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Abstract

We introduce a “nestedness” relation for a general class of sender-receiver games

and compare equilibrium properties, in particular the amount of information trans-

mitted, across games that are nested. Roughly, game B is nested in game A if the

players’s optimal actions are closer in game B. We show that under some condi-

tions, more information is transmitted in the nested game in the sense that the

receiver’s expected equilibrium payoff is higher. The results generalize the com-

parative statics and welfare comparisons with respect to preferences in the seminal

paper of Crawford and Sobel (1982). We also derive new results with respect to

changes in priors in addition to changes in preferences. We illustrate the usefulness

of the results in three applications: (i) delegation to an intermediary with a differ-

ent prior, (ii) the choice between centralization and delegation, and (iii) two-way

communication with an informed principal.

Keywords: sender-receiver games, information transmission, nestedness, inter-

mediary, delegation, informed principal.

JEL classification: D23, D82, D83.
∗This paper supersedes Chen’s (2010) “Optimism and Communication” and Gordon’s (2011) “Wel-

fare Properties of Cheap Talk Equilibria.” We thank Oliver Board, Hector Chade, Alejandro Manelli,
Edward Schlee, Joel Sobel and audiences at Arizona State University, Workshop on Language and Com-
munication, Kellogg School of Management 2007, Midwest Theory Conference 2008, Canadian Economic
Theory Conference 2009 and Society of Economic Design Conference 2009 for helpful suggestions and
comments.

†Department of Economics, Johns Hopkins University and Department of Economics, University of
Southampton. Email: ying.chen@jhu.edu.

‡Department of Economics, Sciences Po, 28 rue des Saints-Pères, 75007 Paris, France. Email:
sidartha.gordon@sciences-po.org.

1



1 Introduction

In many situations of strategic communication, an agent who has information useful for
a principal may have interests that are not perfectly aligned with the principal’s. For
example, a division manager who desires large investments in his division is motivated to
overstate the profitability of an investment project to the company’s CEO, and a financial
analyst associated with the underwriting firm is under pressure to inflate claims about
the value of a stock. Since the seminal work of Crawford and Sobel (1982) and Green
and Stokey (2007), such situations have been successfully modeled as sender-receiver
games in which a player (sender) who is privately informed about the state of the world
sends a costless message to another player (receiver), who then chooses an action that
determines both players’ payoffs.

It is well established in the literature that the misalignment of interests between the
players often makes it impossible for information to be fully conveyed from the sender to
the receiver and only imperfect information transmission can take place in equilibrium.
One central question is what determines the informativeness of communication in equi-
librium. A partial answer was provided in Crawford and Sobel (1982): they show that
under a regularity condition “M ,” more information can be transmitted in equilibrium
when the sender’s bias (captured by a preference parameter) is smaller. Although useful,
the result is silent on how the amount of information transmitted in equilibrium relates
to the players’s prior beliefs or to the receiver’s preference; moreover, it relies on the
condition M .

In this paper, we introduce a “nestedness” relation between games which allows us to
compare the amount of information transmitted across games (as well as across equilibria
within games) more generally and in a unified way. Roughly speaking, game B is nested
into game A if the players’ optimal actions are closer in game B. In terms of the players’
preferences and beliefs, a game is nested into another if the players’ preferences are less
extreme and/or the prior of the receiver is higher (in the sense of monotone likelihood
ratio dominance).1

To describe our findings, recall that an equilibrium of a Crawford-Sobel game takes a
1We consider games in which the sender prefers a higher action than the receiver does. Analogous

results can be obtained in games where the sender prefers a lower action. There, a game is nested into
another if the prior of the receiver is lower.
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partitional form, that is, the sender partitions his type space, a bounded interval on the
real line, into a finite number of subintervals and conveys to the receiver what subinterval
his type lies in. Without imposing conditionM , we show in Theorem 1 that if game B is
nested into game A, then the highest number of subintervals in an equilibrium partition
is higher in game B; also, the cutoff types in the greatest equilibrium partition in game
B are to the right of those in game A.

In Theorem 2, we show that the players in the nested game B have higher expected
payoffs in the greatest equilibrium in game B than in the greatest equilibrium in game A.
Moreover, we show in Theorem 3 that under some conditions (which roughly speaking
guarantee that the cutoff types are not shifted “too far” to the right in equilibrium in
game B), the receiver in game A also prefers the greatest equilibrium in game B than in
the greatest equilibrium in game A. In this sense, more information can be transmitted
in equilibrium in the nested game B.

Three special cases are of particular interest: (i) games that differ only in the sender’s
payoff; (ii) games that differ only in the receiver’s payoff; (iii) games that differ only in
the receiver’s prior.2 One advantage of our unified nestedness approach is that we are
able to identify the underlying mechanics that govern how much information can be
transmitted in a game.

To illustrate the usefulness of our results, we consider three applications.
Choosing an intermediary. The first application concerns the problem of a prin-

cipal choosing a representative/intermediary to communicate with a privately informed
agent and then make the decision on her behalf. Dessein (2002) shows that a principal
may benefit from choosing an intermediary with a different preference from her own.
We ask a related question: what intermediary should the principal choose if all potential
intermediaries have the same preferences as her own, but may differ in their prior beliefs?
Applying our result, we show that the principal may benefit from using an intermediary
who has a different but more optimistic belief (in the sense of monotone likelihood ratio
improvement) from her own.

Centralization versus delegation. The second application is about the allocation
of authority in organizations, in particular, when should upper management centralize
decision rights and when should it delegate them to lower management? We extend

2The sender’s prior does not affect the set of equilibria.
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the analysis in Dessein (2002) which assumes a uniform prior to a more general class of
Beta distributions. Our main insight is to connect the value of communication to the
principal’s prior belief. Dessein (2002) shows that the principal prefers centralization to
delegation only when the agent’s bias is so large that communication is uninformative.
We show that this result depends critically on the assumption of a uniform prior: when a
principal has a more optimistic prior, there is a larger region of the agent’s bias for which
informative communication is possible and therefore the best organizational choice may
be centralization with informative communication from the agent.

Two-way communication with an informed principal. In the third application,
a principal privately observes a signal that is affiliated with an agent’s type. We ask the
following question: if the principal sends a message first to the agent before the agent
reports, will the principal reveal her signal truthfully? We show that if the principal’s
message is verifiable, then she reveals her signal in equilibrium, but if her message is
cheap talk, then she reveals her signal truthfully only when it is sufficiently informative.

In section 2, we describe the model and introduce the nestedness relation; in section
3, we compare equilibrium properties of games that satisfy the nested relation; in section
4, we compare the players’ ex ante payoffs in equilibria across games and show that more
information can be transmitted in a game that is nested into another; in section 5, we
discuss applications; we conclude in section 6.

2 The Model

There are two players, the Sender and the Receiver.3 Only the Sender has payoff-
relevant private information, called his type. After observing his type, the Sender sends
a message to the Receiver. The Receiver observes this message and then takes an action.
The messages do not directly affect payoffs and are thus “cheap talk.”

Let T = [0, 1] be the Sender’s set of types, with typical element t. Let A = R be a
nonempty set of Receiver’s possible actions, with typical element a. Let M = R be the
message space. A pure strategy of the Sender is a mapping T →M and a pure strategy
of the Receiver is a mapping M → A. A profile of pure strategies for the Sender and
the Receiver induces an outcome, the mapping α : T → A obtained by composing the

3We use the pronoun “he” for the sender and “she” for the receiver.
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strategies of the two players, and an information partition of T where each element in
the partition is the set of all types in T that induce a particular action in A. Both the
sender and the receiver are expected utility maximizers.

An agent i is characterized by a pair (ui, f i). The (Bernoulli) utility function ui of
agent i is a continuously differentiable mapping A × T → R that satisfies uiaa < 0 and
uiat > 0. Thus ui (·, t) is concave in a for each t ∈ T, and ui is supermodular in (a, t).
The prior f i (·)of player i is a positive probability density function.

A game is a triple Γ =
(
uS, uR, fR

)
, where uS is the payoff function of the Sender

and
(
uR, fR

)
characterizes the Receiver.4

For an agent i and for all t, t′ such that 0 ≤ t < t′ ≤ 1, let

U i (a, t, t′) =

∫ t′

t

ui (a, s) f i (s) ds,

so that
U i (a, t, t′)∫ t′
t
f i (s) ds

is agent i’s expected payoff on [t, t′]. Define agent i’s optimal decision when his belief is
on [t, t′] as

ai(t, t′) = arg max
a


U i(a,t,t′)∫ t′
t f i(s)ds

if t < t′

ui (a, t) if t = t′.

With some abuse of notations, let ai (t) = ai(t, t). Concavity and supermodularity
of ui imply that ai (t, t′) is increasing in (t, t′) , in particular that ai (t) is increasing in t.

Given two functions W : R→ R, and V : R→ R, we say that W weakly single-

crossing dominates V if for any a′ > a, whenever V (a′) − V (a) > 0, it is true that
W (a′)−W (a) > 0. We say that W strictly single-crossing dominates V if for any
a′ > a, whenever V (a′) − V (a) ≥ 0, it is true that W (a′) −W (a) > 0. A standard
monotone comparative statics result says that if W weakly single-crossing dominates V ,
and arg maxW and arg maxV are both singletons, then arg maxW > arg maxV .

