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Abstract

This paper examines the relationship between the characteristics of
firm knowledge in terms of capital, diversity and relatedness, and pro-
ductivity. Panel data regression models suggest that unlike knowledge
diversity, knowledge capital and knowledge relatedness explain a substan-
tial share of the variance of firm productivity. Activities based on a related
set of technological knowledge are more productive than those based on
unrelated knowledge because the cost of co-ordinating productive activi-
ties decreases as the knowledge used in these activities is being integrated
efficiently. The impact of knowledge relatedness on productivity in high-
technology sectors is higher than in other sectors.

1 Introduction

This paper explores the contribution of firm knowledge base, defined as knowl-
edge capital, diversity and relatedness, to productivity. A firm’s knowledge base
is considered related when its scientific and technological competencies are com-
plementary. As Penrose (1959) pointed out, firm performance depends not only
on the stock, or capital, of its competencies but also on how diverse compe-
tencies are combined. I test for the importance of these three characteristics -
knowledge capital, diversity and relatedness - using financial and patent data
from a sample of the 156 world’s largest manufacturing firms between 1986 and
1996.

The next Section reviews the previous theoretical and empirical literature.
In Sections 3 to 5, I present the model, measures and data used to measure firm
knowledge. The results are discussed in Section 6, leading to the conclusion of
Section 7.

∗Observatoire Français des Conjonctures Economiques, Département de Recherche sur
l’Innovation et la Concurrence, OFCE-DRIC, 250, rue Albert Einstein, Sophia Antipolis,
06560 Valbonne, France, email: lionel.nesta@ofce.sciences− po.fr
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2 The Model

Similarly to Griliches (1979), I start by using an augmented Cobb-Douglas pro-
duction function. Firm output is a function of firm traditional factor endowment
of capital and labour and firm knowledge stock:

Qit = A · Cβ
itL

α
itK

δ
ite

uit (1)

where subscripts i and t refer to the firm i and the current year t, Q is
output measured by sales, A is a constant, C is the gross value of plant and
equipment, L is the number of employees. Traditionally in Eq.(1), K is de-
fined as the firm’s stock of knowledge. Suppose instead that knowledge stock K
builds upon heterogeneous pieces of scientific and technical knowledge. These
encompass specific technical artefacts, human capital, scientific principles guid-
ing research activities (such as in the biopharmaceutical industry), etc. Assume
for simplicity that activity k calls mainly on the stock of knowledge e dedicated
to activity k: e may be thought of as the level of scientific and technical ex-
pertise dedicated to the kth activity. Importantly, activity k may also benefit
from knowledge associated with other activities l (l 6= k) held within the firm,
depending on their associated level of relatedness τkl. Now let D be the number
of productive activities within a firm: D represents the scope, or diversity, of
the firm’s knowledge base. It follows that:

kk = ek +
D∑

l 6=k

el · τlk (2)

Eq. 2 means that the total knowledge stock k available to activity k is
knowledge stock ek and all other knowledge stocks el (l6=k), weighted by their
associated relatedness τkl. Generalising Eq.(2) to all productive activities within
the firm yields the aggregate knowledge base K :

K =
D∑
k

ek +
D∑
k

·
D∑

l 6=k

el · τlk (3)

For simplicity, I hold τkl constant across activities k ’s and l ’s, so that τkl =
R. Since

∑
k ek is firm knowledge capital, Eq.(3) simplifies to:

K = E · [1 + (D − 1) ·R] (4)

Eq. 4 states that firm knowledge is a function of its total knowledge capital
or expertise E, the number D of productive activities implemented within the
firm and relatedness R across activities. Note that as D becomes larger, [1 +
(D − 1) · I] ≈ [1 + D · I], so that for large firms a reasonable approximation
of the firm’s knowledge base is K = E · [1 + (D · R)]. The amendment of
K as done traditionally leads to insert two supplementary properties of firm
knowledge: knowledge diversity and knowledge relatedness. The existence and
relevance of this property is due to the collective nature of knowledge: in order
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to produce aggregate outcomes, diverse knowledge must be combined in a non-
random and non-obvious way and integrated into a coherent base. Suppose
for instance that firm i is composed of a set of entirely unrelated activities,
implying no spillovers across activities (R = 0), the knowledge base K is reduced
to its mere knowledge stock E. Conversely if firm i is composed of a set of
related activities (R > 0), knowledge base K increases with the numbers D
of productive activities implemented inside the firm weighted by their average
relatedness R. In what follows I assume that:

K = E ·D ·R (5)

Substituting ?? into 1, noting θk = δ×$k, where $k, is the weight attributed
to each of the three properties of firm knowledge base, and K = {E,D, I},
yields:

Qit = A · Cβ
it · L

α
it · [E$E ·D$D ·R$R ]δit · euit (6)

= Ait · Cβ
it · L

α
it ·
∏
k

kθK
it · euit

or in the log form:

qit = a + β · cit + α · lit +
∑

k

(θk · kit) + uit (7)

where k = {e, d, i} and β, α θk are the parameters of interest. The error term uit
is decomposed into ηi, λit and eit, where ηi ∼ IID(0,σ2

η)is a 1×1 scalar constant
capturing persistent but unobserved individual heterogeneity across firms such
as managerial capabilities, firm propensity to collaborate, the type of economic
environment, etc., λit ∼ IID(0,σ2

λ) is a 1×1 scalar constant representing the
time fixed effect which would capture positive or negative trends common to all
corporations and eit ∼ IID(0,σ2

e)is the individual disturbance. Eq.(7) can be
estimated by least squares.

3 Measures of Firm Knowledge

Perhaps the starting point of any work on knowledge should simply state that
unlike physical assets, it is impossible for all the components of intangible capital
to be accurately described. Therefore the observer must compromise and find
only indirect traces of knowledge. For example, the contributions by Griliches
have repeatedly used past R&D investments as a proxy for knowledge capi-
tal. Patent data have also been used for similar purposes and I base the three
measures of knowledge capital, diversity and relatedness on the use of patent
statistics. There are several pitfalls in using patent statistics, ranging from per-
sistent sectoral differences in firm patenting to the quite heterogeneous economic
value of patents (Archibugi, 1982; Pavitt, 1988). However, these critics lose their
relevance when one tries to use patents statistics as a proxy for competencies.
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Importantly, patent statistics provide information on technology classes in
which firms develop technological competencies. This information is essential in
experimenting for the expected positive role of knowledge diversity and knowl-
edge relatedness . First, I proxy knowledge capital using the so-called perma-
nent inventory method, and measure it as the cumulated stock of past patent
applications using a rate of knowledge obsolescence of 15 percents per annum:
Eit = pit + (1− δ) ·Ei,t−1, where p is the number of patent applied for by firm
i in year t and δ represents the rate of knowledge obsolescence.

Second, I define knowledge diversity as the breadth of firm knowledge base.
Let pkit be the number of patents applied for by firm i at time t in technology
class k. In order to compensate for abrupt changes in firm learning strategies and
introduce some rigidities in firm set of technological competencies, Pkit sums
patent applications over the past five years: Pkit =

∑5
τ=0 pki,t−τ . Now let dkit =

1 if the firm has developed competencies in technology k, (Pkit > 0), 0 otherwise.
Knowledge diversity D is simply the number of technology classes in which firm
develop scientific competencies over the past five years D = sumkdkit.

