements. Note

that bA⇤ is both an unbiased and a
p
N -consistent and asymptotically-normal estimator of

A⇤ provided the basis functions have finite variance. We may then use the rank statistic of

Kleibergen and Paap (2006), brk, to test the null H0 : rank[A⇤] = k against the alternative

H1 : rank[A⇤] > k for any k. Moreover, following Robin and Smith (2000), a point estimator

of K is given by

bK ⌘ min
k2{0,1,...,I+1}

{
k : br` ≥ p1−↵(`), ` = 0, 1, . . . , k − 1,brk < p1−↵(k)

 
,

where p1−↵(k) is the 100(1 − ↵)th percentile of the χ2((I + 1 − k)2) distribution and ↵

is a chosen significance level (with the convention that p1−↵(I + 1) = +1). That is,

the sequential-testing estimator is the first integer for which we fail to reject the null at

significance level ↵. Asymptotically, this estimator will not underestimate the true rank

of A⇤. The probability of overestimation can be made to converge to zero by suitably

3This approach is similar in spirit to Kasahara and Shimotsu (2013), although their procedure
only yields a consistent estimator of a lower bound on the number of components. Note that, in
the absence of a known upper bound on K, our sequential-testing procedure, too, will only provide
a consistent estimator of a lower bound on the number of components in general.



Finite mixtures 7

decreasing the significance level ↵ as a function of the sample size; see Robin and Smith

(2000) for details.

Although one could base the sequential testing procedure on a different test statistic,

brk has several attractive features and, therefore, carries our preference. Prime advantages

include its non-sensitivity to the ordering of variables, and the fact that its limit distribution

under the null is free of nuisance parameters.

2.2. Component densities and mixing proportions

2.2.1. Joint approximate diagonalization

We recover the Fourier coefficients from an empirical counterpart to the simultaneous-

diagonalization system in (1.3). To this end, let I and J be two non-negative integers.

In the asymptotic analysis we will let J tend to infinity, while keeping I fixed. We first

construct the (I+1)⇥ (I+1) matrices bAj , j = 0, 1, . . . , J , whose typical (i1, i2)-entry takes

the form

bai1i2j ⌘
1

N

(T − 3)!

T !

NX

n=1

X

(t1,t2,t3)

χi1(ynt1)⇢(ynt1)χi2(ynt2)⇢(ynt2)χj(ynt3)⇢(ynt3),

where (t1, t2, t3) ranges over all ordered triples from the set {1, 2, . . . , T}. We then form
bCj ⌘ cW bAj

cW 0, where cW is the sample counterpart to W , constructed from the spectral

decomposition of bA⇤. Note that these matrices are all symmetric by construction. The

restrictions in (1.3) then suggest estimating the matrices Dj by bDj ⌘ diag
⇥ bU 0 bCj

bU
⇤

, where

bU ⌘ arg min
U2U

IX

i=0

∥∥∥off
⇥
U 0 bCiU

⇤∥∥∥
2

, (2.1)

with U the set of K⇥K orthonormal matrices, off[A] ⌘ A−diag[A], and k·k the Euclidean

norm. That is, bU is the approximate joint diagonalizer of the bCi.

Even though bU is a least-squares estimator, the first-order conditions of the minimization

problem in (2.1) are highly nonlinear and difficult to solve using conventional gradient-based

methods. Fortunately, this joint diagonalization problem has been extensively studied in

numerical analysis (see, e.g., Bunse-Gerstner et al. 1993), and several numerical algorithms

have been developed. Here, we use the JADE algorithm by Cardoso and Souloumiac (1993).

This procedure is based on iteratively applying elementary Jacobi rotations. Its attractive

computational properties have made JADE a workhorse technique in blind source separation

(see, e.g., Comon and Jutten 2010). In extensive numerical experiments we found it to be

very stable and computationally extremely fast.
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2.2.2. Component densities and mixing proportions

Given an estimator of bDj = diag[bbj1,bbj2, . . . ,bbjK ], we estimate fk by the orthogonal-series

estimator

bfk ⌘
JX

j=0

bbjkχj .

Bona fide density estimates, that is non-negative functions that integrate to one, may

then be obtained as fk(y) ⌘ max{0, bfk(y) − ck}, where ck is a constant chosen so that
´ 1

−1
fk(z) dz = 1. Observe that fk is the projection of bfk onto the space of square-integrable

functions that are non-negative and integrate to one, as shown by Gajek (1986) in a general

setting.

Given an estimator of the component densities, an estimator of the mixing proportions is

easily constructed. We use the leading (I +1) matrices bDi to construct a plug-in estimator
bB of B, and compute ba ⌘ (ba0,ba1, . . . ,baI)0, for

bai ⌘
1

NT

NX

n=1

TX

t=1

χi(ynt)⇢(ynt).

The vector ! is then readily estimated by

b! ⌘ ( bB0 bB)−1 bB0ba.

This estimator is similar in spirit to the minimum-distance proposal of Titterington (1983),

who worked in a framework where data can be sampled directly from the various mixture

components.

2.3. Functionals

Given estimates of the component densities and mixing proportions, we next consider the

problem of inferring a vector ✓0 defined as the unique solution to a moment condition of the

form E[g(y; ✓0)|x = k] = 0 for some known function g. The first moment of fk, for example,

is defined through E[y − ✓0|x = k] = 0.

Note that E[g(y; ✓)|x = k] = E[g(y; ✓)φk(y)] for φk(y) ⌘ fk(y)/f(y). Hence, a natural

way to proceed is to consider a GMM estimator of the form

b✓ ⌘ argmin
✓2Θ

bm(✓)0 bΣ bm(✓), (2.2)

where Θ is the parameter space, bΣ is a positive-definite weight matrix that converges in

probability to a positive-definite and non-stochastic matrix Σ, and

bm(✓) ⌘ 1

N

NX

n=1

bmn(✓), bmn(✓) ⌘
1

T

TX

t=1

g(ynt; ✓)bφk(ynt),

for bφk a suitable estimator of the weight function φk.
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An alternative way to construct an estimator of ✓0 would be to replace bm(✓) in (2.2) by

em(✓) ⌘
JX

j=0

bbjkχj(✓), χj(✓) ⌘
ˆ 1

−1

g(y; ✓)χj(y) dy. (2.3)

Quadrature methods can be used to numerically approximate the χj(✓) if the integrals are

difficult to compute.

3. Distribution theory

The theory to follow uses orthonormal polynomials as basis functions. We first derive

the large-sample properties of our estimators of mixture densities and mixing proportions

assuming that K is known. We then present distribution theory for semiparametric two-step

estimators of functionals. Technical details are collected in the appendix.

3.1. Component densities

3.1.1. Approximation to an infeasible estimator

To derive the large-sample properties of our estimator of fk, it is instructive to link it to

the infeasible estimator

efk ⌘
JX

j=0

ebjkχj ,

where the ebjk are the diagonal entries of eDj ⌘ diag[U 0W bAjW
0U ]. Note that this estimator

is not feasible because it assumes knowledge of the whitening matrix W and of the joint

eigenvectors U . We can write

efk(y) =
1

N

(T − 3)!

