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The head of an organization is viewed as dealing with an optimization problem under a variety of constraints. The bureaucracy, by contrast, is viewed as dealing with the constraints alone: it has to make a multitude of low-level decisions, in such a way that no constraint is violated. However, even the feasibility problem is computationally hard. Hence bureaucracies often try to rely on past cases, in the hope of making decisions that are feasible. We study the way that past cases might affect current choices, and show that, under certain conditions, the bureaucracy will guarantee feasibility only if it mimics its behavior in a single past case.

1 Introduction

Motivation

A president of a university wishes to establish a graduate program in a new, interdisciplinary field. A program of studies is being developed and approved, and the president decides to launch it. Two years later she wishes to check how the program is doing, and finds out that the program has not been launched yet. Inquiring why, she is told that there are staffing problems: at least until the next round of new hires, no solution was found to the assignments of instructors to the new courses as well as to the old ones. The president wonders whether it was indeed infeasible to launch the program with existing faculty, or is it the case that the administrators did not look hard enough for new solutions. There might even be a possibility that some departments were not sufficiently cooperative, perhaps because they feared losing their top students to the new program. The president has access to all the files and documents involved, including the new courses designed, the existing faculty teaching records, and so on. Yet, the complexity of the problem does not allow her to determine whether a solution could have been found.

It is often the case that decisions made within organizations are not implemented, or implemented in a different way from the directors' original intention. 1 Typically, such implementation problems will not involve explicit disobedience; rather, a decision that is made at the top level has to be translated to many minor decisions at lower levels of the hierarchy, and it is not always clear how, if at all, the top-level decision can be implemented. As a result, a decision can be stated without having any practical effects, or having results that differ from those desired.

Outline

It might be useful to think of an organization as coping with an optimization problem, where the directors set the objective function, and the bureaucracy determines the values of many decision variables subject to various feasibility constraints. According to this view, the bureaucracy consists of many lowerlevel decision makers, each responsible for a subset of decision variables, and its sole goal is to satisfy the constraints. That is, the bureaucracy consists of many decision makers who do not have a meaningful utility (or objective) function; the bureaucracy only seeks feasibility. Clearly, a feasibility problem can be viewed as a degenerate optimization problem, and, conversely, an optimization problem can be regarded as a sequence of feasibility problems. Indeed, a director of an organization can set goals for her objective function that become constraints for the bureaucracy. Yet, we find it more intuitive to think of directors as having objectives, and of the bureaucracy as seeking feasibility alone.

Given a set of constraints, how does the bureaucracy make decisions that may hopefully satisfy all constraints? In Section 2 we show that naturallyarising feasibility problems are computationally complex in a well-defined sense. Hence, it is unlikely to assume that the organization can compute an optimal solution to its optimization problem, or even that a central decisionmaking unit can find a feasible solution by considering the problem in the abstract. But organizations have histories, and history is often a good source of feasible solutions. For instance, if the set of constraints that the bureaucracy faces does not change over time, any solution that was chosen in the past offers a possible solution for the present. More generally, when problems facedindifferent periods are not necessarily identical, the bureaucracy would tend to consult past decisions in similar cases in its quest for feasibility.

However, due to practical considerations, bureaucracy has to take decisions in a decentralized way. It follows that repeating past decisions poses a non-trivial coordination problem. History offers a collection of past cases, which are relevant to the present problem to varying degrees, and different decision makers within the bureaucracy should aggregate past decisions in a way that leads to a feasible solution. In Section 3 we formulate the problem and state two possible methods of aggregation, one akin to kernel classification, and the other -to nearest-neighbor classification.

In Section 4 we show that the kernel classification method, which at-tempts to aggregate over all similar past cases, is prone to problems akin to Condorcet's paradox. Indeed, we prove an "impossibility" theorem, along the lines of Arrow's theorem, showing that, under certain conditions, any method of aggregation that is not a (single-)nearest-neighbor approach may end up aggregating feasible solutions into an infeasible one. The case that is singled out as "the nearest" plays the role of the dictator in Arrow's theorem. However, our result does not have the same normative flavor as Arrow's impossibility theorem: first, Arrow's assumption of IIA (Independence of Irrelevant Alternatives) is replaced in our context by the assumption that the bureaucracy is constrained to make decisions in a decentralized way. This assumption is based on organizational constraints, and has no normative flavor. Second, our conclusion does not have a normatively negative meaning: while the dictatorship in Arrow's model is clearly an undesirable conclusion, using a nearest-neighbor analogy seems to be ethically neutral. Thus, our theorem bears a resemblance to social choice impossibility theorem, but its interpretation is rather different. From a mathematical viewpoint, the theorem also may be seen as a significant generalization of such impossibility results.

It is easy to observe that, if different branches of the bureaucracy have different ways of judging similarity of past cases, feasibility is not guaranteed even if all of them use a single-neighbor approach. As a result, we conclude that bureaucracies can often make decisions that violate some of the constraints. This and other implications of our model are discussed in Section 5.

Related Literature

Organizations may be thought of as monolithic, rational decision makers, maximizing expected utility under constraints. In the context of the decisions of a firm, the rational decision maker model goes back to Smith (1776), [START_REF] Marx | Capital. English Translation[END_REF][START_REF] Durkheim | The Division of Labor in Society[END_REF], with an emphasis on efficiency of production in the early 20th century (Taylor, 1911[START_REF] Follett | The New State: Group Organization and the Solution of Popular Government[END_REF][START_REF] Fayol | General and Industrial Management[END_REF]. More generally, any organization that satisfies the axioms of rational choice can be viewed as an expected utility maximizer (along the axiomatic approach of [START_REF] Debreu | The Theory of Value[END_REF][START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF], Savage, 1954).