It should be pointed out, however, that as the patent stock increases, the
likelihood of developing competencies in auxiliary technologies increases corre-
spondingly. Thus measures E and D, namely knowledge capital and knowledge
diversity, are likely to be correlated, which may induce multicollinearity prob-
lems when estimating their associated elasticities. I correct for it by computing
the difference between the observed diversity D and the expected diversity D̂,
conditional on patent stocks: D′

it = Dit − E[Dit | Eit] = Dit − D̂it. By its
very construction, D′

it can be either negative or positive. A positive (negative)
measure of knowledge diversity informs on the relatively high (low) degree of
knowledge diversity, given the firm’s knowledge capital.

Third, the measure of knowledge relatedness in two steps: in a first step, I
quantify technological relatedness between any two technologies k and l ; in a
second step, I enter into the firm and use relatedness measures τkl to compute
the weighted average relatedness of all technologies held within the firm.

In the first step, I estimate the relatedness measures τkl between any two
technologies k and l by comparing the observed frequency fkl with which two
technologies k and l are used together with the expected frequency f̂kl of their co-
use. The observed frequency fkl of technological co-occurrences may be derived
from patent documents, describing their technological content, or by counting
the number of agents (firms, universities, etc.) developing competencies in two
technologies simultaneously. The computation of the expected frequency f̂kl

may be grounded on several methods (parametric vs. non parametric) but
in any case it must be based on the hypothesis that the two technologies are
randomly used together. In this paper, I calculate the expected frequency on
the assumption that the distribution of random technological co-occurrences is
hypergeometric (See appendix 1). The outcome of the comparison between fkl

and f̂kl produces the relatedness measures τkl. Typically, τkl is a real number
that can be positive or negative and may be thought of as the strength of the
technological relationship between technologies k and l, or relatedness.
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In the second step, I compute the weighted average relatedness WARk of
technology k with respect to all other technologies within the firm. Similarly to
Teece et al. (1994), the weighted average relatedness WARk of technology k is
defined as the degree to which technology k is related to all other technologies
l 6= k present within the firm, weighted by patent count Plit:

WARkit =

∑
l 6=k τkl · Plit∑

l 6=k Plit
(8)

WARkit is a measure of the expected relatedness of technology k with re-
spect to any given technologies randomly chosen within the firm. WARkit may
be either positive or negative, the former (latter) indicating that technology
k is closely (weakly) related to all other technologies within the firm. Conse-
quently, knowledge relatedness is defined as the weighted average of the WARkit

measures:

Rit =
∑
l 6=k

WARkit × fkit where fkit =
Pkit∑
k Pkit

(9)

Eq. 9 estimates the average relatedness of any technology randomly chosen
within the firm with respect to any other technology. Again, this measure can
be either negative or positive, the latter indicating that the firm’s technologies
are globally well related, while a negative value shows a poor average relatedness
amongst the technologies in which the firm has developed competencies.

Applied to technology classes, the relatedness measure implies a different
interpretation than when applied to activities, as done in Teece, et al. (1994).
For Teece, et al., the prominent reason for related diversification lies in the sim-
ilarity of activities amongst the firm’s various production lines. Diversification
is related when common competencies are shared in a (bounded) variety of busi-
ness lines. This differs from our own interpretation of relatedness as applied to
technologies. Technological relatedness τkl assesses the statistical intensity of
the joint use of two given technologies and thus indicates that the utilisation of
technology k implies that of technology l in order to perform a specific set of
activities. In other words, technologies are related when their combination leads
to specific technological functions that are not reducible to their independent
use. Hence a reasonable interpretation of technological relatedness is that it
indicates primarily the complementarity of the services rendered by two tech-
nologies. In the remaining of the paper, I shall refer to relatedness as assessing
the complementarity between two technologies1.

4 Data

The dataset used in this study is a compilation of a patent data set crossed with a
financial data set. Concerning the former, I used the US Patent and Trademark

1For a thorough discussion and empirical analysis on the various foundation for technolog-
ical relatedness, see Breschi, et al. (2003)
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Office (henceforth USPTO) patent dataset provided by the National Bureau
of Economic Research (Hall, et al, 2000). This dataset comprises more than
3 millions US patents since 1963, but requires some additional manipulations
to convert it into a workable tool. First, using the information on the com-
pany name and year of application2, I selected the most abundantly patenting
manufacturing firms using Fortune 500 (August 1998). Because many of the
world’s largest companies operate outside the manufacturing sectors, such as
banking or insurance, the selection yielded a sample of 162 companies, meant to
be the world’s largest manufacturing corporations. Second, the lack of data on
firm consolidation in the USPTO patent dataset was overcome using the Who
owns whom 2000 Edition. The consolidation exercise proves extremely useful,
inflating the number of patents held by the firms in the sample by more than
300,0003.

Third, the USPTO dataset provides, for each patent, one U.S. Patent tech-
nology class. An appealing opportunity is to use citations across patents to
link technologies with one another. But as emphasised by Jaffe et al. (1998),
citations remain a rather noisy event, for they encompass various legal matters
regarding the validation of the technological novelty. Instead, information on
the technological content of patents was completed by collecting all international
technology classes (IPC) assigned to each US patent document4. The six-digit
technology classes prove too numerous and I choose to use them at the three-
digit level, analogous to a technological space of 120 technologies5. Because
more than one technology may be listed within one single patent document,
it is then possible to calculate the frequency with which two technologies are
listed together6. This new patent dataset further enhances the computation,
at the firm level, of the variables measuring knowledge capital (E), knowledge
diversity (D) and knowledge relatedness (R) between 1968 and 1999.

The other data set, the 1997 edition of Worldscope Global Researcher, pro-
vides the financial variables at need. Firm sales are used as a proxy for out-
put (Q), gross value of property plant and equipment proxies firm capital (C),
whereas the number of employees is used to proxy labour (L). Ideally, one would

2Because the USPTO only advertise granted patents, I have only information about suc-
cessful patent applications.

3The number of patents held by the world’s largest manufacturing firms reached 500,000
prior to consolidation, but increased to 800,000 after controlling for consolidation. This illus-
trates the need for such exercise as well as it indicates the difficulty of the task. I am very
thankful to Parimal Patel for providing me with these data.

4This was completed using the IPC code as displayed on the Internet Web Site of the
European Patent Office. I am indebted to Bart Verspagen and Paola Criscuolo for their
assistance during the automated process.

5The aggregation of technology classes into larger categories is a necessary but delicate
exercise, because it influences negatively the variance of knowledge diversity and relatedness
across firms. Prior literature (e.g. Jaffe, 1986; Hall et al., 2000), suggests that a thirty-
dimensional technological space may be an appropriate aggregation. But since this paper
deal with the largest manufacturing firms, using such a level of aggregation is likely to reflect
product more than knowledge diversification while decreasing too severely the variance of
knowledge diversity and relatedness across firms.

6Altogether, 751,935 US patents have more than one technology class, which proves ade-
quate to measure technological relatedness.

