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Summary The purpose of this paper is the presentation of distribution theory
for generic estimators based on the pairwise comparison of observations in problems
where identification is achieved through the use of control functions. The controls can
be specified semi- or non-parametrically. The criterion function may be non-smooth.
The theory is applied to the estimation of the coefficients in a monotone linear-index
model and to inference on the link function in a partially-linear transformation model.
A number of simulation exercises serve to assess the small-sample performance of these
techniques.

Keywords: control function, discontinuous criterion function, distribution theory,
empirical process, Euclidean class, pairwise comparisons, two-step estimation.

1. INTRODUCTION

There is a variety of econometric problems where conditioning on control variables is
required to obtain moment conditions that identify the parameters of interest. In many
such cases, a prior estimation step is required to construct a feasible criterion function
based on these identifying restrictions. One prime example is the instrumental-variable
estimation of a linear simultaneous-equation model by two-stage least squares. Another
familiar illustration is accounting for non-random sample selection through the two-step
procedure of Heckman (1979).
In this paper, I consider incorporating controls into estimators that are based on the

pairwise comparison of observations. This class of estimators is broad. For example, it
includes pairwise-likelihood and pairwise-differencing estimators, as well as estimators
based on ranks. Conditions are provided under which such estimators are

p
n-consistent

and asymptotically normal. The theory is applied to the estimation of the coefficients in
a monotone linear-index model and to inference on the link function in a partially-linear
transformation model.
Of course, several other papers have investigated inference in semiparametric models

with generated regressors. Extending the approach of Newey (1994), Hahn and Ridder
(2012) provided distribution theory for a general class of three-step control-function
estimators defined as the solution to empirical moment conditions. Three features of
pairwise-comparison estimators make them distinct from their setup, however. First, they
maximize U -processes of order two. Second, many pairwise-comparison estimators, and
rank estimators in particular, build on moment inequalities. This generally implies the
resulting criterion function to be non-smooth. Third, a comparison between observations
typically avoids the need to estimate nuisance functions. In practice, this means that the
intermediate estimation step in the setup of Hahn and Ridder (2012) can be avoided.
In two recent contributions, Honoré and Powell (2005) and Aradillas-López et al.

(2007) extended Ahn and Powell (1993) by deriving distribution theory for a class of
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nonlinear pairwise-differencing estimators. While their conditions allow for some lack of
differentiability, their approach requires the objective function to be Hölder continuous.
This rules out rank estimators and, more generally, criterion functions that behave like
step functions. Here, this type of estimation procedures is explicitely allowed for. The
extension to severe non-smoothness entertained here is not merely technical, as the re-
quirement of Hölder continuity can substantially restrict the scope of the approach if one
is unwilling to impose substantial parametric structure; see, for example, the discussion
in Honoré and Powell (2005) [pp. 526 and pp. 528] or the illustration in Aradillas-López
et al. (2007). The desire to remain agnostic about the distribution of unobservables is
the natural paradigm in most control problems.
The theory in Honoré and Powell (2005) and Aradillas-López et al. (2007) builds on

concave combinations of left and right derivatives of the criterion function, upon which
a Euclidean condition is subsequently imposed. Here, we directly start from the class
of Euclidean criterion functions. Expansions of the large-sample objective function are
used to make short work of the non-smooth nature of its small-sample counterpart, as in
Sherman (1993). In this sense, our results complement the recent work by Ichimura and
Lee (2010) on two-step M -estimators, that is, estimators that maximize U -processes of
order one. In addition to the gain in generality compared to Honoré and Powell (2005)
and Aradillas-López et al. (2007), constructing the distribution theory in this way leads
to more direct and much shortened proofs, as well as to more elementary conditions that
are easier to verify.

2. SETUP AND EXAMPLES

Let V1, . . . , Vn be independent realizations of a random variable V whose distribution is
supported on a set V . Let γ0 and ✓0 denote unknown elements of two finite-dimensional
parameter spaces Γ and Θ. Throughout, ✓0 will indicate the main parameter of interest
and γ0 will denote an auxiliary parameter. Partitioning the parameter vector in this
way will enable us to analyze estimators of ✓0 that depend on plug-in estimates of γ0.

1

Introduce the class of real-valued functions S ⌘ {s(·, ·; γ, ✓) : γ 2 Γ, ✓ 2 Θ} on the
product set V ⌦V . Refer to s(·, ·; γ, ✓) as the score and assume without loss of generality
that it is symmetric in its arguments. For each (γ, ✓) in Γ⇥Θ,

✓
n

2

◆−1 nX

i=1

X

i<j

s(Vi, Vj ; γ, ✓) (2.1)

is a U -statistic (of order two); the collection over Γ ⇥ Θ is a U -process. Pairwise-
comparison estimators are defined as maximizers of U -processes of this form. Distribution
theory for this type of estimators can be found in Sherman (1993) and Honoré and Powell
(1994), for example.
Incorporating controls in (2.1) will lead to inference from what may be called local

U -processes. To describe a local U -process, suppose that, in addition to observations on
V , we also observe realizations of a random variableW for the same units; V andW need
not be disjoint. Let D ⌘ (V,W ) and let D1, . . . , Dn denote a sequence of n random draws
from a distribution P that is supported on D ⌘ V ⇥W . For a function Ξ(·) : W 7! Rd(Ξ),
define the (vector-valued) control variable Ξ = Ξ(W ). Here and later, d(A) will denote

1This allows for the inclusion of generated regressors and covers multistep estimators, for example.
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the dimension of the vector A. For each (γ, ✓) in Γ⇥Θ, define a local U -statistic as

bQn(✓; γ) ⌘ σ
−d(Ξ)
k

✓
n

2

◆−1 nX

i=1

X

i<j

s(Vi, Vj ; γ, ✓) k
⇣ bΞi − bΞj

σk

⌘
titj , (2.2)

where bΞi ⌘ bΞ(Wi) is some first-step estimator of Ξi ⌘ Ξ(Wi), k(·) : Rd(Ξ) 7! R is a
(symmetric) kernel function, σk = σk(n) is a bandwidth that shrinks to zero as n! 1,
and ti (i = 1, 2, . . . , n) is a trimming term. The trimming will serve to keep (2.2) well
defined when the control is estimated nonparametrically; see below.
The estimator of ✓0 that is of interest here may then be defined as

b✓ ⌘ argmax
✓2Θ

bQn(✓; bγ),

where bγ is an auxiliary estimator obtained in a prior stage. Under conditions given below,
the introduction of kernel weights leads to asymptotically retaining only those pairs of
observations for which Ξi−Ξj lies in a shrinking neighborhood of zero. The contribution
to (2.2) of pairs for which this is not the case fades out as n ! 1. Inference from local
U -processes of this kind can be traced back to the seminal contributions of Powell (1987)
and Ahn and Powell (1993), who proposed kernel-weighted least-squares estimators of the
coefficients in a linear regression model when the data is subject to endogenous sample
selection.
To flavor the discussion, and to further motivate the class of estimators that is of focus

here, it is useful to sketch some situations of practical interest that can be cast into
it. In each of the examples, V = (Y,X) and V = Y ⇥ X ; Y is a univariate outcome
variable and X is a vector of covariates. Throughout, E denotes the expectations operator
with respect to the measure P . Examples 2.2 and 2.3 will be revisited in more detail in
Section 4. The first example introduces sample selection into a censored-regression model
and modifies Honoré and Powell’s (1994) estimator based on artificial censoring; see also
Honoré and Powell (2005). Honoré (1992) presents a fixed-effect panel-data version of
this model.

Example 2.1. Suppose that Y = max{0, X 0✓0 − ⌘}, where ⌘ is a latent disturbance.
Under independence of ⌘ and X,

E [Y |X = x, Y > 0] = x0✓0 −
Z x0✓0

−1

"

F (x0✓0)
dF ("),

where F denotes the marginal distribution of ⌘. Let (x1, x2) be an element of X ⌦ X

and define

g(x01✓, x
0
2✓) ⌘

Z min{x0

1✓,x
0

2✓}

−1

"

F (min{x01✓, x02✓})
dF (").

Then, for i = 1, 2, E [Y |X = xi, ⌘ < min{x01✓0, x02✓0}] = x0i✓0 − g(x01✓0, x
0
2✓0) and so it

follows that

E [Y |X = x1, ⌘ < min{x01✓0, x02✓0}]− E [Y |X = x2, ⌘ < min{x01✓0, x02✓0}] = (x1 − x2)
0✓0.

Let ⌘i ⌘ x0i✓0 − yi. Let c(x1, x2; ✓) ⌘ max{0, (x1 − x2)
0✓}. Note that the events {⌘i <

min{x01✓0, x02✓0}} and {yi > c(x1, x2; ✓0)} are equivalent. A least absolute-deviation
(LAD) estimator of ✓0 based on these moment restrictions maximizes (2.1) using non-
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censored observations for

s(Vi, Vi; γ, ✓) = −k(Yi − Yj)− (Xi −Xj)
0✓k 1{Yi > c(Xi, Xj ; ✓) _ Yj > c(Xj , Xi; ✓)}

and any γ; cfr. Honoré and Powell (1994). Now let W = (E,Z), W = {0, 1} ⇥ Z , and
suppose that

Y = E ⇥max{0, X 0✓0 − ⌘}, E = 1{%(Z) ≥ ✏},
for some function %(·) : Z 7! R and unobservables (⌘, ✏). Suppose that (⌘, ✏)?(X,Z).
Write Fu for the distribution of ⌘ given ✏ = u and G for the marginal distribution of ✏.
Then

E [Y |X = x, Z = z, Y > 0, E = 1] = x0✓0 −
Z %(z)

−1

Z x0✓0

−1

"2
G(%(z))F"1(x

0✓0)
dF"1("2) dG("1),

which depends on z through %(z) only. Hence, the artificial-censoring argument will
hold only if (z1, z2) 2 Z ⌦ Z are so that %(z1) = %(z2). If G is strictly increasing,
Pr[E = 1|Z = z] = G(%(z)) and %(z) are one-to-one. Therefore, a local LAD estimator

of ✓0 maximizes (2.2) using a nonparametric estimator of the propensity score as bΞi.

The second illustration concerns endogeneity bias as induced by simultaneity or by
measurement error in covariates, for example, in the context of a rank estimator for
nonlinear index models.

Example 2.2. Let W = (E,Z), W = E ⇥ Z , where E is a subset of X. Consider the
triangular simultaneous-equation model

Y = φ(X 0β(✓0), ⌘), E = µE(Z) + ✏,

for a coefficient vector β(✓) ⌘ (1, ✓0)0 and latent disturbances (⌘, ✏). Here, φ ⌘ φ2 ◦ φ1
is a composite link function, with φ1(·) strictly increasing and φ2(·, ·) weakly increasing.
On assuming that ⌘?X, the model becomes a single-index model and monotonicity of
φ(·) implies the sign restriction

E [Y |X = x1] > E [Y |X = x2] ) x01β(✓0) > x02β(✓0)

for any (x1, x2) in X ⌦ X . Cavanagh and Sherman (1998) proposed estimating ✓0 by
the maximizer of (2.1) with

s(Vi, Vj ; γ, ✓) =
1

2
m(Yi) 1{X 0

iβ(✓) > X 0
jβ(✓)}+

1

2
m(Yj) 1{X 0

iβ(✓) < X 0
jβ(✓)}

for some increasing function m(·) : Y 7! R and any γ. Now relax the independence
between the unobservables by demanding only that the distribution of ⌘ given X =
x, Z = z varies with x, z only through the value they induce on ✏; write Fu for the
distribution of ⌘ given ✏ = u. Then

E [m(Y )|X = x, Z = z] =

Z
m{φ(x0β(✓0), ")} dFu(") = µm(Y )(x

0β(✓0), u) (say),

for u = e− µE(z), and so

µm(Y )(x
0
1β(✓0), u) > µm(Y )(x

0
2β(✓0, u)) ) x01β(✓0) > x02β(✓0).

The realizations of ✏ can be estimated by the residuals from a non- or semi-parametric
regression. This leads to a local version of the rank estimator of Cavanagh and Sherman
(1998) with Ξi = Ei − µE(Zi).
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The last example introduces a three-step estimator of the link function in a partially-
linear transformation model under conditional-independence restrictions.

