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Heterogeneous firm papers that need parametric distributions—most of the liter-
ature following Melitz (2003)—use the Pareto distribution. The use of this distribu-
tion allows a large set of heterogeneous firms models to deliver the simple gains from
trade (GFT) formula developed by Arkolakis et al. (2012) (hereafter, ACR). This
implication is closely tied to the fact that Pareto allows for a constant elasticity of
substitution import system.1

Three important criteria have motivated researchers to select the Pareto distribu-
tion for heterogeneity. The first is tractability. Assuming Pareto makes it relatively
easy to derive aggregate properties in an analytical model. Users of the Pareto distri-
bution also justify it on empirical and theoretical grounds. For example, ACR argue
that the Pareto provides “a reasonable approximation for the right tail of the ob-
served distribution of firm sizes” and is “consistent with simple stochastic processes
for firm-level growth, entry, and exit...”

This paper investigates the consequences of replacing the assumption of Pareto
heterogeneity with log-normal heterogeneity. This case is interesting because it (a)
maintains some desirable analytic features of Pareto, (b) fits the complete distribution
of firm sales rather than just approximating the right tail, and (c) can be generated
under equally plausible processes (see online appendix). The log-normal is reasonably
tractable but its use sacrifices some “scale-free” properties conveyed by the Pareto
distribution. Aspects of the the calibration that do not matter under Pareto lead to
important differences in the gains from trade under log-normal.

∗This research has received funding from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013) Grant Agreement No. 313522. We
thank Maria Bas and Céline Poilly for their help with data, Jonathan Eaton, Andres Rodrigues-
Clare, and Arnaud Costinot for valuable insights, Marc Melitz and Stephen Redding for sharing
code, and the Douanes Françaises for data.
†Sauder School of Business, University of British Columbia and CEPR, keith.head@sauder.ubc.ca
‡Sciences Po, CEPR, and CEPII.
§University of Lausanne and CEPR
1Two papers remove the long fat tail of the standard Pareto by bounding productivity from above.

The first, Helpman et al. (2008), shows that this leads to variable trade elasticities. The more recent,
Feenstra (2013), shows how double truncated Pareto changes the analysis of pro-competitive effects
of trade.
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1 Welfare Theory

We assume CES monopolistic competition with a representative worker of country i
endowed with Li efficiency units, paid wages wi, and facing price index Pi. As shown
in the appendix, welfare (defined by real income) is given by

Wi ≡
wiLi
Pi

=

(
L

σf
1/σ
ii

) σ
σ−1

σ − 1

τiiα∗ii
, (1)

where α∗ii, τii and fii denote the internal zero-profit cost, trade cost, and fixed pro-
duction cost.

Following a change in international trade costs, welfare varies according to changes
in the only endogenous variable in (1), α∗ii:

dWi

Wi

= −dα
∗
ii

α∗ii
=

1

εii

(
dπii
πii
− dM e

i

M e
i

)
. (2)

Changes in welfare depend on changes in the domestic trade share, πii, and in the
mass of domestic entrants, M e

i . Both effects are stronger when the partial trade
elasticity, εii, that affects internal trade is small.2

The result in (2) that marginal changes in welfare mirror changes in the domestic
cost cutoff focuses our attention on the role of selection. Assuming that successful
entry in the domestic market is prevalent, it is the left tail of the distribution that is
crucial for welfare. This is the part of the distribution where Pareto and log-normal
differ most strikingly.

Shifting to the last equality in (2), welfare falls with the domestic market share
since εii < 0 but it is increasing in the mass of entrants. Under Pareto, εni = ε, a
constant across country pairs, which implies dM e

i = 0.3 This means we can integrate

marginal changes to obtain the simple welfare formula of ACR, where Ŵi = π̂
1/ε
ii ,

where “hats” denote total changes. The log-normal case is much more complex and
requires knowledge of the whole distribution of bilateral cutoffs. To build intuition
on when and why departing from Pareto matters, we investigate the simplest pos-
sible case, the two-country symmetric version of the model described by Melitz and
Redding (2013).

2 Calibration of the symmetric model

To consider the case of two symmetric countries of size L, set τni = τin = τ , τii = 1,
fii = fd, fni = fin = fx. We know from (1) that the domestic cutoff, α∗ii = α∗d is the

2By “partial” we mean that incomes and price indices are held constant as in a gravity equation
estimated with origin and destination fixed effects.

3See the working paper version of ACR for the proof.
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sole endogenous determinant of welfare. In this model, the cutoff equation is derived
from the zero profit condition, one for the domestic and one for the export market
in the trading equilibrium. Under symmetry, the ratio of export to domestic cutoffs
depends only on a combination of parameters:

α∗x
α∗d

=
1

τ

(
fd
fx

)1/(σ−1)

, (3)

Equilibrium also features the free-entry condition that expected profits are equal to
sunk costs:

fd ×G(α∗d) [H(α∗d)− 1] (4)

+ fx ×G(α∗x) [H(α∗x)− 1] = fE.