4Although the model allows the case of heterogeneous priors, the prior of the Sender has no effect
on the equilibrium strategies of the game and therefore we do not include it as a part of Γ. It does,
however, affect the welfare comparisons for the Sender. When we present results on the Sender’s welfare,
we discuss the conditions on the Sender’s prior.
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Throughout the paper, we consider games Γ =
(
uS, uR, fR

)
in which uS strictly

single-crossing dominates uR for any t ∈ [0, 1]. This implies that aS (t) > aR (t), i.e., the
optimal action for the sender is higher than that for the receiver for every type t.

Recall that
U i (a, t, t′)∫ t′
t
f i (s) ds

is agent i’s expected payoff on [t, t′]. We say that the game ΓB =
(
uSB , uRB , fRB

)
is

(weakly) nested into the game ΓA =
(
uSA , uRA , fRA

)
if (i) uSA weakly single-crossing

dominates uSB for all t ∈ [0, 1], and (ii) URB (a, t, t′) weakly single-crossing dominates
URA (a, t, t′) for all t, t′ such that 0 ≤ t ≤ t′ ≤ 1. If at least one of the single-crossing
dominance condition holds strictly, then we say that ΓB is strictly nested into ΓA.
Condition (i) implies that aSA (t) ≥ aSB (t) for any t ∈ [0, 1]. Condition (ii), a joint
condition on the receiver’s payoff function and prior, implies that aRB (t, t′) ≥ aRA (t, t′)

on any interval [t, t′]. Since the sender prefers a higher action than the receiver does,
intuitively conditions (i) and (ii) say that the optimal actions for the sender and the
optimal action for the receiver are closer in ΓB than in ΓA.

What conditions on payoff functions and beliefs result in nestedness? To illus-
trate, consider the class of games studied in the classic paper by Crawford and Sobel
(1982). They assume that here exists a function g (a, t, b) such that uS (a, t) = g (a, t, bS),
uR (a, t) = g (a, t, bR) and the function g satisfies gab > 0 with bS > bR.5 For this class
of games, condition (i) for nestedness is satisfied if bSA

≥ bSB
. Condition (ii) depends

on the Receivers’ priors as well as their payoff functions. To describe the conditions on
the Receivers’ priors, let us introduce some terminology. Given two priors fL and fH ,
say that fH MLR-dominates fL if f

H

fL
is weakly increasing on [0, 1], and that fH strictly

MLR-dominates fL if f
H

fL
is strictly increasing on [0, 1]. (These relations are respectively

denoted by fL �MLR fH and fL ≺MLR fH .) Condition (ii) is satisfied if bRB
≥ bRA

and fRA �MLR f
RB . When one game’s interval [bR, bS] is included in the other game’s

interval [bR, bS], the divergence of interests between its players is unambiguously smaller.
So, intuitively, ΓB is nested into ΓA if the players have a smaller divergence of interest in
ΓB and the receiver has a higher prior in ΓB. Nestedness is sufficient, but not necessary

5One familiar example is the quadratic loss utility functions, commonly used in applications, where
uS (a, t) = − (a− t− b)2 and uR (a, t) = − (a− t)2 and b > 0.
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for a smaller divergence of interests.6 At the end of section 4.1, we provide a notion of
“smaller divergence of interest” which is both simpler and more general, but only applies
to a more restricted class of games.

3 Equilibria

As Crawford and Sobel (1982) show, in any Bayesian Nash Equilibrium of a game in
which uS strictly single-crossing dominates uR, the sender partitions the type space into
a finite number κ ≥ 1 of subintervals and (in effect) informs the receiver what subinterval
his type belongs to. Let integer κ be the number of distinct actions that are induced in
an equilibrium. The cutoff points 0 = x0 < ... < xκ = 1 of such an equilibrium partition
are determined by the arbitrage condition:

uS
(
aR (xl−1, xl) , xl

)
= uS

(
aR (xl, xl+1) , xl

)
. (1)

for each l = 1, ..., κ− 1.
For each κ ≥ 1, let Wκ be the set of vectors x ∈ T κ+1 such that x0 ≤ ... ≤ xκ, and

let Xκ be the set of vectors in Wκ such that x0 = 0 and xκ = 1. Let a κ-equilibrium
partition be a vector x ∈ Xκ that satisfies the arbitrage condition (1), and let an
equilibrium partition be a κ-equilibrium partition for some κ ≥ 1. As Crawford and
Sobel (1982) show, there is a positive integer κ that depends on

(
uR, uS, fR

)
such that

all equilibrium partition of the game are in X1∪ ...∪Xκ, and for each κ ∈ {1, ..., κ} , each
Xκ contains at least one κ-equilibrium partition. We call κ the size of a κ-equilibrium
partition.

To derive comparative statics and welfare comparisons, we it is useful to employ
the technique introduced in Gordon (2010) that represents the κ-equilibria as the fixed-
points in Xκ of a κ-equilibrium mapping.7

6The set of conditions we have presented are sufficient, but not necessary for nestedness. In section
4.1, we provide an example (Example 1) in which ΓB is nested into ΓA, but it does not fit into these
conditions. More generally, using Theorem 2 in Quah and Strulovici (2012), we can show that there
are weaker conditions on ui and f i that guarantee that URB weakly single-crossing dominates URA .
Specifically, if (i) for all t,t′ such that 0 ≤ t < t′ ≤ 1 and a, a′ such that a < a′, if uRA (a′, t)−uRA (a, t) <

0 and uRA (a′, t′) − uRA (a, t′) > 0 , then
uRA(a′,t)−uRA (a,t)

uRA (a′,t′)−uRA (a,t′)

fRA (t)

fRA (t′)
≤ uRB (a′,t)−uRB (a,t)

uRB (a′,t′)−uRB (a,t′)

fRB (t)

fRB (t′)
, and

(ii) fRA

MLR �MLR f
RB , then URB weakly single-crossing dominates URA .

7Gordon uses this technique to study a broader class of games than the one considered in this paper,
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Specifically, for each κ ≥ 1, let Dκ be the subset of vectors x ∈ Wκ such that

uS
(
aR (x0, x1) , 0

)
≥ uS

(
aR (x1, x2) , 0

)
.

For each κ ≥ 2, each l ∈ {1, ..., κ− 1} , and each x ∈ Dκ, let θl(x) be the unique element
in [0, 1] such that

uS
(
aR (xl−1, xl) , θl(x)

)
= uS

(
aR (xl, xl+1) , θl(x)

)
.

Also, let θ0(x) = x0 and θκ(x) = xκ. Let θκ(·) be the function that maps each vector
x ∈ Dκ to the vector θκ(x) = (θ0(x), . . . , θκ(x)) ∈ T κ+1.8 Note that uiaa < 0 and uiat > 0

imply that for all x ∈ Dκ, θ1(x) ≤ . . . ≤ θκ−1(x). In addition, for all x ∈ Dκ ∩Xκ, we
have 0 = θ0(x) ≤ θ1(x) and θκ−1(x) ≤ θκ(x) = 1. Thus, for all x ∈ Dκ ∩ Xκ, we have
θκ(x) ∈ Xκ.

For each X ⊆ T κ+1, the vector x∗ ∈ X is a greatest element of the set X if
x ≤ x∗ for all x ∈ X . We have the following result.

Lemma 1. (i) The mapping θκ (·) is increasing and the κ-equilibrium partitions are
the fixed-points of θκ(·). (ii) For each κ ≥ 1, if the set of κ-equilibrium partitions
is nonempty, it has a greatest element. Moreover, if x∗ is the greatest element of κ-
equilibrium partitions and y∗ is the greatest element of (κ+ 1)-equilibrium partition,
then x∗ ≤

(
y∗1, ..., y

∗
κ+1

)
.

To see why part (i) holds, note that θκ (·) is a composite of the receiver’s best reply
and the sender’s best reply in turn. Since they are both increasing, it follows that
θκ (·) is increasing. It also follows from the arbitrage condition that the κ-equilibrium
partitions are the fixed-points of θκ(·). From now on, we refer to the greatest element
of κ-equilibrium partitions as the greatest κ-equilibrium partition.

We next compare equilibrium partitions in nested games.

Theorem 1. Let ΓA and ΓB be two games such that ΓB is nested into ΓA. (i) If ΓA has
a κ-equilibrium, then ΓB also has a κ-equilibrium. (ii) Let xA and xB be the respective
greatest κ-equilibrium of ΓA and ΓB. Then xA ≤ xB. If ΓB is strictly nested into ΓA,
then xA < xB.
where the sign of the bias of the sender depends on the state. A similar technique is used in Gordon
(2011) to study the stability of the equilibria in cheap talk games.

8Following Gordon (2010), for all l ∈ {1, ..., κ− 1} , the type θl (x) is well-defined for any x ∈ Dκ,

thus θκ(·) is well-defined on Dκ.
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Part (i) of Theorem 1 says that if a game has an equilibrium partition of a particular
size, then any game that is nested into it must also have an equilibrium partition of
that size. This immediately implies that the maximum size of an equilibrium partition
is higher in a nested game.

To gain some intuition for why part (i) is true, consider the simple case of equilib-
rium partitions of size two. Suppose (0, xA1 , 1) is an equilibrium partition in ΓA, and
aRA

(
0, xA1

)
and aRA

(
xA1 , 1

)
are the receiver’s best responses in ΓA. The sender of type

xA1 is indifferent between aRA
(
0, xA1

)
and aRA

(
xA1 , 1

)
where aRA

(
0, xA1

)
is lower than his

ideal point and aRA
(
xA1 , 1

)
is higher than his ideal point. If we keep the partition but

change the game to ΓB, then, the sender of type xA1 prefers the action associated with the
lower interval aRB

(
0, xA1

)
to the action associated with the higher interval aRB

(
xA1 , 1

)
.