Example 2.3. With φ(·) : Y 7! R strictly increasing, a generic formulation of the
linear tranformation model is φ(Y ) = X 0β(γ0) + ⌘, where ⌘ ⇠ F , independent of X, and
β(γ) = (1, γ0)0. Note that Pr[Y  y|X = x] = F (φ(y)− x0β(γ0)). Fix two values of Y in
Y , (y , y0). Then, for any (x1, x2) in X ⌦ X ,

Pr[Y ≥ y |X = x1] ≥ Pr[Y ≥ y0|X = x2] ) (x1 − x2)
0β(γ0) ≥ φ(y)− φ(y0).

Following Chen (2002), an estimator of ✓0 = φ(y)− φ(y0) maximizes (2.1) for

s(Vi, Vj ; bγ, ✓) =
1

2
r(Yi, Yj) 1{(Xi −Xj)

0β(bγ) ≥ ✓}+ 1

2
r(Yj , Yi) 1{(Xj −Xi)

0β(bγ) ≥ ✓},

where r(Yi, Yj) ⌘ 1{Yi ≥ y}− 1{Yj ≥ y0} and bγ is a first-step estimator of γ0. Now relax
the linear-index specification by considering the augmented transformation model

φ(Y ) = X 0β(γ0) + %(Ξ) + ⌘

for an unknown but smooth function %(·) : Rd(Ξ) 7! R. Replace the full independence
assumption by demanding that X?⌘|Ξ = ⇠, a.e. ⇠. From smoothness of %(·), it follows
that %(⇠1)− %(⇠2) ! 0 as ⇠1 − ⇠2 ! 0. Consequently,

Pr[Y ≥ y |X = x1,Ξ = ⇠] ≥ Pr[Y ≥ y0|X = x2,Ξ = ⇠] ) (x1 − x2)
0β(γ0) ≥ ✓0

An estimator that fits into (2.2) readily follows. Note that it does not require estimating
the function %(·). Observe also that the objective function requires a consistent plug-in
estimate of γ0. The estimator discussed in Example 2.2 will do for this purpose; see also
Abrevaya and Shin (2011) for a maximum rank-correlation approach to estimate γ0 when
Ξi is univariate and observable. An alternative estimator of γ0 is presented in Blundell
and Powell (2004).

3. DISTRIBUTION THEORY

In the sequel, I will assume that all elements of Ξ are continuous. This is strictly a matter
of convenience, as discrete conditioning variables can be tackled by including indicators
for the equality of two of its realizations. This would cause no additional theoretical
complications. The notation y will refer to convergence in probability of a random
variable, ; will mean convergence in distribution, and kAk will indicate the Euclidean
norm when A is a vector and the matrix norm when A is a matrix.

By virtue of symmetry, bQn(✓; γ) = (n(n− 1))−1
P

i 6=j bqn(Di, Dj ; γ, ✓) for

bqn(Di, Dj ; γ, ✓) ⌘ σ
−d(Ξ)
k s(Vi, Vj ; γ, ✓) k

⇣ bΞi − bΞj

σk

⌘
titj .

Because bias induced by kernel weighting can be dealt with under familiar regularity- and
smoothness conditions on the kernels and conditional expectations involved, the largest
chunk of our endeavors will be devoted to establishing the impact of estimation error in
the control on the asymptotic variance of b✓. In doing so, it will be useful to interpret
bQn(✓; γ) as an approximation to Qn(✓; γ) ⌘ (n(n− 1))−1

P
i 6=j qn(Di, Dj ; γ, ✓),

qn(Di, Dj ; γ, ✓) ⌘ σ
−d(Ξ)
k s(Vi, Vj ; γ, ✓) k

⇣Ξi − Ξj

σk

⌘
titj ,
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which, apart from the presence of trimming, would be the objective function of choice if
the control were directly observable.
Under the assumptions postulated below, the expectation of qn(Di, Dj ; γ, ✓) is well

defined. Let

⌧n(d; γ, ✓) ⌘ E [qn(d,D; γ, ✓)], ⌧(d; γ, ✓) ⌘ lim
n!1

⌧n(d; γ, ✓),

and note that E [qn(d,D; γ, ✓)] = E [qn(D, d; γ, ✓)] by symmetry. While both functions are
non-stochastic, ⌧n(d; γ, ✓) depends on the sample size through σk, a consequence of the
presence of kernel weights in qn(·, ·; γ, ✓). The limit objective function for our problem
then is Q(✓; γ) ⌘ E [⌧(D; γ, ✓)].

3.1. Maintained assumptions

The following high-level conditions will be imposed throughout.

Assumption 3.1. The function Q(✓; γ0) is continuous on Θ and uniquely maximized at

✓ = ✓0.

This assumption essentially imposes that ✓0 can be identified as a functional of Q(✓; γ0).
Precise conditions for Assumption 3.1 to hold will depend on the problem at hand. Section
4 contains an example.
The following requirement is standard in the analysis of nonlinear problems with non-

concave objective functions.

Assumption 3.2. The space Θ is compact and ✓0 is interior to it.

The class of estimators to which the results in this section will apply are those that
satisfy a Euclidean condition.

Assumption 3.3. The class S on D ⌦ D is Euclidean for an envelope S whose second

moment is finite.

Pakes and Pollard (1989) provide a definition and many illustrations of functions that
satisfy this condition. The classes introduced in the examples above, for instance, are all
Euclidean. Assumption 3.3 is a basic building block in the analysis of estimators that solve
non-smooth optimization problems. It can roughly be thought of as replacing a Hölder-
continuity condition on the objective function in conventional estimation procedures;
compare with Assumption 9 in Aradillas-López et al. (2007), for example. As a notable
example, indicator functions are not Hölder continuous.
The next assumption demands k(·) to be a symmetric higher-order kernel.

Assumption 3.4. For some positive integer k , k(·) is a symmetric kernel function of

order k . Furthermore, k(·) is bounded and is twice differentiable with bounded derivatives

k0(·) and k00(·).

The use of a higher-order kernel is motivated by the desire to control for bias induced
by kernel weighting. As Assumption 3.3 allows for non-concave s(·, ·; γ, ✓), working with
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a higher-order kernel does not introduce any additional complexity.2 Although it can be
relaxed, imposing symmetry on k(·) is natural given that the weight that is assigned to
the score contribution of a pair of observations should not depend on the order in which
they enter s(·, ·; γ, ✓). It also facilitates the construction of a higher-order kernel.
To ensure trimming does not have an adverse effect on the behavior of the objective

function, maintain Assumption 3.5.

Assumption 3.5. The trimming term is bounded by T, which is square-integrable.

Define the class K ⌘ {k((· − ·)/σ) : σ > 0)} on Rd(Ξ) ⌦ Rd(Ξ). By Lemma 22(ii)
in Nolan and Pollard (1987), this class is Euclidean for the constant envelope K ⌘
sup"2Rd(Ξ)kk(")k. On combining this with Assumptions 3.3 and 3.5, the class

Q ⌘ {σd(Ξ)qn(·, ·; γ, ✓) : γ 2 Γ, ✓ 2 Θ, σ > 0}
is Euclidean for the envelope Q ⌘ SKT2 by Lemma 2.14 in Pakes and Pollard (1989).
Thus, for appropriate choices of the kernel function and trimming scheme, our objective
function inherits the Euclidean properties from its unweighted counterpart.

The analysis will be confined to plug-in estimators of γ0 that are asymptotically linear.

Assumption 3.6. The estimator bγ satisfies

p
n(bγ − γ0) =

1p
n

nX

i=1

⌫(Di; γ0) + Op(1)

for a measurable function ⌫(·; γ) so that E [⌫(D; γ0)] = 0 and E [⌫(D; γ0)⌫(D; γ0)
0] <1.

Most commonly-used estimators satisfy Assumption 3.6, so this requirement is fairly
mild. It would be of interest to extend the results given here to situations where γ0 is
infinite dimensional and bγ is a nonparametric estimator. In Khan (2001), for example,
bγ is a conditional-quantile estimator. However, with the score being allowed to be non-
smooth in γ here, such a generalization would require another approach as the one taken
here.

3.2. Nonparametric first step

I first consider nonparametric first-step estimation of controls that can be written as
deviations from a conditional mean, i.e., withW partitioned as (E0, Z 0)0 and W = E ⇥Z ,

Ξ(w) = g(e)− µh(E)(z)

for chosen functions g(·) : E 7! Rd(Ξ), h(·) : E 7! Rd(Ξ), and associated conditional-
mean function µh(E)(·) : Z 7! Rd(Ξ). Verify that the controls in Examples 2.1–2.3 are
of this form. Here, Ξ(·) is unknown because µh(E)(·) is not specified. While, in principle,
any type of nonparametric estimator could be used, I work with a kernel estimator. It is

2This is in contrast to Honoré and Powell (2005) and Aradillas-López et al. (2007), where bias is
eliminated by a jackknife in order to retain concavity. The jackknife technique could impose a substantial
computational cost as it requires estimating θ0 for a range of different bandwidth values.
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given by

bΞ(w) = g(e)− bµh(E)(z) = g(e)−
Pn

i=1 h(Ei) `
⇣

z−Zi

σ`

⌘

Pn
i=1 `

⇣
z−Zi

σ`

⌘ ,

for a kernel function `(·) : Rd(Z) 7! R and a smoothing parameter σ` = σ`(n). The
Nadaraya-Watson estimator will prove a convenient choice for our purposes. However,
the limit distribution of b✓ will not depend on the particular choice for the first-step
estimator, so long as it satisfies certain conditions.
The set of admissible controls can be extended to cover other location parameters, such

as conditional quantiles for example. The key requirement for our subsequent claims is
a uniform rate of convergence and a linear representation result for the corresponding
nonparametric estimator. Assumptions 3.7–3.9, in tandem, provide conditions for such a
result for bΞ(w), which is stated in Lemma 3.1.

Assumption 3.7. For some positive integer l , `(·) is a symmetric l th-order kernel. In

addition, `(·) is bounded and ↵-Hölder for some ↵ > 0.

Assumption 3.8. The bandwidth σ` is nonnegative and proportional to n−λ, where λ 2
(1/2l , (1− {)/2d(Z)) for some { > 0.

Assumption 3.9. Let Z have Lebesgue density pZ and let Zc be a compact subset of Z

so that infz2Zc
pZ(z) > 0 and supz2Zc

pZ(z) < 1. Then, for each z in Zc, pZ(z) and

µh(E)(z) are l -times continuously differentiable with bounded derivatives. In addition,

h(E) has an envelope whose fourth moment exists and whose conditional variance given

Z = z is continuous in z.

The first of these assumptions again postulates the use of a bias-reducing kernel. As
usual, the required kernel order is increasing in the number of regressors.3 The dimension
of Z also affects the speed at which the associated bandwidth is allowed to shrink to
zero and the degree of differentiability that is required from its density. In addition
to imposing smoothness conditions, Assumption 3.9 introduces a subset of the support
of the regressors on which pZ(·) is known to be bounded away from zero. This is a
technical requirement that prevents the denominator of the first-step estimator from
getting arbitrarily close to zero. It also prevents bµh(E)(z) from converging too slowly due
to boundary effects.
The first auxiliary result follows.

Lemma 3.1. Let Assumptions 3.7–3.9 hold. Then

(i) sup
z2Zc

∥∥∥bµh(E)(z)− µh(E)(z)
∥∥∥ = Op

⇣s nκ/2

nσ
d(Z)
`

⌘
, and

(ii) bµh(E)(z)− µh(E)(z) =
1

nσ
d(Z)
`

nX

i=1

[h(Ei)− µh(E)(z)]

pZ(z)
`
⇣z − Zi

σ`

⌘
+Op

⇣ nκ/2

nσ
d(Z)
`

⌘

3The presence of discrete regressors would require a rewriting of Assumption 3.9 in terms of conditional
densities and a corresponding adjustment to the kernel function, but would not complicate the analysis
beyond notational inconvenience.
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uniformly over Zc.

To accompany Lemma 3.1, strenghten Assumption 3.5 so that only observations for
which Zi lies in Zc are retained.

Assumption 3.10. The trimming term takes the form ti = t(Zi) = 1{Zi 2 Zc} t(Zi)
where t(·) : Rd(Z) 7! R

+
0 is bounded and l -times differentiable with bounded derivatives.