The H function is defined as H(α∗) ≡ 1
α∗1−σ

∫ α∗
0
α1−σ g(α)

G(α∗)
dα, a monotonic, invertible

function. Equations (3) and (4) characterize the equilibrium domestic cutoff α∗d. Once
the values for L, τ , f , fE, fx, σ have been set, and the functional form for G() has been
chosen, one can calculate welfare. Following (1), the GFT simplifies to the ratio of
domestic cutoffs, autarkic over openness cases: Ti = α∗dA/α

∗
d. The domestic cutoff in

autarky is obtained by restating the free entry condition as fd×G(α∗dA) [H(α∗dA)− 1] =
fE.

The last step is therefore to specifyG(α). Pareto-distributed productivity ϕ ≡ 1/α
implies a power law CDF for α, with shape parameter θ. A log-normal distribution of
α retains the log-normality of productivity (with location parameter µ and dispersion
parameter ν) but with a change in the log-mean parameter from µ to −µ. The CDFs
for α are therefore given by

G(α) =

{(
α
ᾱ

)θ
Pareto

Φ
(

lnα+µ
ν

)
Log-normal,

(5)

where we use Φ to denote the CDF of the standard normal. The equations needed
for the quantification of the gains from trade are therefore (3) and (4), which provide
α∗d conditional on G(α∗d), itself defined by (5).

2.1 The 4 key moments

There are four moments that are crucial in order to calibrate the unknown parameters
of the two-country model.

M1: The share of firms that pay the sunk cost and successfully enter, G(α∗d) in the
model. Since the number of firms that pay the entry cost but exit immediately is
not observable, M1 is a challenge to calibrate. We show in the appendix that under
Pareto, the GFT calculation is invariant to M1. Unfortunately, M1 matters under
log-normal, so our sensitivity analysis considers a range of values.
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M2: The share of firms that are successful exporters, G(α∗x)/G(α∗d) in the model.
The target value for M2 is 0.18, based on export rates of US firms reported by Melitz
and Redding (2013).

M3 is the data moment used to calibrate the firm’s heterogeneity parameter: θ in
Pareto and ν in log-normal. There are two alternative moments that the model links
closely to the heterogeneity parameters. The first, which we refer to as M3, is an
estimate derived from the distribution of firm-level sales (exports) in some market:
the micro-data approach, on which we concentrate in the main text. The second,
which we call M3′ is the trade elasticity εx: the macro-data approach, covered in the
appendix.

M4: The share of export value in the total sales of exporters. Using CES and

symmetry, M4 sets the benchmark trade cost τ0. Indeed, M4 =
τ1−σ0

1+τ1−σ0

, which Melitz

and Redding (2013) take as 0.14 from US exporter data. Setting σ = 4, we have
τ0 = ([(1−M4)/M4])1/3 = 1.83.

Two parameters still need to be set: the CES σ, and the domestic fixed cost, fd.
We follow Melitz and Redding (2013) in setting σ = 4. Since equations (3) and (4)
imply that only relative fx/fd matters for equilibrium cutoffs, we set fd = 1.

2.2 QQ estimators of shape parameters

Table 1: Pareto vs log-normal: QQ regressions (French exports to Belgium in 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 34751 17376 8688 1737 1390 1042 695 347
Log-normal: ν̃ 2.392 2.344 2.409 2.468 2.450 2.447 2.457 2.486
R2 0.999 0.999 1.000 0.999 0.998 0.998 0.996 0.992
ν 0.797 0.781 0.803 0.823 0.817 0.816 0.819 0.829

Pareto: 1/θ̃ 2.146 1.390 1.174 0.915 0.884 0.855 0.822 0.779
R2 0.804 0.966 0.981 0.990 0.992 0.994 0.994 0.994
θ 1.398 2.158 2.555 3.278 3.392 3.511 3.650 3.849
The dependent variable is the log exports of French firms to Belgium in 2000. The RHS is
Φ−1(F̂i) for log-normal and ln(1− F̂i) for Pareto. ν and θ are calculated using σ = 4.

Each of the two primitive distributions is characterized by a location parameter
(ᾱ ≡ 1/ϕ in Pareto or µ in log-normal) and a shape parameter (θ or ν) governing
heterogeneity. For the trade elasticities and GFT, location parameters do not matter
whereas heterogeneity (falling with θ and rising with ν) is crucial.

As comprehensive and reliable data on firm-level productivity are difficult to ob-
tain, we instead obtain M3 from data on the size distribution of exports for firms
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Figure 1: QQ graphs

(a) French firms → Belgium (b) Chinese firms → Japan

from a given origin in a given destination. In so doing, we rely on the CES monop-
olistic competition assumption, which implies that sales of an exporter from i to n,
with cost α can be expressed as xni(α) = Kniα

1−σ. The Kni factor combines all the
terms that depend on origin and destination but not on the identity of the firm.

Pareto and log-normal variables share the feature that raising them to a power
retains the original distribution, except for simple transformations of the parameters.
Therefore, CES-MC combined with productivity distributed Pareto(ϕ, θ) implies that

the sales of firms in any given market will be distributed Pareto(ϕ̃, θ̃), where θ̃ = θ
σ−1

.

If ϕ is log-N (µ, ν) then ϕσ−1 is log-N (µ̃, ν̃), with ν̃ = (σ − 1)ν. Estimating θ̃ and ν̃,
and postulating a value for σ, we can back out estimates of θ and ν.