T !

NX

n=1

X

(t1,t2,t3)

⌧k(ynt1 , ynt2) J(y, ynt3)⇢(ynt3),

where J is the Christoffel-Darboux kernel associated with the system {χj , j ≥ 0}, that is,

J(y1, y2) ⌘
JX

j=0

χj(y1)χj(y2),

and where, using U = (u1, u2, . . . , uK) and W = (w0, w1, . . . , wI),

⌧k(y1, y1) ⌘
IX

i1=0

IX

i2=0

u0
kwi1χi1(y1)⇢(y1)χi2(y2)⇢(y2)w

0
i2uk.

The function ⌧k has an interpretation as a tilt function. Moreover, because the sample

average of J(z, ynt)⇢(ynt) is just a conventional orthogonal-series estimator of f(z), the

infeasible estimator efk can be seen as a re-weighting estimator based on an estimator of the

marginal density.
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Our estimator of fk can be seen as an estimated counterpart to efk. Moreover, it equals

bfk(y) =
1

N

(T − 3)!

T !

NX

n=1

X

(t1,t2,t3)

b⌧k(ynt1 , ynt2) J(y, ynt3)⇢(ynt3),

where b⌧k is an estimator of the tilt function based on the JADE program in (2.1), that is,

b⌧k(y1, y2) ⌘
IX

i1=0

IX

i2=0

bu0
k bwi1χi1(y1)⇢(y1)χi2(y2)⇢(y2) bw0

i2buk.

Under regularity conditions, replacing ⌧k by its estimator b⌧k will not affect the limit behavior

of the density estimator.

3.1.2. Global convergence rates and pointwise asymptotic normality

To present distribution theory for the density estimator, let k·k1 denote the supremum

norm and let ↵J(y) ⌘
PJ

j=0 χj(y)
2. The following two assumptions suffice for the analysis

of the infeasible estimator.

Assumption 2 (kernel). The sequence {χj , j ≥ 0} is dominated by a function ⇡,

which is continuous on (−1, 1) and positive almost everywhere on [−1, 1]; ⇡⇢ and ⇡2⇢ are

integrable; and there exists a sequence of constants {⇣J , J ≥ 0} so that kp↵Jk1  ⇣J .

These conditions are rather weak. They are satisfied for the class of Jacobi polynomials, for

example, which are orthogonal to weight functions of the form ⇢(y) / (1 − y)#1(1 + y)#2 ,

where #1,#2 > −1, and are dominated by ⇡(y) / (1 − y)−#0

1(1 + y)−#0

2 , where #0i ⌘
max{#i,−1/2}/2 + 1/4. Further, with # ⌘ 1/2 + max{#1,#2,−1/2}, kχjk1 = j#, and so

one can take ⇣J = J (1+#)/2; see, e.g., Viollaz (1989). Notable members of the Jacobi class

are Chebychev polynomials of the first kind (#1 = #2 = −1/2), Chebychev polynomials of

the second kind (#1 = #2 = 1/2), and Legendre polynomials (#1 = #2 = 0).

Assumption 3 (smoothness). For all k, fk is continuous and (⇡⇢)4fk is integrable;

and there exists a constant β ≥ 1 such that kProjJ [fk]− fkk1 = O(J−β) for all k.

The integrability condition imposes existence of suitable moments of fk. For consistency,

integrability of (⇡⇢)2fk, which is implied by integrability of (⇡⇢)4fk, suffices. However, the

fourth-order moments will be needed for establishing asymptotic normality. The condition

on the rate at which the bias shrinks is conventional in nonparametric curve estimation by

series expansions. Primitive conditions for it to hold depend on the orthogonal system used

and on the differentiability properties of the fk; see, e.g., Powell (1981).

The following assumption will allow us to extend the analysis to the feasible estimator.

Assumption 4 (eigenvalues). The non-zero eigenvalues of A⇤ are all simple.
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This restriction is mainly done to facilitate the exposition. When Assumption 4 fails, the

eigenvalues of A⇤ are no longer a continuous function of A⇤, complicating the derivation of

the asymptotic properties of b⌧k; see, e.g., Magnus (1985). Moreover, it is well known that the

asymptotic distribution of eigenvalues depends in a complicated way on their multiplicity;

see, e.g., Eaton and Tyler (1991).

Our first main result provides integrated squared-error and uniform convergence rates.

Theorem 2 (convergence rates). Let Assumptions 1–4 be satisfied. Then

∥∥ bfk − fk
∥∥2
2
= OP (J/N + J−2β),

∥∥ bfk − fk
∥∥
1

= OP (⇣J
p

J/N + J−β),

for all k.

The rates in Theorem 2 equal the conventional univariate rates of nonparametric series

estimators; see, e.g., Schwartz (1967) and Newey (1997). Thus, the fact that x is latent

does not affect the convergence speed of the density estimates. The integrated squared-error

result is further known to be optimal, in the sense that it achieves the bound established

by Stone (1982).

The next theorem states the pointwise limit distribution of the density estimator.

Theorem 3 (asymptotic normality). Let Assumptions 1–4 be satisfied. Suppose

that N, J ! 1 so that J2/N ! 0 and NJ−2β ! 0. Then, for each y that lies in an

interval on which f is of bounded variation,

p
NV

−1/2
⇥ bfk(y)− fk(y)

⇤ L−! N (0, 1),

where V is the covariance of (T−3)!
T !

P
(t1,t2,t3)

⌧k(yt1 , yt2)J(y, yt3)⇢(yt3)− ProjJ [fk](y).

The proof of Theorem 3 shows that V = O(↵J(y)), and so the pointwise convergence

rate is determined by the growth rate of ↵J(y). A weak bound is OP (⇣J/
p
N) because

kp↵Jk1  ⇣J .

3.2. Mixing proportions

Because a is estimated at the conventional parametric rate by ba, the asymptotic behavior

of the estimator of the mixing proportions is driven by the properties of bB, that is, of our

joint-diagonalization-based estimator of the leading Fourier coefficients. The analysis of

the JADE estimator in the appendix shows that bB is asymptotically linear. It then readily

follows that b! is a
p
N -consistent and asymptotically-normal estimator of !.

To present the limit distribution of b!, additional notation is needed. Let
col
⌦ and

row
⌦

denote the columnwise and rowwise Kronecker products, respectively. Under our maintained

assumptions, cW is an asymptotically-linear estimator of the whitening matrix W . The
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influence functions of cW and its transpose are

 W
n ⌘

(
II ⌦Λ−1V

)
− 1

2

✓
IK

col
⌦ W 0

◆⇣
W

row
⌦ W

⌘]
 A⇤

n ,

 W 0

n ⌘
(
Λ−1V ⌦ II

)
− 1

2

✓
W 0

col
⌦ IK

◆⇣
W

row
⌦ W

⌘]
 A⇤

n ,

(3.1)

respectively. Here,  A⇤

n is the influence function of bA⇤. It has typical entry equal to
(T−2)!