The fixed trimming prescribed here comes at a cost in terms of asymptotic efficiency as it
implies that a fraction of the data is ignored asymptotically. It is, however, convenient for
proving consistency and asymptotic normality and has been applied elsewhere. Arguably,
the analysis below could be adjusted to allow for this fraction to converge to zero slowly
with the sample size.
Accomodate the slow convergence rate of the first-step estimator by imposing the

following shrinkage rate on the second-step bandwidth.

Assumption 3.11. The bandwidth σk is nonnegative and proportional to n−,  2
(1/2k , (1− { − 2d(Z)λ)/2(d(Ξ) + 2)).

It is apparent from Assumption 3.11 that the shrinkage speed of the bandwidths σ` and
σk are interrelated.
Let pΞ be the marginal density of Ξ. Introduce

⇡(v, ⇠; γ, ✓) ⌘ E [s(v, V ; γ, ✓)t(Z)|Ξ = ⇠] pΞ(⇠).

Assume ⇡(v, ⇠; γ, ✓) to be smooth, in the following sense.

Assumption 3.12. For each (γ, ✓) in Γ ⇥ Θ, v in V , and ⇠ in Rd(Ξ), the function

⇡(v, ⇠; γ, ✓) is continuous in γ and (k + 1)-times differentiable in its second argument

with uniformly bounded derivatives. Furthermore, the first derivative, rΞ⇡(v,Ξ(w); γ, ✓),
is l -times differentiable in z, and the derivatives are uniformly bounded.

This differentiability condition, in combination with the previous assumptions, implies
that

⌧n(d; γ, ✓) = ⌧(d; γ, ✓) + O(1/
p
n), ⌧(d; γ, ✓) = t(z)⇡(v,Ξ(w); γ, ✓),

uniformly over Γ⇥Θ.
The above conditions suffice for b✓ = argmax✓2Θ

bQn(✓; bγ) y argmax✓2ΘQ(✓; γ0) = ✓0.

Theorem 3.1. Let Assumptions 3.2–3.12 hold. Then kb✓ − ✓0k = Op(1).

Theorem 3.1 does not utilize the higher-order smoothness requirements from Assumption
3.12, nor does it require the use of a bias-reducing kernel to hold. However, these latter
conditions will be necessary to ensure that

p
n(b✓− ✓0) converges to a zero-mean random

variable.
Moving on to the asymptotic distribution of b✓ requires establishing the impact of the

first-step estimation error up to Op(1/
p
n) and calls for a somewhat more elaborate

argument.
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For each w in W and (γ, ✓) in Γ⇥Θ, let

⇣(w; γ, ✓) ⌘ −t(z)[h(e)−µh(E)(z)]
0  (z; γ, ✓),  (z; γ, ✓) ⌘ E [rΞ⇡(V,Ξ(W ); γ, ✓)|Z = z].

The following lemma shows that bQn(✓; γ) asymptotically behaves like the sum of two

U -statistics and is key in deriving the limit distribution of b✓.

Lemma 3.2. Let Assumptions 3.3–3.4 and 3.7–3.12 hold. Then

bQn(✓; γ)−Qn(✓; γ) =
2

n

nX

i=1

⇣(Wi; γ, ✓) + Op(1/
p
n)

uniformly over Γ⇥Θ.

Recall that Qn(✓; bγ) is the infeasible criterion function that uses Ξ as a control. The
function ⇣(·; γ, ✓) captures the nonnegligible effect of replacing Ξ by a nonparametric
estimator. Therefore, Lemma 3.2 shows that we can handle the variation that is induced
through the first estimation step separately from the analysis of an infeasible estimator
that assumes the control variables to be observable.
The proof of asymptotic normality builds on expansions of each of the U -processes

in Lemma 3.2. Two additional assumptions are needed. The first of these relates to the
large-n limit of Qn(✓; γ), the second concerns ⇣(·; γ, ✓).

Assumption 3.13. Let N denote a convex neighborhood around (γ0, ✓0). For each d in

D and (γ, ✓) in N , all mixed third partial derivatives of ⌧(d; γ, ✓) exist and there exists an

integrable function M⌧ (·) so that kr✓✓0⌧(d; γ0, ✓)−r✓✓0⌧(d; γ0, ✓0)k  M⌧ (d) k✓ − ✓0k.
Also, the moments E [kr✓⌧(D; γ0, ✓0)k2], E [kr✓✓0⌧(D; γ0, ✓0)k], and E [kr✓γ0⌧(D; γ0, ✓0)k]
are finite, and the matrix E [r✓✓0⌧(D; γ0, ✓0)] is negative definite.

Assumption 3.14. For each w in W and (γ, ✓) in N , all mixed third partial derivatives

of ⇣(w; γ, ✓) exist and kr✓✓0⇣(w; γ0, ✓)−r✓✓0⇣(w; γ0, ✓0)k  M⇣(w) k✓ − ✓0k for an in-

tegrable function M⇣(·). Furthermore, E [kr✓⇣(W ; γ0, ✓0)k2], E [kr✓γ0⇣(W ; γ0, ✓0)k], and
E [kr✓✓0⇣(W ; γ0, ✓0)k] are all finite.

Assumptions 3.13 and 3.14 postulate conditions that allow for expansions of ⌧(·; γ, ✓)
and ⇣(·; γ, ✓) in a neighborhood of (γ0, ✓0). Also imposed is the existence of certain
moments of the derivatives of ⌧(·; γ, ✓) and ⇣(·; γ, ✓) under P . These assumptions permit
the application of a standard law of large numbers and a central limit theorem.

All ingredients are now available to validate the asymptotically-linear representation

p
n(b✓ − ✓0) =

1p
n

nX

i=1

!(Di; γ0, ✓0) + Op(1)

with influence function !(d; γ0, ✓0) ⌘ −Σ−1
✓✓ [r✓⌧(d; γ0, ✓0)+Σ✓γ⌫(d; γ0)+r✓⇣(d; γ0, ✓0)]

for the matrices Σ✓✓ ⌘ E [r✓✓0⌧(D; γ0, ✓0)]/2 and Σ✓γ ⌘ E [r✓γ0⌧(D; γ0, ✓0)]/2; the factor
of one half appears because the objective function is a U -process of order two. On noting
that the influence function has zero mean and finite variance under P , we arrive at
Theorem 3.2.
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Theorem 3.2. Let Assumption 3.2–3.14 hold. Then b✓ satisfies
p
nkb✓−✓0k = Op(1) and

p
n(b✓ − ✓0) ; N (0,Ω),

for covariance matrix Ω ⌘ E [!(D; γ0, ✓0)!(D; γ0, ✓0)
0].

That is, b✓ is
p
n-consistent and asymptotically normal. Its asymptotic covariance matrix

has the usual ‘sandwich’ form. The influence-function representation is convenient for
evaluating the impact of the estimation noise in bγ and the controls, which are given by
−Σ−1

✓✓ Σ✓γ⌫(·; γ0) and −Σ−1
✓✓ r✓⇣(·; γ0, ✓0), respectively.

On letting e✓ ⌘ argmax✓2ΘQn(✓; bγ),
p
n(b✓ − e✓) = − 1p

n

nX

i=1

Σ−1
✓✓ r✓⇣(Di; γ0, ✓0) + Op(1).

The estimator e✓ is applicable to a variety of nonlinear models with observable controls.
Robinson (1988) argued that remaining agnostic about how control variables affect the
outcome of interest can be useful in preventing misspecification bias. He establishedp
n-consistency of a least-squares estimator of ✓0 in a model of the form Y = X 0✓0 +

%(Ξ)+⌘, where %(⇠) is replaced by a nonparametric estimator. The results presented here
generalize Robinson (1988) to a nonlinear setting, cfr. Examples 2.2 and 2.3. Estimators
that maximize an objective function of the form in (2.2) further prevent the need to
estimate the nuisance function %(·).

3.3. Semiparametric first step

Suppose that the control function is known up to a finite-dimensional parameter δ0, i.e.,
Ξ(w) = Ξ(w; δ0), and is estimated as bΞi = Ξ(Wi; bδ), where bδ satisfies an asymptotic-
linearity condition.

Assumption 3.15. The estimator bδ satisfies

p
n(bδ − δ0) =

1p
n

nX

i=1

υ(Wi; δ0) + Op(1),

for a measurable function υ(·; δ0) so that E [υ(W ; δ0)] = 0 and E [υ(W ; δ0)υ(W ; δ0)
0] <1.

Let the control obey the following smoothness requirement.

Assumption 3.16. For each w in W and δ in an Op(1/
p
n) neighborhood of δ0, Ξ(w; δ)

is twice differentiable in δ, with bounded derivatives.

With a semiparametrically-specified control, trimming becomes unnecessary.

Assumption 3.17. The trimming term ti is equal to the identity for all i.

The requirements on the second-step bandwidth also become less stringent as now the
first step satisfies supw2W kbΞ(w)− Ξ(w)k = Op(1/

p
n).
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Assumption 3.18. The bandwidth σk is nonnegative and proportional to n−,  2
(1/2k , 1/2(d(Ξ) + 2)).

The smoothness requirement that was the topic of Assumption 3.12, finally, can be
reduced to the following assumption; the second part of Assumption 3.12 is replaced by
Assumption 3.16.

Assumption 3.19. For each (γ, ✓) in Γ ⇥ Θ, v in V , and ⇠ in Rd(Ξ), the function

⇡(v, ⇠; γ, ✓) is continuous in γ and (k + 1)-times differentiable in its second argument,

with uniformly bounded derivatives.

Given the efforts made so far, it is a small task to show that, with a semiparametric
control,

p
n(b✓ − ✓0) =

1p
n

nX

i=1

!(Di; γ0, ✓0) + Op(1),

with influence function !(d; γ0, ✓0) ⌘ −Σ−1
✓✓ [r✓⌧(d; γ0, ✓0) + Σ✓γ⌫(d; γ0) + Σ✓δυ(w; δ0)],

for Σ✓δ ⌘ E [r✓δ0⌧(D; γ0, ✓0)].

Theorem 3.3. Let Assumptions 3.2-3.1, 3.13–3.14, and 3.15–3.19 hold. Then b✓ satisfiesp
nkb✓ − ✓0k = Op(1) and p

n(b✓ − ✓0) ; N (0,Ω)

for covariance matrix Ω ⌘ E [!(D; γ0, ✓0)!(D; γ0, ✓0)
0].

4. EXAMPLES

This section presents details on a two-step estimator of monotone linear-index models
(cfr. Example 2.2) and on a three-step estimator of the link function in a partially-linear
transformation model (cfr. Example 2.3).

4.1. Monotone index models

For brevity I will work under the presumption that γ0 is absent (or known). Consequently,
throughout, I will write ⌧(d; ✓) rather than ⌧(d; γ, ✓), etc. The model is characterized by
the sign restriction

µm(Y )(x
0
1β(✓0), ⇠) > µm(Y )(x

0
2β(✓0), ⇠) ) (x1 − x2)

0β(✓0) > 0, a.e. ⇠, (4.1)

where, recall, β(✓) = (1, ✓0)0 and m(·) : Y 7! R is increasing. This setup extends the
semiparametric control-function approach of Ahn and Powell (1993) and Blundell and
Powell (2004) to a large class of nonlinear models.
Recall from Example 2.2 that the score for the estimator by Cavanagh and Sherman

(1998) is

s(Vi, Vj ; ✓) =
1

2
m(Yi) 1{(Xi −Xj)

0β(✓) > 0}+ 1

2
m(Yj) 1{(Xj −Xi)

0β(✓) > 0}.

For each (v1, v2) in V ⌦ V , the collection {s(v1, v2; ✓) : ✓ 2 Θ} is Euclidean for the
envelope m(max{y1, y2}), and so Assumption 3.3 is satisfied provided that m(Y ) has
finite variance under P .