We estimate 1/θ̃ and ν̃ by taking advantage of a linear relationship between em-
pirical quantiles and theoretical quantiles of log sales data. Originally used for data
visualization, the asymptotic properties of this method are analyzed by Kratz and
Resnick (1996), who call it a QQ estimator. Dropping country subscripts for clar-
ity, we denote sales as xi where i now indexes firms ascending order of individual
sales. Thus, i = 1 is the minimum sales and i = n is the maximum. The empiri-
cal quantiles of the sorted log sales data are QE

i = lnxi and the empirical CDF is
F̂i = (i− 0.3)/(n+ 0.4).

The distribution of lnxi takes an exponential form if xi is Pareto:

FP(lnx) = 1− exp[−θ̃(lnx− lnx)], (6)

whereas the corresponding CDF of lnxi under log-normal xi is normal:

FLN(lnx) = Φ((ln x− µ̃)/ν̃). (7)
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The QQ estimator minimizes the sum of the squared errors between the theoretical
and empirical quantiles. The theoretical quantiles implied by each distribution are
obtained by applying the respective formulas for the inverse CDFs to the empirical
CDF:

QP
i = F−1

P (F̂i) = ln x− 1

θ̃
ln(1− F̂i), (8)

QLN
i = F−1

LN(F̂i) = µ̃/ν̃ + ν̃Φ−1(F̂i). (9)

The QQ estimator regresses the empirical quantile, QE
i , on the theoretical quantiles,

QP
i or QLN

i . Thus, the heterogeneity parameter ν̃ of the log-normal distribution can
be recovered as the coefficient on Φ−1(F̂i). The primitive productivity parameter ν is
given by ν̃/(σ− 1). In the case of Pareto, the right hand side variable is − ln(1− F̂i).
The coefficient on − ln(1− F̂i) gives us 1/θ̃ from which we can back out the primitive
parameter θ = (σ − 1)θ̃. We provide more information on the QQ estimator and
compare it to the more familiar rank-size regression in the appendix.

One advantage of the QQ estimator is that the linearity of the relationship between
the theoretical and empirical quantiles means that the same estimate of the slope
should be obtained even when the data are truncated. If the assumed distribution
(Pareto or log-normal) fits the data well, we should recover the same slope estimate
even when estimating on truncated subsamples.

We implement the QQ estimators on firm-level exports for the year 2000, using two
sources, one for French exporters, and the other one for Chinese exporters. For both
set of exporters we use a leading destination: Belgium for French firms and Japan for
Chinese ones. The precise mapping between productivity and sales distributions only
holds for individual destination markets. Nevertheless, we also show in the appendix
that the total sales distribution for French and Spanish firms follow distributions
that resemble the log-normal more than the Pareto. As the theory fits better for
producing firms, we show in results available upon request that the sample excluding
intermediary firms continues to exhibit log-normality.

Table 1 reports results of QQ regressions for log-normal (top panel) and Pareto
(bottom panel) assumptions for the theoretical quantiles. The first column retains
all French exporters to Belgium in 2000, whereas the other columns successively
increase the amount of truncation. The log-normal quantiles can explain 99.9% of
the variation in the untruncated empirical quantiles, compared to 80% for Pareto.
In the log-normal case the slope coefficient remains stable even as increasingly high
shares of small exporters are removed. This what one would expect if the assumed
distribution is correct. On the other hand, truncation dramatically changes the slope
for the Pareto quantiles. This echoes results obtained by Eeckhout (2004) for city
size distributions.

When running the same regressions on Chinese exports to Japan (the correspond-
ing table can be found in the appendix), the same pattern emerges: log-normal seems
to be a much better description of the data. The easiest way to see this is graphically.
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Figure 1, plots for both the French and the Chinese samples the relationship between
the theoretical and empirical quantiles (top) and the histograms (bottom).

3 Micro-data simulations

Here we take as a benchmark M3 the values of θ obtained from truncated sample
columns of Table 1. While this does not matter much for log-normal (for which we
take the un-truncated estimates), it is compulsory for Pareto, since the model needs
θ > σ − 1 > 3 for that case. With the value of θ = 4.25 used by Melitz and Redding
(2013) in mind, we choose the top 1% estimates as our benchmark: that is θ = 3.849
and ν = 0.797 for the French exporters case, and θ = 4.854 and ν = 0.853 for China.

We present results in a set of figures that show the GFT for both the Pareto
and the log-normal cases, for values of τ0/2 < τ < 2τ0, with τ0, our benchmark
level of trade costs. An advantage of that focus is that it keeps us within the range
of parameters where α∗x < α∗d, ensuring that exporters are partitioned (in terms of
productivity) from firms that serve the domestic market only.