T !

P
(t1,t2)

χi1(ynt1)⇢(ynt1)χi2(ynt2)⇢(ynt2) − ai1i2 . The JADE estimators of U and its

transpose, too, are asymptotically linear. Their influence functions, in turn, are

 U
n ⌘ (IK ⌦HU 0)−1

IX

i=0

Qi(U
0 ⌦ U 0) Ci

n ,

 U 0

n ⌘ (HU 0 ⌦ IK)−1
IX

i=0

Qi(U
0 ⌦ U 0) Ci

n ,

(3.2)

where [H]k,` ⌘ PI
i=0(bik − bi`)

2 δk`, Qi ⌘ diag[vec[Di◆K◆
0
K − ◆K◆

0
KDi]] for ◆K a vector of

ones of length K, and where

 Ci

n ⌘ (WAi ⌦ IK) W
n + (W ⌦W ) Ai

n + (IK ⌦WAi) 
W 0

n , (3.3)

with  Ai

n having typical element

(T − 3)!

T !

X

(t1,t2,t3)

χi1(ynt1)⇢(ynt1)χi2(ynt2)⇢(ynt2)χi(ynt3)⇢(ynt3)− ai1i2i.

Note that the matrix H−1 is well defined for any I + 1 ≥ K because B has full column

rank. It is readily shown that

p
N vec[ bB −B] =

1p
N

NX

n=1

 B
n + oP (1),

where  B
n ⌘ vec[( D0

n , D1

n , . . . , DI

n )], with

 Di

n ⌘
⇥
Ik

col
⌦ IK

⇤⇥
(IK ⌦U 0Ci) 

U
n + (U 0 ⌦ U 0) Ci

n + (U 0Ci ⌦ IK) U 0

n

⇤
. (3.4)

The functions  Di

n are the influence functions of the bDi, which contain the estimates of the

Fourier coefficients on their main diagonal.

Note that we also have

p
N(ba− a) =

1p
N

NX

n=1

 a
n + oP (1),

where  a
n has typical entry T−1

P
t χi(ynt)⇢(ynt)− ai.

With these definitions at hand, we introduce

 !
n ⌘ (B0B)−1

⇥
(a0 ⌦ IK) B

n +B0 a
n

⇤
. (3.5)

We can then state the following theorem.
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Theorem 4 (mixing proportions). Let Assumptions 1–4 be satisfied. Then
p
N
(
b! − !

) L! N (0,V ),

where V is the covariance of  !
n .

3.3. Functionals

With Theorems 2 to 4 at hand we turn to the analysis of two-step semiparametric estimators.

Here we provide sufficient conditions for asymptotic linearity of the GMM estimator in

(2.2), which estimates the moment function E[g(y; ✓)|x = k] by the re-weighting estimator

(NT )−1
P

n,t g(ynt; ✓)
bφk(ynt) using

bφk(y) ⌘ bfk(y)
. KX

`=1

bf`(y) b!`

!
.

In practical applications, one may wish to trim observations for which the weight function is

poorly estimated. Of course, other estimators of the moment function could be entertained.

One example would be the series-based estimator in (2.3). Under regularity conditions,

such estimators will all have similar properties, and so we omit a detailed analysis here for

the sake of brevity.

Write G for the Jacobian of g. Let g0 ⌘ g(·; ✓0) and G0 ⌘ G(·; ✓0). We impose the

following regularity conditions.

Assumption 5 (regularity). The value ✓0 lies in the interior of the compact set Θ;

g0 is square-integrable with respect to ⇢; g is twice continuously-differentiable on Θ, and

sup✓2Θ Ekg(y; ✓)k and sup✓2Θ EkG(y; ✓)k are finite; the matrix E[G0φk(y)] has full column

rank; for each k, φk is bounded away from zero and infinity on [−1, 1], and there exists an

integer ⌘ ≥ 1 so that kProjJ [g0φk]− g0φkk1 = O(J−⌘).

Assumption 5 contains familiar conditions for asymptotic normality of GMM estimators. It

also postulates a shrinkage rate on the bias of orthogonal-series estimators of the g0φ` that

is similar to Assumption 3.

To state the asymptotic distribution of b✓, let M✓ ⌘ E[G0φk(y)], and let M! be the

matrix that has E[g(y; ✓0)φk(y)φ`(y)] as its `th column. Define

 ✓
n ⌘ (M 0

✓ΣM✓)
−1M 0

✓Σ
⇥
mn(✓0) +  φ

n

⇤
,

where mn(✓) ⌘ T−1
PT

t=1 g(ynt; ✓)φk(ynt) and

 φ
n ⌘ (T − 3)!

T !

X

(t1,t2,t3)

g0(ynt3)
h
⌧k(ynt1 , ynt2)− φk(ynt3)

KX

`=1

⌧`(ynt1 , ynt2) !`

i
⇢(ynt3)−M! 

!
n .

The function  ✓
n is the influence function of b✓ and has a familiar structure, as the term

involving  φ
n captures the impact of first-stage estimation error in bφk on the asymptotic

variance of b✓.
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Theorem 5 (functionals). Let Assumptions 1–4 be satisfied. Suppose that N, J !
1 so that ⇣4JJ

2/N ! 0, NJ−2β ! 0, and NJ−2⌘ ! 0. Then

p
N(b✓ − ✓0)

L! N (0,V ),

where V is the covariance of  ✓
n.

4. Monte Carlo Simulation

We present numerical evidence on the small-sample performance of our estimators by means

of two illustrations. We will work with the family of Beta distributions on general intervals,

which is popular for modeling the distribution of income; see, e.g., McDonald (1984). On

the interval [y, y], the Beta PDF is

b(y;#1,#2; y, y) ⌘
1

(y − y)#1+#2−1

1

B(#1,#2)
(y − y)#1−1(y − y)#2−1,

where B(#1,#2) ⌘
´ 1

0
z#1−1(1−z)#2−1 dz, and #1 and #2 are positive real scale parameters.

Its mean and variance are

µ ⌘ y + (y − y)
#1

#1 + #2
, and σ2 ⌘ (y − y)2

#1#2

(#1 + #2)2(#1 + #2 + 1)
, (4.1)

respectively.

Throughout this section and the next we use normalized Chebychev polynomials of the

first kind as basis functions. For y 2 [−1, 1], the jth such polynomial is

χj(y) =
1

21{j=0}
cos[j arccos(y)].

The system {χj , j ≥ 0} is orthonormal with respect to the weight function 2/
p
⇡2(1− y2),

is uniformly bounded by the constant function 1, and is dominated in supremum-norm by

⇣J =
p
J .

