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First version: June 2010; This version: June 7, 2011

This mote shows that the asymptotic variance of Chen’s [Econometrica, 70, 4 (2002), 1683-1697] two-step
estimator of the link function in a linear transformation model depends on the first-step estimator of the
index coefficients.
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The estimator

For an unspecified strictly-increasing function Ag(+) : Z — %, the linear transformation model takes the

form

A(Y) = XfB +e,

where ¢ is a latent disturbance, distributed independently of the covariates X, and ( is an unknown
coefficient vector of conformable dimension. Set Ag(yo) = 0 for a chosen baseline value yy and assume
that 8 = (1, )"

Let W; = (V;, X;) (i =1,...,n) be observations on W = (Y, X), drawn at random from a distribution
P that is supported on a set #'. Let b, = (1, ) be a first-step estimator of 3. For fixed y, Chen (2002)
proposed estimating Ag = Ag(y) by A,, which maximizes
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with respect to A over a compact subset of the real line containing Ag.

The influence function

Impose Assumptions 1-5 of Chen (2002). Strenghten Assumption 6 by demanding «, to be asymptotically
linear, that is, v/n(a, — ag) = n~ 23, 9%(W;) 4 0,(1) for a function ¢(-) that has zero mean and finite
variance under P. Fix y throughout and leave the dependence of quantities on it implicit. Let 7(w, A, b) =
Eh(W,w,y, A,b) + Eh(w, W, y,A,b), V = %EVAAT(VV, Ao, B), and Q = EVpu7(W, Ay, 3). Arguments
along the line of those in Sherman (1993) yield v/n(A,, — Ag) = n= 23", I(W;) + 0,(1) £ N(0,EI(W)?)
for
[(w) = =V [Var(w, Ao, B) + %Q b(w)] = J(w) — %V*lg b(w).

Chen (2002, pp. 1687 and Theorem 1) argues that Q = 0, so that I(w) = J(w) and the asymptotic

variance of y/nA,, is unaffected by the estimation noise in by,.
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Write f and p, for the densities of € and Z = X3, respectively. Arrange the components of X =
(X1, X) € Z x 2 so that the distribution of scalar X; given X = 7 satisfies the absolute-continuity
requirement of Chen (2002, Assumption 2) for all Z in 2". The calculations summarized below show that,
with X(z) = E[X|Z = 2],
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Equation (2) reveals that © will generally be non-zero. Like V, it can be estimated by the cross-derivative
of a smoothed version of the symmetrized objective function evaluated at (A, b,). Consistency follows
under conditions analogous to those for the estimator of V' stated in Chen (2002, pp. 1695-1696).

The conclusions drawn here extend to the case where the observations on Y are subject to random
censoring. The appropriate modification to the influence function stated in Chen (2002, Theorem 2) is

readily derived.

Calculations

Let 7(w) = 7(w,A,b) for fixed values A and b = (1,&/). Write m9(w) for 7(w, Ao, 8), Vato(w) for
VaT(w, Ao, ), etc. Manipulate the inequalities in 7(w) to see that

(W) = / (1{y < 9o} — 1{Y < y}) 1{zb < Xb— A} dP(w)
V4
_ / (Y < yo} — 1{y < y}) 1{zb < Xb+ A} dP(w) + co

V4
for co = [(H{Y < yo} — 1{y < y}) dP(y), which does not depend on (A,b). Let p.(z|Z) be the density of
Z given X = T at z and let Ay (X, %) = Z + (X — Z)(a — o). By iterated expectations,

Ao(X,3)—A Ao(X,3)+A
(W) = - / / S (Y:2) pa(2I7) dz dP(F) + / / Sy04(¥2) pa(2[T) dz dP(E) + co,
2 J—oc0 X J—oc0

where Sy, 4, (Y, Z) = {Y <1} — F(Ao(y2) — Z) and F(2) = [°__ f(z) d=.

Use Leibniz’s rule to verify that

Var(W) = /J Syn (Y Aa( X, F) — A) po(Aa(X,7) — A7) dP(3) .
- /x Sy (Vs Aa(X,F) + A) po(Au(X,7) + A7) dP(7)

and that Varo(W) = S, (Y, Z) p-(Z — N) = Syo.40 (Y, Z) p2(Z + A). Notice that EV70(W) = 0 because
B[Sy (Y, 2)|Z = 2] =0 (4)

for any y.



Differentiate with respect to A under the integral sign in Equation (3), re-arrange, and evaluate at
(Ao, 3) to obtain

Vaaro(W) = —=f(Mo = Z) p=(Z = No) = f(=2) p=(Z + Ao) — 1

where ¢y = S, (Y, Z) p.(Z — No) + Syo,yo (Y, Z) P'.(Z + Ap) and p’, is the derivative of p,. Integrate and

apply the moment condition in Equation (4) to dispense with ¢; and to find that
+oo +oo
2V = —/ f(Ao — 2) p2(z — Ao) po(2) dz —/ f(=2) p2(z + Ag) p.(2) dz.

—00 —00

Equation (1) follows on a change of variable from z to z — Ag in the first integral.

Follow the same steps to deduce that
VaaTo(W) = f(Ao = Z) p=(Z — o) [X — X(Z — Mo)] — f(=Z) p=(Z + Ao) [X — X(Z + Ao)] + 2

for e = 8,,(Y, Z) p.(Z - Ag)[X — X(Z — Mo)] = Syoo (Vs Z) PL(Z + Ag) [X — X(Z + Ag)]. Because ¢, has

+oo
Q) :/_ {f(Ao —2) po(z — Ao) [X(2) = X(2 = Ao)| — f(—2) p(z+ Ao) [X(2) — X(z+ AO)]} p-(2) d.

A change of variable then establishes Equation (2).
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