However, organizations do not always seem to be sufficiently coherent to be ascribed a utility function and a subjective probability that would describe their choices via the expected utility maximization paradigm. One may espouse a different view, according to which organizations are games played by different agents, who have different utility functions, private information, and perhaps also different a priori beliefs. Decomposing organizations to sub-units was already suggested by [START_REF] Weber | Economy and Society: An Outline of Interpretive Sociology[END_REF][START_REF] Weber | The Theory of Social and Economic Organization[END_REF], who viewed bureaucracy as a way of establishing legitimate authority, and of achieving maximal efficiency. [START_REF] Buchanan | The Calculus of Consent: Logical Foundations of Constitutional Democracy[END_REF] viewed the state as comprising of rational agents with different goals. [START_REF] Niskanen | Bureaucracy and Representative Government.N e w Brunswick[END_REF][START_REF] Niskanen | Bureaucrats and Politicians[END_REF] analyzed bureaucracy as a production entity, and questioned its efficiency.

Our model is akin to the second strand in the literature, as it does not view the organization as a monolithic agent. However, it differs from the models mentioned above in that it does not ascribe an objective function to the bureaucracy, apart from following the path of least resistance.

Ours is by no means the only model that goes beyond the rational choice paradigm, whether applied to the organization as a whole or to components thereof. March and Simon (1958) pointed out the bounded rationality that characterizes organizational decision making. [START_REF] Burns | The Management of Innovation[END_REF] suggested that mechanistic bureaucracies are ill-adapted to deal with changing environments. [START_REF] Kanter | Men and Women of the Corporation.N e wY o r k :B a s i c Books[END_REF] argued that power inside an organization may n o tb ee a s yt od e fine, and suggested that the seemingly powerful are often powerless. 2 Bendor and Moe (1985) analyzed bureaucracies using bounded rationality models.

More generally, there are many other images that have been used to describe organizations. [START_REF] Morgan | Images of Organization[END_REF] mentions metaphors such as machines (Taylor, 1911[START_REF] Fayol | General and Industrial Management[END_REF][START_REF] Weber | The Theory of Social and Economic Organization[END_REF], organisms (Parsons, 1951, Burns and[START_REF] Burns | The Management of Innovation[END_REF], brains [START_REF] Sandelands | The Concept of Organization Mind[END_REF][START_REF] Walsh | Organizational Memory[END_REF][START_REF] March | The Pursuit of Organizational Intelligence[END_REF], cultures [START_REF] Ouchi | Organizational Culture[END_REF], and political systems [START_REF] Burns | Micropolitics: Mechanisms of Organizational Change[END_REF][START_REF] March | The Business Firm as a Political Coalition[END_REF]. For the most part, these images have not been formally modeled.

Focusing on firms, [START_REF] Coase | The Nature of the Firm[END_REF] pointed out the absence of an economic theory of the size of the firm. [START_REF] Williamson | Markets and Hierarchies[END_REF][START_REF] Williamson | Transaction Cost Economics: The Governance of Contractual Relations[END_REF][START_REF] Williamson | The Economics of Organization: The Transaction Cost Approach[END_REF] discussed the transaction costs between and within organizations, with implications for vertical integration and the boundaries of the firm. [START_REF] Jensen | Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure[END_REF] studied modern corporation from a principal-agent point of view, highlighting the difficulties that are generated by the separation of ownership from control.

Indeed, our distinction between directors and bureaucracy brings to mind principal-agent problems. In the classical principal-agent problem [START_REF] Arrow | Social Choice and Individual Values.N e wY o r k :W i l y . Arrow, K[END_REF][START_REF] Holmstrom | Moral Hazard and Observability[END_REF], the principal does not have access to all the information available to the agent, and cannot observe the level of effort exerted by the agent. Similarly, in the problem discussed here, the principal (director) does not typically know all the bureaucratic details involved in implementing a decision, and therefore may not be able to tell whether a decision was not implemented because it could not have been implemented, or because the agent (bureaucracy) did not look hard enough for ways to implement it.

However, the director-bureaucracy problem we are interested in has several special features that distinguish it from other principal-agent problems. First, the bureaucracy need not have access to any factual information that is not observable by the principal. Rather, we assume that the principal can directly observe any file and any document that the organization possesses. Thus, the feasibility of any possible solution to the decision-implementation problem can be verified by the principal just as it can be by the bureaucracy.

The asymmetry in "information" between the bureaucracy and the principal is a result of the complexity of the implementation problem: once the principal considers a possible solution, she can verify whether it is feasible and efficacious, but a priori she cannot consider all possible solutions. By contrast, the bureaucracy can, through its collective memory, be aware of more possible solutions than can the principal.

The present paper shares much of its motivation with Gilboa and Schmeidler (2011). In particular, that paper formally models organizations as entities that make decisions without a clear utility function, and with a tendency to be consistent with past decisions. The complexity result discussed in Section 2 appeared in the first version of [START_REF] Gilboa | Authorization Decisions[END_REF].