In each experiment, we estimate the number of components, the mixture densities and

their associated CDFs, as well as the mixing proportions and means and variances of the

mixture components. When estimating the component densities, we use fk to ensure bona

fide estimates. To infer the conditional CDFs, Fk(y) ⌘
´ y

−1
fk(z) dz, we use Clenshaw-

Curtis quadrature to approximate the integral
´ y

−1
fk(z) dz. The components are labeled

according to the estimated modes, the smallest mode corresponding to k = 1. We also

present simple kernel estimates of the marginal density of the data.4

4Our quadrature approximation uses 101 quadrature nodes. Means and variances are estimated
using the GMM estimator from Section 3.3, without trimming. The estimates of the marginal
densities are obtained using a Gaussian kernel and a bandwidth set according to Silverman’s rule
of thumb. When the support of the fk is [a, b], y is translated to [−1, 1] through the transformation
(y − (a+ b)/2)/((b− a)/2).
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Table 1. Sequential rank test in Experiment 1

α = .100 α = .050 α = .025

N bK<K bK=K bK>K bK<K bK=K bK>K bK<K bK=K bK>K

500 .005 .927 .068 .002 .959 .039 .001 .978 .021
750 .006 .926 .068 .002 .958 .040 .001 .976 .023

1000 .005 .924 .071 .002 .957 .041 .001 .979 .020
1500 .005 .929 .066 .002 .960 .038 .000 .976 .024
2000 .006 .930 .064 .002 .956 .042 .002 .980 .018
2500 .004 .929 .067 .002 .965 .033 .000 .975 .024

In all experiments we set I = J . In additional Monte Carlo exercises (not reported),

we experimented with several other choices for the truncation parameters. We observed

that the results were little affected by the choice of I. The choice of J has a larger impact,

affecting the estimated densities in the usual manner. Providing an optimal data-dependent

choice for J is a challenge that exceeds the scope of this paper.

Experiment 1. Our first experiment involves three generalized Beta distributions on the

interval [−1, 1]. We set

f1(y) = b(y; 2, 7;−1, 1), !1 = .20,

f2(y) = b(y; 5, 4;−1, 1), !2 = .35,

f3(y) = b(y; 6, 2;−1, 1), !3 = .45.

Using (4.1), the means of the mixture components are µ1 = −5/9 ⇡ −.556, µ2 = 1/9 ⇡ .111,

and µ3 = 1/2, while their respective variances are σ2
1 = 28/405 ⇡ .069, σ2

2 = 8/81 ⇡ .099,

and σ2
3 = 1/12 ⇡ .083. We set T = 4 and I = J = 6.

Table 1 presents simulation results for the estimator of K defined through the sequential-

testing procedure based on the approach of Kleibergen and Paap (2006) for various values

of N and ↵. The table reports the frequency with which K was either underestimated,

correctly estimated, or overestimated in 10, 000 Monte Carlo replications. Overall, bK is

found to perform well, correctly picking the true number of mixture components in more

than 100(1− ↵)% of the cases.

The first three panels in Figure 1 show upper 95% and lower 5% envelopes (dashed

lines) over 1000 estimates from samples of size 1000 of the marginal PDF, the component

PDFs, and the component CDFs, together with their respective true values (solid lines).

The results reveal that our estimator reproduces the component densities very well, even

though inspection of the marginal densities does not directly suggest the particular mixture

structure.

The remaining three panels provide box plots of the sampling distribution of the mixing

proportions, and means and variances of the mixture components. All box plots are centered

around the respective true values. An asterisk marks zero. Overall, the plots suggest good

performance. The sampling distribution of the mixing proportions and mixture means
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Table 2. Sequential rank test in Experiment 2

α = .100 α = .050 α = .025

N bK<K bK=K bK>K bK<K bK=K bK>K bK<K bK=K bK>K

500 .140 .642 .218 .201 .644 .155 .264 .617 .119
750 .053 .748 .199 .083 .781 .136 .120 .782 .098

1000 .015 .790 .193 .030 .836 .134 .044 .864 .092
1500 .001 .804 .194 .001 .864 .135 .004 .900 .097
2000 .000 .809 .189 .000 .864 .136 .000 .904 .096
2500 .000 .816 .181 .000 .866 .134 .000 .905 .095

are broadly correctly centered and have small interquartile ranges. The box plots for the

variance show evidence of a slightly larger bias in the estimates of the mixture variances,

in particular for the first and third mixture component. Nonetheless, the magnitude of the

bias is small.

Experiment 2. Our methods contribute to the analysis of non-separable fixed-effect models,

that is, models of the form yt = g(x, "t), for some unobservable "t. A location-scale version

is

yt = x+ ⌘t, ⌘t = σ(x)"t, x ?? "t,

for some function σ. The location-scale model can be seen as a stripped-down version of a

linear fixed-effect model or as a one-factor model. Note that here the factor x and the error

⌘t are allowed to be dependent.

Suppose that "t is drawn from the generalized Beta distribution on [−1, 1] with #1 =

#2 = #. Then its distribution is symmetric and var["t] = 1/(2#+1) while fk is supported on

the interval [k−σ(k), k+σ(k)]. Below we report results for the scale-function specification

σ(x) = (2#+ 1)/
p
x. Here,

E[y|x = k] = k, var[y|x = k] =
1

k
,

so that the variability is inversely related to the mean. Table 2 and Figure 2, which have the

same structure as Table 1 and Figure 1 above, present simulation results for this location-

scale model for # = 2 with K = 5 and ! = (.30, .20, .25, .15, .10)0. This choice of mixing

proportions implies that f is unimodal and virtually symmetric, hiding the underlying

mixture structure well. The simulations were performed with I = J = 8. The table was

generated over 10,000 replications. The plots are based on 1000 Monte Carlo runs.

Table 2 shows that the sequential rank test performs slightly worse than in the first de-

sign, although performance improves as N increases. The plots in Figure 2 display excellent

estimates of the component PDFs and CDFs. The box plots of the mixing proportions are

also broadly correctly centered, although interquartile ranges are higher than in Experiment

1. From the bottom panels in the figure it may be observed that the sampling distributions

of the GMM estimators of the mean and variance of the mixture components are now more

disperse. Variance estimates also suffer from non-negligible bias. This suggests that some

amount of trimming may be desirable in applications.
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Figure 1. Estimates in Experiment 1
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Figure 2. Estimates in Experiment 2
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5. Empirical Application

In an influential paper, Gottschalk and Moffitt (1994) decompose earnings inequality into

a permanent and a transitory component, and contrast earnings inequality in the 1970s

with inequality in the 1980s. In a recent paper, Moffitt and Gottschalk (2012) re-estimate

the trend in the transitory variance of male earnings in the United States using the PSID

from 1970 to 2004. They estimated both a simple one-factor model and more sophisticated

error-component models, and found that the transitory variance started to increase in the

early 1970s, continued to increase through the mid-1980s, and then remained at this new

higher level through the 1990s and beyond.