Figure 2: Welfare gains, sensitivity to M1 (entry rate)

(a) French firms → Belgium (b) Chinese firms → Japan
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As stated above, the share of firms that enter successfully (M1) affects gains
from trade in the log-normal case, but not in the Pareto one. Figure 2 investigates
the sensitivity of results when entry rates goes from tiny values (0.0055 as in Melitz
and Redding (2013)), to very large ones (up to 0.75). The appendix shows that the
impact of a rise in M1 on GFT is in general ambiguous, depending on relative rates
of changes in α∗ under autarky and trading situations. A unique feature of Pareto is
that those rates of change are exactly the same. Under log-normal, α∗dA rises faster
than α∗d. Intuitively, this is due to an additional detrimental effect on purely local
firms under trade. In that situation, exporters at home exert a pressure on inputs, and
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exporters from the foreign country increase competition on the domestic market, such
that the change in expected profits (determining the domestic cutoff) is lower under
trade than under autarky, and gains from trade increase with M1. This reinforces
the point following from equation (1) that it is not only the behavior in the right tail
of the productivity distribution that matters for welfare. When M1 increases, cutoffs
lie in regions where the two distributions diverge, and that affects relative welfare
in a quantitatively relevant way. This raises the question of the appropriate value
of M1. The fact that we do observe in the French, Chinese and Spanish domestic
sales data a bell-shaped PDF suggests that more than half the potential entrants
are choosing to operate (otherwise we would face a strictly declining PDF). As a
conservative estimate, we therefore set M1=0.5 as our benchmark.

Figure 3: Welfare gains, sensitivity to M3 (truncation)

(a) French firms → Belgium (b) Chinese firms → Japan
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The second simulation, depicted in Figure 3 looks at the influence of truncation for
combinations of parameters of the distributions. We keep ν at its benchmark level.
Now it is the Pareto case that varies according to the different values of θ chosen
(which depends on truncation). It is interesting to note that in both cases a larger
variance in the productivity of firms (low θ or high ν) increases welfare: heterogeneity
matters. Hence truncating the data, which results in larger values of θ—needed for
the integrals to be bounded in this model—has an important effect on the size of
gains from trade obtained: it lowers them.

4 Discussion

In alternative simulations (in the appendix), we calibrate heterogeneity parameters
on the macro-data trade elasticity, and find slight differences in GFT between the
Pareto and log-normal assumptions. Hence, the precise method of calibration matters
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a great deal when trying to assess the importance of the distributional assumption.
The micro-data method points to large GFT differences when the macro-data method
points to very similar welfare outcomes.

Which calibration should be preferred? ACR make a compelling case for the
macro-data calibration. However, we have several concerns. First, it seems more
natural to actually use firm-level data to recover firms’ heterogeneity parameters.
More crucially, a gravity equation with a constant trade elasticity is mis-specified
under any distribution other than Pareto. That is, the empirical prediction that εni is
constant across pairs of countries is unique to the Pareto distribution. The two papers
we know of that test for non-constant trade elasticities (Helpman et al. (2008) and
Novy (2013)) find distance elasticities to be indeed non-constant. Our ongoing work
investigates the diversity of those reactions to trade costs in a more appropriate way,
also departing from the massive simplification of the case of two symmetric countries.

References

Arkolakis, C., A. Costinot, and A. Rodriguez-Clare (2012). New trade models, same
old gains? American Economic Review 102 (1), 94–130.

Eeckhout, J. (2004). Gibrat’s law for (all) cities. American Economic Review , 1429–
1451.

Feenstra, R. C. (2013). Restoring the product variety and pro-competitive gains from
trade with heterogeneous firms and bounded productivity. UC Davis Mimeo.

Helpman, E., M. Melitz, and Y. Rubinstein (2008). Estimating trade flows: Trading
partners and trading volumes. Quarterly Journal of Economics 123 (2), 441–487.

Kratz, M. and S. I. Resnick (1996). The QQ-estimator and heavy tails. Stochastic
Models 12 (4), 699–724.

Melitz, M. J. (2003). The impact of trade on intra-industry reallocations and aggre-
gate industry productivity. Econometrica 71 (6), 1695–1725.

Melitz, M. J. and S. J. Redding (2013). Firm heterogeneity and aggregate welfare.
Working Paper 18919, National Bureau of Economic Research.

Novy, D. (2013). International trade without CES: Estimating translog gravity. Jour-
nal of International Economics 89 (2), 271–282.

9



Appendix

A.1 Welfare and the share of domestic trade

Here we derive equation (2), showing welfare changes as a function of changes in
the domestic share and the mass of domestic entrants. This equation resembles an
un-numbered equation in Arkolakis et al. (2012), p. 111. However, it reduces the
determinants of welfare to just changes in own trade and changes in the mass of
entrants. Along the way, we set up the model in general terms: C asymmetric
countries, and general distribution functions, which provides equation (2) and other
useful results fo the calibration.

Bilateral trade can be expressed as the product of M e
ni, the mass of entrants from

i into destination n, and the mean export revenues of exporters from i serving market
n.