6



Table 1: Descriptive Statistics. Pooled Sample

Variable Obs. Avg. Std.Dev. Min Max

Q 1,608 21,713.4 21,950.4 38.1 167,038.9
C 1,608 16,969.2 18,613.3 41.2 126,372.3
NC 1,608 8,070.4 9,629.9 26.6 72,567.3
RD 1,337 949.5 1,234.6 1.1 8,900.4
L 1,608 91,432.5 96,541.4 647 876,000
E 1,608 1,697.2 2,001.0 2.6 12,171.3
D 1,608 49.3 20.7 398
D′ 1,608 0.0 14.3 -50.5 43.9
R 1,608 12.5 79.2 -66.1 1,943.4

Q: Sales
C: Gross Value of Plant and Equipment
NC: Net Value of Plant and Equipment
RD: R&D expenditures
L: Number of employees
E: Knowledge Capital
D: Knowledge Diversity
D′: Unexpected Knowledge
R: Knowledge relatedness

like to measure value-added to measure output (Q) more accurately, and control
for labour quantity and quality by having data on the number of hours worked
and on wages and compensation. Unfortunately, companies do not disclose such
information systematically and the resulting figures proved to scarce to be of
any use. We do not have information on value-added by firms and information
on the number of hours worked or on education is not systematically provided
in the company SEC filings. Therefore, the variable on labour input can only
be used in ratio yielding the following functional form and model ?? becomes:(

Q

L

)
it

= A ·

(
C

L

)β

it

·
∏
k

kθK
it · euit (10)

where ϕ = α+β−1. The parameter ϕ is used as an assessment for constant
returns to scale. If the parameter ϕ is not significantly different from nullity,
i.e. ϕ = 0, the world’s largest manufacturing firms are enjoying constant re-
turns scale in production. However if ϕ is significantly different from zero, the
production of the representative firm in the sample departs from an equilibrium
of constant returns to scale, leaving prospect for either downsizing (ϕ < 0) or
expansion in the scale of productive activities (ϕ > 0). Taking logs yields:

(q − l)it = a + β · (c− l)it + ϕ · lit +
∑

k

(θk · kit) + uit (11)

where k = {e, d, i}. The left hand side of Eq. 11 is the logarithm of labour
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productivity, and β, ϕ and θk are the parameters of interest and can be estimated
by ordinary least squares.

Additional data on the net value of property plant and equipment (NC),
R&D investments(R), main industry group (two-digit IPC) and secondary in-
dustry groups are also used to control for the age of capital by calculating
the ratio of net over gross capital (NC/C) , R&D intensity(R/Q), industry
specific effects and product diversification, respectively. Financial data origi-
nally expressed in national currency have been converted in US dollars using
the exchange rates provided by the Organisation for Economic Co-operation
and Development (OECD). All financial data were then deflated into 1996 US
dollars using the Implicit Price Deflator provided by the U.S. Department of
Commerce, Bureau of Economic Analysis.

Compiling data from both the patent and financial datasets produced an
unbalanced panel dataset of 156 companies observed between 1986 and 1996,
yielding 1,608 observations. Tables I and II display the descriptive statistics
for the set of variables and provide general information on the various industry
groups of the sample (Standard Industry Classification - SIC two digit). The
sample is composed of firms from 11 industry groups. These are rather hetero-
geneous, as they differ significantly in terms of their aggregate productivity

8



T
ab

le
2:

Se
ct

or
al

D
ec

om
po

si
ti

on
of

th
e

M
ai

n
V

ar
ia

bl
es

.
19

86
-1

99
6

S
ec

to
rs

N
Q

L
(Q

/
L

)
∆

(Q
/
L

)
(R

/
Q

)
E

D
D
′

R

C
h
em

ic
a
ls

a
n
d

a
ll
ie

d
p
ro

d
u
ct

s
(I

n
cl

u
d
in

g
d
ru

g
s)

2
9

1
3
.0

5
5
.9

2
3
2
.6

4
.8

3
6
.4

7
1
,7

0
5
.5

4
6
.2

-3
.2

3
2
.2

C
o
m

m
u
n
ic

a
ti

o
n
s

7
2
3
.3

1
8
5
.0

1
2
6
.4

6
.3

3
4
.0

2
1
,2

8
2
.0

3
8
.0

-8
.2

6
7
.4

E
le

ct
ro

n
ic

a
n
d

o
th

er
el

ec
tr

ic
eq

u
ip

m
en

t
1
7

2
2
.7

1
2
9
.9

1
7
4
.7

5
.9

9
6
.6

7
3
,1

6
2
.1

6
0
.1

-0
.1

0
.6

F
o
o
d

a
n
d

k
in

d
re

d
6

2
1
.7

1
3
5
.1

1
6
0
.8

6
.1

2
1
.4

2
3
5
9
.9

2
9
.2

-1
0
.1

1
9
.1

In
st

ru
m

en
ts

a
n
d

re
la

te
d

p
ro

d
u
ct

s
7

1
2
.1

7
5
.6

1
6
0
.4

2
.6

3
6
.3

8
2
,6

7
2
.7

6
4
.2

7
.6

-5
.7

In
d
u
st

ri
a
l
m

a
ch

in
er

y
a
n
d

eq
u
ip

m
en

t
1
6

2
1
.6

9
8
.2

2
1
9
.6

5
.2

4
5
.0

5
3
,1

3
4
.2

5
4
.9

-5
.1

-5
.0

P
ri

m
a
ry

m
et

a
l
in

d
u
st

ri
es

1
1

1
3
.0

3
4
.9

3
7
2
.6

5
.7

5
1
.6

7
5
0
1
.9

4
6
.4

6
.1

-2
.8

O
il

a
n
d

G
a
s

E
x
tr

a
ct

io
n

5
4
1
.4

5
0
.2

8
2
4
.7

5
.7

9
2
.6

0
1
,7

7
6
.2

4
4
.4

-5
.5

1
6
.2

O
th

er
s

2
2

1
4
.7

6
1
.1

2
4
1
.7

4
.2

4
2
.9

0
5
1
3
.5

4
0
.5

0
.0

6
.0

P
et

ro
le

u
m

a
n
d

co
a
l
p
ro

d
u
ct

s
9

2
9
.9

6
3
.4

4
7
1
.1

4
.1

6
1
.1

7
1
,6

8
6
.2

5
8
.6

9
.4

-5
.9

T
ra

n
sp

o
rt

a
ti

o
n

eq
u
ip

m
en

t
2
7

3
5
.4

1
4
1
.2

2
5
1
.4

6
.7

8
4
.5

0
1
,4

3
4
.4

5
1
.2

3
.9

1
7
.5

M
ea

n
(T

o
ta

l)
(1

5
6
)

2
1
.7

9
1
.4

2
3
7
.4

5
.3

1
4
.5

9
1
,6

9
7
.2

4
9
.3

0
.0

1
2
.5

F
-S

ta
t

8
.3

5
*
*
*

3
6
.0

8
*
*
*

5
.5

5
*
*
*

0
.6

0
5
8
.4

8
*
*
*

4
4
.8

0
*
*
*

2
9
.5

3
*
*
*

2
4
.0

0
*
*
*

8
.2

2
*
*
*

R
-S

q
u
a
re

0
.0

5
0

0
.1

8
4

0
.0

3
4

0
.0

0
4

0
.3

0
3

0
.2

1
9

0
.1

5
6

0
.1

2
5

0
.0

4
9

N
:

N
u
m

b
er

o
f
F
ir

m
s

Q
:

D
efl

a
te

d
S
a
le

s
(I

n
B

il
li
o
n
s

o
f
1
9
9
6

U
S

D
o
ll
a
rs

)
L

:
N

u
m

b
er

o
f
E

m
p
lo

y
ee

s
(I

n
th

o
u
sa

n
d
s)