The literature on such decompositions of earnings dynamics builds on a representation

of individual n’s log earnings at time t as

ynt = xn + ⌘nt, (5.1)

where ynt is typically the residual from a standard Mincer regression, xn is a fixed effect,

and ⌘nt is an idiosyncratic white noise process. Extensions include replacing the fixed effect

by a random walk with individual-specific drift or initial condition, and replacing the white

noise by a stationary serially-correlated process. However, recent contributions have argued

that it may be important to allow for more heterogeneity than in the additive model (5.1);

see, e.g., Browning et al. (2010) for a parametric approach. In this section, we show how

finite mixtures can be used to shed some new light on the anatomy of the rise of earnings

inequality in the U.S.

From the PSID 1969–1998 we construct a set of five-year balanced subpanels, using a

rolling window of length one. This yields 26 subpanels. For each such subpanel, we obtain

our measure of log (annual) earnings as the residual of a pooled regression of reported log

earnings on a constant term, a set of time dummies, years of schooling, and a second-degree

polynomial in experience.5 Graphical inspection of the marginal densities in each subpanel

(not reported) suggests that our stationarity assumption within subpanels is reasonable.

We then estimate a trivariate mixture model for each subpanel. Experiments with up to

ten components yielded similar patterns in the estimated component densities. We focus

on a small number of components for ease of exposition. For example, one can think of x as

a latent ability type with three categories: low, intermediate, and high. The densities were

estimated as in the Monte Carlo experiments, setting I = 5 and J = N1/5 to accommodate

the increase in the number of cross-sectional observations in the subpanels spanning later

time periods. Alternative choices for the truncation parameter J were found to have little

effect on the estimated densities.

Figure 3 plots the estimated component densities for six non-overlapping subpanels. The

cross-sectional sample size is indicated below each plot. The figure reveals well-separated

5We excluded self-employed individuals and students, as well as individuals for whom earnings
were top coded. The sample was restricted to individuals between the ages of 20 and 60, with at
most 40 years of experience. We computed experience as age− (years of schooling + 6).
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Figure 3. Component densities in a selection of subpanels
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Figure 4. Evolution of functionals over the sampling period
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Figure 5. Decomposition of variance, interquartile range, and interdecile range
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unimodal component densities, which we label k = 1, 2, 3 according to their mode (from left

to right). The plots indicate that the component densities, and their dispersion in particular,

vary with k, which provides evidence against the common assumption of independence

between x and ⌘ in model (5.1).

The plots further suggest that the component densities evolve over time. To investigate

this, we estimate their mean, median, and mode as measures of location, as well as their

variance, interquartile range, and interdecile range as measures of dispersion. The results

are presented in Figure 4, which plots the point estimates as well as regression lines over

time, for k = 1 (⇥; full), k = 2 (◦; dashed), and k = 3 (+; dashed-dotted). Means

and medians show a slightly upward-sloping trend, with the lower-end component density

catching up over time. Modes, however, diverge over the period. The ranking of variances,

interquartile ranges, and interdecile ranges of the component densities are inversely related

to their measures of location, indicating that individuals at the lower end of the earnings

distribution are subject to higher volatility in earnings. Interestingly, Figure 4 shows that

all volatility measures increased over the sampling period. This suggests that earnings

inequality within the three latent groups k has increased over time. Note also that, while

the increase in within-group variance slows down at the end of the 1980s, this pattern is

much less apparent when considering interquartile and interdecile ranges.

In the top panel of Figure 5 we present the evolution of the within-group (dashed)

and the between-group (dashed-dotted) variances. In line with the literature, we interpret

the former as measuring a transitory component and the latter as reflecting a permanent

component. The transitory component is the average of the variances of the component

densities; the permanent component is the variance of the means over the latent classes.

We observe that the transitory component increased during the period, although it tended

to flatten out in the late 1980s. This is in line with the findings of the more parametrized

models of Moffitt and Gottschalk (2012). We also find that the permanent component has

been decreasing steadily throughout the sampling period. This decrease is dominated by

the evolution of the transitory component, however, as is apparent from the evolution of

the total variance (solid line).

The remaining panels in Figure 5 document the evolution of other measures of within-

group and between-group variation. The middle plot shows that, like the transitory variance

(solid line), the averages over groups of within-group interquartile ranges (dashed-dotted)

and of within-group interdecile ranges (dashed) both increased over time, although the

former did so at a slower pace. Unlike the transitory variance, however, these other measures

do not show signs of slowing down over the course of the sampling period. We tend to place

more confidence in inter-quantile ranges as measures of dispersion because they are well

known to be more robust than the variance (and other higher-order moments). When

tails get fatter more observations are needed to obtain the same precision for the variance.

Thus, the flattening-out of the transitory variance might just reflect the fattening tails of

the within-group distributions after 1980.
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Lastly, the bottom plot in Figure 5 shows the evolution of the variances (across the

three latent classes) of the group-specific means, medians, and modes. The plot shows that

the evolution of these permanent components is very different depending on the location

parameter considered.

Conclusion

In this paper we have introduced simple nonparametric procedures to estimate finite-

mixture models from short panel data. Our estimators rely on fast joint-diagonalization

techniques for efficient computation. Their theoretical properties as well as our Monte

Carlo experiments suggest good performance. In particular, the component densities are

estimated at the usual univariate nonparametric rates, and mixing proportions as well as

functionals converge at the parametric rate. Although we have focused on the case where

the outcome variable is continuous, our methods can also be applied with discrete outcomes.

Several directions for future research present themselves. First, it would be interesting

to extend our approach to continuous mixtures. Nonparametric estimation of continuous

mixtures is challenging, however, as an ill-posed inverse problem arises. A second extension

would be to assess the impact of estimating the number of components on the statistical

properties of our estimators. In numerical experiments, we have found that working with

a K that is too low yields density estimates that tend to aggregate the true component

densities over groups. A final direction would be to relax the assumption that the component

densities are stationary. These questions all raise challenges for computation and statistical

analysis, and are currently under study.
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Appendix A. Analysis of the infeasible density estimator

For notational simplicity, throughout the appendices, we set T = 3 and ignore permutations

of observations when constructing estimators; we set (t1, t2, t3) = (1, 2, 3).

Theorem A.1. Let Assumptions 2–3 be satisfied. Then

∥∥ efk − fk
∥∥2
2
= OP (J/N + J−2β),

∥∥ efk − fk
∥∥
1

= OP (⇣J
p
J/N + J−β),

for all k.

Proof. Let b ⌘ (b0k, b1k, . . . , bJk)
0, and define eb in an analogous fashion. We begin by

showing that keb− bk = OP

(p
J/N

)
. First observe that, for any j,

E
∥∥ bAj −Aj

∥∥2 =

IX

i1=0

IX

i2=0

E
⇥
(bai1i2j − ai1i2j)

2
⇤

=

IX

i1=0

IX

i2=0

E

h⇣ 1

N

NX

n=1

χi1(yn1)⇢(yn1)χi2(yn2)⇢(yn2)χj(yn3)⇢(yn3)− ai1i2j

⌘2i

=
IX

i1=0

IX

i2=0

E
⇥
χi1(y1)

2⇢(y1)
2χi2(y2)

2⇢(y2)
2χj(y3)

2⇢(y3)
2
⇤
− a2i1i2j

N


IX

i1=0

IX

i2=0

( ´ 1
−1

⇡(y)2⇢(y)2f(y) dy
)3 − a2i1i2j

N


(I + 1)2

( ´ 1
−1

⇡(y)2⇢(y)2f(y) dy
)3

N
.