The main result of the paper, presented in Section 4, is related to Arrow's impossibility theorem [START_REF] Arrow | Social Choice and Individual Values.N e wY o r k :W i l y . Arrow, K[END_REF] and its generalizations by [START_REF] Wilson | Social Choice Theory without the Pareto Principle[END_REF] and Fishburn and Rubinstein (1986), as well as to the recent literature on judgment aggregation, starting with List and Pettit (2002), and followed by, among others, [START_REF] Dietrich | The possibility of judgment aggregation on agendas with subjunctive implications[END_REF], [START_REF] Dietrich | Majority Voting on Restricted Domains[END_REF], [START_REF] Dietrich | The premiss-based approach to judgment aggregation[END_REF], Dokow and Holzman (2010a,b), Nehring and Puppe (2010a,b) (see [START_REF] List | Introduction to Judgment Aggregation[END_REF], for an introduction and a survey). Much of this literature deals with decision variables that are binary, denoting whether one alternative is preferred to another, whether a proposition is true, etc. In this context, our result extends the scope of the model to deal with non-negative integer variables that need not be restricted to {0, 1}. Indeed, the proof of the theorem for the case of {0, 1} variables follows standard arguments, and the main innovation is in the extension to general variables.

The Complexity of Implementation of a Decision

The implementation of a decision has to take into account various resource constraints, such as monetary budgets, time constraints of employees of dif-ferent skills, scheduling of sub-tasks, and so forth. The problem is often further complicated by the fact that the bureaucracy has several hierarchical levels, and each decision made by a given level may have to be implemented by the level below it, being translated into several minor decisions.

We show here that even if there is only one level of implementation, and the only constraints are the availability of employees, implementation may be too complex a problem to be solved by available computers and algorithmic knowledge. Specifically, we state a simple version of the implementation problem formally, and show that it belongs to the class of NP-Complete problems, for which there are no known polynomial-time algorithms. 3Assume that implementing a decision requires the performance of t tasks. Each task has to be performed by one of s employees. Not every employee can perform every task. Assume that the index L ij ∈ {0, 1} denotes whether task i ≤ t can be performed by employee j ≤ s.I fL ij =1 ,t a s ki would require e i ≥ 0 hours of employee j (assuming that all skilled employees are equally efficient in performing the task). Finally, employee j ≤ s has a budget of B j ≥ 0 hours at the organization's disposal. The implementation of the decision requires that each task i be allocated to one of the employees j such that the total hours of each employee does not exceed the available budget. An allocation can be viewed as a matrix (a ij ) i≤t,j≤s with a ij ∈ {0, 1}.T h e allocation is consistent with

(e i ) i≤t , (B j ) j≤s ,a n d(L ij ) i≤t,j≤s if a ij ≤ L ij ∀i, j X j≤s a ij =1 ∀i and X i≤t a ij e i ≤ B j ∀j
That is, an allocation has to conform to the skill requirements (so that

L ij =0 implies a ij =0);ithastomakesurethateverytaskisperformed( P j≤s a ij = 1)
and that no employee is asked to work more than her allowed number of hours ( P i≤t a ij e i ≤ B j ). Finding such an allocation is a difficult problem: Proposition 1 Given expenses (e i ) i≤t , (B j ) j≤s ,and(L ij ) i≤t,j≤s finding whether there exists a consistent allocation

(A ij ) i≤t,j≤s is NP-Complete.
The proof of the proposition does not make use of more than two budgets (s =2 )o ro ft h em a t r i xL (in fact, it assumes that L ij ≡ 1). 4 Thus a problem that would appear to be much simpler would still be as hard as all the problems in the class NP. Clearly, the problem only becomes more complicated if one takes into account additional constraints, such as the timing of tasks and potential precedence constraints between them, budget constraints, and the like.

The notion of NP-Completeness captures a few aspects of the asymmetry between the director and the bureaucracy: fir st,t h et w oar en ota sy m m etr ic with respect to any "hard", factual information. Any concrete fact, such as whether a certain employee can perform a given task, or how much time an employee has, is known to the bureaucracy and to the director alike. Once a proposed solution to the allocation problem is suggested, both the bureaucracy and the director can verify whether it satisfies the constraints or not. However, before a concrete solution is proposed, the director will typically not be able to envisage all solutions due to their large number.

Can the bureaucracy solve the allocation problem? There are two reasons for which it might have greater computational abilities than the director. First, the bureaucracy might have a longer memory of past problems, which might resemble the current one. Second, the bureaucracy consists of many individuals, and they may be viewed as parts of a large, decentralized computing machine. While coordination is viewed as one of the chief goals of organizations (see [START_REF] Milgrom | Economics, Organization and Management[END_REF], in the following section we study a model the bureaucracy as a collection of decentralized sub-units, whose coordination can only be done implicitly, by referring to past decisions.

3M o d e l

The bureaucracy is viewed as solving an integer programming problem, stated as Ax ≤ b where x =( x 1 , ..., x n ) T is a vector of non-negative integer-valued decision variables, A is a m × n matrix of real numbers, and b is a vector of m extended real numbers, b j ∈ R ∪ {∞}. Clearly, setting b j = ∞ renders the constraint vacuous; allowing this possibility simplifies notation in the sequel. Evidently, constraints of the type ≤ can also capture constraints of the type ≥ and hence also equality constraints. We denote the set of possible right-hand-side (RHS) vectors by

B ≡ (R ∪ {∞}) m .
The restriction that all of the x's be integer-valued is not crucial and one may allow some x's to be continuous. However, complexity results as Proposition 1 do depend on integrality constraints for some variables. In particular, linear constraints can capture binary decisions, as in the task assignment problem, by using variables restricted to {0, 1}.O n t h e o t h e r hand, variables that are generally thought of as continuous can be approximated by integer ones. 5 Thus, for simplicity, we assume that all variables are integer-valued, and all constraints are of the type ≤.

Recall that we use the term "solving a problem" for finding a solution which is no more than an assignment of values to the decision variables, satisfying all constraints. When a solution also optimizes an objective function, itisr efe rredtoasan"o ptim alsolu tio n ". H o w ev e r,inthissec tionw edon o t deal with objective functions.