Xni = G(α∗ni)M
e
i

∫ α∗ni

0

xni(α)g(α)dα

G(α∗ni)
, (A.1)

where α∗ni is the cutoff cost over which firms in i would make a loss in market n.
With demand being CES (denoted σ), equilibrium markups (m̄ = σ/(σ−1)) being

constant, and trade costs (τni) being iceberg, the export value of an individual firm
with productivity 1/α is given by

xni(α) = (m̄αwiτni)
1−σP σ−1

n Yn, (A.2)

with Yn denoting total expenditure and Pn the price index of the CES composite.
Following Helpman et al. (2008), it is useful to define

Vni =

∫ α∗ni

0

α1−σgi(α)dα. (A.3)

Now we can re-express aggregate exports from i to n as

Xni = M e
i Yn(m̄wiτni)

1−σP σ−1
n Vni, with P 1−σ

n ≡
∑
`

M e
` (m̄w`τn`)

1−σVn`.

(A.4)
Since market clearing and balanced trade imply Yi = wiLi, we can replace wi with
Yi/Li. We also divide Xni by Yn to obtain the expenditure shares, πni for importer n
on exporter i:

πni = M e
i L

σ−1
i Y 1−σ

i (m̄τni)
1−σVniP

σ−1
n , (A.5)

with
P 1−σ
n =

∑
`

M e
`L

σ−1
` Y 1−σ

` (m̄τn`)
1−σVn`. (A.6)

Gross profits in the CES model are given by xni/σ. Hence, assuming that fixed costs
are paid using labor of the origin country, the cutoff cost such that profits are zero is
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determined by xni(α
∗) = σwifni. Combined with wi = Yi/Li we obtain:

α∗ni = σ1/(1−σ)

(
Li
Yi

)σ/(σ−1)(
Yn
fni

)1/(σ−1)
Pn
m̄τni

. (A.7)

Welfare in this model is given by real income. Inverting equation (A.7), welfare can
be expressed in terms of the domestic cutoff:

Wi ≡
Yi
Pi

=

(
Li
σ

)σ/(σ−1)
σ − 1

τiif
1/(σ−1)
ii

1

α∗ii
. (A.8)

This is equation (1) in the main text. Since α∗ii is the sole endogenous variable, a

change in international trade costs implies that dWi

Wi
= −dα∗ii

α∗ii
. The next step is to

relate changes in the cutoff to changes in trade shares. To do this we divide both
sides of equation (A.6) by P 1−σ

n , and differentiate, to obtain:∑
`

πn`

[
dM e

`

M e
`

+ (1− σ)
dτn`
τn`

+ (1− σ)
dY`
Y`

+
dVn`
Vn`

+ (σ − 1)
dPn
Pn

]
= 0 (A.9)

Analyzing the dV/V term first, we can see from the definition in equation (A.3) that
it is the product of the elasticity of V with respect to the cutoff times the percent
change in the cutoff. We follow ACR in denoting the first elasticity as γ; it is given
by

γni ≡
d lnVni
d lnα∗ni

=
α∗2−σni g(α∗ni)∫ α∗ni

0
α1−σg(α)dα

. (A.10)

From the definition of V and equilibrium cutoffs in (A.7), we can write the change in
V as

dVn`
Vn`

= γn`
dα∗n`
α∗n`

= γn`

[
1

σ − 1

dYn
Yn
− σ

σ − 1

dY`
Y`

+
dPn
Pn
− dτn`

τn`

]
. (A.11)

Combining (A.9) and (A.11) leads to∑
`

πn`

[
dM e

`

M e
`

+ (1− σ − γn`)
(
dτn`
τn`
− dPn

Pn

)
+

(
1− σ − σγn`

σ − 1

)
dY`
Y`

+
γn`
σ − 1

dYn
Yn

]
= 0

(A.12)
Differentiating bilateral trade shares in equation (A.5),

dπn`
πn`

=
dM e

`

M e
`

+ (1− σ)
dτn`
τn`

+ (1− σ)
dY`
Y`

+
dVn`
Vn`

+ (σ − 1)
dPn
Pn

, (A.13)

dπnn
πnn

=
dM e

n

M e
n

+ (1− σ)
dYn
Yn

+
dVnn
Vnn

+ (σ − 1)
dPn
Pn

. (A.14)
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Hence, the difference in those share changes gives

dπn`
πn`
−dπnn
πnn

+
dM e

n

M e
n

=
dM e

`

M e
`

+(1−σ)
dτn`
τn`

+(1−σ)

[
dY`
Y`
− dYn

Yn

]
+
dVn`
Vn`
−dVnn
Vnn

. (A.15)

Let us focus now in the difference in V term. From (A.11), we can write:

dVn`
Vn`
− dVnn

Vnn
= γn`

dα∗n`
α∗n`
− γnn

dα∗nn
α∗nn

= γn`

[
1

σ − 1

dYn
Yn
− σ

σ − 1

dY`
Y`
− dτn`

τn`
+
dPn
Pn

]
− γnn

[
−dYn
Yn

+
dPn
Pn

]
.

= (γn` − γnn)
dα∗nn
α∗nn

+ γn`

[
σ

σ − 1

(
dYn
Yn
− dY`

Y`

)
− dτn`

τn`

]
. (A.16)

We then plug (A.16) into (A.15) to obtain

dπn`
πn`
− dπnn

πnn
+
dM e

n

M e
n

− (γn` − γnn)
dα∗nn
α∗nn

=
dM e

`

M e
`

+ (1− σ − γn`)
dτn`
τn`

+

(
1− σ − σγn`

σ − 1

)[
dY`
Y`
− dYn

Yn

]
.