Now consider another partition (0, 1, 1). Since the sender of type 1 prefers the action as-
sociated with the (degenerate) interval aRB (1, 1) to the action associated with the lower
interval aRB (0, 1), by continuity, in ΓB there must exist a sender type xB1 ∈ (xA1 , 1) such
that type xB1 is indifferent between the two actions aRB

(
0, xB1

)
and aRB

(
xB1 , 1

)
.

Part (ii) of Theorem 1 says that for a fixed equilibrium size, the cutoff points in
the greatest κ-equilibrium partition in the nested game are to the right of those in the
nesting game, coordinate by coordinate. This is an application of standard monotone
comparative statics results (Milgrom and Roberts, 1994) to the greatest fixed points of
two mappings, θκA (·) (corresponding to ΓA) and θκB (·) (corresponding to ΓB).

Note that Theorem 1 applies in particular to the following three cases. (We use SA
and RA to denote the sender and the receiver in ΓA and SB and RB to denote the sender
and the receiver in ΓB.)

(a) uRA = uRB , fRA = fRB and for all t ∈ [0, 1] , uSA single-crossing dominates uSB ;
To describe case (b), we introduce a new notion.9 Given two functions W : R→ R,

and V : R→ R, we say that W has greater difference than V if for any a′ > a,
W (a′)−W (a) ≥ V (a′)− V (a).

(b) uSA = uSB , fRA = fRB and for all t ∈ [0, 1] , uRB has greater difference than uRA ;
9The condition in case (b) that uRB has greater difference than uRA is stronger than the condition

that uRB single-crossing dominates uRA . We use the stronger condition here because greater difference
is preserved under integration whereas single-crossing dominance is not. There are conditions on uRA

and uRB weaker than greater difference to ensure that URA single-crossing dominates URA , as discussed
in footnote 6.
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(c) uSA = uSB , uRA = uRB and fRA �MLR f
RB .

In each of these three cases, ΓA and ΓB differs in only one aspect: the sender’s payoff
function in (a), the receiver’s payoff function in (b) and the receiver’s prior in (c). It
is important to note that these cases are independent, i.e., one cannot formulate any of
them as a combination of the other two.10

In a recent paper, Szalay (2012) also compares equilibrium outcomes across sender-
receiver games. He considers games in which payoff functions are identical for both
players, but the receivers’ priors are different. While we compare both equilibrium
outcomes and welfare, Szalay (2012) focuses on comparing equilibrium outcomes. He
independently establishes a result related to our Theorem 1. It says that for a given
equilibrium size, the cutoff points in the equilibrium partition and the induced actions
shift to the right when the prior of the sender’s type in the new game MLR dominates
the prior in the original game, similar to the case (c) discussed above. Szalay (2012)
also provides additional comparisons for games that are symmetric with respect to the
middle state and the middle action, which are not covered in this paper.11 He establishes
that if the receiver’s prior in one game is a spread of the receiver’s prior in the other
game, in an MLR sense, then its equilibrium actions are also more dispersed.12 One

10An interesting question is whether our results still hold under weaker notions of stochastic domi-
nance than MLR dominance. We provide an example here which shows that Theorem 1 fails if fRB dom-
inates fRA in the hazard rate order (which is stronger than first-order stochastic dominance), but not in
the MLR order. Consider ΓA and ΓB in which uSA = uSB = −(a− t− 0.05)2, uRA = uRB = −(a− t)2.
Also, suppose fRA(t) = 1 for t ∈ [0, 1], fRB (t) = 2/5 for t ∈ [0, 2/15), fRB (t) = 1 for t ∈ [2/15, 6/15),
fRB (t) = 3/5 for t ∈ [6/15, 10/15), and fRB (t) = 39/25 for t ∈ [10/15, 1]. It is straightforward to
verify that (1 − FRB (t))/(1 − FRA(t)) is increasing in t, i.e., fRB dominates fRA in the hazard rate
order. Note however that fRB does not MLR dominate fRA . Calculation shows that the greatest
equilibrium partition in ΓA is yA = (0, 2/15, 7/15, 1) and the greatest equilibrium partition in ΓB is
yB = (0, 0.132, 0.495, 1). Since 0.132 < 2/15, the cutoff points in yB are not to the right of the cutoff
points in yA, coordinate by coordinate. So Theorem 1 fails under hazard rate dominance and first-order
stochastic dominance. The reason for the failure is that under these weaker notions of stochastic dom-
inance, it is no longer true that aRB (t, t′) ≥ aRA(t, t′) for all t, t′ ∈ [0, 1]. In the example, for instance,
aRA(2/15, 7/15) = 0.3 whereas aRB (2/15, 7/15) = 199/690 < 0.3. Without the receiver’s best response
being higher for every interval in the nested game, the comparative statics results fail.

11These games belong to a larger class studied in particular by Gordon (2010), where the function
aS (t) − aR (t) can take both positive and negative values. In this paper as in Crawford and Sobel
(1982), this function is positive and bounded away from zero.

12As Szalay (2012) notes, this result is interesting because if these prior beliefs are interpreted as
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interpretation is that if the receiver’s prior in game B is an MLR spread of the receiver’s
prior in game A, then game B is nested into game A for high types whereas game A is
nested into game B for low types. As suggested by Theorem 1, on the one hand, this
leads high types to induce higher actions in game B than in game A; on the other hand,
this also leads low types to induce lower actions in game B than in game A. Both effects
lead to more dispersed equilibrium actions in game B than in game A.13

4 Comparing information transmission in nested games

Let a partition of size κ be a vector y = (y0, y1, ..., yκ) ∈ Xκ. Recall that an agent i is
characterized by a pair (ui, f i). Define the expected payoff of agent i under partition y
when agent j makes the decision as follows:

Ei,j(y) =
κ−1∑
h=0

U i
(
aj(yh, yh+1), yh, yh+1

)
.

Since we often consider the expected payoff of agent i under partition y when it is
agent i himself who makes the decision, we simplify the notation Ei,j(y) to be Ei(y)

when i = j.
Throughout our analysis, we assume that ΓB is nested into ΓA. To compare the

amount of information transmitted in equilibrium in ΓA and in ΓB, we first consider the
players in the nested game ΓB. In particular, we compare their payoffs in the equilibrium
partitions of the same size induced in ΓA and ΓB.

Theorem 2. Suppose ΓB is strictly nested into ΓA. Let y be a κ-equilibrium partition
of ΓA. Then there is a κ-equilibrium partition y′ in ΓB such that (i) RB prefers the
partition y′ to the partition y, i.e., ERB(y) < ERB (y′). (ii) If USB weakly single-crossing
dominates URB , and fRB �MLR f

SB , then SB prefers partition y′ with the decisions made
by RB to the partition y with the decisions made by RA, i.e., ESB ,RA(y) < ESB ,RB (y′).

posteriors formed after receiving certain signals of some underlying state, then the signal that results in
the posterior that is an MLR spread of the other posterior is more informative, in a strong sense, than
the other signal. Thus the result implies that a signal structure that is more informative than another
in a certain sense, leads to more dispersed equilibrium actions.

13A recent paper by Lazzati (2013) also compares player’s equilibrium actions and welfare, but she
studies games of strategic complements and makes comparison across players for a fixed game rather
than across games.
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Part (i) compares the payoff of RB, the receiver in the nested game. It says that RB

prefers the equilibrium partition y′ in the nested game to the equilibrium partition y

in the nesting game. Applying the result to different cases of nestedness, it has several
interesting implications: (a) a receiver prefers to face a sender whose preference is closer
to her own; (b) a receiver does not benefit if the sender believes that her preference
is further away from the sender’s than it really is; (c) a receiver does not benefit if
the sender believes that the receiver hold a lower prior than her true prior.14 Note
that implication (a) generalizes Theorem 4 in Crawford and Sobel (1982), which says
that under a regularity condition, for a given partition size, the receiver prefers the
equilibrium partition associated with similar preferences (in their case, a smaller b).15

Our result does not require this regularity condition.
Part (ii) compares the payoff of SB, the sender in the nested game. The result says

that SB prefers to play against RB, that is, a sender prefers to face a receiver whose
preference is closer and he also prefers to face a receiver with a higher prior. Note that
the condition fRB �MLR f

SB holds if fRB = fSB , i.e., if the players in ΓB have the same
prior, but this common prior assumption is not necessary for the comparison.

Does more information get transmitted in equilibrium in the nested game? If one
uses the criterion that a signal is more informative if it is more valuable to every decision
maker, then a more informative signal must be a sufficient statistic for a less informative
one.16 In the comparison of partitions, sufficiency amounts to refinement, and the equi-
librium partitions induced in nested games typically do not satisfy this criterion.17 But
as we show in subsection 4.1, one can still establish useful results regarding the value of
information contained in the equilibrium partitions induced in games that are nested.
We have already established that the receiver in the nested game ΓB prefers the equilib-
rium partition induced in ΓB to the equilibrium partition induced under ΓA. In the next
subsection, we establish a similar result for the receiver in ΓA under certain conditions.
Together, these results imply that a receiver’s payoff is higher when facing the partition

14For informal discussion like this, we use “closer” preference to mean single-crossing dominance in
payoff functions, and “higher” prior to mean MLR dominance.