We wish to model the bureaucracy's reliance on past decisions in its attempt to find a solution to the present problem. To this end, we need to introduce a time index, t,s u c ht h a t ,a tp e r i o dt the bureaucracy faces the decision problem

A t x ≤ b t
where x is a vector with n t decision variables. To simplify notation, we will assume that n t and A t are independent of t. T h i si n v o l v e sn ol o s so f generality because, at each period t, we can take the union of all decision variables that appeared in periods τ ≤ t,w h i c hi safinite set of variables. A decision variable x i that was not actually present in period τ can be formally included in the problem with the constraint x i ≤ 0. Similarly, we can consider the matrix A that consists of the union of all rows of the matrices (A τ ) τ ≤t and, when a certain constraint does not appear in period τ ,s e tb j,τ = ∞.

To sum, we assume that at each period t the bureaucracy faces the problem

Ax ≤ b t with a period-independent matrix A, and period-dependent RHS vector b t ∈ B.

Problems encountered in the past would typically have additional characteristics apart from the RHS vector. Let P be an abstract set denoting possible circumstances of a problem. Thus, a problem presents itself as a pair (p, b) ∈ P × B where b denotes the RHS which directly defines the problem, and p includes various relevant circumstances which may affect decisions.

A case is a triple c =( p, b, x) where (p, b) is a problem, and x ∈ Z n + describes the decisions that were made in this problem. At time t, the bureaucracy faces a problem (p t ,b t ) ∈ P × B and needs to make a decision

x t ∈ Z n + ,s ot h a tAx t ≤ b t .
When this decision is made, the organization has a history

h t =((p 0 ,b 0 ,x 0 ) , ..., (p t-1 ,b t-1 ,x t-1 ) , (p t ,b t )) .
Given such a history, we suppose that decision makers would think of past problems (p i ,b i ) that were similar to the current one, (p t ,b t ).D e fine a similarity function to be s :(P × B) × (P × B) → R + Such a similarity function can be used to identify the decision that is "most often made in these circumstances". Specifically, consider the i-th decision, namely the value of the decision variable x i .O n em a yg oo v e ra l l past cases τ =0,...,t-1,a n ds e ew h i c hv a l u ex i,τ appeared in past periods in history h t , weigh each period by its degree of similarity to the current one, and consider the sum of these similarity values. Formally, define, for x ∈ Z + and history h t ,

S(h t ,x)= t-1 X τ =0 s((p τ ,b τ ) , (p t ,b t ))1 {x i,τ =x} . (1) 
We say that the bureaucracy makes decisions by aggregation of the similarity function s if it selects x i that is a maximizer of S(h t ,x) for each i (and each t,g i v e na n yh t ). This decision mode is formally equivalent to kernel classification in statistics (see [START_REF] Akaike | An Approximation to the Density Function[END_REF][START_REF] Parzen | On the Estimation of a Probability Density Function and the Mode[END_REF][START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF].

In classification problems, (p, b) stands for the observable characteristics, and the classifier has to guess the "correct" x based on past examples. In the present context, x is a decision made by a branch of the bureaucracy, and there is no external definition of "correctness". However, the function that is being maximized has the same structure, with the similarity function s replacing the role of the kernel function in kernel classification.

Observe that computing a maximizer of S(h t ,x) requires only the knowledge of {x i,τ } τ and can thus be completely decentralized: to implement such a maximal vector (x i ) i ,e a c hd e c i s i o nx i can be made independently of the others.

The formal analogy to classification problems brings to mind the nearestneighbor approach (Fix andHodges, 1951, 1952), where the classifier selects apastcasethatmaximizesthesimilaritytothepresentone,andmakesaprediction that is the x v a l u et h a tw a so b s e r v e di nt h a tc a s e . C o r r e s p o n d i n g l y , one may select τ such that

s((p τ ,b τ ) , (p t ,b t )) ≥ s((p r ,b r ) , (p t ,b t ))
for all r<t , and set x i = x i,τ . [START_REF] Gilboa | Inductive Inference: An Axiomatic Approach[END_REF] provide an axiomatization of kernel classification. They consider the choice of x i given different histories, and show that certain consistency requirements imply that there exists a similarity function s for which the choice of x i is made to as to maximize an aggregation of the similarity function. [START_REF] Gilboa | Authorization Decisions[END_REF] employ this result for binary choices in the context of organization behavior. Ravid (2009) axiomatized nearest-neighbor approaches (with k neighbors, including the case of k =1), and his results can similarly be re-interpreted as assumptions about the behavior of an organization.

These axiomatizations highlight the role of consistency of choice across different histories. However, in our context there is another notion of consistency that is crucial: consistency of the many minor decisions made by different branches of the bureaucracy. In particular, in the next section we ask, which decision mode guarantees that feasibility is retained.

4 Feasibility and The Prominence of a Single Case

A Condorcet-Style Problem

Consider the following example, which is a highly simplified version of the course scheduling problem discussed in the introduction. Mary can teach any one of three courses, but her teaching load is only two courses. Let x i ∈ {0, 1} denote whether she is assigned to course i =1 , 2, 3. Thus, the three variables have to satisfy a single constraint,

x 1 + x 2 + x 3 =2
(which, to fit the mold of our model, can be written as two inequalities,

x 1 + x 2 + x 3 ≤ 2 and -x 1 -x 2 -x 3 ≤-2).
Assume that these courses belong to different programs and are run by different branches of the administration, so that each variable x i is governed by a different office.