(A.17)

Therefore the term in square brackets inside (A.12) is equal to

dπn`
πn`
− dπnn

πnn
+
dM e

n

M e
n

− (γn` − γnn)
dα∗nn
α∗nn

+ (1− σ − γn`)
[
dYn
Yn
− dPn

Pn

]
. (A.18)

After replacing dYn
Yn
− dPn

Pn
= −dα∗nn

α∗nn
, and canceling out the terms involving γn`, we can

substitute the result into (A.12) to obtain∑
`

πn`

[
dπn`
πn`
− dπnn

πnn
+
dM e

n

M e
n

+ (σ − 1 + γnn)
dα∗nn
α∗nn

]
= 0 (A.19)

Noting that only dπn`/πn` terms depend on ` we can re-arrange as

− (σ − 1 + γnn)
dα∗nn
α∗nn

= −dπnn
πnn

+
dM e

n

M e
n

+
∑
`

πn`
dπn`
πn`

(A.20)

Using
∑

` πn`
dπn`
πn`

= 0, we can finally express the welfare change as

dWn

Wn

= −dα
∗
nn

α∗nn
=
−dπnn/πnn + dM e

n/M
e
n

(σ − 1 + γnn)
, (A.21)

which after defining εnn = 1− σ − γnn, is equation (2) in the text.

12



A.2 How M1 (entry share) affects welfare in the symmetric
model

Under the trading regime, our micro-data calibration procedure is characterized by the
two equilibrium relationships (3) and (4), the two moment conditions M1−G(α∗d) = 0
and M2−G(α∗x)/G(α∗d) = 0, and four unknowns (α∗d, α

∗
x; f

E, fx).
Differentiating the two moment conditions with respect to M1 we obtain

dα∗d/α
∗
d

dM1/M1
=

G(α∗d)

α∗dG
′(α∗d)

> 0, (A.22)

dα∗x/α
∗
x

dM1/M1
=

G(α∗x)

α∗xG
′(α∗x)

> 0, (A.23)

Simple manipulations of the differentiated system also yields

dfx
fx

= (σ − 1)×
[

G(α∗d)

α∗dG
′(α∗d)

− G(α∗x)

α∗xG
′(α∗x)

]
× dM1

M1
, (A.24)

dfE

fE
= A+

1

dα∗d
α∗d

+ A+
2

dα∗x
α∗x

+ A+
3

dfx
fx
, (A.25)

where (A+
1 , A

+
2 , A

+
3 ) are positive parameters. Looking at the Pareto version of defini-

tion (5), it is clear that
G(α∗d)

α∗dG
′ (α∗d)
− G(α∗x)

α∗xG
′ (α∗x)

= 0, which means that the right hand side

of (A.24) is zero under Pareto. Therefore, a change of M1 is i) not related to changes
in fx, ii) affecting all cutoffs in the same way, leaving export propensity, but also

gains from trade unaffected. Under log-normal on the contrary,
G(α∗d)

α∗dG
′ (α∗d)
− G(α∗x)

α∗xG
′ (α∗x)

> 0

(see (5)). Hence in the LN case,

dfx/fx
dM1/M1

> 0. (A.26)

Combined with (A.22), equations (A.23), (A.24) and (A.25) thus imply that

dfE/fE

dM1/M1
> 0. (A.27)

Let us consider now the domestic cutoff in autarky, characterized byG(α∗dA) [H(α∗dA)− 1] =
fE. Differentiating this relationship we get

dα∗dA/α
∗
dA

dM1/M1
> 0 (A.28)
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We conclude from the previous computations that an increase in M1 leads to an
increase in both α∗d and α∗dA, namely a less selective domestic market both in autarky
and in the trading equilibrium.

The change in trade gains is equal to

dT
T

=

[
dα∗dA
α∗dA

− dα∗d
α∗d

]
× dM1

M1
(A.29)

The sign of the previous relationship cannot be characterized algebraically and we
consequently rely on our quantitative procedure to show that it is positive under
log-normal.

A.3 Distribution parameters for Chinese exports to Japan

Table 2 replicates Table 1 for the case of Chinese exports to Japan in 2000.

Table 2: Pareto vs Log-Normal: QQ regressions (Chinese exports to Japan in 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 24832 12416 6208 1241 993 745 496 248

Log-normal: RHS = Φ−1(F̂i), coeff = ν̃

Φ−1(F̂i) 2.558a 2.125a 1.950a 1.936a 1.934a 1.929a 1.910a 1.970a
R2 0.986 0.995 0.999 0.998 0.998 0.997 0.995 0.992
ν 0.853 0.708 0.650 0.645 0.645 0.643 0.637 0.657

Pareto: RHS = − ln(1− F̂i), coeff = 1/θ̃

− ln(1− F̂i) 2.194a 1.239a 0.946a 0.718a 0.698a 0.674a 0.640a 0.618a
R2 0.725 0.930 0.971 0.990 0.991 0.992 0.995 0.994
θ 1.367 2.422 3.170 4.175 4.296 4.452 4.688 4.854
Notes: the dependent variable is the log exports of Chinese firms to Japan in 2000. The standard
deviation of log exports in this sample is 2.576, which should be equal to ν̃ if x is log-normally
distributed and to 1/θ̃ if distribution if Pareto. ν and θ are calculated using σ = 4. Standard
errors still have to be corrected.