15The regularity is called condition M and its definition can be found in section 4.1.
16Here, a signal is generated by the sender’s strategy.
17An exception is the comparison of a babbling equilibrium, which has only one partition element,

and a non-babbling one. The partition in a babbling equilibrium is a strict coarsening of a partition in
a non-babbling one.
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induced in the nested game. In this sense, more information can be transmitted when
the players preferences are closer or when the receiver’s prior is higher.

4.1 Better information transmission in the nested game

To compare RA’s welfare across equilibrium partitions induced in ΓA and ΓB, we intro-
duce a condition M0, which is related to the regularity condition M , first introduced in
Crawford and Sobel (1982).18

A game
(
uS, uR, fR

)
satisfies Condition M if for all κ > 1 and for all

fixed-points x and x′ of θκ in Dκ, such that x0 = x′0 and x1 < x′1, we have
xl < x′l for all l = 2, ..., κ.

An agent (ui, f i) satisfies condition M0 if the game (ui, ui, f i) satisfies condition
M . Note that in the game (ui, ui, f i), both the sender and the receiver have the same
preference as agent i and the receiver has the same belief as agent i. While M is a joint
condition on both the sender and the receiver, M0 is a condition only on an individual
agent. (Related comparative statics results in Crawford and Sobel (1982) implicitly
assume that M0 holds and are special cases of our results.)

We provide a simple necessary and sufficient condition forM0 in the following lemma,
for which we need the following definition. For any subset X of Rk and any differentiable
function ϕ that maps X to R, a point x∗ in the interior of X is critical for ϕ if dϕ

dx
= 0.

Lemma 2. An agent (ui, f i) satisfies condition M0 if and only if for any κ ≥ 3 and any
(x1, xκ−1) such that 0 ≤ x1 ≤ xκ−1 ≤ 1, agent i’s payoff Ei(y) has a unique critical point
y∗ (x1, xκ−1) in the interior of the set of partitions y ∈ Xκ such that y0 = 0, y1 = x1,

yκ−1 = xκ−1 and yl = 1. Furthermore, if M0 holds, this critical point y∗ (x1, xκ−1) is an
interior global maximum of E (y) in this set.

An immediate implication of this result is that when (ui, f) satisfies M0, then for all
κ ≥ 1, there exists a unique optimal partition in κ elements for agent i. The proof, in
the Appendix, proceeds by showing that two distinct critical points exist if an only if
two type vectors violating M0 exist. We next show that if an agent (ui, f i) satisfies M0,

18They show that under M , there exists at most one κ-equilibrium, for each κ ≥ 1.
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then Ei(y), her expected payoff under partition y, is increasing in y for all y in a certain
region Zi, which we introduce next.

For each κ > 1, let γκ be the κ-equilibrium mapping of the game (ui, ui, f i). Let
Zi,κ = {z ∈ Xκ : z ≤ γκ(z)} and let

Zi =
∞⋃
κ=1

Zi,κ,

with the convention Zi,1 = {(0, 1)}.19 In words, Zi contains all partitions in which at
any cutoff point in the partition, the agent prefers the optimal action he would take in
the immediately lower interval to that in the immediately higher interval. Note that
this set contains all equilibrium partitions of all games in which agent (ui, f i) is the
Receiver because the equilibrium mapping θκ of any such game is lower than γκ (i.e.,
θκ (z) ≤ γκ(z) for any z ∈ Dκ) and for any equilibrium partition z, we have z = θκ (z).

Let ≤∗ be a partial order on Zi defined as follows. For all y′ ∈ Zi,κ′ ∩ Xκ′ and
y′′ ∈ Zi,κ′′ ∩Xκ′′ , we have y′ ≤∗ y′′ if and only if κ′ ≤ κ′′ and 0, ..., 0︸ ︷︷ ︸

κ′′−κ′ times

, y′

 ≤ y′′.

Notice that when κ′ = κ′′, the partial order ≤∗ coincides with the partial order ≤.
When κ′ < κ′′, the order ≤∗ requires that the last κ′ coordinates in y′′ are higher than
the coordinates in y′. Let <∗ be the strict partial order associated with ≤∗ . The next
result shows that the expected payoff of agent i under partition y is increasing on Zi.

Lemma 3. Suppose agent i satisfies M0. Then Ei(y) is increasing on Zi for the partial
order ≤∗ .

To gain some rough intuition as to why Ei (y) is increasing on Zi for ≤∗, note that
for any y in Zi, at the cutoff points, the agent weakly prefers the optimal action he
would take in the immediately lower interval to that in the immediately higher interval.
Hence, as y increases on ≤∗ (i.e., the cutoff points shift to the right), the partition y

becomes more “balanced,” which reduces the average noise in the partition and makes
the agent better off.

19WhenM0 holds, one can show that for all x0 and xκ in [0, 1] such that x0 ≤ xκ, the vector y∗ (x0, xκ)

is the greatest element of the set {z ∈ Zi,κ : z0 = x0 and zκ = xκ} .
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This lemma has a number of interesting implications. Fix a game Γ =
(
uS, uR, fR

)
and suppose R satisfies M0. Recall that any equilibrium partition in Γ is in ZR. Let y′

and y′′ be two equilibrium partitions of Γ such that y′ <∗ y′′. It follows from Theorem
3 that R’s expected payoff is higher under y′′ than under y′, i.e., ER(y′) < ER(y′′).
Moreover, from Lemma 1, we know that the greatest equilibria of different sizes are
ordered by ≤∗. Hence Lemma 3 directly implies the following result.

Corollary 1. Fix a game
(
uS, uR, fR

)
in which the receiver satisfies M0. If yκ is the

greatest κ-equilibrium partition for κ = 1, ..., κ, then for any κ′-equilibrium partition y′

such that κ′ ≤ κ and y′ 6= yκ, we have ER(y′) < ER(yκ).

Note that Lemma 1 implies that the greatest κ-equilibrium partition of the highest
size dominates all other equilibrium partitions for the order ≤∗. Call this equilibrium
partition the greatest equilibrium partition of the game. Corollary 1 says that the
greatest equilibrium gives the receiver the highest expected payoff among all equilibria
of a given game. This generalizes a result in Crawford and Sobel (Theorem 3), which
says that the receiver always prefers an equilibrium partition of a higher size. As shown
in Proposition 1 in Chen, Kartik and Sobel (2008), the greatest equilibrium satisfies the
selection criterion of “No Incentive To Separate” (NITS). As shown in Gordon (2011), it
also uniquely satisfies the iterative stability criterion with respect to the best response
dynamics.

In Theorem 3 below, we focus on the greatest equilibrium partition and compare the
receivers’ welfare in the equilibrium partitions induced under nested games. Suppose
ΓB is strictly nested into ΓA. Theorem 3 says that under certain conditions, more
information is transmitted in ΓB in the sense that both the receiver in ΓA and the
receiver in ΓB have higher expected payoffs under the greatest equilibrium partition
induced in ΓB than under the greatest equilibrium partition induced in ΓA.

The crucial step in establishing this result is an immediate implication of Lemma 1,
Theorem 1 and the definitions of the greatest equilibrium partition and the partial order
≤∗ . It is the observation that the greatest equilibrium of a game nested into another
one is greater in the sense of ≤∗ than the equilibrium of the nesting game.

Lemma 4. Suppose ΓB is strictly nested into ΓA, yB is the greatest equilibrium partition
in ΓB and yA is the greatest equilibrium partition in ΓA. Then yA <∗ yB.
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As a direct implication of Lemma 3 and Lemma 4, we obtain the following welfare
comparison.

Theorem 3. Suppose ΓB is strictly nested into ΓA, yB is the greatest equilibrium parti-
tion in ΓB and yA is the greatest equilibrium partition in ΓA. (i) If RB satisfies M0, then
ERB(yA) < ERB(yB). (ii) If RA satisfies M0 and yB ∈ ZRA

, then ERA(yA) < ERA(yB).

Part (i) says that RB, the receiver in the nested game, prefers the greatest equilibrium
partition in ΓB. It complements part (i) of Theorem 2 since Theorem 2 compares
equilibrium partition of the same size whereas the greatest equilibrium partition in ΓB

may have a higher size than that in ΓA. In particular, it says that when we focus on
the greatest equilibrium partitions, then a receiver prefers to face a sender with a closer
preference.

Part (ii) says that if yB ∈ ZRA
, then RA, the receiver in the nesting game, also

prefers the greatest equilibrium partition in ΓB. As implied by Lemma 1 and Theorem
1, yA <∗ yB. So part (ii) is a direct implication of Lemma 3. Intuitively, as long as yB

is not “too far” to the right, RA is better off under partition yB than under yA.
In Remark 1 at the end of this section, we discuss a class of game pairs (ΓA,ΓB) for

which the condition yB ∈ ZRA
is always satisfied. In other games, this condition can

be violated. We illustrate this by the following example in which yB /∈ ZRA
and RA is

better off under partition yA than under yB.

Example 1. Suppose uSA = uSB = − (a− t− b)2 for t ∈ [0, 1] where b > 0, uRB =

− (a− t)2 for t ∈ [0, 1], uRA = −105 (a− t)2 for t ∈ [0, 0.0534], uRA = −102 (a− t)2 for
t ∈ (0.0534, 0.6] and uRA = − (a− t)2 for t ∈ (0.6, 1]. Also, assume that fRA = fRB = 1

for all t ∈ [0, 1].
It is straightforward to verify that URB (a, t, t′) weakly single-crossing dominates URA (a, t, t′)

for any t, t′ and ΓB is nested into ΓA.20 Intuitively, since both RA’s and RB’s optimal
actions equal to weighted averages of the state and RA places higher weights on lower
states, aRA (t, t′) ≤ aRB (t, t′) for any t, t′.