(Q
/
L

):
D

efl
a
te

d
S
a
le

s
(T

h
o
u
sa

n
d

o
f
1
9
9
6

U
S

D
o
ll
a
rs

)
p
er

E
m

p
lo

y
ee

∆
(Q

/
L

):
A

n
n
u
a
l
g
ro

w
th

ra
te

o
f
la

b
o
u
r

p
ro

d
u
ct

iv
it
y

(R
/
Q

):
R

&
D

in
te

n
si

ty
E

:
K

n
o
w

le
d
g
e

C
a
p
it

a
l

D
:

K
n
o
w

le
d
g
e

D
iv

er
si

ty
D
′ :

U
n
ex

p
ec

te
d

K
n
o
w

le
d
g
e

D
iv

er
si

ty
R

:
K

n
o
w

le
d
g
e

R
el

a
te

d
n
es

s

9



Table 3: Correlation Matrix. 1986-1996. Pooled Sample. N = 1,608

(q − l) (c− l) l e d d′ r (NC/C)

(q − l) 1.000 0.852 -0.551 -0.065 -0.049 -0.032 0.021 -0.079
(c− l) 1.000 -0.452 -0.017 0.027 0.037 0.016 -0.196
l 1.000 0.487 0.432 0.194 -0.042 0.009
e 1.000 0.806 0.282 -0.173 -0.195
d 1.000 0.701 -0.420 -0.337
d′ 1.000 -0.372 -0.263
r 1.000 0.223
(NC/C) 1.000

(q − l): Natural logarithm of deflated sales per employee
(c− l): Natural logarithm of gross capital per employee
l: Natural logarithm of labour
e: Natural logarithm of knowledge capital
d: Natural logarithm of knowledge diversity
d′: Natural logarithm of unexpected Knowledge diversity
r: Natural logarithm of knowledge relatedness
(NC/C): Age of Capital

levels, research intensity, and knowledge characteristics (Table II). The largest
sectors in the sample are: Chemicals and Allied Products, including Drugs
(SIC 28, 29 corporations); Transportation Equipment (SIC 37, 27 corporations)
Electronic and Other Electric Equipment (SIC 36, 17 corporations); Industrial
Machinery and Equipment (SIC 35, 16 corporations). These sectors are gener-
ally highly intensive in R&D activities (see table II), with more than 5 percent
of their sales invested in research. Thus, our findings are likely to be biased
towards more research-intensive sectors, which is in line with the selection pro-
cedure of selecting the most abundantly patenting firms in the set of the world’s
largest manufacturing corporations. Consistently with Eq. 11, all variables are
entered in logs, and their correlation coefficients are displayed in Table III.

5 Results

5.1 Preliminary results

Several econometric specifications have been used to estimate Eq. 11 and Table
IV reports the main results. In Column (1), the results of Ordinary Least
Squares (OLS) on the pooled sample show that all explanatory variables have a
significant effect on labour productivity. Not surprisingly, the effect of physical
capital (c − l) is quite large (0.690) and in line with previous findings that
the omission of materials in the production function overestimates the effect
of physical capital (Griliches and Mairesse, 1984). The estimate for labour
l is significant and negative (-0.197), which implies that the world’s largest
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manufacturing corporations cope with steep decreasing returns to scale. This
is hardly surprising, for the size of the world’s largest corporations offers little
scope for productivity gains related to increases in their scale of operations.
The effect of the newness of capital (NC/C) is significant (1.005), suggesting a
positive contribution of embodied technical progress to firm productivity.

The effects related to firm knowledge base are all significant. Consistently
with the works of Griliches, knowledge capital e contributes positively to firm
productivity (0.035), although knowledge capital as measured here differs from
measures of R&D stocks. The negative sign of knowledge diversity (- 0.101)
is in line with, but not identical to, the so-called ”diversification discount”.
As product diversification, diversified knowledge bases impact negatively on
firm productivity owing to increased agency costs and sub-optimal choices in
investments across divisions. knowledge relatedness is highly significant (0.894).
This conforms to the initial intuition that knowledge relatedness is related to
coordination costs: firms diversifying in related activities are more productive
because the cost of co-ordinating a heterogeneous set of productive tasks is
simply inferior to that combining unrelated activities.

In columns(2)-(7), I explore alternative specifications of Eq.(7) in order to
test for the robustness of these preliminary findings. Column (2) introduces a
firm specific effect hi by converting all variables as differences from group (firm)
means. This wipes out the unobservable and persistent heterogeneity across
firms, which may alter the consistency of the estimates. The specification (Least
Square Dummy Variable - LSDV) produces fairly robust estimates for most
explanatory variables: large corporation cope with decreasing returns to scale;
the effect of knowledge capital and integration remain highly significant whereas
the effect of knowledge diversity to productivity becomes largely insignificant.

Eq.(7) relies on the critical assumption that the error term eit is serially un-
correlated. One can relax this assumption by adopting a dynamic representation
of Eq.(7). First in column (3)-(5), all variables are expressed as differences from
their value at time t - 1 weighted by parameter r representing first order autocor-
relation (AR1): xit − xi,t−1 , where x is any of the dependent and independent
variables. The autoregressive model of column (3) produces a high ρ, which is
near unity (ρ = 0.968). In column (4) all variables are entered as deviations form
firm means. As a results, the estimated r decreases to a more standard value
of slightly above 0.5. In the first difference where ρ is set to unity, knowledge
capital and relatedness keep their high significance levels. This observation is
quite satisfactory, as the autoregressive models with firm fixed effects is a fairly
conservative method, where a substantial share of the information available in
the dataset is swept away before the actual estimation.

The inclusion of a lagged dependent variable makes the standard panel es-
timation techniques, i.e. Ordinary Least Squares (OLS), inconsistent because
the lagged dependent variable induces a correlation between the explanatory
variables and the error term. A standard procedure for dealing with variables
that are correlated with the error term is to instrument them and apply the
instrumental Generalised Method of Moment (GMM) estimator along the lines
suggested by Arellano and Bond (1991). In the one-step estimator (Column 6),
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Table 4: Knowledge and Productivity. Pooled Sample

OLS LSDV LSDVAR1 FD GMM
(1) (2) (3) (4) (5)

Capital per employee 0.690 0.503 0.564 0.558 0.589
[0.037]*** [0.020]*** [0.044]*** [0.049]*** [0.030]***

Labour -0.197 -0.345 -0.347 -0.379 -0.373
[0.019]*** [0.018]*** [0.039]*** [0.051]*** [0.033]***

Know. Capital 0.035 0.206 0.153 0.104 0.119
[[0.012]*** [0.014]*** [0.032]*** [0.031]*** [0.022]***

Know. Diversity -0.101 -0.033 -0.023 0.025 0.040
[[0.026]*** [0.024] [0.041] [0.045] [0.021]*

Know. Relatedness 0.894 0.589 0.285 0.133 0.285
[[0.282]*** [0.158]*** [0.120]** [0.067]** [0.135]**

Newness 1.005 0.208 0.144 0.160 -0.211
[[0.124]*** [0.086]** [0.128] [0.147] [0.093]**

Intercept -0.410 4.346 0.033 0.012 0.002
[2.480] [1.236]*** [0.016]** [0.021] [0.003]

Observations 1,608 1,608 1,608 1,448 969
Adjusted R2 0.780 0.78 0.813 0.788
Number of firms 156 156 156 155 134
Rho (Wald) .554 1.000 (16,941***)
Sargan 56.2*
Ar1 -2.199***
Ar2 -1.422*

Standard errors in brackets.
significant at 10%; ** significant at 5%; *** significant at 1%.
All models include the full set of year dummies. The OLS specification includes
a full set of (SIC two-digit) industry dummies. In GMM1 and GMM2, the set
of explanatory variables are instrumented using two lags and using the log of
R&D intensity (R/Q) as a supplementary instrument.