Next assume that we are at period t =3, and that the three past problems (τ =0, 1, 2) had the same constraint. However, in each past period there have been additional constraints, for example, the presence of a visitor who was assigned to one of the courses. Be that as it may, past decisions varied across periods. Specifically, suppose that the observed past decisions are

x iτ τ =0 τ =1 τ =2 i = 1 110 i = 2 101 i = 3 011
Assume, for simplicity, that all branches of the bureaucracy view the three past problems as equally similar to the current one. This implies that the similarity-aggregation method boils down to assigning to each variable its most common value in history. Clearly, this would lead to the assignment x 1 = x 2 = x 3 =1, which violates the constraint of Mary's teaching load.

We t he ref ore find that doing "what has been most commonly done in the past" may lead to infeasibility: even if history consists only of solutions that satisfy a certain set of constraints, choosing the most common value for each x i separately may lead to an assignment of values which is infeasible. The analogy to Condorcet's paradox is inevitable: in this paradox, a majority vote among agents is taken, for any pair of alternatives separately. Each single voter has transitive preferences, but the majority preferences fail to be transitive. In our case, the role of the voters is played by past cases. Decision by aggregation of similarity generalizes majority vote; indeed, it can be viewed as a (similarity-)weighted majority vote. Each single case may be feasible relative to a given constraint, while the "majority case" is not.

Similarly, the problem we face here is also akin to the "doctrinal paradox" of List and Pettit (2002). In their example, three judges have to vote on the validity of three propositions, p, q, and r. All judges agree with the "doctrine" that ((p ∧ q) ↔ r) that is, that r can be established if and only if both p and q hold. When the judges vote on each proposition separately, majority vote may be inconsistent with the doctrine.

The Condorcet problem suggests that "retaining the status quo" may not be as simple as it appears. Even if the bureaucracy seeks feasible solutions, independently of their optimality, following a "business as usual" approach, letting different offices do "what they usually do" may lead to inconsistent choices. A potential way out is not to attempt to summarize all of history, but simply to follow the most recent period choices, or, more generally, the most similar period choices. Assuming that the most similar period had the same set of constraints, this would guarantee feasibility. Indeed, this is the counterpart of a dictatorial solution to the aggregation problem: adopting a single agent's preferences in the social choice problem is equivalent to repeating the decisions made in a single past case. In the next sub-section we show that, under fairly general conditions, this is the most promising way to guarantee feasibility.

An Arrow-Style Theorem

Consider a given period t ≥ 2. We will consider different histories of length t, h t =( ( p 0 ,b 0 ,x 0 ) , ..., (p t-1 ,b t-1 ,x t-1 ) , (p t ,b t )). Focusing on the decisions made in the past, such a history defines an n × t matrix, so that x iτ is the value chosen for the variable x i at period τ<t . We assume that the decision at time t, x it , is made for each i separately, as a function of past decisions made for the same variable. This separability assumption corresponds to [START_REF] Arrow | Social Choice and Individual Values.N e wY o r k :W i l y . Arrow, K[END_REF] IIA (Independence of Irrelevant Alternatives) assumption or the Independence assumption of List and Pettit (2002). However, in our case it is not offered as a normative axiom on social choice; rather, it is dictated by necessity: different branches of the bureaucracy have to make daily decisions in a decentralized way. Each office has access to its own decisions in the past, but not necessarily to others'. Thus, we take it as an organizational constraint that each x i will be determined based on its own past values alone.

Assume, then, that there is a function

f : Z t + → Z + such that, for each i, x it = f ¡ x i0 ,x i1 ,...,x i(t-1) ¢
Af u n c t i o nf will be called a most-similar-case function if there exists τ<tsuch that f (x 0 ,x 1 , ..., x t-1 )=x τ for all (x 0 ,x 1 , ..., x t-1 ) ∈ Z t + . It is easily seen that f is a most-similar-case function according to this definition if and only if there exists a 1-1 function s :( P × B) × (P × B) → R + such that f is the nearest-neighbor decision accordingtothesimilarityfunctions. (Where the restriction to 1-1 functions is needed to avoid the ambiguity generated by ties.)

Clearly, even if all offices of the bureaucracy make decisions by the same most-similar-case function, feasibility is not guaranteed if the problem faced b yt h eo r g a n i z a t i o ni sn e w . I nf a c t ,t h en e wp r o b l e mm a yn o tb ef e a s i b l ea t all. However, in the extreme case in which the same feasibility problem is repeated, and if the problem has been solved in each period in the past, one may hope that a (feasible) solution will be found again.

To capture this intuition, define a history

h t =((p 0 ,b 0 ,x 0 ) , ..., (p t-1 ,b t-1 ,x t-1 ) , (p t ,b t )) to be regular if (i) b τ = b for all τ ≤ t ; (ii) x τ is feasible for all τ<t(that is, Ax τ ≤ b).
Afunctionf : Z t + → Z + is consistent if it generates a feasible decision for each regular history. That is, for a regular h t =((p 0 ,b,x 0 ) ,...,(p t-1 ,b,x t-1 ) , (p t ,b)), i th a st obet h ec a s et h a t

Ax ≤ b where

x it = f ¡ x i0 ,x i1 , ..., x i(t-1) ¢ .
To establish our result, we need to make sure that the matrix of constraints, A, allows for sufficient interaction among the decisions. Indeed, if, for example, each constraint involves only one variable, the bureaucracy's decisions may well be decentralized without fear of inconsistency. However, this would hardly be a realistic model of actual organizations. To rule out some trivial cases such as this, we assume that the matrix A satisfies the following condition.