A.4 Distributions of total sales

Some of the prior literature asserting Pareto is based on firm size distribution, rather
than looking at the distribution of export sales from one origin in a particular im-
porting country (which is also done in Eaton et al. (2011)).

The mapping between productivity distribution parameters and sales distributions
is less clear when considering total sales of firms (domestic sales plus exports to all
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destinations). Chaney (2013) and Di Giovanni et al. (2011) are examples using total
exports and sales, respectively, for French firms. Both papers truncate the samples.
In Tables 3 and 4, and figure 4, we corroborate the evidence in favor of log-normality
of total sales of French and Spanish firms. We also show that the superior performance
of log-normal is not driven by exports of intermediaries. For both the French and
Chinese export samples, restricting to non-intermediaries yields similar results.

Table 3: Pareto vs Log-Normal: QQ regressions (French firms total sales in 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 92988 46494 23247 4649 3719 2789 1860 930

Log-normal: RHS = Φ−1(F̂i), coeff = ν̃

Φ−1(F̂i) 1.790a 2.076a 2.330a 2.579a 2.586a 2.603a 2.610a 2.586a
R2 0.984 0.990 0.996 0.999 0.998 0.998 0.997 0.992
ν 0.597 0.692 0.777 0.860 0.862 0.868 0.870 0.862

Pareto: RHS = − ln(1− F̂i), coeff = 1/θ̃

− ln(1− F̂i) 1.658a 1.251a 1.143a 0.955a 0.932a 0.906a 0.869a 0.806a
R2 0.844 0.988 0.991 0.991 0.991 0.990 0.990 0.989
θ 1.809 2.398 2.624 3.140 3.220 3.312 3.452 3.723
Notes: the dependent variable is the log exports of French total sales in 2000. The standard
deviation of log exports in this sample is 1.805, which should be equal to ν̃ if x is log-normally
distributed and to 1/θ̃ if distribution if Pareto. ν and θ are calculated using σ = 4. Standard
errors still have to be corrected.

A.5 Comparison of QQ estimator to other methods

One alternative to the QQ estimators is to use method of moments. In this case, we
infer the distributional parameters from the means and standard deviations of log
sales. We can use equations (6) and (7) to obtain an idea of what those coefficients
should be. With log of sales distributed Normal, they have a mean value of µ̃, and
a standard deviation of ν̃. In the Pareto case, the log of sales have a mean value of
ln ϕ̃ + 1/θ̃, and a standard deviation of 1/θ̃. In this sample, the standard deviation
of log sales is 2.393, hence predicted coefficients in Table 1 are 2.393 for Log-Normal
and Pareto independently of truncation. The un-truncated sample estimate almost
exactly matches that prediction for the log-normal case, when most estimates of
Pareto case are quite far off.

There is a close relationship between the QQ estimator for the Pareto and the
familiar log rank-size regressions examined by Gabaix and Ioannides (2004) since
both rank, 1 + (n − i), and one minus the empirical CDF are linear in i. This
closely resembles the QQ estimator since, following the suggestion of Bury (1999), we
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Table 4: Pareto vs Log-Normal: QQ regressions (Spanish firms total sales in 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 87998 43999 21999 4400 3520 2640 1760 880

Log-normal: RHS = Φ−1(F̂i), coeff = ν̃

Φ−1(F̂i) 1.588a 1.859a 2.095a 2.419a 2.435a 2.462a 2.510a 2.599a
R2 0.986 0.988 0.992 0.998 0.997 0.996 0.995 0.991
ν 0.529 0.620 0.698 0.806 0.812 0.821 0.837 0.866

Pareto: RHS = − ln(1− F̂i), coeff = 1/θ̃

− ln(1− F̂i) 1.489a 1.122a 1.032a 0.899a 0.880a 0.861a 0.840a 0.814a
R2 0.866 0.990 0.995 0.995 0.996 0.997 0.997 0.996
θ 2.015 2.674 2.907 3.337 3.409 3.486 3.573 3.687
Notes: the dependent variable is the log exports of Spanish total sales in 2000. The standard
deviation of log exports in this sample is 1.599, which should be equal to ν̃ if x is log-normally
distributed and to 1/θ̃ if distribution if Pareto. ν and θ are calculated using σ = 4. Standard
errors still have to be corrected.

Figure 4: QQ graphs on total sales

(a) French firms (b) Spanish firms

16



estimate the empirical CDF as F̂i = (i−0.3)/(n+0.4). Thus, the empirical CDF is an
affine transformation of the rank. The coefficient on log sales is −θ̃ = − θ

σ−1
. Eaton

et al. (2011), Di Giovanni et al. (2011) are recent examples that pursue this approach
and it is also referred to by Melitz and Redding (2013) in their parameterization of
M3.