Let b = 0.125. Calculation shows that the greatest equilibrium partition in ΓB is
yB = (0, 0.25, 1) and the greatest equilibrium partition in ΓA is yA = (0, 0.0534, 1).

20One can use the result in Quah and Strulovici (2012), as described in footnote 6.

16



To see that yB /∈ ZRA
, note that aRA (0, 0.25) = 0.02718 and aRA (0.25, 1) = 0.429.

When t = 0.25, uRA (a, t) = −102 (a− t)2, and RA prefers the higher action 0.429 to
the lower action 0.02718 at t = 0.25 and therefore yB /∈ ZRA

. Calculation shows that
ERA(yA) > ERA(yB). Intuitively, since RA places much higher weight on what happens
in states t ∈ [0, 0.0534] than in other states, the information contained in the partition
(0, 0.0534, 1) is more valuable to RA than the information contained in the partition
(0, 0.25, 1).

Finally, we end this section by discussing a class of game pairs (ΓA,ΓB) for which
some of our results still hold even when we relax the conditions of nestedness. Consider
a class of game pairs (ΓA,ΓB) such that there exists a function g (a, t) with gaa < 0,
gat > 0, and ui (a, t) = g (a− bi, t) for each i ∈ {RA, RB, SA, SB}. For example, the
quadratic loss utility function, g (a− bi, t) = − (a− bi − t)2, belongs to this class. For
this class of game pairs, ΓB is nested into ΓA if and only if bRA

≤ bRB
< bSB

≤ bSA
and

fRB MLR-dominates fRA . Moreover, ΓB is strictly nested into ΓA if at least one of the
weak inequalities holds strictly or if fRB strictly MLR-dominates fRA . We next show
that under a weaker condition, which only restricts bSB

− bRB
and bSA

− bRA
, some of

our results still hold (Theorem 1, Theorem 2 part (i) and Theorem 3, but not Theorem
2 part (ii)).21

Theorem 4. Suppose that ΓA and ΓB are such that fRB MLR-dominates fRA and there
exists a function g (a, t) such that gaa < 0 and gat > 0 with ui (a, t) = g (a− bi, t) for
each i ∈ {RA, RB, SA, SB}. Suppose further that bSB

− bRB
≤ bSA

− bRA
. Then the

following statements hold.

1. (i) If ΓA has a κ-equilibrium, then ΓB also has a κ-equilibrium. (ii) Let xA and
xB be the respective greatest κ-equilibrium of ΓA and ΓB. Then xA ≤ xB. If
bSB
− bRB

< bSA
− bRA

or fRB strictly MLR-dominates fRA, then xA < xB.

2. Suppose that either bSB
−bRB

< bSA
−bRA

or fRB strictly MLR-dominates fRA. Let
y be a κ-equilibrium partition of ΓA. Then there is a κ-equilibrium partition y′ in
ΓB such that RB prefers the partition y′ to the partition y, i.e., ERB(y) < ERB (y′).

21Since we assume that uS strictly single-crossing dominates uR for any t ∈ [0, 1], we have bSB
−bRB

>

0 and bSA
− bRA

> 0.
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3. Suppose that either bSB
−bRB

< bSA
−bRA

or fRB strictly MLR-dominates fRA, and
that yB is the greatest equilibrium partition in ΓB and yA is the greatest equilibrium
partition in ΓA. (i) If RB satisfies M0, then ERB(yA) < ERB(yB). (ii) If RA

satisfies M0 and yB ∈ ZRA
, then ERA(yA) < ERA(yB).

Part 1 is the counterpart of Theorem 1, part 2 is the counterpart of Theorem 2
part (i), and part 3 is the counterpart of Theorem 3. As for Theorem 2 part (ii), the
counterpart does not hold because the sender SB may prefer to play against the receiver
RA instead of the receiver RB, if for example SB has the same preferences as RA. The
idea of the proof of Theorem 4 is straightforward. For the class of games considered in
the theorem, the equilibrium partitions only depend on the difference bS − bR and the
prior of the receiver. It follows that game ΓB has the same equilibrium partitions as
some game Γ′B that is nested (or even strictly nested) into game ΓA. Applying Theorem
1, Theorem 2 part (i) and Theorem 3 to ΓA and Γ′B, we obtain Theorem 4.

Remark 1. In Theorem 4 part 3(ii), we require that yB ∈ ZRA
. If fRA = fRB , the

condition is always satisfied. This is because in this case we have ZRA
= ZRB

. Since
yB ∈ ZRB

, it follows that yB ∈ ZRA
.

5 Applications

We illustrate the usefulness of the comparative statics and welfare results derived in the
previous section with the following three applications.

5.1 Choosing an intermediary

Instead of communicating with an informed agent and then making the decision herself,
a principal sometimes may choose a representative (intermediary) to communicate with
an agent and make decisions on her behalf. For example, diplomatic envoys are given
the right to negotiate with a foreign country and make certain decisions on behalf of
their government. Similarly, executives sometimes delegate decisions to external consul-
tants.22 What is the advantage of using an intermediary and what characteristics of an

22Note that the intermediary discussed here is different from the non-strategic mediator in Goltsman,
Hörner, Pavlov and Squintani (2009) and the strategic intermediaries in Li (2010), Ambrus, Azevedo
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intermediary make him attractive to the principal?
Earlier work by Dessein (2002) showed that a principal may benefit from giving au-

thority to an intermediary whose preference is closer to the agent’s because the agent
communicates more information when facing such an intermediary. But another possi-
bility, not discussed in Dessein (2002), is that intermediaries may have different beliefs
from the principal, and we apply our result to this case here. To highlight the effect of
prior beliefs on the choice of an intermediary, assume that the intermediary’ payoff func-
tion is the same as the principal’s. To be consistent with our main model, we maintain
the assumption that the sender (i.e., the agent in this application) has an upward bias
in his preference, i.e., his payoff function single-crossing dominates the payoff function
of the principal and the intermediary.

Giving the communication and decision making right to an intermediary has two
effects: (1) Since the agent now faces someone with a different prior, his communication
incentives are different, which may result in either informational gain or loss, as will be
seen precisely in the discussion that follows.23 (2) Given the information conveyed by
the agent, the intermediary’s optimal choice of action is generally different from that of
the principal’s because of their differences in beliefs. Since this always results in a loss
for the principal, the use of an intermediary makes a principal better off only when there
is sufficient informational gain.

Since the agent wants to convince the principal that the state is higher than it is
(for example, a division manager wants the executive of a corporation to believe that
the investment prospect in his division is better than it is), we interpret a higher prior
to be a more “optimistic” belief in this application. Let fP be the principal’s prior and
f I be the intermediary’s prior.

Suppose f I �MLR fP , i.e., the intermediary is more pessimistic about the state
of nature than the principal does. Then by Theorem 3, the principal strictly prefers
communicating directly with the agent than having the intermediary communicating

and Kamada (2013) and Ivanov (2010). Here, the principal gives the communication and decision right
to the intermediary whereas in the other papers, the mediator or intermediary only passes information
from the agent to the principal and does not make any payoff-relevant decision himself. Moreover,
the papers on strategic intermediaries focus on how difference in preference may impede or facilitate
information transmission whereas the focus here is on the difference in beliefs.

23The intermediary’s belief is assumed to be known to the agent.
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with the agent. Using the intermediary results in informational loss and therefore the
principal does not benefit from giving the decision making right to a more pessimistic
intermediary.

Now suppose fP �MLR f
I , i.e., the intermediary is more optimistic. In this case, as

shown in Theorem 3, more information is transmitted when the agent communicates to
the intermediary. This informational gain could be sufficiently high that the principal
ultimately is made better off by giving authority to a more optimistic intermediary. The
following example illustrates this point.

Example 2. Suppose fP (t) = 1, f I (t) = 1
2

+ t, the principal’s (and also the interme-
diary’s) utility function is − (a− t)2 and the agent’s utility function is − (a− t− 0.2)2.
Since fI(t)

fP (t)
= 1

2
+ t is increasing in t, fP �MLR f

I .
If the agent communicates directly with the principal, then the greatest equilibrium

partition is (0, 0.1, 1) and the principal’s expected payoff is −0.061. If the intermediary
makes the decision, then the greatest equilibrium partition in the communication game
between the agent and the intermediary is (0, 0.158, 1) and the principal’s expected payoff
is −0.031. Hence the principal is better off giving the authority to the intermediary.

More generally, we have the following result.
Result: The principal never benefits from choosing a more pessimistic intermediary,

but may benefit from choosing a more optimistic intermediary.
The first part of the result follows from Theorem 2, which directly implies that a

more pessimistic intermediary will obtain from the agent less information and the fact
that given this information, the intermediary will take actions that are worse for the
principal than the ones he would choose for himself. In other words the two effects we
previously identified (amount of information and use of information) work in the same
direction: they both cause a welfare loss for the principal.

Che and Kartik (2009) show that to motivate an advisor to acquire information,
it is optimal for a decision maker to choose someone with a different prior than her
own. Our result complements theirs, but there are a number of important differences.
First, the decision maker chooses which advisor to communicate with in Che and Kartik
(2009) whereas the principal chooses which intermediary to give the communication and
decision-making right to here. Second, the information that an advisor possesses is en-
dogenous in Che and Kartik (2009) whereas the agent’s information is exogenously given
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here. Most importantly, Che and Kartik (2009) focus on the incentives created by the
differences in opinion for information acquisition, but the focus here is on the advantage
of optimism (a particular kind of difference in opinion) for information transmission.