all the knowledge variables lose their significance, although the sign of knowl-
edge capital and relatedness remains consistent with previous estimates. In the
two-step estimator (Column 7), these variables recover their significance. This
implies that in dynamic, positive changes in the knowledge variables, notably
knowledge capital and relatedness, lead to positive changes in firm productivity
Altogether, the various specifications show that: (i) large corporations face steep
decreasing returns to scale; (ii) the stock of knowledge is a prime determinant
of firm productivity; (iii) knowledge relatedness plays a significant and positive
role in firm productivity. This is consistent with the proposition that effective
knowledge relatedness lowers coordination costs across the productive activities
within firms; (iv) in dynamic, positive changes in the previously mentioned vari-
ables entails positive changes in firm productivity; (v) knowledge diversification
remain insignificant, suggesting that the breadth of firm knowledge is not linked
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to firm productivity.
Sub-sections 6.2 to 6.4 address three issues that may potentially affect the

results: the characteristics of the sample; alternative measurement of firm
knowledge; alternative econometric specification overcoming simplification that
K = E ·D ·R.

5.2 Sample Bias

I deal with the first issue by decomposing the sample in several ways (reported
in Table V). The parameter estimates reveal their usual robustness, but in-
teresting insights emerge from the results. In column (8), I control for the
possible contamination of results introduced by outliers located in the top and
bottom 5 percentiles of observations for the dependent variables. The results
are consistent with Table IV, although the estimated parameters, while keep-
ing their significance levels, are all closer to zero. In column (9), I control for
the R&D intensity of firms and include only observations with the ratio (R/Q)
above 5 percent. The knowledge variables are fairly stable, but the estimate
of knowledge relatedness is higher than for the whole sample. This suggests
that high-technology firms rely more heavily on knowledge relatedness than less
R&D-intensive firms.

This is further illustrated in columns (9)-(11) where observations have been
grouped according to the sectoral aggregate R&D intensity as displayed in Ta-
ble II. High-technology sectors comprise 53 large corporations from Chemicals
(29 firms), Electronics (17 firms) and Instruments (7 firms), with an aggregate
(R/Q) ratio above 6 percent. Medium-technology sectors comprise 50 large
corporations from Industrial Machinery (16 firms), Transportation Equipment
(27 firms) and Communications (7 firms), with an aggregate (R/Q) ratio be-
tween 4 and 6 percent. The low-technology sectors gather 31 firms (Oil, 5 firms;
Food, 6 firms; Primary Metal, 11 firms; Petroleum, 9 firms) but exclude the
miscellaneous category entitled ”Others”.

The results show that capital productivity is fairly stable across sectors, but
the values of the labour estimate l suggests that decreasing returns to scale
are not as steep in high-technology sectors as for others. This in turn may be
due to several factors. However, it is consistent with the idea that such sec-
tors constantly bring about new products that may keep the scale of productive
activities closer to equilibrium. The knowledge variables exhibit an interest-
ing gradual pattern, where knowledge capital and relatedness are significantly
higher in high-technology sectors, whereas in low-technology sectors, the source
of superior productivity does not seem to rely on the characteristics of firm
knowledge base. In fact, one should be careful in rejecting the role of knowledge
in low-technology sectors: it may well be that these firms have all achieved a
satisfactory level of knowledge capital and relatedness that is a pre-requisite
for their productive operations. Since knowledge is supposedly more stable, the
knowledge variables are no more a discriminating criterion for high productivity,
but remain a criterion for firm survival. Failures to accumulate and integrate
knowledge in a productive fashion may lead to firm exit.
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Table 5: Knowledge and Productivity. Sample Decomposition. Within Regres-
sions on Pooled Sample. Dependent Variable: Deflated Sales per Employee

90% Sample High Medium Low AMR
(6) (7) (8) (9) (10)

Capital per employee 0.339 0.474 0.493 0.464 0.580
[0.023]*** [0.037]*** [0.034]*** [0.046]*** [0.036]***

Labour -0.254 -0.122 -0.407 -0.471 -0.305
[0.019]*** [0.032]*** [0.032]*** [0.042]*** [0.035]***

Know. Capital 0.160 0.208 0.253 0.068 0.223
[0.013]*** [0.025]*** [0.024]*** [0.041] [0.023]***

Know. Diversity 0.019 -0.002 -0.005 -0.043 -0.007
[0.022] [0.055] [0.032] [0.082] [0.034]

Know. Relatedness 0.578 1.296 0.588 1.352 0.79
[0.144]*** [0.438]*** [0.197]*** [1.304] [0.199]***

Newness 0.143 0.599 0.272 -0.407 0.119
[0.080]* [0.152]*** [0.142]* [0.214]* [0.139]

Intercept 5.619 -3.619 4.811 1.7 1.293
[1.125]*** [3.323] [1.631]*** [10.182] [1.523]

Observations 1,446 549 508 326 639
Adjusted R2 0.621 0.691 0.855 0.815 0.836
Number of firms 152 53 50 31 61
F-Stat 158.6*** 80.9*** 191.1*** 92.5*** 207.7***

See previous table footnote.

In columns (13) - (17), I experiment several decompositions of the sample.
First, I test for the presence of a time effect by grouping the observations into
two sub-periods: before or in 1990 and strictly after 1990. The results sug-
gest that all aspects of firm knowledge become increasingly important through
time. In the late eighties, all the knowledge variables are insignificant (Column
13), whereas in the nineties, knowledge capital and knowledge relatedness be-
come positive and significant (Column 14). This echoes positively the rise of
the so-called knowledge-based economies in the nineties. Second, I investigate
the effect of geography on the production function by grouping firms in three
sets: America, including Canada (Column 15), Europe (Column 16) and Asia
(Column 17). All groups have a peculiar production function. American firms
conform mostly to the general results. Firm productivity in European corpo-
rations is mainly based on knowledge capital. Asian corporations exhibit an
unlikely production function since both diverse and integrated knowledge bases
impact negatively on firm productivity. These regional particularities reflect the
sectoral endowment of the geographic decomposition.
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5.3 Mismeasurement of Knowledge

The second issue is related to the very measurement of the knowledge variables,
the choice of which may affect the significance and signs of the relationships
with productivity. Table VI provides the results of alternative measures of firm
knowledge, whereas for comparison the first column displays the results from the
basic specifications (Column 2 of Table IV). In column (18), I follow Griliches
and Clark (1984) and Griliches and Mairesse (1990) and use the ratio (R/Q) to
proxy knowledge capital. The results are as expected, positive and significant,
although the estimate for knowledge relatedness loses its significance, due to its
co-linearity with R&D investments.