As ⇡2⇢2f is integrable, we thus have that E
∥∥ bAj−Aj

∥∥2 = O(1/N) uniformly in j. Therefore,

JX

j=0

∥∥ bAj −Aj

∥∥2 = OP (J/N)

by Markov’s inequality. Now, because ebjk − bjk is the kth diagonal entry of eDj −Dj and
eDj −Dj = diag[U 0W ( bAj −Aj)W

0U ],

keb− bk2 
JX

j=0

∥∥ eDj −Dj

∥∥2 
∥∥U 0W ⌦ U 0W

∥∥2
JX

j=0

∥∥ bAj −Aj

∥∥2 = OP (J/N)

follows by the Cauchy-Schwarz inequality and the fact that
∥∥U 0W ⌦ U 0W

∥∥ = O(1). This

establishes the rate result on the Fourier coefficients.

Now consider the integrated squared-error result. Using orthonormality of the basis

functions, a small calculation shows that

∥∥ efk − fk
∥∥2
2
=
∥∥ efk − ProjJ [fk]

∥∥2
2
+
∥∥ProjJ [fk]− fk

∥∥2
2
= keb− bk2 +

∥∥ProjJ [fk]− fk
∥∥2
2
.
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From above, keb− bk2 = OP (J/N). Further, by Assumption 3,

∥∥ProjJ [fk]− fk
∥∥2
2

ˆ 1

−1

∥∥ProjJ [fk]− fk
∥∥2
1

⇢(y) dy = O(J−2β)

because ⇢ is integrable. This proves the first part of Theorem A.1.

To derive the uniform convergence rate, finally, use the triangle inequality to obtain that

∥∥ efk − fk
∥∥
1


∥∥ efk − ProjJ [fk]

∥∥
1

+
∥∥ProjJ [fk]− fk

∥∥
1
.

By the Cauchy-Schwarz inequality in the first step and by the uniform bound on ↵J(y) and

the convergence rate of keb− bk in the second, the first right-hand side term is bounded as

∥∥ efk − ProjJ [fk]
∥∥
1

 kp↵Jk1 keb− bk = O
(
⇣J
)
OP

(p
J/N

)
.

By Assumption 3,
∥∥ProjJ [fk] − fk

∥∥
1

= O(J−β). This yields the second part of Theorem

A.1 and thus concludes the proof. 2

Theorem A.2. Let Assumptions 2–3 be satisfied. Suppose that N, J ! 1 so that

J/N ! 0 and J2β/N ! 1. Then, for each y that lies in an interval on which f is of

bounded variation, p
NV

−1/2
⇥ efk(y)− fk(y)

⇤ L−! N (0, 1),

where V is the covariance of ⌧k(y1, y2)J(y, y3)⇢(yt3)− ProjJ [fk](y).

Proof. Fix the evaluation point y throughout the proof. We first show that efk is an

unbiased estimator of ProjJ [fk].

E
⇥ efk(y)

⇤
=E

⇥
⌧k(y1, y2)J(y, y3)⇢(y3)

⇤
=

KX

`=1

E
⇥
⌧k(y1, y2)

∣∣x = `
⇤
E
⇥
J(y, y3)⇢(y3)

∣∣x = `
⇤
!`,

where the expectations are with respect to (y1, y2, y3) and we have used the conditional

independence of the measurements. Now,

E
⇥
⌧k(y1, y2)

∣∣x = `
⇤
=

IX

i1=0

IX

i2=0

u0
kwi1bi1`bi2`w

0
i2uk = !−1

k δk`

because U 0WBB0W 0U = Ω−1, which follows from (1.3). Further, the Christoffel-Darboux

kernel satisfies

E
⇥
J(y, y3)⇢(y3)

∣∣x = `
⇤
=

JX

j=0

bj`χj(y) = ProjJ [f`](y)

for each `. Thus, E
⇥ efk(y)

⇤
= ProjJ [fk](y), as claimed.

Centering the estimator around its expectation gives

efk(y)− ProjJ [fk](y) =
1

N

NX

n=1

 n,  n ⌘ ⌧k(yn1, yn2)J(y, yn3)⇢(yn3)− ProjJ [fk](y).
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Because Assumption 3 yields |ProjJ [fk](y)− fk(y)|  kProjJ [fk]− fkk1 = O(J−β) and we

require that
p
NJ−β ! 0, the bias induced by truncating the projection is asymptotically

negligible. It thus suffices to derive the limit distribution of the sample average of the

 n. For this we verify that the conditions of Lyapunov central limit theorem for triangular

arrays are satisfied. We have already demonstrated that E[ n] = 0 and so, if we can show

that

(i) E
⇥
 2
n/↵J(y)

⇤
= O(1); (ii) E

h(
 2
n/ var[ n]

)2i
= o(N),

the result will be proven.

To show Condition (i), use the conditional independence of the measurements to obtain

var [ n] =

KX

`=1

E
⇥
⌧k(y1, y2)

2|x = `
⇤
E
⇥
J(y, y3)

2⇢(y3)
2|x = `

⇤
!` − ProjJ [fk](y)

2.

Exploiting conditional independence, a direct calculation shows that, for each `, the second

moment of the weight function is

E[⌧k(y1, y2)
2|x = `] =

 
IX

i1=0

IX

i2=0

u0
kwi1 E[χi1(y1)⇢(y1)χi2(y1)⇢(y1)|x = `]w0

i2uk

!2

= O(1),

with boundedness following from the fact that the u0
kwi are O(1) and the observation that

E[χi1(y1)⇢(y1)χi2(y1)⇢(y1)|x = `] 
ˆ 1

−1

⇡(y1)
2⇢(y1)

2f`(y1) dy1 = O(1),

which holds because ⇡2⇢2f` is integrable. Next, under the conditions of Theorem A.2, we

can apply Theorem 2.2.3 in Viollaz (1989) to get

E
⇥
J(y, y3)

2⇢(y3)
2|x = `

⇤

↵J(y)
−! f`(y)⇢(y),

which exists for all `. Finally, ProjJ [fk](y)/
p
↵J(y) = o(1) because ProjJ [fk](y) ! fk(y),

which is finite. We therefore conclude that var [ n] /↵J(y) tends to a positive constant, and

that Condition (i) is satisfied.