5.2 Centralization versus delegation in organizations

When to delegate decisions to lower management and when to centralize authority is an
important problem in organizations. The central trade-off that the upper management
faces is that delegation makes better use of the lower management’s local knowledge
but typically results in distortions because of the different objectives that the lower
management may have.

Whether centralized decision making (with communication from the informed agent)
dominates delegation depends on how much information can be conveyed from the agent
to the principal under centralization, which in turn depends on the principal’s prior.
Dessein (2002) provides a detailed characterization for uniform distributions and finds
that under a uniform prior, delegation is better than centralization whenever the agent’s
bias is small enough that informative communication is feasible. This implies that
whenever the principal chooses centralization over delegation, there is no information
conveyed by the agent’s report and the principal makes the decision based only on her
prior. As one would expect, this result relies on the uniform assumption and Dessein
(2002) provides more general results for symmetric priors, but it is still unclear what
happens with asymmetric priors. Although a full characterization is hard to obtain, we
take a step forward and provide some new insight into the value of centralization relative
to delegation for a family of Beta distributions that includes the uniform distribution as
a special case.

Suppose the principal’s prior fα is a Beta distribution on [0, 1] with fα (x) = αxα−1.
If α = 1, then the distribution is uniform. Moreover, fα′ �MLR fα if and only if α′ < α.
Suppose the players’s utility function take the commonly used quadratic form, i.e., the
principal’s utility function is − (a− t)2 and the agent’s utility function is − (a− t− b)2.

If the principal delegates the decision to the agent, then the agent chooses the action
a = t+b and the principal’s payoff is −b2. If the principal keeps the authority and makes
a decision based on her prior fα, then, given the quadratic-loss utility function, her ex-
pected payoff is equal to −

(
α

(1+α)2(α+2)

)
, the negative of the variance of t. Moreover,
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if the principal keeps her authority but communicates with the agent, then an infor-
mative equilibrium exists when the agent’s bias is sufficiently small, when b < 1

2

(
α
α+1

)
.

Since the principal’s payoff in an informative equilibrium is higher than if she makes a
decision based on only her prior, it immediately follows that if −

(
α

(1+α)2(α+2)

)
≥ −b2

and b < 1
2

(
α
α+1

)
, then informative communication is feasible under centralization and it

dominates delegation. When are these conditions satisfied? In the case of uniform distri-
bution (α = 1), we have 1

2

(
α

1+α

)
= 1

4
and −

(
α

(1+α)2(α+2)

)
= − 1

12
. Since − 1

12
< −

(
1
4

)2,
delegation dominates centralization whenever informative communication is possible,
consistent with the finding in Dessein (2002). However, if

√
α

(1+α)2(α+2)
< 1

2

(
α

1+α

)
, i.e.,

α >
√

5−1, there exists a range of biases such that informative communication is better
than delegation. Note that for α > 1, the function

√
α

(1+α)2(α+2)
is decreasing in α and

the function 1
2

(
α

1+α

)
is increasing in α. So a principal with a higher prior is more likely

to centralize authority as it is more likely for her to gain from communication.

5.3 Two-way communication with an informed principal

If the principal privately observes a signal s which is correlated with the agent’s type
t, then the principal’s belief about t depends on the realization of the signal s. For
simplicity, we consider the case in which the signal s has two realizations: sH and sL

(sH > sL). Let fH denote the principal’s belief on t when observing s = sH and fL

denote her belief on t when observing s = sL. Suppose the conditional probability
distribution p (s|t) satisfies the monotone likelihood ratio property, i.e., t and s are
affiliated. Then fL �MLR f

H . (The observation sH is more “favorable” news than sL in
the sense of Milgrom, 1981.)

There are numerous applications in which the principal has private information corre-
lated with the agent’s type.24 For example, managers ask their subordinates to evaluate
workers to help with compensation and promotional decisions, but they may have their
own assessment of workers from occasional interaction with them. In a setting like this,
the principal often has an opportunity to communicate to the agent first, before the

24Only a few papers have modeled privately informed receivers in the literature. These include
Seidmann (1990), Watson (1996), Olszewski (2004), Harris and Raviv (2005), Lai (2008), Ishida and
Shimizu (2010) and Moreno de Barreda (2010), but these models have different assumptions on infor-
mation structure and address different questions from ours.
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agent reports. For example, a manager can discuss a worker’s performance with the
worker’s supervisor before the supervisor submits his evaluation. In this game of two-
way communication, does the principal reveal her signal to the agent in the first stage
of communication?25

To see how the results from the previous section helps us answer this question, note
that if the principal reveals her signal truthfully in the first stage, then she no longer
has any private information in the second stage. The continuation game is a standard
sender-receiver game with an uninformed receiver, with appropriately updated beliefs.
In particular, since fL �MLR f

H , the continuation game after the revelation that s = sH

(call this ΓH) is nested into the continuation game after the revelation that s = sL (call
this ΓL). In what follows, we consider two kinds of two-way communication game,
differing in whether the principal’s message is verifiable or not.26 (In both cases we
assume that the agent’s message is cheap talk.)

Theorem 3 in the previous section implies that the principal with belief fH prefers
the greatest equilibrium partition in ΓH to the greatest equilibrium partition in ΓL, and
therefore the principal who has observed sH has no incentive to pretend to have observed
sL. This immediately implies the following result.

Result: If the principal’s signal s is verifiable, then there exists an equilibrium in
which the principal truthfully reveals s in the two-way communication game.

What happens if the principal’s signal is not verifiable and she can only send a
cheap-talk message in the two-way communication game? In Theorem 3, we see that
under certain conditions the principal with belief fL also prefers the greatest equilibrium
partition in ΓH to that in ΓL. Under these conditions, the principal with the signal sL has
the incentive to pretend that she has observed sH , making it impossible to have truthful
revelation by the principal in equilibrium. Note that these conditions are satisfied if
the equilibrium partition does not shift “too far” to the right when the principal’s belief

25To be more precise about the game we analyze, consider the following extensive-form. At the
beginning of the game, the agent privately observes t and the principal privately observes s. Then
two-way communication takes place sequentially: in stage one, the principal sends a message to the
agent; in stage two, the agent sends a message back to the principal. Then the principal chooses an
action.

26Verifiability means that the messages available to the principal depends on the realization of s: she
can truthfully reveal s or stay silent.
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changes from fL to fH . How far the equilibrium partition shifts to the right in turn
depends on the informativeness of the principal’s signal.

To illustrates this, consider an example in which the principal’s signal belongs to the
following class of information structure. The conditional probability of s is given by:
p (sH |t) = πq (t) + (1− π) c and p (sL|t) = π (1− q (t)) + (1− π) (1− c), where q (·) is a
function of t. In other words, the principal observes a mixture between an informative
and an uninformative experiment. With probability π, the experiment is successful and
the signal is informative (the probability of observing sH or sL depends on t); with
probability (1− π), the experiment fails and the signal is uninformative (the probability
of observing sH or sL does not depend on t). The principal knows the probability that the
experiment is successful, but does not observe whether the experiment has succeeded or
not.27 Assume q (t) is increasing in t, which implies that for a fixed π, the posterior of the
principal after observing sH MLR dominates her posterior after observing sL. Moreover,
a higher π means that the signal s is more informative (in the sense of Blackwell (1951)).
So π is an informativeness parameter of the principal’s signal. One useful characteristic
of this class of information structure is that as the informativeness parameter varies,
the resulting posteriors of the principal are ordered by MLR dominance. In particular,
suppose s̃ is a signal with informativeness parameter π̃ and let f H̃ denote the principal’s
posterior after observing that s̃ = sH and f L̃ denote her posterior after observing s̃ = sL.
If π > π̃, then fL �MLR f

L̃ �MLR f
H̃ �MLR f

H (intuitively, the posteriors induced by
the more informative signal s are more spread out than the posteriors induced by the less
informative signal s̃) and the results from section 4 apply.28 We now provide an example
where s is not verifiable, and where the principal truthfully reveals s in equilibrium only
when it the signal is sufficiently informative.

Example 3. For the informative experiment, assume q (t) = 0 if t ∈ [0, 0.45), q (t) =
1
4

+ 1
2
t if t ∈ [0.45, 0.55] and q (t) = 1 if t ∈ (0.55, 1]. For the uninformative experiment,

assume s = sL and s = sH with equal probability. These imply that the conditional
probabilities are p (sH |t) = (1− π) 1

2
if t ∈ [0, 0.45), p (sH |t) = π

(
1
4

+ 1
2
t
)

+ (1− π) 1
2
if

t ∈ [0.45, 0.55] and p (sH |t) = π+ (1− π) 1
2
if t ∈ (0.55, 1]. Also, assume the principal’s

27This assumption on information structure is analogous to Ottaviani and Sorensen (2006). It is
different from the success-enhancing models (e.g. Green and Stokey 2007) that assume whether the
experiment has succeeded or failed is observed.

28A proof is provided in the appendix.
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utility function is − (a− t)2, the agent’s utility function is − (a− t− 0.08)2, and the
common prior on t is uniform on [0, 1].

Consider the case in which π = 3
5
. The greatest equilibrium partition in ΓL is

yL = (0, 0.21, 1) and the greatest equilibrium partition in ΓH is yH = (0, 0.014, 0.38, 1).
Straightforward calculation shows the principal prefers yH to yL independent of her own
private signal, and therefore she cannot credibly reveal s to the agent. For any less
informative signal s̃ with π̃ < 3

5
, the principal cannot credibly reveal her signal either.