In columns (19) and (20), I introduce additional measures of knowledge di-
versity. In Column (19), I introduce directly (the log of) knowledge diversity D,
without correcting for firm patent stock. In column (20), I introduce knowledge
diversity computed as the dispersion of firm competencies across technological
areas: D

′′

it = µP,it ÷ σ2
P,it. This measures increases as firm competencies are

distributed evenly across technologies7.
The results show a persistent non-significance of technological diversification

with firm productivity, whereas the other estimates are consistent with previ-
ous results. I do not, however, rule out the significant role of technological
diversity in firm activities. First, diversification has been depicted to be a ma-
jor input for innovative activities, simply because new ideas are more likely to
emerge from a stock of diversified knowledge (Henderson and Cockburn, 1996).
Switching the dependent variable with innovative output would certainly depict
the positive and significant contribution of knowledge diversity to firm innova-
tion. Second, technological diversification is being increasingly viewed as being
a major characteristics of modern productive activities: firms differ more on
the basis of their product portfolio than they do in terms of their technological
competencies, precisely because the share of scientific and technical knowledge
in productive activities has increased substantially, keeping the number of pro-
ductive activities constant (Patel and Pavitt, 1994; Gambardella and Torrisi,
2000). Finally firm must develop technical competencies other than those they
directly exploit in their very productive activities, first to benefit from technical
spillovers from competitors (Jaffe, 1986), second to cope with the technological
development of their most direct partners (Brusoni, et al., 2001).

In columns (21)-(23), I develop several measures of knowledge relatedness .
Echoing Section 4, there are two main choices one must make when measuring

7Thus, measure is the inverse of the coefficient of variation, so that when , . This measure
is not based directly on the number of patents held by the firm aver the past 5 years. Ideally,
one wants to base on firm distinctive technological skills. Define the revealed technological
advantage (RTA) as: RTAit = (Pit/

∑
k

Pkit)÷ (
∑

i
Pkit/

∑
ki

Pkit). The numerator is the
share of patents in technology k in the total patent stock of firm i. Likewise, the denominator
represents the share of patents in technology k in the total patent stock of all actors. Therefore
for a given technology, if the share of patents of firm i exceeds that of all actors, RTA will
be greater than unity and firm i will have a Revealed Technological Advantage in technology
k. See also Fai (2003) for a detailed analysis of the world’s largest corporation based on the
RTA.
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Table 6: Knowledge and Productivity. Alternatives Measures of Knowledge
Capital, Diversity and Relatedness. Within Regressions on Pooled Sample.
Dependent Variable: Deflated Sales per Employee

(RD/Q) Dispersion WARNP WAR
′
P WAR

′
NP

(11) (12) (13) (14) (15)

Capital per Employee 0.573 0.499 0.509 0.513 0.512
[0.024]*** [0.020]*** [0.020]*** [0.020]*** [0.020]***

Labour -0.157 -0.348 -0.339 -0.336 -0.336
[0.018]*** [0.018]*** [0.018]*** [0.018]*** [0.018]***

Know. capital 0.111 0.206 0.204 0.191 0.195
[0.014]*** [0.015]*** [0.014]*** [0.014]*** [0.014]***

Know. diversity -0.040 -0.001 -0.037 -0.037 -0.039
[0.027] [0.028] [0.024] [0.024] [0.024]

Know. Relatedness 0.130 0.604 0.992 0.038 -0.020
[0.344] [0.158]*** [0.277]*** [0.015]** [0.019]

Newness 0.010 0.205 0.211 0.184 0.180
[0.103] [0.086]** [0.086]** [0.086]** [0.086]**

Intercept 7.015 4.199 3.771 8.641 8.763
[2.639]*** [1.233]*** [1.438]*** [0.375]*** [0.374]***

Observations 1,338 1,608 1,608 1,608 1,608
Adjusted R-squared 0.765 0.780 0.780 0.779 0.778
Number of firms 139 156 156 156 156
F-Stat 282.3*** 366.2*** 366.4*** 364.4*** 362.7***

See previous table footnote.

knowledge relatedness within firms: in the first step, the choice of a related-
ness measure τkl; in the second step, the choice of how to measure knowledge
relatedness within the firm, given technological relatedness. Concerning the for-
mer, Appendix 1 suggests that there is no authoritative metrics for quantifying
relatedness between technologies. Instead of relying on a parametric setting
that produces relatedness τP

kl , one can also develop a non-parametric measure
of technological relatedness τNP

kl , based on information theory. Regarding the
latter choice, one can start by representing firm knowledge as forming a graph
G = (K, R), where K is the set of vertices, i.e. firm technological competencies,
and R is the set of edges, i.e. technological relatedness, that links technologies
together. In fact, Eq.(8) assumes firm competencies to form a fully connected
graph; in a corporation with k technological competencies, all k × (k − 1) ÷ 2
pairs of technologies are included in the computation of WAR. Quite likely
however, not all technologies within the firm are related to all other ones: only
subsets of technologies relates to other subsets of technologies. To account for
this, I follow Teece et al. (1994) and Breschi et al. (2003) and include only
the (m − 1) strongest links that are needed to create a connected graph that
comprises all firm competencies. This captures the strongest associations across
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technical areas k and l and is equivalent to depicting the maximum spanning
tree from graph G = (K, R). I thus rewrite Eq.(8) as follows:

WAR
′

kit =

∑
l 6=k τkl · Plit · λkl∑

l 6=k Plit · λkl
(12)

where λkl = 1 if the link between technological competencies k and tech-
nological competence l is part of the tree. Because WAR′ only includes the
strongest links within the firm, WAR′ is likely to produce measures of firm
knowledge relatedness that are biased upwards, whereas conversely the previous
measure is biased downwards. The results show that the measure of knowledge
relatedness is generally robust. In column (21), knowledge relatedness based on
τNP
kl remains both highly significant and positive, while in column (22), knowl-

edge relatedness based on WAR′ is positive and significant at 5 percent level.
In column (23) however, knowledge relatedness based on both τNP

kl and WAR′

becomes non significant, raising the issue regarding the very measure of knowl-
edge relatedness. Clearly, knowledge relatedness embodies a large firm-specific
element that is not captured with the methodology developed in the paper, and
that goes beyond the means of the metrics suggested here. In all instances,
this measure is likely to embody quite some noise, which in turn should bias
the parameter estimate of knowledge relatedness θR downwards with respect to
its unknown true value θ̂R. Thus globally, the positive and significant relation
between knowledge relatedness and firm productivity is quite supportive for the
theory that more integrated knowledge are associated with lower coordination
costs, thereby increasing significantly firm productivity.

5.4 Mispecification

The last issue investigate the validity of the linear specification, relying on the
simplification that K ≡ E ·D ·R whereas the original model implies that K =
E + (1 + (D − 1) · R). Consistently with the previous results, I consider the
estimate of knowledge diversity θD as being a residual, so that θD = 1−θE−θR.
Substituting (4) into (1) yields:

(
Q

L

)
it

= A ·

(
C

L

)β

it

·

(
E$E

it + [1 + (Dit − 1)1−$E−$R ·R$R
it ]

)δ

· euit (13)

where the parameters $E and $R represent the weights associated with
respectively knowledge capital and knowledge relatedness , whereas δ represents
the overall effect of firm knowledge base on firm productivity. In the log form,
Eq.13 becomes:

(q − l)it = a + β · (c− l)it + ϕ · lit + log(E$E
it [1 + (Dit − 1)$D ·R$R

it ]) + uit (14)

All variables are expressed as deviations from firm means, wiping out the
unobservable heterogeneity across firms. Importantly, log(E +(1+(D−1) ·R))
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Table 7: Non Linear Least Squares with Year and Firm Fixed Effect. Dependent
Variable: Deflated Sales per Employee

WARP WAR
′
P

(16) (17) (18) (19)

Capital per employee 0.592 0.519 0.593 0.514
[0.018]*** [0.036]*** [0.018]*** [0.036]***

Labour -0.234 -0.044 -0.234 -0.057
[0.016]*** [0.031] [0.016]*** [0.031]*

Know. Base 1.935 4.990 1.966 15.615
[0.490]*** [1.441]*** [0.475]*** [3.475]***

Know. Capital 0.549 0.184 0.539 0.066
[0.122]*** [0.053]*** [0.115]*** [0.017]***

Know. Relatedness 0.233 0.746 0.251 0.910
[0.175] [0.078]*** [0.167] [0.025]***

Newness 0.082 0.626 0.080 0.585
[0.085] [0.154]*** [0.085] [0.152]***

Intercept -2.513 -6.064 -2.550 -18.770
[0.588]*** [1.733]*** [0.572]*** [4.161]***

Observations 1,608 549 1,608 549
Adjusted R-squared 0.777 0.687 0.777 0.693
Number of firms 157 53 157 53
F-Stat 350.8*** 76.3*** 350.8*** 78.3***

See previous table footnote.

can be negative, implying that Eq.14 cannot be estimated. To deal with this
issue, all knowledge variables are standardised in such a way that E,D,R ∈
[2; 3].