A(m × n)m atrixA contains potentially conflicting rows if (i) there exist two rows i 1 ,i 2 ≤ m and three columns j 1 ,j 2 ,j 3 ≤ n such that a i 1 j > 0 and a i 2 j < 0 for j = j 1 ,j 2 ,j 3 and (ii) there exists a row i such that P j a ij > 0.6 In our example there was one constraint, namely,

x 1 + x 2 + x 3 =2.
Translating this constraint to ≤ inequalities, it would take the form

x 1 + x 2 + x 3 ≤ 2 -x 1 -x 2 -x 3 ≤-2.
These two constraints would appear in the matrix A as

+1 +1 +1 -1 -1 -1
which clearly define A as containing potentially conflicting rows. Differently put, the condition of "containing potentially conflicting rows" generalizes the example we started out with, by allowing any three positive values (not necessarily all 1) associated with any three negative values (not necessarily all -1), as long as the sum of (the entire) row with the positive values is a positive number. It turns out that this condition is sufficient to establish our result.

Theorem 2 Assume that A contains potentially conflicting rows. Then f is consistent if and only if it is a most-similar-case function.

This result shows that the only way that the bureaucracy can guarantee feasibility is by sticking to a single case, say, τ , out of each history h t .A s mentioned above, we can always find a similarity function s :( P × B) × (P × B) → R + such that this single case in h t be the most similar case to (p t ,b t ) in h t . However, in practice it is likely that the similarity function that can serve as a focal point for the organization's sub-unit would be determined by recency. Thus, the theorem can be viewed as a possible explanation for a particular type of inertia: organizations may tend to do what they have done in the most recent period, as this is a simple way to coordinate on a single most-similar-case.

Comparing this result to the impossibility theorems in the social choice literature, our consistency requirement corresponds to the transitivity of preferences in [START_REF] Arrow | Social Choice and Individual Values.N e wY o r k :W i l y . Arrow, K[END_REF] or the "doctrine" in List and Pettit (2002). As mentioned above, Arrow's IIA condition, or List and Pettit's Independence assumption, are built into the definition of the function f .I nt h i sc o n t e x t , onemightwonderwhyourtheoremdoesnotrequireaParetooraUnanimity assumption. Such a condition would mean, in our model, that the function f has to retain the status quo in the sense that f(c, ..., c)=c for all c ∈ Z + . However, it turns out that this condition is implied by consistency, if the matrix A hasatleastonerowwhosesumispositiv e,asguaranteedbycondition (ii).

Observe that if every row of the matrix A adds up to zero, then functions that do not retain the status quo can also be consistent. Specifically, if f is a most-similar-case function and f 0 is defined by f 0 (x 0 ,x 1 , ..., x t-1 )= f (x 0 ,x 1 , ..., x t-1 )+d for d ∈ Z ++ ,thenf 0 is also consistent. 7 This possibility is ruled out by condition (ii), which appears rather natural for constraints arising in real-life problems.

Discussion

Observe that in Theorem 2 the histories that are considered are not necessarily compatible with the function f discussed. Indeed, for a regular history (withaR HSv ectorb that is independent of the period), any function f that retains the status quo will choose the same x in each period. However, various unmodeled phenomena may yield different x's in the past. This is akin to the definition of a strategy in an extensive form game, which is defined also at nodes that are inconsistent with itself. Indeed, one would like to have the strategy defined also in case of "trembling hand" deviations, and, similarly, to have the function f defined also on histories in which past decisions ended up being different than the choice dictated by f. 8 Real bureaucracies will face problems that are more complicated than those modeled in our Proposition 2. Typically, the RHS vectors will vary from period to period, and the new vector, b t may not have been encountered in thepastatall. Ifitisthecasethatb τ ≤ b t for some τ ≤ t, one may be assured that the present problem is feasible. Indeed, introducing the inequality b τ ≤ b t into the judgment of similarity of the problem (p τ ,b τ ) to (p t ,b t ) might mean that, when maximizing s((p τ ,b τ ) , (p t ,b t )), the bureaucracy will find 7 It follows from the proof in the Appendix that these functions are the only consistent ones. In particular, the only consistent functions that retain the status quo are the mostsimilar-case ones, even when all rows of A a d du pt oz e r o . 8 Note, however, that the function f is defined for a given history length t,a so p p o s e d to a strategy that is defined for the entire game tree.

ap a s tc a s eτ whose solution is still feasible under present circumstances. However, it may be the case that no such past case τ exists, and then there is no guarantee that there is a practical way to find out whether a feasible solution exists.

Additional difficulties that arise in reality are that the judgment similarities of different offices of the bureaucracy need not be identical. For idiosyncratic or systematic reasons, different people would vary in their similarity judgments. In this case, a most-similar-case function might prove rather sensitive, and the overall decision vector might fail to be coherent. With this view in mind, it is possible that aggregated similarity functions might be more robust than most-similar-case ones. Be that as it may, there remains the possibility that different branches of the bureaucracy make reasonable decisions that, taken together, are incoherent.

6 Appendix A: Proofs

Proof of Proposition 1

It is straightforward that the problem is in NP. To see that it is NP-Complete, consider the following problem (which is known to be NP-Complete, see [START_REF] Gary | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]:

Problem KNAPSACK: Given integers c 1 , ..., c n and b,isthereasubset K ⊂ {1,...,n} such that P i∈K c i = b? Given the input c 1 , ..., c n ,b for KNAPSACK, define an allocation problem with (e i ) i≤t , (B j ) j≤s ,a n d(L ij ) i≤t,j≤s as follows:

s =2 , B 1 = b, B 2 = P i∈K c i -b
.N e x t ,t = n and e i = c i . Finally, L ij =1for all i ≤ n and j =1, 2. Thus, any task can be performed by each of the two employees. If there exists K ⊂ {1, ..., n} such that

P i∈K c i = b = B 1 ,i ti so b v i o u st h a t P i/ ∈K c i = P i∈K c i -b = B 2
andth usanallocationhasbeenfoundsuc hthat no employee's hour budget is exceeded. If, on the other hand, such an allocation exists, satisfying P i∈K c i ≤ B 1 and

P i/ ∈K c i ≤ B 2
, both inequalities have to hold as equalities, and K solves the knapsack problem.