As the principal’s signal gets more informative, she may be able to reveal her signal
credibly in equilibrium. We see this clearly in the limit as π goes to 1. In the limit,
the support of the principal’s posterior when she observes sL is [0, 0.55] and the support
of her posterior when she observes sH is [0.45, 1]. The greatest equilibrium partition
in ΓL is yL = (0, 0.103, 0.55) and the greatest equilibrium partition in ΓH is yH =

(0.45, 0.586, 1). Since 0.586 > 0.55, the information contained in partition yH has no
value to the principal with signal sL and therefore the principal with signal sL has no
incentive to pretend that her signal is sH . Hence there exists an equilibrium in which
the principal reveals her signal credibly in the first stage of communication.

6 Conclusion

This paper contributes to the understanding of strategic communication by introducing
a novel relation called “nestedness” among sender-receiver games and linking the amount
of information transmitted in equilibrium and the players’ welfare to nestedness. Unlike
previous results in the literature, our results do not depend on condition M (Crawford
and Sobel, 1982). More importantly, we provide new comparative statics results with
respect to the prior, not just the payoff functions. The unified approach of “nestedness”
allows us to identify what drives the amount of information transmitted in equilibrium.
We also provide three applications to illustrate the usefulness of the results.

7 Appendix

Proof of Lemma 1. (i) For any two actions a, a′ such that a < a′, let t = τ (a, a′)

be the unique sender type (if there is any) that is indifferent between actions a and a′,
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i.e. uS (a, t) = uS (a′, t) and for all a, let t = τ (a, a) be the unique sender type (if there
is any) whose preferred action is a. Concavity of uS (a, t) in a and the single-crossing
condition on uS imply that the function τ is increasing in its arguments.

Note that for all k = 1, ..., κ− 1, we have

θκk (z) = τ
(
aR (zk−1, zk) , a

R (zk, zk+1)
)
.

Thus θκ is a composite of aR (·) and τ (·) , which are both increasing mappings. It
is therefore an increasing mapping. (ii) Next, let z∗ be a κ-equilibrium. Then the
sequence (xn) defined by x0 := (0, 1, ..., 1) and xn+1 = θκ (xn) is well-defined, decreasing
and bounded below by z∗, therefore converges to some fixed-point, x∗ that is greater
than or equal to z∗ (and for the same reason also greater than or equal to any other
κ-equilibrium). Thus x∗ is the greatest κ-equilibrium.

(iii) By (ii), since there are κ-equilibria and (κ+ 1)-equilibria, the sequence (xn)

defined in (ii) converges to the greatest κ-equilibrium x∗ and the sequence (yn) in Xκ+1

such that y0 := (0, 1, ..., 1) and yn+1 = θκ+1 (yn) is well-defined, decreasing and converges
to y∗. Then

(0, 1, ..., 1) = x0 ≤
(
y01, ..., y

0
κ+1

)
= (1, ..., 1) .

By monotonicity of θκ and θκ+1, we obtain xn ≤
(
yn1 , ..., y

n
κ+1

)
for all n, therefore x∗ ≤(

y∗1, ..., y
∗
κ+1

)
, the desired inequality. �

Proof of Theorem 1. Let θκA and θκB be the respective κ-equilibrium mappings of each
of the two games. For any z such that θκA is well-defined at z, the fact that ΓB is nested
into ΓA implies that θκB is well-defined at z, and that θκA (z) ≤ θκB (z) , with a strict
inequality of the nestedness is strict. In particular, if xA is the greatest κ-equilibrium
of ΓA, the sequence defined by z0 = xA and zn+1 = θκB (zn) for all n ≥ 0 is well-defined,
increasing and converges to some κ-equilibrium xB of ΓB such that xA ≤ xB ≤ xB, where
the second inequality holds by definition of the greatest κ-equilibrium, which proves both
claims. Note the the first inequality is strict if the nestedness is strict.�

The following Lemma is useful in the proof of Theorem 2.

Lemma 5. Let
(
uS, uR, fR

)
be a game. Let κ ≥ 1 and y ∈ Dκ∩Xκ, such that y < θκ (y) .

Then the following holds. (i) ER (θκ (y)) > ER (y). (ii) If US weakly single-crossing
dominates UR, then ES,R (θκ (y)) > ES,R (y) .
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Proof. Let i ∈ {R, S} . Let y′ := θκ (y) . For each h = 0, ..., κ−1, let aRh := aR(yh, yh+1).

Step 1: First we show that for each h, U i
(
aRh , yh, y

′
h

)
− U i

(
aRh−1, yh, y

′
h

)
≤ 0.

By definition of y′, uS
(
aRh , y

′
h

)
− uS

(
aRh−1, y

′
h

)
= 0 for each h. By supermodularity,

this implies that uS
(
aRh , s

)
− uS

(
aRh−1, s

)
≤ 0 for each s ∈ [yh, y

′
h] . Thus for each h,

US
(
aRh , yh, y

′
h

)
− US

(
aRh−1, yh, y

′
h

)
≤ 0.

Since US weakly single-crossing dominates U i, this implies that for each h,

U i
(
aRh , yh, y

′
h

)
− U i

(
aRh−1, yh, y

′
h

)
≤ 0.

Step 2: Second, we show that for each h, U i
(
aRh , y

′
h, y
′
h+1

)
< U i

(
aRh
(
y′h, y

′
h+1

)
, y′h, y

′
h+1

)
.

We know U i
(
a, y′h, y

′
h+1

)
is concave in a and reaches a maximum at ai(y′h, y′h+1).

Moreover, aRh < aRh
(
y′h, y

′
h+1

)
≤ ai(y′h, y

′
h+1). The first inequality holds because the

function aR (t, t′) is increasing in (t, t′). The second inequality holds because U i weakly
single crossing dominates UR. It follows that

U i
(
aRh , y

′
h, y
′
h+1

)
< U i

(
aRh
(
y′h, y

′
h+1

)
, y′h, y

′
h+1

)
,

for each h.
Step 3:

Ei(y)− Ei (y′) =
κ−1∑
h=0

[
U i
(
aRh , yh, yh+1

)
− U i

(
aRh
(
y′h, y

′
h+1

)
, y′h, y

′
h+1

)]
<

κ−1∑
h=0

[
U i
(
aRh , yh, yh+1

)
− U i

(
aRh , y

′
h, y
′
h+1

)]
=

κ−1∑
h=1

U i
(
aRh , yh, y

′
h

)
− U i

(
aRh , yh+1, y

′
h+1

)
=

κ−1∑
h=1

U i
(
aRh , yh, y

′
h

)
− U i

(
aRh−1, yh, y

′
h

)
≤ 0.

Where the first inequality holds by Step 2 and the last inequality by Step 1.�

Proof of Theorem 2. Let y0 := y. Let θκA and θκB be respectively the κ-equilibrium
mappings of ΓA and ΓB. Consider the sequence(yn)n≥0 of vectors in Xκ ∩Dκ such that
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yn+1 = θκB (yn) for all n ≥ 0. We know that θκA < θκB by Theorem 1. Thus

y0 = θκA
(
y0
)
< θκB

(
y0
)

= y1.

Since θκB (·) is monotone, and y0 < y1, it follows that yn < yn+1 for all n. Thus
the sequence (yn) converges to some κ-equilibrium y′ of ΓB. By Lemma 5, we have
Ei,RB(yn) < Ei,RB(yn+1) for all n and all agent i ∈ {SB, RB} , characterized by (ui, f i) .

Thus Ei,RB(y) < Ei,RB(y′).
In the case, i = RB, this proves claim (i) .

In the case i = SB, we obtain ESB ,RB(y) < ESB ,RB(y′). But for each h,

aRA (yh, yh+1) < aRB (yh, yh+1) < aSB (yh, yh+1) .

The first inequality holds by nestedness and the second because USB weakly single-
crossing dominates URB . Moreover USB (a, yh, yh+1) is concave in a and maximized at
aSB (yh, yh+1) , therefore ESB ,RA(y) < ESB ,RB(y), so that ESB ,RA(y) < ESB ,RB(y′), which
is claim (ii). �

Proof of Lemma 2. For each κ > 1, let γκ be the κ-equilibrium mapping of the game
(ui, ui, f i). First observe that an interior partition y is a critical point for Ei(y) if and
only if (y1, ..., yκ−1) is a fixed point of the equilibrium mapping γκ−2. If two distinct
interior critical points such that y0 = 0, y1 = x1, yκ−1 = xκ−1 and yl = 1 exist, we
have a violation of M0. Conversely, if M0 is not satisfied, then for some κ ≥ 3, there
are two fixed-points (y1, ..., yκ−1) and (z1, ..., zκ−1) of γκ−1 in Dκ−1, such that y1 = z1

and y2 < z2, and yκ−1 > zκ−1. By continuity, in this case we can find a third fixed point(
y′1, ..., y

′
κ−1
)
of γκ−1 in Dκ−1, such that y1 = y′1 and y2 < y′2, and yκ−1 = y′κ−1. The

partitions (0, y1, ..., yκ−1, 1) and (0, y1, ..., yκ−1, 1) are then two distinct interior critical
points of Ei (y) in Xκ with the same coordinates y1 and yκ−1.