Finally, to verify Condition (ii), let Xnj be the (I + 1) ⇥ (I + 1) matrix with typical

entry [Xnj ]i1,i2 ⌘ χi1(yn1)⇢(yn1)χi2(yn2)⇢(yn2)χj(yn3)⇢(yn3). This allows us to write  n as

 n =

JX

j=0

(
u0
kW [Xnj −Aj ]W

0uk

)
χj(y) =

JX

j=0

tr
(
[W 0uku

0
kW ] [Xnj −Aj ]

)
χj(y).

By repeatedly applying the Cauchy-Schwarz inequality to this expression we then establish

 2
n  kW 0uku

0
kWk2

JX

j=0

kXnj −Ajk2 ↵J(y).
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Because kW 0uku
0
kWk2 = O(1) and var[ n] ⇣ ↵J(y) we then obtain

E

h(
 2
n/ var[ n]

)2i  O(1) E

h⇣ JX

j=0

kXnj −Ajk2
⌘2i

 O(J)
JX

j=0

E kXnj −Ajk4 ,

where the last transition follows by the Cauchy-Schwarz inequality. Using similar arguments

as in the proof of Theorem A.1, it is straightforward to show that E kXnj −Ajk4 = O(1)

uniformly in j, because ⇡4⇢4f is integrable. Therefore,

1

N
E

"✓
 2
n

var[ n]

◆2
#
= O

✓
J2

N

◆
,

which converges to zero as N ! 1. This shows that Condition (ii) is satisfied. With the

requirements of the central limit theorem verified, it follows that

1p
N

NX

n=1

 np
var[ n]

L−! N (0, 1).

This completes the proof. 2

Appendix B. Distribution theory for the JADE estimator

The first step is to derive the asymptotic distribution of the estimated whitening matrix.

Lemma B.1. Let Assumptions 2–4 be satisfied. Then

p
N vec[cW −W ] =

1p
N

NX

n=1

 W
n + oP (1),

p
N vec[cW 0 −W 0] =

1p
N

NX

n=1

 W 0

n + oP (1),

where  W
n and  W 0

n are given in (3.1).

Proof. Recall that A⇤ is real, symmetric, and has rank K. Also, its K non-zero

eigenvalues are all distinct by Assumption 4. Further, bA⇤ satisfies
p
Nvec[ bA⇤ − A⇤]

L!
N (0,VA⇤

) for VA⇤
⌘ E[ A⇤

n  A⇤0
n ]. From Theorem 4.2 in Eaton and Tyler (1991) and

Theorem 1 in Magnus (1985), it then follows that
p
N(bλ− λ)

L! N (0,Vλ), where [Vλ]k,` ⌘
(v0k ⌦ v0k)VA⇤

(v` ⌦ v`). With Λ = diag[λ], the Jacobian associated with the transformation

from λ to vec[Λ−1/2] is − 1
2 (IK

col
⌦ IK)diag[λ

−3/2
1 ,λ

−3/2
2 , . . . ,λ

−3/2
K ], where (IK

col
⌦ IK) is the

K2 ⇥ K selection matrix that transforms λ into vec[Λ]. Hence, by an application of the

delta method,

p
Nvec[bΛ−1/2 − Λ−1/2] = −1

2
(IK

col
⌦ IK)Λ−1/2(W

row
⌦ W )

1p
N

NX

n=1

 A⇤

n + oP (1), (B.1)
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using W = Λ−1/2V 0. Moreover, from Corollary 1 in Bura and Pfeiffer (2008), we have that

the estimated eigenvectors satisfy

p
Nvec[bV − V ] = (Λ−1V 0 ⌦ II)

1p
N

NX

n=1

 A⇤

n + oP (1),

p
Nvec[bV 0 − V 0] = (II ⌦Λ−1V 0)

1p
N

NX

n=1

 A⇤

n + oP (1).

(B.2)

Combined with the linearization

cW −W = (bΛ−1/2 − Λ−1/2)V 0 + Λ−1/2(bV − V )0 + oP (1/
p
N),

(B.1) and (B.2) yield the influence functions as given in (3.1). This completes the proof. 2

The following lemma contains distributional results for the JADE estimator of U .

Lemma B.2. Let Assumptions 2–4. Then

p
N vec[bU − U ] =

1p
N

NX

n=1

 U
n + oP (1),

p
N vec[bU 0 − U 0] =

1p
N

NX

n=1

 U 0

n + oP (1),

where  U
n and  U 0

n are given in (3.2).

Proof. Because bCi = cW bAi
cW 0 and both cW and bAi are asymptotically linear, we have

p
N vec[ bCi − Ci] =

1p
N

NX

n=1

 Ci

n + oP (1)

for  Ci

n as in (3.3). Theorem 5 in Bonhomme and Robin (2009) then yields the result. 2

Appendix C. Proofs of theorems in the main text

Proof of Theorem 2. Write b = (b0k, b1k, . . . , bJk)
0 and define bb and eb in an analogous

fashion, as before. We first show that kbb − ebk = OP (1/
p
N) + OP (

p
J/N). The theorem

will then follow easily. By the Cauchy-Schwarz inequality,

∥∥bb−eb
∥∥2 

JX

j=0

∥∥ bDj − eDj

∥∥2 
∥∥bU 0cW ⌦ bU 0cW − U 0W ⌦ U 0W

∥∥2
JX

j=0

∥∥ bAj

∥∥2.

Lemmas B.1 and B.2 imply that
∥∥bU 0cW ⌦ bU 0cW − U 0W ⌦ U 0W

∥∥2 = OP (1/N). Further,

JX

j=0

∥∥ bAj

∥∥2  2

JX

j=0

∥∥Aj

∥∥2 + 2

JX

j=0

∥∥ bAj −Aj

∥∥2 = O(1) +OP (J/N),

which follows from the proof of Theorem A.1. Thus, kbb−ebk = OP (1/
p
N) +OP (

p
J/N).
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Now turn to the integrated squared-error result. Arguing as in the proof of Theorem

A.1, we have

k bfk − fkk22  2kbb−ebk2 + 2k efk − fkk22.

From above, the first right-hand side term is OP (1/N) +OP (J/N
2). By Theorem A.1, the

second right-hand side term is OP (J/N + J−2β). Therefore, the difference between bb and eb
is asymptotically negligible, and k bfk − fkk22 = OP (J/N + J−2β). This establishes the first

part of the theorem.

To show the second part, we use the triangle inequality to obtain the bound

k bfk − fkk1  k bfk − efkk1 + k efk − fkk1

Here, by the Cauchy-Schwarz inequality and using Assumption 2 and the argument above,

k bfk − efkk1 
∥∥p↵J

∥∥
1

∥∥bb−eb
∥∥ = OP (⇣J/

p
N) +OP (⇣J

p
J/N),

while k efk−fkk1 = OP (⇣J
p
J/N+J−β), as was shown in the proof of Theorem A.1. Thus,

k bfk − fkk1 = OP (⇣J
p
J/N + J−β) and, again, the difference between the feasible and

infeasible density estimators is asymptotically negligible. This concludes the proof. 2

Proof of Theorem 3. Fix the evaluation point y throughout the proof. We will show that

∣∣ bfk(y)− efk(y)
∣∣ = oP (

p
↵J(y)/N).