Clearly, the construction is done in polynomial time.¤

Proof of Theorem 2

It is immediate that a most-similar-case function is consistent. We wish to prove the converse. W eletbegivenam×n matrix A, a history length t ≥ 1, and a consistent map f : Z t + → Z + . Since A contains potentially conflicting rows, in particular it contains at least one row whose entries add up to a positive value. We show that this suffices to conclude that f(0,...,0) must be equal to zero.

Lemma 1 One has f (0,...,0) = 0.

Proof. Using the notations of Section 4.2, consider a regular history h t in which the right-hand side b of the system of constraints is the null vector 0 R m , and in which all earlier decisions were set to zero: x iτ =0for each i and τ ≤ t.S i n c ex i = f(x i0 ,...,x it )=f (0,...,0) for each branch i of the bureaucracy, the decision x i does not depend on i following the history h t , a n dw ed e n o t et h i sc o m m o nv a l u eb yc ∈ Z + .

Since f is consistent, the vector c := (c,...,c) in

Z n + solves A c ≤ b = 0 R m .
Since there is at least one row of A whose entries add up to a positive number, this implies c =0.

Let i 1 ,i 2 ∈ {1,...,n} and j 1 ,j 2 ,j 3 ∈ {1,...,m} be such that a i 1 j > 0 and a i 2 j < 0 for j = j 1 ,j 2 ,j 3 . W.l.o.g., we take these rows and columns to b e ,r e s p e c t i v e l y ,t h efirst two rows and the first three columns of A.

For notational simplicity, we denote the first three entries of the first two rows by a,b,a n dc,a n d-a 0 , -b 0 ,a n d-c 0 respectively, so that all six numbers a, b, c, a 0 ,b 0 ,a n dc 0 are positive. We will be interested in the submatrix generated by these three numbers. Specifically, for d, d 0 ∈ R + ∪{+∞} we define the system S(d, d 0 ) in the variables y =(y 1 ,y 2 ,y 3 ) as ½ ay 1 + by 2 + cy 3 ≤ d a 0 y 1 + b 0 y 2 + c 0 y 3 ≥ d 0 .

Thus, for y ∈ Z 3 + we say that y is a solution to S(d, d 0 ) if the above inequalities hold.

We will prove that f is a most-similar-case function. We will use the consistency property only through Lemma 2 below. + be a solution to the system S(d, d 0 ). Then the (three-dimensional) vector (f(y 1 ),f(y 2 ),f(y 3 )) is also a solution to S(d, d 0 ),w h e r ey i stands for the t-dimensional vector (y i (τ )) τ =1,...,t .

Proof. For each τ =1 ,...,t,l e tx(τ ) be the n-dimensional vector obtained by appending n -3 zeroes to y(τ ).S e tb 1 = d, b 2 = -d 0 ,andb i =+∞ for i>2,s ot h a tx(τ ) solves Ax ≤ b for each τ .

By Lemma 1, f(x j )=0for j =4 ,...,n.S i n c e f is consistent, the n-dimensional vector (f(y 1 ),f(y 2 ),f(y 3 ), 0,. ..,0) The proof proceeds in three steps. We first argue in Step 0 that f retains the status quo. In Step 1,w en e x tp r o v et h a tf coincides with a most-similar-case function on the set of inputs {0, 1} t .I nStep 2,w eremo v e the latter restriction.

Step 0: f retains the status quo. We here prove, as a preliminary step, that the preservation of status quo is a consequence of the consistency requirement. Lemma 9 The restriction of f to {0, 1} t is a most-similar-case function.

Proof. Denote by S 1 the intersection of all sets B ⊆ {1, ..., t} such that f( 1 B )=1,a n db yS 0 the intersection of all sets C such that f ( 0 C )=0. Thanks to Lemmas 7 and 8, S 0 and S 1 are non-empty. By Lemma 6, f(α)=1 if and only if α ≥ 1 S 1 and similarly, f (α)=0if and only if α ≤ 0 S 0 .

We now prove that the sets S 0 and S 1 coincide and that this common set is a singleton. Pick any element τ ∈ S 0 . Since the inequality 1 {τ } ≤ 0 S 0 does not hold, one must have f ( 1 {τ } )=1and therefore 1 {τ } ≥ 1 S 1 and it follows that S 1 = {τ }.S i n c eτ was an arbitrary element of S 0 , for every τ,τ 0 ∈ S 0 we have S 1 = {τ } = {τ 0 } and thus τ = τ 0 . Hence S 0 is a singleton, S 0 = {τ } and, as we concluded that S 1 = {τ },w ea l s oh a v eS 0 = S 1 .

Note now that, for δ ∈ {0, 1}, f(α)=δ as soon as α(τ )=δ.T h a ti s , f(α)=α(τ ) for every α,a sd e s i r e d .

For clarity, we will henceforth assume that the unique element of S 0 = S 1 is τ * =1.

Step 2. We now remove the restriction of inputs to {0, 1} t , and we prove that f (α)=α(1) for every α ∈ Z t + .