Last, note that the function E (y) must have at least one interior global maximum,
so if condition M0 holds, the unique critical point is a global maximum.�

Proof of Theorem 3. For any κ ≥ 1 and any nonempty set X ⊆ T κ+1, let the

supremum of X, denoted by sup [X] be the vector in T κ+1 whose l-th coordinate is
the supremum of the set {xl ∈ T : there is x−l ∈ T κ such that (xl, x−l) ∈ X} . A subset

28



X ⊆ Tm is complete if, for each nonempty Y ⊆ X, we have sup[Y ] ∈ X.29 The proof
of the Theorem is in five steps.

Step 1 : Let κ ≥ 2. Then Zi,κ is complete.
Proof. Let Z be an arbitrary nonempty subset of Zi,κ. Since Z ⊆ Wκ, and Wκ is
complete, then sup [Z] ∈ Wκ. Let z be an arbitrary element of Z. Then, z ≤ sup [Z] .

Since γκ(·) is nondecreasing, then γκ(z) ≤ γκ(sup[Z]). Since z ∈ Zi,κ, then z ≤ γκ(z).
Therefore z ≤ γκ(sup[Z]). Since this holds for all z ∈ Z, therefore sup[Z] ≤ γκ(sup[Z]).
Therefore sup[Z] ∈ Zi,κ, the desired conclusion.�

Step 2 : Let κ > 1 and let (ui, f i) satisfy M0. Let x, x′ ∈ Wκ satisfy γκ(x) = x,
γκ(x′) ≥ x′ and (x0, xκ) = (x′0, x

′
κ). Then x′ ≤ x.

Proof. As a consequence of Step 1, the set Z := {z ∈ Zi,κ : z0 = x0 and zκ = xκ}
is complete. Let x∗ be the greatest element of Z. Let x∗∗ := γκ(x∗). Let us prove that
x∗∗ ∈ Z. We already know that x∗∗ ∈ Xκ. Since x∗ ∈ Z, then x∗ ≤ x∗∗. Since γκ(·)
is increasing, we have x∗∗ ≤ γκ(x∗∗). Therefore x∗∗ ∈ ZT,κ. Since x∗∗0 = x∗0 = x0 and
x∗∗κ = x∗κ = xκ, it follows that x∗∗ ∈ Z. Since x∗ is the greatest element of Z, then
x∗∗ ≤ x∗. Thus x∗∗ = x∗. Since (ui, f i) satisfies M0, we have x = x∗. Since x′ ∈ Z, this
implies x′ ≤ x.�

Step 3 : Let κ > 1, and let (ui, f i) satisfy M0. Then Zi,κ is monotonically connected.
That is, for all y′ ≤ y′′ ∈ Zi,κ, there is a continuous nondecreasing path y : [0, 1]→ Zi,κ

such that y (0) = y′ and y (1) = y′′.

Proof. For all λ ∈ [0, 1], let g(λ) := (1 − λ)y′ + λy′′ and y(λ) := sup(Zi,κ ∩ [0κ, g(λ)]).
As a consequence of Step 1, the set Zi,κ ∩ [0κ, g(λ)] is complete for all λ. Moreover y′ ∈
Zi,κ ∩ [0κ, g(λ)], therefore this set is nonempty. It follows that for all λ ∈ [0, 1], we have
y(λ) ∈ Zi,κ∩ [0κ, g(λ)]. For all λ ≤ λ′ ∈ [0, 1], we have Zi,κ∩ [0κ, g(λ)] ⊆ Zi,κ∩ [0κ, g(λ′)].
Therefore y(λ) is nondecreasing.

It only remains to prove that y(λ) is continuous everywhere on [0, 1]. Since y(λ) is
nondecreasing, then for all λ ∈]0, 1], the limit y(λ−) := limλ′→λ− y(λ′) exists, and we have
y(λ−) ≤ y(λ). Similarly, for all λ ∈ [0, 1[, the limit y(λ+) := limλ′→λ+ y(λ′) exist, and we

29It is easy to see that both Wκ and Xκ are complete. Their respective greatest elements are the
vectors (1, ..., 1) and (0, 1, ..., 1) . A box

{
y ∈ Tκ+1 : x ≤ y ≤ z

}
is complete, with greatest element z. If

two sets are complete, their intersection is also complete.
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have y(λ) ≤ y(λ+). By continuity of γκ(·), we have {y(λ−), y(λ+)} ⊆ Zi,κ ∩ [0κ, g(λ)].
Since y(λ) is the greatest element of this set, then in fact y(λ) = y(λ+), for all λ ∈ [0, 1[.

It only remains to prove that y(λ−) = y(λ) also holds. Suppose, by contradiction,
that this is not true, so that y(λ−) < y(λ). Then there are indices k, l such that
0 < k ≤ l < κ and satisfying yk−1(λ

−) = yk−1(λ), yl+1(λ
−) = yl+1(λ), and for all

h ∈ {k, . . . , l}, we have yh(λ−) < yh(λ). Let h be an arbitrary index such that k ≤
h ≤ l. Since yh(λ) ≤ gh(λ), therefore we also have yh(λ−) < gh(λ). For all ε > 0

small enough, we have yh(λ − ε) < gh(λ − ε). The only other constraint that restricts
yh(λ − ε) must then bind. Therefore γκh(y(λ − ε)) = yh(λ − ε). By continuity of γκh(·),
it follows that γκh(y(λ−)) = yh(λ

−) holds, for all h such that k ≤ h ≤ l. Let x :=

(yk−1(λ
−), . . . , yl+1(λ

−)) and x′ := (yk−1(λ), . . . , yl+1(λ)). We have γl−k+2(x) = x and
γl−k+2(x′) ≥ x′. By Step 2, we conclude that x′ ≤ x, a contradiction.�

Step 4 : For all y ∈ Zi,κ, and all k = 1, ..., κ− 1, we have ∂Ei

∂yk
(y) ≥ 0. Moreover the

inequalities are strict if y is in the interior of Zi,κ.
Proof. By the envelope Theorem, we have

dEi

dyk
(y) =

[
ui(ai(yk−1, yk), yk)− ui(ai(yk, yk+1), yk)

]
f i (yk) ≥ 0.

where the inequality holds because y ∈ Zi,κ.�

Step 5: Ei(y) is increasing on Zi for the partial order ≤∗ .
Proof. In the case where y′, y′′ ∈ Zi,κ, and y′ < y′′, the inequality Ei (y′) < Ei (y′′)

follows directly from local monotonicity of Ei on Zi,κ (Step 4) and monotone connect-
edness of Zi,κ (Step 3). It remains to prove it in the case where y′ ∈ Zi,κ ∩ Xκ′ and
y′′ ∈ Zi,κ ∩ Xκ′′ , with κ′ < κ′′. It is easily verified that (0, ..., 0, y′) (the vector ob-
tained by adding κ′′ − κ′ coordinates equal to zero) is an element of Zi,κ ∩ Xκ′′ . Thus
Ei (y′) = Ei (0, ..., 0, y′) < Ei (y′′), which yields the desired conclusion.��

Proof of Theorem 4. First, it is immediate that the game ΓB with parameters bRB
,

bSB
and fRB and the game Γ′B with parameters bRA

, bSB
+ (bRA

− bRB
) and fRB have

the same equilibrium partitions. In particular, for all i ∈ {RA, RB} , the sets{
Ei(y) : y is an equilibrium partition of ΓB

}
and {

Ei(y) : y is an equilibrium partition of Γ′B
}
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are equal. The game Γ′B is nested into game ΓA because bSB
− bRB

≤ bSA
− bRA

and
fRB MLR-dominates fRA . In addition, if either bSB

− bRB
< bSA

− bRA
or fRB strictly

MLR-dominates fRA , the game Γ′B is even strictly nested into game ΓA. Parts 1, 2 and 3
follow from these last two observations and from applying respectively Theorem1, part
(i) of Theorem 2 and Theorem 3 to games ΓA and Γ′B.�

Proof that if π > π̃, then fL �MLR f
L̃ �MLR f

H̃ �MLR f
H .

Since p (sH |t) = πq (t) + (1− π) c and p (sL|t) = π (1− q (t)) + (1− π) (1− c), we
have the conditional density

g (t|sH , π) =
f (t) (πq (t) + (1− π) c)∫ 1

0
πq (x) f (x) dx+ (1− π) c

.

To show that f H̃ �MLR f
H , it suffices to show that

g (t|sH , π)

g (t|sH , π̃)
>
g (t′|sH , π)

g (t′|sH , π̃)

for t > t′. Note that

g (t|sH , π)

g (t|sH , π̃)
=
f (t) (πq (t) + (1− π) c) /

(∫ 1

0
πq (x) f (x) dt+ (1− π) c

)
f (t) (π̃q (t) + (1− π̃) c) /

(∫ 1

0
π̃q (x) f (x) dt+ (1− π̃) c

)
and

g (t′|sH , π)

g (t′|sH , π̃)
=
f (t′) (πq (t′) + (1− π) c) /

(∫ 1

0
πq (x) f (x) dt+ (1− π) c

)
f (t′) (π̃q (t′) + (1− π̃) c) /

(∫ 1

0
π̃q (x) f (x) dt+ (1− π̃) c

)
Therefore it suffices to show that

(πq (t) + (1− π) c)

(π̃q (t) + (1− π̃) c)
>

(πq (t′) + (1− π) c)

(π̃q (t′) + (1− π̃) c)
.

Since π > π̃, t > t′ and q (·) is increasing, the inequality holds. A similar argument
shows that fL �MLR f

L̃.
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