Pairwise-comparison estimation 13

The results that follow are readily modified to fit Han’s (1987) pioneering and closely-
related maximum rank-correlation estimator. This estimator maximizes Kendall’s tau
between Y and X 0β(✓) as a function of ✓. Its score is

s(Vi, Vj ; ✓) =
1

2
1{Yi > Yj} 1{(Xi −Xj)

0β(✓) > 0}+ 1

2
1{Yj > Yi} 1{(Xj −Xi)

0β(✓) > 0}

and the corresponding class S on Θ is Euclidean for the constant envelope of unity. I
will mention the necessary modifications where needed. Localized versions of the max-
imum rank-correlation estimator with a semiparametrically-specified or an observable
univariate control have also been analyzed in Abrevaya et al. (2010) and Abrevaya and
Shin (2011). Proposition 4.2 below contains the asymptotic covariance matrix of these
estimators as special cases.
Equation (4.1) bears resemblance to the moment condition behind the estimator of

Blundell and Powell (2004) which, on assuming invertibility of µY (·, ⇠), is
µY (x

0
1β(✓0), ⇠) = µY (x

0
2β(✓0), ⇠) ) (x1 − x2)

0β(✓0) = 0, a.e. ⇠. (4.2)

Although (4.1) is weaker than (4.2), the relative asymptotic efficiency of the localized
versions of the estimators of Han (1987) and Cavanagh and Sherman (1998) and the
estimator of Blundell and Powell (2004) depends on the model at hand.

4.1.1. Identification Point identification of ✓0 can be established under an obvious
modification to well known conditions. Throughout this subsection and the next, X is a
d(X)-dimensional vector whose first component is continuous; let X denote the remaining
d(X)− 1 components.

Proposition 4.1. Let the first component of X have an everywhere-positive Lebesgue

density given (X ,Ξ) = (x , ⇠) a.e. and assume that the support of the conditional density

of X given Ξ = ⇠ is not contained in a proper linear subspace of Rd(X). Then ✓0 is

identified and Assumption 3.1 is satisfied.

It is easy to see that the large-support requirement is sufficient but not necessary for
identification. Write X⇠ for the support of the distribution of X given Ξ = ⇠. The
conditions in Proposition 4.1 imply that the set

n
(x1, x2) 2 X⇠ ⌦ X⇠ : sign{(x1 − x2)

0✓} 6= sign{(x1 − x2)
0✓0}

o
,

has non-zero measure for almost all ⇠ in Rd(Ξ) and each ✓ in Θ except for ✓ = ✓0. This
leads to point identification. Some form of exclusion restriction will typically be warranted
to credibly support the conditions in Proposition 4.1, as is common in control-function
problems. Proposition 4.1 extends to Han’s (1987) estimator without modification.

4.1.2. Asymptotic variance Let I ⌘ X 0β(✓0), Ii ⌘ X 0
iβ(✓0), and write p(◆, ⇠) for the

density of (I,Ξ) at (◆, ⇠). Let

X (x , z, ◆, ⇠) ⌘ t(z) µt(Z)(◆, ⇠)
h

x − µt(Z)X (◆, ⇠)

µt(Z)(◆, ⇠)

i
, S(y, ◆, ⇠) ⌘ m(y)− µm(Y )(◆, ⇠),

where µt(Z)(·) and µt(Z)X (·) are conditional-mean functions, in obvious notation. The
following proposition provides an expression for the components of the influence function
!(Di; ✓0) when Ξi is estimated nonparametrically.
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Proposition 4.2. Let µm(Y )(·, ·) and p(·, ·) be differentiable. Then

r✓⌧(Di; ✓0) = X (Xi, Zi, Ii,Ξi) S(Yi, Ii,Ξi) p(Ii,Ξi),

r✓⇣(Wi; ✓0) = E [X (X , Zi, I,Ξ) rΞ0µm(Y )(I,Ξ) p(I,Ξ)|Z = Zi] [h(Ei)− µh(E)(Zi)],

−Σ✓✓ = E [X (X , Z, I,Ξ) X (X , Z, I,Ξ)0 rIµm(Y )(I,Ξ) p(I,Ξ)],

provided that the first two moments of t(Z), X , and t(Z)X exist.

On redefining

S(y, ◆, ⇠) = E [1{y > Y } − 1{y < Y }|I = ◆,Ξ = ⇠]

Proposition 4.2 covers the components of the covariance matrix of a local maximum
rank-correlation estimator.
Proposition 4.2 can be used to construct a kernel-based estimator of the asymptotic

variance. Consider estimating p(◆, ⇠), X (x , z, ◆, ⇠), and S(y, ◆, ⇠) and its derivatives by
means of nonparametric density and regression estimators. For example, a Rosenblatt-
Parzen estimator of p(Ii,Ξi) is given by

bp(bIi, bΞi) ⌘
1

(n− 1)

1

σ|σ
d(Ξ)
k

X

j 6=i

|
⇣ bIi − bIj

σ|

⌘
k
⇣ bΞi − bΞj

σk

⌘
,

where bIi ⌘ X 0
iβ(

b✓), |(·) : R 7! R is a kernel function, and σ| is a bandwidth. These

estimators can be combined to arrive at plug-in estimates b!(Di; b✓), say, of the influence
function !(Di; ✓0) (i = 1, . . . , n).

An alternative covariance-matrix estimator is obtained by working with derivatives of
a smoothed objective function. Let J(✏) ⌘

R ✏

−1
|(") d". The function

bq(Di; b✓) ⌘
1

n− 1

X

j 6=i

m(Yi)−m(Yj)

σJσ
d(Ξ)
k

J
⇣ bIi − bIj

σJ

⌘
k
⇣ bΞi − bΞj

σk

⌘
titj

is a smoothed version of (n − 1)−1
P

j 6=i q(Di, Dj ; ✓), up to an inessential constant. An

estimator of !(Di; ✓0) can readily be constructed from the derivatives of bq(Di; b✓). Under

regularity conditions, r✓bq(Di; b✓) y r✓⌧(Di; ✓0), n
−1

Pn
i=1 r✓✓0bq(Di; b✓) y 2Σ✓✓, etc.

4.1.3. Numerical illustrations A simple parametrization of Example 2.2 is the bivariate
linear simultaneous-equation model

Y = X1 + E✓0 + ⌘, E = (X1, X2)δ0 + ✏,

for disturbances (⌘, ✏) and regressors (X1, X2), drawn as
✓
⌘
✏

◆
⇠ N

✓
0
0

◆
,

✓
1 ⇢⌘✏
⇢⌘✏ 1

◆]
,

✓
X1

X2

◆
⇠ N

✓
0
0

◆
,

✓
1 ⇢X
⇢X 1

◆]
,

respectively. I report results for the kernel-weighted pairwise-differenced least-squares
estimator of Ahn and Powell (1993), b✓AP1, and its least-absolute deviation counterpart,
b✓AP2, the matching estimator of Blundell and Powell (2004), b✓BP, and the local version

of the rank estimator of Cavanagh and Sherman (1998) for m(y) = y, b✓CS. The first
two (correctly) utilize the linearity of the model. The third estimator (correctly) invokes
invertibility of the conditional-mean function. Tables 1–2 report on the performance
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of the various estimators on the basis of their mean, median, standard deviation, and
interquartile range as obtained over 1000 Monte Carlo runs. Throughout, the sample
size was fixed at n = 100. The first-stage coefficient vector δ0 was initially set to either
(−1, 1)0 or (1,−1)0, and subsequently rescaled in each simulation run to maintain a value
for the concentration parameter of 100, avoiding problems of weak instrumental variables.

To ensure that a proper comparison between the different approaches can be made,
all were computed using the same kernel k(·) and bandwidth σk, and the same estimates
of the first-stage disturbance. Because bias-reducing kernels only start giving worthwhile
improvements over kernels of order two for reasonably large samples, k(·) was taken to
be the standard-normal density, with its argument scaled down by its empirical standard
deviation. The bandwidth was determined via a least-squares cross-validation procedure
on a nonparametric regression of Yi on X1i, Ei, and bΞi. No trimming was performed.
The control was obtained both as the residual from a least-squares regression and as the
deviation of E from a nonparametric estimate of its conditional mean. In the latter case,
the first-step estimator used a standard-normal kernel together with a cross-validated
bandwidth. The kernel arguments were again scaled down by their respective standard
deviations.

Table 1 presents the results for the data generating process with δ0 / (−1, 1)0. All the
estimators considered perform well. None of them dominates in any category uniformly
across the designs. While, not surprisingly, point estimates obtained through b✓BP and
b✓CS tend to be somewhat more volatile, they often yield small biases coupled to only
small increases in standard deviation and interquartile range compared to the estimators
that exploit linearity of the model. As expected, using a nonparametric estimator of
the first-stage error results in larger standard deviations and interquartile ranges for all
estimators.

Table 2 provides the simulation results for the design where δ0 / (1,−1)0. This second

parametrization treats all estimators less favorable, except for b✓AP2, whose performance
is virtually unaffected. The standard deviation of all other estimators increased compared
to Table 1. In terms of root mean-squared error and mean absolute error, as to evaluate
estimator risk (not reported), the least absolute-deviation approach is clearly the superior

choice. As before, the local-rank estimator tends to keep up with b✓AP1. The estimator
that suffers most from the change in δ0 is b✓BP. Now, it shows substantial bias combined
with very high volatility.

The Monte Carlo experiment was repeated for the left-censored simultaneous-equation
model

Y = max{0, X1 + E✓0 + ⌘}, E = (X1, X2)δ0 + ✏,

with covariates and disturbances drawn as before. Because of the nonlinearity in the
model, the squared-loss and absolute-deviation estimators, b✓AP1 and b✓AP2, were replaced
by their respective censoring-corrected counterparts, b✓HP1 and b✓HP2, based on Honoré
and Powell (1994); see Example 2.1. Kernels and bandwidths were chosen as before.

Table 3 contains the results for δ0 / (−1, 1)0. Here, b✓HP1 and b✓HP2 tend to be more

biased than both b✓BP and b✓CS, and are less variable. The largest standard deviation and
interquartile range are often found for the local-rank estimator, but not always. The
performance of the first three estimators appears sensitive to the specific constellation
of the dependence among the errors and the covariates. The bias of the rank estimator
is often smallest and much more stable across the variations in ⇢⌘✏ and ⇢X . It may again
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Table 1. Results for the linear triangular model with δ0 / (−1, 1)0.

Semiparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 −.015 −.046 −.104 −.012 −.028 −.046 −.122 −.030
−.5 .5 −.015 −.042 −.098 −.014 −.029 −.047 −.108 −.030
.5 −.5 .017 .041 .002 .021 .014 .049 −.000 .012
.5 .5 .033 .044 .028 .039 .030 .049 .025 .034

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 .127 .102 .138 .156 .166 .134 .178 .205
−.5 .5 .130 .104 .142 .161 .171 .136 .179 .207
.5 −.5 .099 .097 .090 .121 .125 .135 .122 .146
.5 .5 .115 .093 .121 .153 .153 .117 .161 .205

Nonparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 .049 −.007 .024 .048 .031 −.013 .003 .021
−.5 .5 .045 −.006 .025 .043 .028 −.017 .001 .022
.5 −.5 −.021 −.005 .086 −.015 −.020 .004 .081 −.019
.5 .5 −.026 .005 .126 −.016 −.024 .013 .111 −.024

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 .158 .129 .195 .199 .200 .167 .232 .242
−.5 .5 .162 .129 .192 .197 .200 .164 .246 .243
.5 −.5 .101 .119 .109 .123 .128 .159 .148 .157
.5 .5 .126 .119 .157 .171 .161 .151 .199 .220

Note: n = 100, 1000 replications.

be observed that using a nonparametric estimator of the control inflates the disperion
measures for all approaches.
On turning to the second design for the censored model, Table 4 reveals a similar

pattern as did Table 2 for the linear model. Both bias and volatility measures increase
for all estimators. The results are again most striking for b✓BP, which tends to be centered
around −1 rather than 1 and is very imprecise.

4.1.4. Empirical illustration I used PSID-1975 data to estimate a canonical model of
married women’s labor supply; see, e.g., Mroz (1987).4 The outcome variable of interest

4PSID: Panel Study of Income Dynamics public use dataset. Produced and distributed by the University
of Michigan with primary funding from the National Science Foundation, the National Institute of Aging,
and the National Institute of Child Health and Human Development. Ann Arbor, MI.
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Table 2. Results for the linear triangular model with δ0 / (1,−1)0.

Semiparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 −.057 −.048 −.434 −.043 −.088 −.051 −.443 −.099
−.5 .5 −.060 −.038 −.418 −.054 −.086 −.039 −.430 −.099
.5 −.5 .373 .045 1.202 .481 .330 .048 −1.931 .353
.5 .5 .121 .048 .127 .151 .097 .051 .027 .104

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 .201 .096 .380 .319 .246 .129 .239 .322
−.5 .5 .198 .100 .225 .274 .236 .134 .227 .319
.5 −.5 .452 .095 52.790 .679 .511 .120 1.318 .819
.5 .5 .228 .097 .798 .322 .282 .133 .465 .390

Nonparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 −.081 −.007 −.159 −.074 −.110 −.015 −.354 −.114
−.5 .5 −.080 .002 −.363 −.061 −.105 −.002 −.334 −.115
.5 −.5 .520 .004 −7.889 .608 .477 .005 −3.101 .487
.5 .5 .159 .015 .887 .194 .137 .016 .477 .136

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓AP1
b✓AP2

b✓BP
b✓CS

b✓AP1
b✓AP2

b✓BP
b✓CS

−.5 −.5 .197 .122 2.499 .280 .249 .159 .331 .322
−.5 .5 .197 .123 1.551 .288 .247 .163 .295 .309
.5 −.5 .487 .110 138.010 .706 .550 .138 3.134 .843
.5 .5 .252 .116 2.351 .379 .314 .154 .808 .444

Note: n = 100, 1000 replications.

is the number of hours worked (throughout the year) and the covariates are the log of
the wage rate, other household income, the number of kids in the houshold not older
than six and older than six, the age of the woman, and her level of education (in years of
schooling). The classic concerns here are that women will self-select into the sample by
only supplying labor if their (expected) utility from doing so exceeds utility from outside
options, and the endogeneity of the wage rate. The sample consists of 753 women; 428
of whom were employed at some point during the year.
I obtained estimates of the (normalized) coefficient vector in the hours-worked equation

via least squares, b✓LS, two-stage least squares, b✓2SLS, as well as b✓AP1, b✓BP, and b✓CS

from above. These latter estimators control for both sample selection and endogeneity.
All estimates were scaled to lie on the unit hypersphere, which is the most natural
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Table 3. Results for the censored triangular model with δ0 / (−1, 1)0.

Semiparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 −.164 −.165 −.062 −.008 −.169 −.166 −.075 −.030
−.5 .5 −.193 −.194 −.104 −.022 −.194 −.197 −.122 −.042
.5 −.5 −.026 −.032 −.019 .037 −.025 −.033 −.026 .024
.5 .5 −.080 −.083 −.009 .050 −.085 −.087 −.017 .031

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 .118 .119 .138 .195 .159 .159 .171 .211
−.5 .5 .124 .128 .169 .181 .159 .171 .215 .227
.5 −.5 .112 .113 .108 .156 .139 .144 .141 .194
.5 .5 .123 .127 .168 .196 .157 .162 .209 .224

Nonparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 −.127 −.127 .051 .033 −.133 −.135 .029 −.001
−.5 .5 −.162 −.160 .083 .036 −.173 −.170 .038 .005
.5 −.5 −.036 −.039 .105 −.007 −.032 −.039 .094 −.016
.5 .5 −.107 −.110 .225 −.006 −.113 −.110 .195 −.018

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 .139 .142 .185 .243 .184 .176 .215 .256
−.5 .5 .154 .160 .297 .231 .204 .207 .338 .286
.5 −.5 .123 .126 .142 .160 .152 .156 .188 .189
.5 .5 .140 .145 .271 .214 .180 .181 .328 .261

Note: n = 100, 1000 replications.

normalization for applied work.5 For the choice of instrumental variables I followed Ahn
and Powell (1993) and included the region’s unemployment rate, a dummy for whether
or not the woman lives in a metropolitan area, her experience in the labor market (in
years), and the education levels of her mother and father, together with all covariates
except for the wage rate. The controls were estimated nonparametrically using the same
ingredients as in the simulations above.6 Indicator functions were used to handle discrete
conditioning variables in the Nadaraya-Watson estimators.

5The least squares and two-stage least squares estimators included a constant term, but these are not
reported.
6Note that the implementation of bθAP1 to deal with the potential endogeneity of the wage rate is
different from Ahn and Powell (1993). They used an instrumental-variable procedure while, here, a
control-function approach is retained.
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Table 4. Results for the censored triangular model with δ0 / (1,−1)0.

Semiparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 −.411 −.418 −1.817 −.077 −.412 −.414 −1.816 −.231
−.5 .5 −.334 −.340 −1.680 −.024 −.333 −.336 −1.064 −.088
.5 −.5 −.251 −.261 −1.985 .578 −.239 −.253 −1.960 .401
.5 .5 −.196 −.200 −1.438 .157 −.198 −.203 −1.605 .099

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 .158 .164 .218 .607 .207 .222 .279 .554
−.5 .5 .145 .150 21.527 .343 .199 .2010 .785 .385
.5 −.5 .171 .180 .231 .874 .230 .239 .279 1.042
.5 .5 .154 .159 14.758 .406 .201 .212 1.264 .472

Nonparametric first step

Mean bias Median bias

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 −.410 −.419 −2.069 −.169 −.413 −.426 −2.002 −.275
−.5 .5 −.328 −.334 −1.410 −.049 −.334 −.341 −1.186 −.096
.5 −.5 −.315 −.327 −2.300 .678 −.314 −.328 −2.225 .472
.5 .5 −.246 −.250 −13.718 .182 −.243 −.243 −2.412 .133

Standard deviation Interquartile range

⇢⌘✏ ⇢X b✓HP1
b✓HP2

b✓BP
b✓CS

b✓HP1
b✓HP2

b✓BP
b✓CS

−.5 −.5 .177 .186 .433 .506 .235 .245 .407 .514
−.5 .5 .176 .181 14.673 .326 .232 .234 1.949 .391
.5 −.5 .196 .206 .408 .898 .262 .280 .456 1.136
.5 .5 .176 .184 329.544 .433 .234 .238 3.753 .528

Note: n = 100, 1000 replications.

Table 5 presents the point estimates along with their standard errors as obtained via a
nonparametric bootstrap. The least-squares coefficient on log wage is negative, although
insignificant. Two-stage least squares finds a strong positive effect of an increase in the
wage rate on hours worked. It also reports no significant effects of the number of offspring
on labor intensity and asserts that, ceteris paribus, women with higher education are
expected to decrease their number of hours worked. This latter effect is significant at the
5% level. Correcting for endogenous sample selection through kernel weighting on the
propensity score shows that the number of children does have a negative and statistically
significant expected influence on hours. It also results in significantly larger standard
errors. Ahn and Powell (1993) justified the large uncertainty through the sensitivity of the
results to the selection-equation specification in more parametrized versions of the model
(see Mroz, 1987). The estimator by Blundell and Powell (2004) gives a picture similar
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Table 5. Labor-force equation results

Point estimate (Standard error)

Regressor b✓LS b✓2SLS b✓AP1
b✓BP

b✓CS

log wage −.048 .979 .540 .995 .577
(.229) (.067) (.320) (.385) (.304)

other income −.012 −.006 −.003 −.010 −.020
(.012) (.004) (.017) (.006) (.126)

# kids 6 −.946 −.162 −.791 .091 −.769
(.144) (.167) (.269) (.578) (.309)

# kids> 6 −.318 −.040 −.268 .013 −.270
(.129) (.051) (.104) (.019) (.097)

age −.021 −.008 −.014 .000 −.014
(.019) (.008) (.016) (.009) (.079)

education −.040 −.114 −.105 −.047 −.065
(.068) (.022) (.066) (.020) (.127)

Note: All estimates rescaled to lie on unit hypersphere; 199 bootstrap replications.

to two-stage least-squares—log wage has a positive and significant effect, the size of the
household has no significant impact, and years of schooling has a negative influence—
again with more uncertainty around the point estimates. The local-rank estimator, in
contrast, yields results that are much in line with b✓AP1, although it does not maintain
additive-separability of the latent disturbances in the model. The only covariate that is
found to significantly affect the expected number of hours worked at the 5% significance
level is the number of young children.

4.2. Transformation models

Transformations φ(·) : Y 7! R of an outcome variable have a long history. One popular
motivation for their use is the hope that standard regression machinery is more applicable
to φ(Y ) than it is directly to Y ; a textbook example is a log-linear model. Alternatively,
duration data is often analyzed with particular forms of the generic linear transformation
model φ(Y ) = X 0β(γ0) + ⌘ with ⌘?X; examples include the proportional-hazard model
and the GAFT model.
Here, I focus on inferring the transformation φ(·) (up to location) in the partially-linear

model from Example 2.3, restated here for convenience as

φ(Y ) = X 0β(γ0) + %[Ξ] + ⌘, ⌘?X|Ξ = ⇠ a.e., β(γ) = (1, γ0)0,

for a smooth but unknown function %(·) : Rd(Ξ) 7! R and φ(·) invertible, normalized
increasing. The additional sources for heterogeneity in this model are substantial. The
function %(·) allows for an unspecified impact of the control on Y , and the unobservable
⌘ can be correlated with the covariates through Ξ. Nevertheless, I am not aware of any
work that deals with nonparametric inference on φ(·) in this setting.

Example 2.3 showed that, for a fixed (y , y0) in Y , ✓0 = φ(y)− φ(y0) can be estimated
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via a local version of Chen’s (2002) rank estimator. The score for this estimator is

s(Vi, Vj ; bγ, ✓) =
1

2
r(Yi, Yj) 1{(Xi −Xj)

0β(bγ) ≥ ✓}+ 1

2
r(Yj , Yi) 1{(Xj −Xi)

0β(bγ) ≥ ✓},

with r(Yi, Yj) = 1{Yi ≥ y} − 1{Yj ≥ y0} and bγ an asymptotically-linear estimator of
γ0, e.g., the local-rank estimator from the previous subsection. The class S on Γ⇥Θ so
formed is Euclidean for the constant envelope of unity. Assumption 3.3 is thus trivially
satisfied and the technique falls into our general framework.

4.2.1. Identification Fix (y , y0) throughout and normalize φ(y0) = 0. Then ✓0 = φ(y)
is the unknown parameter value of interest. From Chen (2002) [Assumption 2] it is
immediate that the conditions stated in Proposition 4.1 are also sufficient to identify ✓0
in the augmented transformation model.

4.2.2. Asymptotic variance As before, let I ⌘ X 0β(γ0) and write p(◆, ⇠) for the density
of (I,Ξ) at (◆, ⇠). For any (y1, y2), let

Sy1,y2(y, ◆, ⇠) ⌘ 1{y < y1} − F⇠(✓(y2)− ◆− %[⇠]),

where F⇠ is the conditional distribution of ⌘ given Ξ = ⇠. Notice that

E [Sy,y(Y, I,Ξ)|I = ◆,Ξ = ⇠] = 0

for any y. Introduce

X (◆1, ◆2, ⇠) ⌘ T (◆1, ⇠) E [t(Z)X |I = ◆2,Ξ = ⇠], T (◆, ⇠) ⌘ E [t(Z)|I = ◆,Ξ = ⇠],

and, lastly, let

R(◆, ⇠) ⌘ f⇠(−◆− %[⇠]) %0[⇠] +rΞF⇠(−◆− %[⇠]),

where f⇠ is the conditional density of ⌘ given Ξ = ⇠. The asymptotic variance of b✓ when
the control is estimated nonparametrically is presented in Proposition 4.3.

Proposition 4.3. Let p(·, ·) and F⇠(·) be differentiable with respect to their arguments.

Let %0(·) denote the derivative of %(·). Assume the first moments of t(Z) and X exist.

Then r✓⌧(Di; γ0, ✓0) is given by

t(Zi)
⇥
T (Ii−✓0,Ξi)Sy,y(Yi, Ii,Ξi)p(Ii−✓0,Ξi)−T (Ii+✓0,Ξi)Sy0,y0(Yi, Ii,Ξi)p(Ii+✓0,Ξi)

⇤
.