Table VII reports the results for the whole sample and for the high-technology
sectors. It also distinguishes between the two measures of knowledge relatedness
based on the WAR and WAR′ computations. Although the parameter esti-
mates for knowledge relatedness are at the borderline of significance (Columns
25 and 28), the results remain globally consistent with the previous remarks.
First, the elasticity of deflated sales with respect to physical capital, although
overestimated, remains quite stable across the specifications. The parameter
for returns to scale is consistently negative for the sample as a whole, whereas
firms active in high technology sectors operate in constant returns to scale.

The estimates depicting the elasticity of output with respect to firm knowl-
edge are globally satisfactory. In column (24), parameter d is largely significant
and positive, suggesting that a 1 percent increase in the firm total knowledge
implies a 0.62% percent in firm output per employee. The weights $E and $R

imply that $R = 0.456 and $E = 0.175, which is slightly lower than the basic
specification from column (2). The weights $E and $R estimated from the
identical specification using WAR′ (Column 27) are more in line with the pri-
mary role of knowledge stocks over knowledge relatedness . They also suggest
that the effect of knowledge diversity on firm productivity may not be a simple
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residual (columns 25 and 28). Computing $D = $E −$R shows that the role
of knowledge diversity becomes quite large (0.223 in column 25 and 0.210 in
column 28) for the whole sample of firms.

The comparison of columns (25) with (26) and (28) with (29) suggests that in
high-technology sectors, the role of knowledge relatedness is essential in boosting
firm productivity. This is further compatible with the last estimates relating to
the newness of physical capital (NC/C). Its large and significant effect in high-
technology sectors suggests that much of firm productivity gains go through
investments embodying in high-technology equipment. The supposedly higher
technological turbulence in sectors such as chemicals (including the highly tur-
bulent pharmaceutical industry), instruments and electronics challenges large
corporation in their ability to assimilate and exploit new technical knowledge
by integrating it into their own production function. Globally, the non-linear
specifications produce estimates that compare well with previous estimations.
There is an issue regarding the role of knowledge relatedness but the asso-
ciated parameter estimate remains at the borderline of significance. By and
large, its value is consistent with previous estimations: knowledge capital and
knowledge relatedness are active component of firm productivity, especially in
high-technology sector.

6 Discussion

The literature investigating the econometric relationship between knowledge
and productivity has produced convincing evidence of the positive contribution
of knowledge capital to productivity (Griliches, 1979 and following papers).
Supplementary studies have yielded similar results, observing a quasi-systematic
econometric relationship between some sort of knowledge capital and the general
productivity of the firm. However, these studies have failed to address the
relation between some characteristics of firm knowledge in terms of diversity
and relatedness with firm economic performance. The reasons for this is that
knowledge is generally considered homogenous and that, as a consequence, firm
knowledge capital equates with the sum of homogeneous pieces of knowledge.

Instead, I argue that knowledge is intrinsically heterogeneous in nature be-
cause it refers to various scientific disciplines and is embodied in diverse technical
devices. Such scientific and technical knowledge may further yield a variety of
services, the exploitation of which is far from given to firms. As argued by
Penrose (1959), firms must devote additional efforts to combine their resources,
comprising their knowledge capital, in a non-random and non-obvious way. The
relatedness of heterogeneous scientific and technical resources gives rise to ad
hoc, local arrangements, thus leading to a persistent heterogeneity amongst
competing firms.

Teece, et al. (1994) argue that the non-random organisation of activities has
its very roots in the firm’s competencies. When entering into new business lines,
firms move into activities with similar scientific and technical competencies and
common complementary assets. Thus, diversification strategy is not a free game;
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hazardous and aggressive diversification may threaten the overall coherence of
the firm and even its viability. Diversification inherently calls for some sort of
relatedness, to increase the coherence of the firm’s activities and the underlying
knowledge base (Breschi, et al., 2003).

The economic justification for diversifying in related activities is that diver-
sification comes at costs, stemming from increases in agency costs, sub-optimal
choices in investments across divisions, imperfect internal capital market, etc.
(Rajan, et al., 2000; Lamont, et al., 2001; Graham, et al., 2002). An addi-
tional cost is that diversification is likely to momentarily decrease the level of
knowledge relatedness at both the plant and conglomerate level, thereby dis-
rupting existing co-ordinating mechanisms. In turn, firms must devote part of
their focus towards integrating these new sets of activities, competencies and
technological knowledge with pre-existing ones.

Knowledge relatedness is in fact tightly linked with technological and/or
business diversification and firm performance. In one of the earliest examples
Rumelt (1974) showed that diversification is more likely to be successful within
related activities sharing similar business lines and production chains. Later,
Scott (1993) showed that diversification in related markets is purposive and
tightly linked to higher profit rates. Schoar (2002) shows that although increases
in diversification lead to a net reduction in total factor productivity, diversified
firms enjoy higher productivity levels than single segment firms. Firms seek to
benefit from economies of scope by diversifying their activities in related busi-
nesses (Montgomery, 1982; Ramanujam and Varadarajan, 1989; Montgomery
and Hariharan, 1991, Teece, et al., 1994). Importantly, related diversification
has been shown to be positively associated with higher growth rate of profits
(Palepu, 1985). Scott and Pascoe (1987) demonstrates that R&D diversification
in large U.S. manufacturing firms is found to be exploiting complementarities
across research programmes that consolidate around related categories of prod-
ucts.

A tentative interpretation is that related diversification not only builds upon
similar competencies, when similar sequences of productive activities are shared
amongst several business lines, but also stems from vertical diversification, where
the productive activities across businesses integrate complementary activities
and competencies. Arguably, the cost of co-ordinating a set of productive ac-
tivities decreases as the knowledge used in these activities is being integrated
efficiently. Thus activities based on a related set of technological knowledge
should prove more productive than activities based on a heterogeneous and un-
related set of activities: integrated knowledge bases should be positively linked
with firm productivity.

7 Conclusion

This paper has aimed to generalise intriguing insights on the importance of
knowledge in firm performance. It has analysed the relationship between out-
put, physical capital, employment and three characteristics of firm knowledge -
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knowledge capital, diversity and relatedness - on a sample of 156 of the world’s
largest corporations. The major finding is that knowledge capital and related-
ness is important sources of productivity at the firm level. In fact, knowledge
capital cannot be enough in explaining the contribution of intangibles to firm
productivity. The intrinsically heterogeneous nature of knowledge implies that
the way scientific and technical knowledge is combined impacts on firm produc-
tivity. The econometric results show that more integrated, better-articulated
knowledge bases reach higher levels of productivity. The theoretical justifica-
tion lies at the heart of economic theory: the cost of co-ordinating coherent
knowledge bases is simply lower than that of co-ordinating unrelated pieces of
knowledge.