A.6 Macro-data simulations

In this section, we adopt the M3′ approach where the underlying micro parameters ν
and θ are calibrated to match the international trade elasticity, εx. Under the Pareto
distribution εx = εd = −θ. Thus, we calibrate the Pareto heterogeneity parameter as
θ = −M3′. Under log-normal

M3′ = 1− σ − 1

ν
h

(
lnα∗x + µ

ν
+ (σ − 1)ν

)
,

where h(x) ≡ φ(x)/Φ(x), the ratio of the PDF to the CDF of the standard normal.
In this case, the calibration procedure will therefore select values for fE, fx and ν
such that target values for M1, M2, and M3′ are matched.

The most obvious empirical target value for M3′ (recommended by Arkolakis
et al. (2012)) comes from estimates of the gravity literature regressing trade flows
on bilateral applied tariffs. Head and Mayer (2014) survey this literature and report
a median estimate of -5.03, which we take as our target for both Pareto and log-
normal. The left panel of figure 5 plots the GFT as in figures 2 and 3, and the
right panel graphs the three relevant trade elasticities: εP for Pareto, constant at
-5.03, εLN

x and εLN
d , the international and domestic elasticities for the log-normal case.

By construction, εLN
x coincides with Pareto at the benchmark trade cost (τ = 1.83).

As τ declines, the elasticity falls in absolute value. The domestic elasticity, εLN
d , is

uniformly smaller in absolute value than εLN
x . It rises with increases in τ because

higher international trade costs make the domestic market easier in relative terms.
Despite this large heterogeneity in trade elasticities between Pareto and log-

normal, gains from trade happen to be very proximate in this symmetric country
calibration. While the GFT are very similar for this set of parameters, they are
not identical, as the zoomed-in box reveals. Second, they can be much more differ-
ent when one changes some parameter targets, in particular the share of exporters.
Third, this calibration searches for parameters in order to fit a unique trade elasticity
(the international one), while the LN version of the model features two elasticities
that depend crucially on ν. Calibrating the model to fit an average of the two trade
elasticities in figure 6, the Pareto and log-normal GFT again diverge from each other.

A.7 Generative processes for log-normal and Pareto

Because the Pareto distribution has been thought to characterize a large set of phe-
nomena in both natural and social sciences, much effort has gone into developing

17



Figure 5: Welfare gains calibrated on trade elasticity
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generative models that predict the Pareto as a limiting distribution. The building
block emphasized in the literature, see especially Gabaix (1999), is Gibrat’s law of
proportional growth. Applied to sales of an individual firm i in period t, Gibrat’s
Law states that Xi,t+1 = ΓitXit. The key point is that the growth rate from period to
period, Γit−1 is independent of size. A confusion has arisen because it is straightfor-
ward to show that the law of proportional growth delivers a log-normal distribution.
In period T size is given by

XiT = exp(lnXi0 +
T∑
t=1

ln Γit)

The central limit theorem implies for large T ,

√
T

(∑
t ln Γit
T

− E[ln Γit]

)
∼ N (0,V[ln Γit]),

where E and V are the expectation and variance operators. Rearranging and, for
convenience only, initializing sizes at Xi0 = 1, lnXit is normally distributed with
expectation TE[ln Γit] and variance TV[ln Γit]. This implies XiT is log-normal with
log-mean parameter µ̃ = TE[ln Γit] and log-SD parameter ν̃ =

√
TV[ln Γit].

This demonstration that Gibrat’s Law implies a limiting distribution that is log-
normal echoes similar arguments by Sutton (1997) for firms and Eeckhout (2004) for
cities. The problem with this formulation is that it is only valid for large T and
yet as T grows large, the distribution exhibits some perverse behavior. Assume that
sizes are not growing on average, i.e. E[Γit] = 1. By Jensen’s Inequality, E[ln Γit] <
ln(E[Γit]) = 0. Since the median ofXiT is exp(µ̃) = exp(TE[ln Γit]), the median should
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Figure 6: Welfare gains calibrated on average trade elasticity

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

τ

G
ai

ns
 fr

om
 T

ra
de

 (
W

el
f. 

tr
ad

e 
/ W

el
f. 

au
ta

rk
y)

 

 

Lognormal
Pareto

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

τ

T
ra

de
 E

la
st

ic
iti

es

Bench. τ

Bench. τ

εP

εLN
d

εLN
x

decline exponentially with time. The mode, exp(µ̃− ν̃2) = exp[T (E[ln Γit]−V[ln Γit])]
should decline even more rapidly with time. Thus, as T becomes large, Gibrat’s law
with E[Γit] = 1 implies a distribution with a mode going to zero while the variance
is becoming infinite. Evidently something must be done to rescue Gibrat’s law from
generating degeneracy.

A variety of modifications to Gibrat’s Law have been investigated. Kalecki (1945)
specifies growth shocks that are negatively correlated with the level. This allows for
a log-normal with stable variance to emerge. Gabaix (1999) shows in an appendix
that a simple change to the growth process, Xi,t+1 = ΓitXit + ε with ε > 0 (the
Kesten process) is enough to solve the problem of degeneracy. But the resulting
stable distribution is Pareto, not log-normal. Reed (2001) instead assumes finite-lived
agents with exponential life expectancies. This leads to a double-Pareto distribution.
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