Further,

−Σ✓✓ =

Z
f⇠(−◆− %[⇠]) p(◆+ ✓0, ⇠) p(◆, ⇠) T (◆, ⇠)T (◆+ ✓0, ⇠) d(◆, ⇠),

Σ✓γ =

Z
f⇠(−◆− %[⇠]) p(◆+ ✓0, ⇠) p(◆, ⇠)

⇥
X (◆+ ✓0, ◆, ⇠)−X (◆, ◆+ ✓0, ⇠)

⇤0
d(◆, ⇠),

and r✓⇣(Wi; γ0, ✓0) = −t(Zi) r✓ (Zi; γ0, ✓0) [h(Ei) − µh(E)(Zi)] where r✓ (Zi; γ0, ✓0)
takes the form
Z ⇥

T (◆− ✓0, ⇠)R(✓0 − ◆, ⇠)0p(◆− ✓0)− T (◆+ ✓0, ⇠)R(−◆, ⇠)0p(◆+ ✓0)
⇤

p(◆, ⇠|Zi) d(◆, ⇠)

and p(·, ·|z) is the conditional density of the indices given Z = z.
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Note that the asymptotic variance depends on the estimator of the index coefficients.
This is different from the corresponding result in Chen (2002) [Theorem 1]; see Jochmans
(2012) for details.
The large-n variance can be estimated as in the previous subsection.

4.2.3. Uniform consistency In the transformation model the object of interest is a
function rather than a finite-dimensional parameter; write ✓0(y) ⌘ φ(y)− φ(y0) to make
its dependence on y explicit. In light of this, it is of interest to provide a uniform-
consistency result. To this end, let Y ⌘ [y, y] ⇢ Y so that [✓0(y) − ✏, ✓0(y) + ✏] ⇢ Θ for
some ✏ > 0 and consider inferring {✓0(y) : y 2 Y }.
Contrary to Chen (2002) [Theorem 1], uniform consistency is not immediate as, here,

it is not clear whether the estimator of ✓0(·) can be guaranteed to be monotonic on Y

for any finite n. The reason is the necessity for k(·) to be a kernel of a higher order
than two.7,8 The following result shows that uniform consistency is attainable if ✓0(·) is
smooth.

Proposition 4.4. Let ✓0(·) be continuous on Y . Then supy2Y kb✓(y)− ✓0(y)k = Op(1).

From a practical point of view the possible non-monotonicity of b✓(·) does not bring forth
any genuine complication, as the original point estimates may always be rearranged to a
monotonic sequence; see Chernozhukov et al. (2009) for this proposal in a generic setting
and results on its improvement over the original (non-monotonic) estimator in terms of
general Lp norms.

4.2.4. Numerical illustrations To assess the finite-sample performance of b✓(·) it was
applied to the model

φ(Y ) = I + Ξ+ ⌘,

0
@

I
Ξ
⌘

1
A ⇠ N

2
4
0
@

0
0
0

1
A ,

0
@

1 ⇢IΞ 0
⇢IΞ 1 ⇢Ξ⌘

0 ⇢Ξ⌘ 1

1
A
3
5 ,

with φ(y) set either to (i) y (linear model; y0 = 0), (ii) log(y) (log-linear model; y0 =
1), (iii) sinh(2y)/13 (hyperbolic-sine model; y0 = 0), or (iv) 2(

p
y − 1) (a Box-Cox

power transform; y0 = 1). The sample size was set to 250 observations. Like before, the
estimation was conducted using a cross-validated bandwidth for the conditional mean of
Y given the indices. A fourth-order Epanechnikov kernel was used for the weighting but
none of the estimated functions were found to be non-monotonic.
Figure 1 shows fifty realizations of b✓(·) (dashed lines), together with ✓0(·) (solid line),

7Suppose that θ0(y1) < θ0(y2). A calculation shows that the estimates, bθ(y1) and bθ(y2), must satisfyPn

i=1
1{y1 ≤ Yi < y2}

⇥
Ri(bθ(y2))− Ri(bθ(y1))

⇤
≤ 0, where

Ri(θ) ≡
X

j 6=i

1{X0
jβ(bγ) ≤ X0

iβ(bγ)− θ}

σ
d(Ξ)
k

k
⇣ bΞi − bΞj

σk

⌘
.

Provided that k(ε) ≥ 0 for all ε, sign{Ri(bθ(y2)) − Ri(bθ(y1))} = sign{bθ(y1) − bθ(y2)} for all i, leading to
monotonicity.
8The same problem would arise when using a jackknife approach to bias reduction because it will
typically require recomputing the estimator for more than two alternative bandwidth choices. This
implies some of the jackknife weights to be negative.
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Figure 1. Fifty realizations of b✓(·).
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for transformations (i)–(iv). The left panels were constructed from data generated with
⇢IΞ = −.50 and ⇢Ξ⌘ = 0, which corresponds to Ξ being an exogenous regressor that
is correlated with I. The right panels were obtained from data where ⇢IΞ = −.50 and
⇢Ξ⌘ = .50. Here, I and ⌘ are dependent unconditional on realizations of Ξ. Overall
the estimated link functions closely capture the shape of ✓0(·). Only with the Box-Cox
transformation is there a noticable (upward) bias. These general patterns were confirmed
in a larger set of Monte Carlo results, which are omitted here for the sake of brevity.
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APPENDIX: PROOFS OF RESULTS

Throughout the Appendix, denote the product measure P⌦P on the product space D⌦D

by P. Write Pn for the empirical measure generated on sampling at random from P and,
similarly, let Pn be the random probability measure placing mass 1/n(n − 1) on each
ordered pair of observations (Di, Dj). For a measurable function f(·, ·) on D ⌦ D , write
E [f(d, ·)] = f(d, P ) for the expectation of f(·, ·) given its first argument and let E[f(·, ·)] =
f(P, P ). The empirical counterparts are En[f(d, ·)] = f(d, Pn) = n−1

Pn
i=1 f(d,Di) and

En[f(·, ·)] = (n(n− 1))−1
P

i 6=j f(Di, Dj), respectively.

Proof of Lemma 3.1: The result follows from standard kernel-smoothing arguments;
see e.g., Aradillas-López et al. (2007). 2

Proof of Theorem 3.1: Given random sampling, the construction of Θ, identification
of ✓0, and continuity of Q(✓; γ0), the proof amounts to verifying that

sup
✓2Θ

∥∥ bQn(✓; bγ)−Q(✓; γ0)
∥∥ = Op(1).

The triangle inequality provides the bound
∥∥∥ bQn(✓; bγ)−Q(✓; γ0)

∥∥∥ 
∥∥∥ bQn(✓; bγ)−Qn(✓; bγ)

∥∥∥+
∥∥∥Qn(✓; bγ)− ⌧n(P ; bγ, ✓)

∥∥∥

+
∥∥∥⌧n(P ; bγ, ✓)− ⌧n(P ; γ0, ✓)

∥∥∥+
∥∥∥⌧n(P ; γ0, ✓)−Q(✓; γ0)

∥∥∥,
(A.1)
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which holds uniformly over Θ. Hence, it suffices to show that each of these terms converges
to zero in probability.
The first right-hand side term in (A.1) captures the noise in the control. Recall that

bQn(✓; bγ)−Qn(✓; bγ) equals

1

n(n− 1)

nX

i=1

X

j 6=i

s(Vi, Vj ; bγ, ✓)t(Zi)t(Zj)

σ
d(Ξ)
k

h
k
⇣ bΞi − bΞj

σk

⌘
− k

⇣Ξi − Ξj

σk

⌘i
.

Use a mean-value expansion, the symmetry of bQn(✓; γ) and Qn(✓; γ), Assumptions 3.3,
3.4, 3.8, and 3.11, and Lemma 3.1(i) to see that, uniformly over Θ,

∥∥∥ bQn(✓; bγ)−Qn(✓; bγ)
∥∥∥ =

∥∥∥
✓
n

2

◆−1 nX

i=1

X

j 6=i

s(Vi, Vj ; bγ, ✓)t(Zi)t(Zj)

σ
d(Ξ)+1
k

[bΞi − Ξi]
0 k0(⇤)

∥∥∥

 2 En[Q
0]

supz2Zc
kbµh(E)(z)− µh(E)(z)k

σ
d(Ξ)+1
k

=
1

σ
d(Ξ)+1
k

Op

⇣s nκ/2

nσ
d(Z)
`

⌘
= Op(1),

where k0(⇤) is k0(·) evaluated in a vector that, elementwise, lies inbetween σk
−1[bΞi − bΞj ]

and σk
−1[Ξi − Ξj ], and Q0 ⌘ SK0T2 for K0 ⌘ sup"2Rd(Ξ)kk0(")k.

The second right-hand side term in (A.1) involves a zero-mean U -process. Because
the class Q is Euclidean for an envelope whose second moment is finite, Corollary 7 of
Sherman (1994b) can be applied to get

sup
✓2Θ

∥∥∥Qn(✓; bγ)− ⌧n(P ; bγ, ✓)
∥∥∥ = sup

✓2Θ

∥∥∥En

⇥
qn(·, ·; bγ, ✓)

⇤
− E

⇥
qn(·, ·; bγ, ✓)

⇤∥∥∥

=
1

σ
d(Ξ)
k

Op

⇣ 1p
n

⌘
= Op(1),

with the last transition following by Assumption 3.11.
For the third right-hand side term in (A.1), recall that kbγ − γ0k = Op(1/

p
n) and

⌧n(d; γ, ✓) is continuous in γ for all d in D by Assumptions 3.6 and 3.12, respectively.
Therefore, it follows that

sup
✓2Θ

∥∥∥⌧n(P ; bγ, ✓)− ⌧n(P ; γ0, ✓)
∥∥∥ =

1

σ
d(Ξ)
k

Op

⇣ 1p
n

⌘
= Op(1),

again employing Assumption 3.11.
For the non-stochastic right-hand side term in (A.1), finally, standard kernel-smoothing

arguments, as validated by Assumptions 3.4, 3.11, and 3.12 can be used. For a fixed
d = (v, w) in D , rewrite ⌧n(d; γ0, ✓) as a kernel-weighted average of ⇡(v, ⇠; γ0, ✓) under
P , i.e.,

⌧n(d; γ0, ✓) = t(z)

Z
⇡(v, ⇠; γ0, ✓)

σ
d(Ξ)
k

k
⇣Ξ(w)− ⇠

σk

⌘
d⇠.

By a mean-value expansion of ⇡(v, ⇠; γ0, ✓) around Ξ(w), followed by a change of variable
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from ⇠ to " = Ξ(w)−⇠

σk

,

sup
✓2Θ

∥∥∥⌧n(d; γ0, ✓)− ⌧(d; γ0, ✓)
∥∥∥ = σk sup

✓2Θ

∥∥∥t(z)
Z

rΞ⇡(v, ⇤; γ0, ✓) " k(") d"
∥∥∥

 σkt(z)

Z
sup
✓2Θ

∥∥rΞ⇡(v, ⇤; γ0, ✓)
∥∥ ∥∥"

∥∥ ∥∥k(")
∥∥ d" = O(σk).

Dominated convergence and Assumption 3.11 then yield

sup
✓2Θ

∥∥∥⌧n(P ; γ0, ✓)− ⌧(P ; γ0, ✓)
∥∥∥ = O(σk) = O(1),

which completes the proof. 2

Proof of Lemma 3.2: The point of departure is a second-order expansion of each
bqn(Di, Dj ; γ, ✓) around the scaled difference σk

−1[Ξi − Ξj ]. Average across all pairs and
exploit symmetry to write

bQn(✓; γ)−Qn(✓; γ) =

✓
n

2

◆−1 nX

i=1

X

j 6=i

s(Vi, Vj , ✓)t(Zi)t(Zj)

σ
d(Ξ)+1
k

[bΞi − Ξi]
0 k0

⇣Ξi − Ξj

σk

⌘
+Rn

for a remainder term Rn that captures the contribution of

h bΞi − bΞj

σk
− Ξi − Ξj

σk

i0
k00(⇤)

h bΞi − bΞj

σk
− Ξi − Ξj

σk

i
.