Several issues relate to the heterogeneous nature of the sample, across time,
industries and regions. Although there are important differences, these apply to
the knowledge base as a whole more than they question the economic relevance
of knowledge relatedness. Globally, the role of knowledge relatedness becomes
stronger in knowledge-intensive sectors such as chemicals, drugs, electronics and
instruments. In other sectors, its contribution remains positive and significant
but significantly lower, even after controlling for plausible mismeasurements in
the knowledge variables and possible mispecifications in the econometric model.

There is also the possibility of improving the statistical methodology in sev-
eral ways. First, one can extend the data collection process to include quality
and quantity of physical equipment and labour, to use value-added instead of
gross output (sales), etc. Alternatively, one can refine the methodology on
patent data by using citations in order to test whether technological relatedness
is sensitive to the methods used to link technologies to one another. More-
over, the panel nature of our data suggests to extend the work on simultaneity
amongst the variables, notably on R&D expenditures as a explanatory variables
for the knowledge variables. The analysis has uncovered interesting relationships
and left a number of issues open for further research. This suggests addressing
the issue of knowledge relatedness as the dependent variable and the quantita-
tive and qualitative efforts necessary in achieving desirable levels of relatedness.
These encompass firm investments in research to pursue a given technological
strategy; the set of partners involved in firm productive activities; and not least
the investments in managerial resources itself.

Finally, one should keep in mind that firms seek several goals at once, some
contradicting others. Unquestionably in the short run firms need to generate
revenues. In the long run, they must anticipate as accurately as possible the
potential technological opportunities that may impact directly on their produc-
tive operations. In other words, firms must invest in several research avenues,
few of which may prove highly profitable. This tension between profitability
and survival has long been identified (March, 1991). I suspect that the charac-
teristics of firm knowledge must reflect these diverging goals, and future work
shall investigate more systematically the behaviour of the knowledge variables
with respect to alternative measures of firm economic performance.
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Appendix

Technological relatedness has been investigated in several publications (Sherer,
1982, Jaffe, 1986, Breschi et al., 2003). Similarly to Teece et al. (1994), I
rely the so-called survivor principle that less efficient pairs of technologies are
called to disappear ultimately and assume that the frequency with which two
technology classes are jointly assigned to the same patent documents may be
thought of as the strength of their technological relationship, or relatedness.

The analytical framework is similar to Breschi, et al. (2003) and departs
from the square symmetrical matrix obtained as follows. Let the technological
universe consist of a total of N patent applications. Let pnk = 1 if patent n is
assigned to technology k, k = 1, , K, 0 otherwise. The total number of patents
assigned to technology k is thus fk =

∑
n pnk. Now let pnk = 1 if patent n

is assigned to technology l, 0 otherwise. Again, the total number of patents
assigned to technology l is fl =

∑
n pnl. Since two technologies may co-occur

within the same patent document, then fk ∩ fl 6= � and thus the number fkl of
observed joint occurrences of technologies k and l is fkl =

∑
n pnkpnl. Applying

the latter to all possible pairs, we then produce the square matrix Ω(n × n)
whose generic cell is the observed number of joint occurrences fkl. This count
of joint occurrences is used to construct our measure of relatedness, relating it
to some measure of expected frequency f̂kl under the hypothesis of random joint
occurrence.

There is no authoritative measure of f̂kl, and I shall consider below a para-
metric and non-parametric setting. In a parametric setting, one can consider
the number fkl of patents assigned to both technologies k and l as a hyper-
geometric random variable. The probability of drawing f patents with both
technologies k and l follows the hypergeometric density function (Population
K, special members fk, and sample sizefl):

P (fk = f) =

(
fk

f

)(
N−fk

fl−f

)(
N
fl

) (15)

where f is the hypergeometric random variable. Its expected frequency is:

f̂kl = E(fkl = f) =
fk · fl

N
(16)

If the actual number fkl of co-occurrences observed between two technologies
k and l greatly exceeds the expected frequency f̂kl of random technological co-
occurrence (fkl > f̂kl), then the two technologies are highly related: there
must be a strong, non-casual relationship between the two technology classes.
Inversely, when fkl < f̂kl , then technologies k and l are poorly related. Hence,
a parametric-based measure of relatedness τP

kl is:
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τP
kl = fkl > f̂kl (17)

Eq.17 may further be designed to control for the variance of the population
defined. Assuming a hypergeometric distribution, the variance and relatedness
measures are:

σ2
kl = f̂kl ·

(
N − fk

N

)
·
(

N − fl

N − 1

)
(18)

Thus:

τP
kl =

fkl − f̂kl

σkl
(19)

Eq. 19 has three attractive features. First, relatedness τP
kl is a real number

that can be either positive or negative, the sign being a straightforward and
intuitive indication of the relatedness between any two pairs of technologies 8.
Second, relatedness τP

kl is similar to a t-student, so that if τP
kl ∈]− 1.96;+1.96[ ,

one can safely accept the null hypothesis H0 of no relatedness between technolo-
gies k and l. Third, τP

kl is a symmetric measure of technological relatedness so
that relatedness τP

kl between k and l is strictly equal to relatedness τP
lk between

l and k 9. This may go some way against the intuition that knowledge and
technologies form a hierarchical tree (Popper, 1972) but it offers the advantage
of simplicity when dealing with multi-technology organisations.

In a non-parametric setting, one makes no assumption about the form of
the distribution of technological co-occurrences across patents applications. A
straightforward way to measure relatedness is then to compare the observed
probability of any patent to combine technologies k and l with the expected
probability, under the assumption that the event ”patent with technology k”
is independent from the event ”patent with technology l”. Let skl, sk and
sl denote the shares of number of patent applications with respectively both
technologies k and l, technology k, technology l in the total number of patents
applications N : Skl = fkl

N ; Sk = fk

N ; Sl = fl

N . By definition, sk ·sl is the share of
patents with technologies k and l under the assumption that both technologies
are independent, so that sk · sl represents the expected share ŝkl with random
technological co-occurrences. Using information theory (Theil, 1967), one can
then define the non-parametric technological relatedness τNP

kl as follows:

τNP
kl = log(

skl

ŝkl
) (20)

The interpretation of Eq. 20 is straightforward. If skl ÷ ŝkl > 1 , then
τNP
kl > 0: technologies k and l are rather well related. If skl ÷ ŝkl < 1 , then

τNP
kl < 0: the technologies k and l are rather poorly related. Again, relatedness

8Relatedness measure τP
kl has no lower or upper bounds: τP

kl ∈]−∞; +∞[
9This is the case if one assumes that N = N − 1, so that σ2

kl ≈ f̂kl · (N−fk
N

) · (N−fl
N

).
Considering the number N of patent applied for each year, it is a reasonable approximation.
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is a real number that can be either positive or negative and is symmetric, so
that relatedness between k and l is strictly equal to relatedness between l and
k.

Aknowledgements

I thank Parimal Patel for his stimulating comments during the research and for
providing the data on firm consolidation. I thank Bart Verspagen for his remarks
and for providing the software collecting information on patent documents. I
am thankful to Gustavo Crespi, Paola Criscuolo, Franco Malerba and Pier Paolo
Saviotti for their very helpful insights. Financial support from the SPRU writing
fellowship scheme is acknowledged.

26