The result will then follow from the analysis of the infeasible estimator, which is provided

in Theorem A.2. Introduce the shorthand γi1i2(y1, y2) ⌘ χi1(y1)⇢(y1)χi2(y2)⇢(y2). Then

we can write

b⌧k(y1, y2)− ⌧k(y1, y2) =
IX

i1=0

IX

i2=0

(
bu0
k bwi1bu0

k bwi2 − u0
kwi1u

0
kwi2

)
γi1i2(y1, y2).

This allows us to bound | bfk(y)− efk(y)| by

IX

i1=0

IX

i2=0

 ∣∣∣bu0
k bwi1bu0

k bwi2 − u0
kwi1u

0
kwi2

∣∣∣
∣∣∣ 1
N

NX

n=1

γi1i2(yn1, yn2) J(y, yn3)⇢(yn3)
∣∣∣
!
.

We will handle each of the terms inside the brackets in turn. First, by Lemmas B.1 and

B.2,

|bu0
k bwi1bu0

k bwi2 − u0
kwi1u

0
kwi2 | = OP (1/

p
N) (C.1)

for all (i1, i2), and so the first term converges at the parametric rate. It is readily verified

that E[γi1i2(y1, y2) J(y, y3)⇢(y3)] = O(1), and so

var[γi1i2(y1, y2) J(y, y3)⇢(y3)]

↵J(y)
=

E[γi1i2(y1, y2)
2 J(y, y3)

2⇢(y3)
2]

↵J(y)
+ o(1) = O(1),
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which follows from the same arguments as those that were used in the proof of Theorem

A.2. Therefore, for all (i1, i2),

∣∣∣ 1
N

NX

n=1

γi1i2(yn1, yn2) J(y, yn3)⇢(yn3)
∣∣∣ = OP (

p
↵J(y)/N). (C.2)

Combining (C.1) and (C.2) then gives | bfk(y)− efk(y)| = OP (
p
↵J(y)/N), which implies that

s
N

↵J(y)

⇥ bfk(y)− efk(y)
⇤
= oP (1).

Together with Theorem A.2, this yields the result and concludes the proof. 2

Proof of Theorem 4. Because bik = u0
kCiuk for all i, Lemmas B.1 and B.2 directly imply

asymptotic linearity of bB. To derive the form of its influence function, first consider the

linearization

bU 0 bCi
bU − U 0CiU =

(bU − U
)0
CiU + U 0

( bCi − Ci

)
U + U 0Ci

(bU − U
)
+ oP (1/

p
N).

Recalling the K2 ⇥K selection matrix (IK
col
⌦ IK) used in the proof of Lemma B.1, we can

further linearize the rows of bB −B as

vec
⇥ bU 0 bCi

bU − U 0CiU
⇤0
(IK

col
⌦ IK).

We thus have that vec[ bB0 − B0] = N−1
PN

n=1  
B
n + oP (1/

p
N) for the random variables

 B
n = vec[( D0

n , D1

n , . . . , DI

n )], where the form of  Di

n , which is the influence function of
bDi, is given in (3.4). Now, by a linearization,

bB0ba−B0a =
1

N

NX

n=1

(a0 ⌦ IK) B
n +B0 a

n + oP (1/
p
N).

Further, as k bB − Bk = oP (1) and B0B has full rank, ( bB0 bB)−1 P! (B0B)−1. It thus follows

that b! is asymptotically linear with influence function  !
n , as given in (3.5). This proves

the result. 2

Proof of Theorem 5 Given our assumptions, standard arguments show that consistency

of b✓ follows from uniform convergence of the empirical moment to the population moment.

Let m(✓) ⌘ N−1
P

n mn(✓). By a mean-value expansion around the first-step estimators,

Assumption 5, in tandem with Theorems 2–4, yields

sup
✓2Θ

∥∥bm(✓)− E[m(✓)]
∥∥ = OP (⇣J

p
J/N + J−β), (C.3)

which converges to zero as N ! 1. Turning to asymptotic normality, a Taylor expansion

around ✓0 yields

p
N(b✓ − ✓0) = (M 0

✓ΣM✓)
−1M 0

✓Σ
p
N bm(✓0) + oP (1),



32 S. Bonhomme, K. Jochmans, and J.-M. Robin

because bΣ P! Σ and sup✓2Θk@✓0 bm(✓) − M✓(✓)k = oP (1), which follows as (C.3). It then

remains to show that

p
N bm(✓0) =

1p
N

NX

n=1

(
mn(✓0) +  φ

n

)
+ oP (1),

which amounts to quantifying the impact of the first-stage estimation error in the weight

function. First, note that a second-order Taylor expansion around the bf`(ynt) and !` yields

p
N
⇥
bm(✓0)−m(✓0)

⇤
=

1p
N

NX

n=1

KX

`=1

h
⇠n` + @!`

mn(✓0)(b!` − !`)
i
+ oP (1),

where the order of the remainder term stems from the fact that
p
N |b!` −!`|2 = oP (1) and

that
p
Nk bf` − f`k21 =

p
N(⇣2JJ/N + J−2β) ! 0 as N ! 1 for all ` by Theorems 2 and 4,

and where we have introduced

⇠n` =
1

T

TX

t=1

g(ynt; ✓0)@f`(ynt)φk(ynt)
⇥ bf`(ynt)− f`(ynt)

⇤
.

Using the linear representation of the bf` in Theorem 3, the sample average of ⇠n` can be

expressed as a symmetric U -statistic of order two. The projection of this U-statistic equals

1

N

NX

n=1

E

h
g0(y)@f`(y)φk(y)

⇥
⌧`(yn1, yn2)J(y, yn3)⇢(yn3)− ProjJ [f`](y)

⇤i
,

where the expectation is taken with respect to y. Computing this expectation for each `

and invoking Lemma A.3 in Ahn and Powell (1993) then shows that

1p
N

NX

n=1

KX

`=1

⇠n` =
1p
N

NX

n=1

g0(yn3)
h
⌧k(yn1, yn2)−φk(yn3)

KX

`=1

⌧`(yn1, yn2)!`

i
⇢(yn3)+ oP (1),

where we have used the assumption that
p
NkProjJ [g0φ`]− g0φ`k1 =

p
NO(J−⌘) = o(1),

as well as the fact that @f`(ynt)φk(ynt) = (δk` − φk(ynt)!`)/f(ynt). Also, by essentially the

same argument,

1p
N

NX

n=1

KX

`=1

@!`
mn(✓0)(b!` − !`) = − 1p

N

NX

n=1

M! 
!
n + oP (1),

were we have used that @!`
φk(ynt) = −φk(ynt)φ`(ynt) in defining the Jacobian matrix M!.

Putting together the result gives

p
N
⇥
bm(✓0)−m(✓0)

⇤
=

1p
N

NX

n=1

 φ
n + oP (1).

This completes the proof. 2
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