The remainder term can be ignored for our purposes because, uniformly over Γ⇥Θ,

Rn  2 En[Q
00]

supz2Zc
kbµh(E)(z)− µh(E)(z)k2

σ
d(Ξ)+2
k

= Op

⇣ 1p
n

⌘

for Q00 ⌘ ST2K00, K00 ⌘ sup"2Rd(Ξ)kk00(")k. The inequality follows from the Euclidean
properties of the class S together with Assumptions 3.4 and 3.5. The rate of convergence
can be seen to hold on combining Lemma 3.1(i) with Assumption 3.11.
Lemma 3.1(ii) implies that

bΞi − Ξi = − 1

nσ
d(Z)
`

nX

k=1

[h(Ek)− µh(E)(Zi)]

pZ(Zi)
`
⇣Zi − Zk

σ`

⌘
+Op

⇣ nκ/2

nσ
d(Z)
`

⌘

for all Zi in Zc. On plugging this expression into bQn(✓; γ) − Qn(✓; γ). and rearranging
terms,

bQn(✓; γ)−Qn(✓; γ) =
1

3

✓
n

3

◆−1 nX

i=1

X

j 6=i

X

k 6=i,j

rn(Di, Dj , Dk; γ, ✓) + Op

⇣ 1p
n

⌘
,

where rn(Di, Dj , Dk; γ, ✓) is defined as

−s(Vi, Vj ; γ, ✓)t(Zi)t(Zj)

σ
d(Ξ)+1
k σ

d(Z)
`

[h(Ek)− µh(E)(Zi)]
0

pZ(Zi)
k0
⇣Ξi − Ξj

σk

⌘
`
⇣Zi − Zk

σ`

⌘
.

The influence of the remainder term in the linear representation of bΞ(w) − Ξ(w) on
bQn(✓; γ)−Qn(✓; γ) is

✓
n

2

◆−1 nX

i=1

X

j 6=i

s(Vi, Vj ; γ, ✓)t(Zi)t(Zj)

σ
d(Ξ)+1
k

k0
⇣Ξi − Ξj

σk

⌘
Op

⇣ nκ/2

nσ
d(Z)
`

⌘
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and is asymptotically negligible; argue as in the proof of Theorem 3.1 to see that it is
bounded by

2 En[Q
0]

σ
d(Ξ)+1
k

Op

⇣ nκ/2

nσ
d(Z)
`

⌘
= Op

⇣ 1p
n

⌘
.

Likewise, the contributions of the terms with k = i or k = j to bQn(✓; γ) − Qn(✓; γ) are
uniformly bounded by

∥∥∥
✓
n

2

◆−1 nX

i=1

X

j 6=i

rn(Di, Dj , Di; γ, ✓)

n

∥∥∥ 
Pn

i=1

P
j 6=i Q

0(Di, Dj) kh(Ei)− µh(E)(Zi)k
(4 `(0))−1n2(n− 1)σ

d(Ξ)+1
k σ

d(Z)
`

= Op

⇣n[d(Ξ)+1]+d(Z)λ

n

⌘
= Op

⇣ 1p
n

⌘

and

∥∥∥
✓
n

2

◆−1 nX

i=1

X

j 6=i

rn(Di, Dj , Dj ; γ, ✓)

n

∥∥∥ 
Pn

i=1

P
j 6=i Q

0(Di, Dj) kh(Ej)− µh(E)(Zj)k
(4 `(0))−1n2(n− 1)σ

d(Ξ)+1
k σ

d(Z)
`

= Op

⇣n[d(Ξ)+1]+d(Z)λ

n

⌘
= Op

⇣ 1p
n

⌘
,

respectively. A symmetrization argument then yields

bQn(✓; γ)−Qn(✓; γ) =
1

3

✓
n

3

◆−1 X

◆3

r(Di, Dj , Dk; γ, ✓) + Op

⇣ 1p
n

⌘
,

where

r(Di, Dj , Dk, ✓) ⌘ rn(Di, Dj , Dk; γ, ✓) + rn(Di, Dk, Dj ; γ, ✓) + rn(Dj , Di, Dk; γ, ✓)

+ rn(Dk, Di, Dj ; γ, ✓) + rn(Dj , Dk, Di; γ, ✓) + rn(Dk, Dj , Di; γ, ✓).

and ◆3 = (i, j, k) ranges over the n(n − 1)(n − 2) ordered triplets of distinct integers
from the set {1, 2, . . . , n}. It is readily verified that the expectation of kr(·, ·, ·; γ, ✓)k2/n
is O(1) so that, up to Op(1/

p
n),

bQn(✓; γ)−Qn(✓; γ) =
1

3
r(P, P, P ; γ, ✓) +

1

n

nX

i=1

⇥
r(Di, P, P ; γ, ✓)− r(P, P, P ; γ, ✓)

⇤

by Lemma A.3 in Ahn and Powell (1993), and it remains only to work out the expectations
involved.
Write ri,j,kn (·, ·, ·; γ, ✓), ri,k,jn (·, ·, ·; γ, ✓), etc. for the six components of r(Di, Dj , Dk; γ, ✓).

The contribution of the first four terms to r(Di, P, P ; γ, ✓) can be neglected. Consider
the term ri,j,kn (Di, P, P ; γ, ✓), for example. For a random variable A, write Pa for the
distribution of D given A = a. Notice that, uniformly over Γ⇥Θ,

∥∥∥ri,j,kn (Di, P, P ; γ, ✓)
∥∥∥ t(Zi)

∥∥∥
ZZ

[h(e)− µh(E)(Zi)]

pZ(Zi)σ
d(Z)
`

dPz `
⇣Zi − z

σ`

⌘
pZ(z) dz

∥∥∥

⇥
∥∥∥
ZZ −s(Vi, v; γ, ✓)t(z)

σ
d(Ξ)+1
k

dP⇠ k
0
⇣Ξi − ⇠

σk

⌘
pΞ(⇠) d⇠

∥∥∥.

By iterated expectations and Assumptions 3.7, 3.8, and 3.9, the first right-hand side term
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can be shown to equal

t(Zi)
∥∥∥
Z

[µh(E)(z)− µh(E)(Zi)]

pZ(Zi)σ
d(Z)
`

pZ(z) `
⇣Zi − z

σ`

⌘
dz

∥∥∥ = O(σl
`) = O

⇣ 1p
n

⌘

using standard arguments. Next, iterate expectations on the second right-hand side term
to see that

sup
(γ,✓)2Γ⇥Θ

∥∥∥ri,j,kn (Di, P, P ; γ, ✓)
∥∥∥  O

⇣ 1p
n

⌘
sup

(γ,✓)2Γ⇥Θ

∥∥∥
Z
⇡(Vi, ⇠; γ, ✓)

σ
d(Ξ)+1
k

k0
⇣Ξi − ⇠

σk

⌘
d⇠

∥∥∥.

Change variable from ⇠ to " = Ξi−⇠
σk

and integrate by parts to find that, uniformly over
Γ⇥Θ,

∥∥∥
Z
⇡(Vi, ⇠; γ, ✓)

σ
d(Ξ)+1
k

k0
⇣Ξi − ⇠

σk

⌘
d⇠

∥∥∥ =
∥∥∥
Z

rΞ⇡(Vi,Ξi − "σk; γ, ✓) k(") d"
∥∥∥

=
∥∥∥rΞ⇡(Vi,Ξi; γ, ✓)

∥∥∥+O(σk
k),

which is bounded. Here, the last transition follows again by standard kernel-smoothing
arguments and Assumption 3.12. A similar exercise can be done for ri,k,jn (Di, P, P ; γ, ✓),
rj,i,kn (Di, P, P ; γ, ✓), and r

k,i,j
n (Di, P, P ; γ, ✓). It then follows that

sup
(γ,✓)2Γ⇥Θ

kri,j,kn (Di, P, P ; γ, ✓)k = O

⇣ 1p
n

⌘
, sup

(γ,✓)2Γ⇥Θ

krj,i,kn (P,Di, P ; γ, ✓)k = O

⇣ 1p
n

⌘
,

sup
(γ,✓)2Γ⇥Θ

kri,k,jn (Di, P, P ; γ, ✓)k = O

⇣ 1p
n

⌘
, sup

(γ,✓)2Γ⇥Θ

krk,i,jn (P,Di, P ; γ, ✓)k = O

⇣ 1p
n

⌘
,

and are, thus, all asymptotically negligible.
Now turn to the two remaining terms. Iterate expectations and argue as in the previous

paragraph to write rj,k,in (P, P,Di; γ, ✓) as

−
ZZ

t(z)
[h(Ei)− µh(E)(z)]

0

σ
d(Z)
` pZ(z)

h
rΞ⇡(v,Ξ(w); γ, ✓) +O(σk

k)
i
dPz `

⇣z − Zi

σ`

⌘
pZ(z) dz.

Assumptions 3.7, 3.9, and 3.12 imply that the bias induced by the kernel-weighting is
O(σl

`) = O(1/
p
n), and so

rj,k,in (P, P,Di; γ, ✓) = −t(Zi)
⇥
h(Ei)− µh(E)(Zi)

⇤0
 (Zi; γ, ✓) + Op

⇣ 1p
n

⌘

= ⇣(Wi; γ, ✓) + Op

⇣ 1p
n

⌘
.

Because rk,j,in (P, P,Di; γ, ✓) has an identical structure,

rk,j,in (P, P,Di; γ, ✓) = −t(Zi)
⇥
h(Ei)− µh(E)(Zi)

⇤0
 (Zi; γ, ✓) + Op

⇣ 1p
n

⌘

= ⇣(Wi; γ, ✓) + Op

⇣ 1p
n

⌘
,

follows immediately from the same reasoning.
On combining all results,

bQn(✓; γ)−Qn(✓; γ) = −2

3
r(P, P, P, ✓) +

2

n

nX

i=1

⇣(Wi; γ, ✓) + Op

⇣ 1p
n

⌘
.
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The proof is complete as r(P, P, P ; γ, ✓) = O(1/
p
n); use the fact that E [h(E)|Z = z] =

µh(E)(z) to deduce that the dominant term in ⇣(·; γ, ✓) has mean zero conditional on
Z = z. 2

Proof of Theorem 3.2: The proof proceeds by approximating bQn(✓; bγ) by a smooth
function and then applying results of Sherman (1994a) to this approximation. In light
of Lemma 3.2, the construction of this expansion is split up in two parts. The first deals
with Qn(✓; bγ), the second with ⇣(Pn; bγ, ✓).
Define the functions pn(✓; γ) ⌘ Qn(✓; γ) − Qn(✓0; γ) and p(✓; γ) ⌘ E[pn(✓; γ)] on N .

Applying a Hoeffding decomposition to pn(✓; γ) gives

pn(✓; γ) = p(✓; γ) + 2
⇥
⌧n(Pn; γ, ✓)− ⌧n(Pn; γ, ✓0)− p(✓; γ)

⇤
+ En

⇥
rn(·, ·; γ, ✓)

⇤
.

The first two right-hand side terms constitute the projection of Qn(✓; γ). The remainder
term takes the form

rn(Di, Dj ; γ, ✓) = bn(Di, Dj ; γ, ✓)− bn(Di, P ; γ, ✓)− bn(P,Dj ; γ, ✓) + p(✓; γ)

for bn(·, ·; γ, ✓) ⌘ qn(·, ·; γ, ✓)− qn(·, ·; γ, ✓0). Consider the projection term. For each d in
D ,

⌧n(d; γ, ✓) = ⌧(d; γ, ✓) + O(1/
p
n)

by the arguments in the proof of Lemma 3.2. By Assumption 3.13 and the
p
n-consistency

of bγ,
⌧n(d; bγ, ✓) = ⌧(d; γ0, ✓) +rγ⌧(d; γ0, ✓)

0(bγ − γ0) + Op(1/
p
n)

as bγ lies in N for n sufficiently large. So,

⌧n(d; bγ, ✓)− ⌧n(d; bγ, ✓0) = [⌧(d; γ0, ✓)− ⌧(d; γ0, ✓0)]

+ [rγ0⌧(d; γ0, ✓)−rγ0⌧(d; γ0, ✓0)]
0(bγ − γ0) + Op(1/

p
n).

A second-order expansion of ⌧(d; γ0, ✓) around ✓0 gives

⌧(d; γ0, ✓)− ⌧(d; γ0, ✓0) = (✓ − ✓0)
0r✓⌧(d; γ0, ✓0) +

1

2
(✓ − ✓0)

0r✓✓0⌧(d; γ0, ✓0)(✓ − ✓0)

+
1

2
(✓ − ✓0)

0
⇥
r✓✓0⌧(d; γ0, ⇤)−r✓✓0⌧(d; γ0, ⇤)

⇤
(✓ − ✓0)

for some ⇤ inbetween ✓ and ✓0; clearly, ⇤ lies in N . Similarly,

rγ0⌧(d; γ0, ✓)−rγ0⌧(d; γ0, ✓0) = (✓ − ✓0)
0r✓γ0⌧(d; γ0, ✓0) +O(k✓ − ✓0k2)

uniformly over Op(1) neighborhoods of ✓0. Next, invoke the Lipschitz condition under
Assumption 3.13, take expectations, use the asymptotic linearity of bγ, and observe that
r✓⌧(P ; γ0, ✓0) = 0 by the first-order conditions to the limiting maximization problem.
Then,

p(✓; bγ) = ⌧n(P ; bγ, ✓)− ⌧n(P ; bγ, ✓0)

= (✓ − ✓0)
0r✓γ0⌧(P ; γ0, ✓0)⌫(Pn; γ0) +

1

2
(✓ − ✓0)

0r✓✓0⌧(P ; γ0, ✓0)(✓ − ✓0)

+ O(k✓ − ✓0k2) + Op

⇣ 1p
n

⌘

uniformly over Op(1) neighborhoods of ✓0. For the second term in the projection, like-
wise, average ⌧n(Di; bγ, ✓)− ⌧n(Di; bγ, ✓0) across observations, subtract p(✓; bγ), and invoke
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Assumptions 3.6 and 3.13 to see that

⌧n(Pn; bγ, ✓)− ⌧n(Pn; bγ, ✓0)−p(✓; bγ) = (✓−✓0)0r✓⌧(Pn; γ0, ✓0)+Op(k✓−✓0k2)+Op

⇣ 1p
n

⌘

uniformly over Op(1) neighborhoods of ✓0. On collecting terms,

pn(✓; bγ) = (✓ − ✓0)
0Σ✓✓(✓ − ✓0)

+
2p
n
(✓ − ✓0)

0
p
n
⇥
r✓⌧(Pn; γ0, ✓0) + Σ✓γ ⌫(Pn; γ0) + Op(1)

⇤

+ Op(k✓ − ✓0k2) + En[rn(·, ·; bγ, ✓)]

uniformly over Op(1) neighborhoods of ✓0.
Now turn to ⇣(Pn; γ, ✓). Taylor-expand around ✓0 and γ0, in turn. Then appeal to the

Lipschitz condition and the finiteness of the population moments in Assumption 3.14
to dispense with r✓✓0⇣(Pn, γ0, ✓0). Recall that kbγ − γ0k = Op(1/

p
n) and observe that

r✓γ0⇣(Pn; γ0, ✓0) y r✓γ0⇣(P ; γ0, ✓0) = 0 by the law of large numbers. Therefore,

⇣(Pn; bγ, ✓)− ⇣(Pn; bγ, ✓0) = (✓ − ✓0)
0
⇥
r✓⇣(Pn; γ0, ✓0) + Op(1/

p
n)
⇤
+ Op(k✓ − ✓0)

2k)

uniformly over Op(1) neighborhoods of ✓0.
Combine the expansions of pn(✓; bγ) and ⇣(Pn; bγ, ✓) − ⇣(Pn; bγ, ✓0) with Lemma 3.2.

Then, on rearranging terms and letting

&(d; γ0, ✓0) ⌘ r✓⌧(d; γ0, ✓0) + Σ✓γ⌫(d; γ0) +r✓⇣(d; γ0, ✓0),

one obtains

bQn(✓; bγ)− bQn(✓0; bγ) = (✓ − ✓0)
0Σ✓✓(✓ − ✓0) + (✓ − ✓0)

0 2[
p
n&(Pn; γ0, ✓0) + Op(1)]p

n

+ Op(k✓ − ✓0k2) + En[rn(·, ·; bγ, ✓)]

uniformly over Op(1) neighborhoods of ✓0. Establishing Theorem 3.2 then requires in-
spection of the remainder term in this approximation. Because of the presence of kernel
weights in the objective function, showing

p
n-consistency of b✓ requires proceeding in

two steps. Once
p
n-consistency has been established, asymptotic normality will follow

readily.
First, combine the Euclidean properties of the class Q with Corollary 17 and Corollary

21 in Nolan and Pollard (1987) to see that the class {σd(Ξ)
k rn(·, ·; γ, ✓) : γ 2 Γ, ✓ 2 Θ} is

Euclidean for an envelope whose second moment under P exists; denote its bound by R.
Further observe that rn(·, ·; γ, ✓) is P -degenerate on D ⌦ D and that rn(·, ·; γ, ✓0) = 0.
Apply Theorem 3 in Sherman (1994a) with, using Sherman’s notation, Θn = Θ, γn = 1,
and any ↵ 2 (0, 1) to get

En[rn(·, ·; bγ, ✓)] = Op

⇣ 1

σ
d(Ξ)
k n

⌘
= Op(1)

uniformly over Θn. By Theorem 1 of Sherman (1994a), this yields a preliminary con-

vergence rate of OP (1/

q
σ
d(Ξ)
k n) for b✓. Next, reset γn = En[R]/σ

d(Ξ)
k and let δn =

1/

q
σ
d(Ξ)
k n. Then, on setting ↵ sufficiently close to unity, by another application of The-
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orem 3 of Sherman (1994a), in tandem with Assumption 3.11,

En[r(·, ·; bγ, ✓)] =
En[Q]

σ
d(Ξ)
k

Op

⇣ (γnδn)↵
n

⌘
= Op

⇣ 1

n

⌘

uniformly over Op(1/

q
σ
d(Ξ)
k n) = Op(1) neighborhoods of ✓0. The

p
n-consistency of b✓

then follows from another application of Theorem 1 of Sherman (1994a).
Given

p
n-consistency and the order of the remainder term, asymptotic normality

follows from Theorem 2 in Sherman (1994a). 2

Proof of Theorem 3.3: The proof mimics the proof of Theorem 3.2. 2

Proof of Proposition 4.1: The proof follows from straightforward modifications to the
proof of Theorem 1(i) and 1(iii) in Cavanagh and Sherman (1998). 2

Proof of Proposition 4.2: The proof follows similar steps as Sherman (1993) [proof of
Theorem 4]. Fix ✓ in Θ. Manipulate the inequalities in the score and iterate expectations
to verify that

⌧(Di; ✓) = t(Zi)

Z ⇥
m(Yi)−m(y)

⇤
t(z) 1{(Xi − x)0β(✓) > 0} dPΞi

pΞ(Ξi)

= t(Zi)

Z h Z "(x ,✓)

−1

µt(Z)(x , ◆,Ξi) S(Yi, ◆,Ξi) pI(◆|x ,Ξi) d◆
i
pX (x |Ξi) dx pΞ(Ξi)

up to the constant c ⌘ t(Zi)
R
m(y) t(z) dPΞi

pΞ(Ξi), where "(x , ✓) = Ii+(Xi−x )0(✓−✓0),
and µt(Z)(·) is the conditional mean of the trimming function.
The inner integral in the displayed equation above can be differentiated with respect

to ✓. On doing so, one finds that r✓⌧(Di; ✓) equals

t(Zi)

Z
µt(Z)(x , "(x , ✓),Ξi) (Xi−x ) S(Yi, "(x , ✓),Ξi) pI("(x , ✓)|x ,Ξi) pX (x |Ξi) dx pΞ(Ξi).

On evaluating at ✓ = ✓0 and computing the integral, this yields the expression for
⌧(Di; ✓0) stated in the proposition.
The form of Σ✓✓ can be derived immediately from the above equation, on differentiating

with respect to ✓, integrating, and observing that E [S(Y, I,Ξ)|I = ◆,Ξ = ⇠] = 0.
Recall that ⌧(Di; ✓) = t(Zi)⇡(Vi,Ξi; ✓) and that

⇣(Wi; ✓) = −t(Zi)[h(Ei)− µh(E)(Zi)]
0E [rΞ⇡(V,Ξ; ✓)|Z = Zi]

when the functional form of Ξ(·) is unknown. From above,

t(Zi)r✓Ξ0⇡(Vi,Ξ(Wi); ✓) = −X (Xi, Zi, Ii,Ξi) rΞ0µm(Y )(Ii,Ξi) p(Ii,Ξi).

The expression for r✓⇣(Wi; ✓) then follows on integrating and rearranging the resulting
equation. 2

Proof of Proposition 4.3: Observe that

⌧(Di; γ, ✓) = t(Zi)

Z
(1{y < y0} − 1{Yi < y}) 1{x0β(γ)  X 0

iβ(γ)− ✓} t(z) dPΞi
pΞ(Ξi)

− t(Zi)

Z
(1{Yi < y0} − 1{y < y}) 1{x0β(γ) < X 0

iβ(γ) + ✓} t(z) dPΞi
pΞ(Ξi)
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up to c ⌘
R
(1{Yi < y0} − 1{y < y}) t(Zi)t(z) dPΞi

pΞ(Ξi), which does not depend on
unknown parameters. Iterate expectations and reverse the order of both integrals to find
that, up to c,

⌧(Di; γ, ✓) = t(Zi)

Z h Z "(x ,γ)+✓

−1

µt(Z)(x , ◆,Ξi) Sy0,y(Yi, ◆,Ξi) pI(◆|x ,Ξi) d◆
i
dPΞi

pΞ(Ξi)

− t(Zi)

Z h Z "(x ,γ)−✓

−1

µt(Z)(x , ◆,Ξi) Sy,y0
(Yi, ◆,Ξi) pI(◆|x ,Ξi) d◆

i
dPΞi

pΞ(Ξi)

for "(x , γ) = Ii + (Xi − x )0γ. Here, µt(Z)(·) denotes the conditional mean of t(·) and
pI(·|·, ·) is the conditional density of I, with the conditioning arguments being obvious.

Using Leibniz’s rule to differentiate the integrals between brackets in the displayed
equation above with respect to ✓, r✓⌧(Di; γ, ✓) is found to equal

t(Zi)

Z h
µt(Z)(x , "(x , γ)− ✓,Ξi) Sy,y0(Yi, "(x , γ)− ✓,Ξi) pI("(x , γ)− ✓|x ,Ξi)

− µt(Z)(x , "(x , γ) + ✓,Ξi) Sy0,y(Yi, "(x , γ) + ✓,Ξi) pI("(x , γ) + ✓|x ,Ξi)
i
dPΞi

pΞ(Ξi),

again reversing the order of the terms. Evaluate at (γ0, ✓0) and integrate out X to find the
expression for r✓⌧(Di; γ0, ✓0) stated in the proposition. Verify that r✓⌧(P ; γ0, ✓0) = 0
because both

E [Sy,y(Y, I,Ξ)|I = ◆,Ξ = ⇠] = 0 and E [Sy0,y0
(Y, I,Ξ)|I = ◆,Ξ = ⇠] = 0

hold.
To find the expectation of r✓γ0⌧(·; γ0, ✓0) under P , differentiate the expression for

r✓⌧(d; γ, ✓) with respect to γ0, rearrange, and integrate out d. On using the moment
conditions in the above display this gives

2Σ✓γ =

Z
f⇠(✓0 − ◆− %[⇠]) p(◆− ✓0, ⇠) p(◆, ⇠)

⇥
X (◆− ✓0, ◆, ⇠)−X (◆, ◆− ✓0, ⇠)

⇤0
d(◆, ⇠)

−
Z
f⇠(−◆− %[⇠]) p(◆+ ✓0, ⇠) p(◆, ⇠)

⇥
X (◆+ ✓0, ◆, ⇠)−X (◆, ◆+ ✓0, ⇠)

⇤0
d(◆, ⇠).

In the same fashion,

2Σ✓✓ =−
Z

T (◆, ⇠) T (◆− ✓0, ⇠) f⇠(✓0 − ◆− %[⇠]) p(◆− ✓0, ⇠) p(◆, ⇠) d(◆, ⇠)

−
Z

T (◆, ⇠) T (◆+ ✓0, ⇠) f⇠(−◆− %[⇠]) p(◆+ ✓0, ⇠) p(◆, ⇠) d(◆, ⇠).

The expressions of Σ✓γ and Σ✓✓ in the proposition then follow from a change of variable
from ◆ to ◆− ✓0 under the first integral in both equations.
Differentiater✓⌧(d; γ0, ✓0) = t(z)⇡(v, ⇠; γ0, ✓0) with respect to ⇠0 and take expectations

conditional on Z = Zi. Then r✓⇣(Wi; γ0, ✓0) follows readily. Contrary to Σ✓✓ and Σ✓γ ,
however, this expression does not symmetrize because of the conditioning on Z = Zi in
r✓ (Zi; γ0, ✓0). 2

Proof of Proposition 4.4: Apply Lemma A.1 in Carroll et al. (1997). 2
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