We proceed by induction and prove that, for each k ≥ 1, one has f(α)= α(1) for every α ∈ [0; k] t . Assume thus that the latter property holds for some k ≥ 1 (with k =1proven in Step 1), and let α ∈ [0; k +1] t be given. The proof that f (α)=α( 1) goes by contradiction.

Assume first that f (α) >α(1).F i xd 0 =0so that the second constraint in S(d, d 0 ) is satisfied by every α ∈ Z t + . By possibly permuting the first three columns of A, we may assume that a ≤ b, c.S e td = aα( 1)

+ (b + c)k,a n d observe that d ≥ (b + c)k ≥ a(k +1) (2) 
where the last inequality follows from the facts that b, c ≥ a and that k ≥ 1.

Let β, γ ∈ [0; k] t be given by β = γ =( k, 0,. ..,0). By the choice of d, (α(1),β(1),γ( 1 Assume now that f (α) <α(1).F i xd =+ ∞ so that the first constraint in S(d, d 0 ) is satisfied by every α ∈ Z t + . By possibly permuting the first three columns of A, we may assume that a 0 ≤ b 0 ,c 0 .S e td 0 = a 0 α(1).L e tβ, γ ∈ [0; k] t be given by β = γ = (0,k,...,k). By the choice of d 0 , (α(1),β(1),γ( 1)) is a solution to S(d, d 0 ).A sf o rτ>1,o n eh a s

a 0 α(τ )+b 0 β(τ )+c 0 γ(τ ) ≥ (b 0 + c 0 )k ≥ 2a 0 k ≥ a 0 α(1) = d 0
where the last inequality follows from the fact that α(1) ≤ k +1≤ 2k.

Hence, (f (α),f(β),f(γ)) is a solution to S(d, d 0 ).Y e tf (β)=f (γ)=0by the induction hypothesis, and therefore, a

0 f(α)+b 0 f(β)+c 0 f(γ)=a 0 f(α) < a 0 α(1) = d 0 -a contradiction.
Much of the literature on computational complexity focuses on time complexity: how many operations will an algorithm need to perform in order to obtain the solution and halt. It is customary to count input/output operations, as well as logical and algebraic operations as taking a single unit of time each. Taking into account the amount of time these operations actually take (for instance, the number of actual operations needed to add two numbers of, say, 10 digits) typically yields qualitatively similar results.

T h el i t e r a t u r ef oc u s e so nasymptotic analysis: how does the number of operations grow with the size of the input. It is customary to conduct worstcase analyses, though attention is also given to average-case performance. Obviously, the latter requires some assumptions on the distribution of inputs, whereas worst-case analysis is free from distributional assumptions. Hence the complexity of an algorithm is generally defined as the order of magnitude of the number of operations it needs to perform, in the worst case, to obtain a solution, as a function of the input size. The complexity of a problem is the minimal complexity of an algorithm that solves it. Thus, a problem is polynomial if there exists an algorithm that always solves it correctly within a number of operations that is bounded by a polynomial of the input size. Ap r o b l e mi sexponential if all the algorithms that solve it may require a number of operations that is exponential in the size of the input, and so forth.

Polynomial problems are generally considered relatively "easy", even though they may still be hard to solve in practice, especially if the degree of the polynomial is high. By contrast, exponential problems become intractable already for inputs of moderate sizes. To prove that a problem is polynomial, one typically points to a polynomial algorithm that solves it. Proving that a YES/NO problem is exponential, however, is a very hard task, because it is generally hard to show that there does not exist an algorithm that solves the problem in a number of steps that is, say, O(n 17 ) or even O(2

√ n ).
A non-deterministic Turing machine is a Turing machine that allows multiple transitions at each stage of the computation. It can be thought of as a parallel processing modern computer with an unbounded number of processors. It is assumed that these processors can work simultaneously, and, should one of them find a solution, the machine halts. Consider, for instance, the Hamiltonian path problem: given a graph, is there a path that visits each node precisely once? A straightforward algorithm for this problem would be exponential: given n nodes, one needs to check all the n! permutations to see if any of them defines a path in the graph. A nondeterministic Turing machine can solve this problem in linear time. Roughly, one can imagine that n! processors work on this problem in parallel, each checkingadifferent permutation. Each processor will therefore need no more than O(n) operations. In a sense, the difficulty of the Hamiltonian path problem arises from the multitude of possible solutions, and not from the inherent complexity of each of them.

The class NP is the class of all YES/NO problems that can be solved in Polynomial time by a Non-deterministic Turing machine. Equivalently, it can be defined as the class of YES/NO problems for which the validity of a suggested solution can be verified in polynomial time (by a regular, deterministic algorithm). The class of problems that can be solved in polynomial time (by a deterministic Turing machine) is denoted P and it is obviously a subset of NP. Whether P=NP is considered to be the most important open problem in computer science. While the common belief is that the answer is negative, there is no proof of this fact.

Ap r o b l e mA is NP-Hard if the following statement is true ("the conditional solution property"): if there were a polynomial algorithm for A, there would be a polynomial algorithm for any problem B in NP. There may be many ways in which such a conditional statement can be proved. For instance, one may show that using the polynomial algorithm for A ap o l ynomial number of times would result in an algorithm for B. Alternatively, one may show a polynomial algorithm that translates an input for B to an input for A, in such a way that the B-answer on its input is YES iff so is the A-answer of its own input. In this case we say that B is reduced to A.

AproblemisNP-Complete if it is in NP, and any other problem in NP can be reduced to it. It was shown that the SATISFIABILITY problem (whether a Boolean expression is not identically zero) is such a problem by a direct construction. That is, there exists an algorithm that accepts as input an NP problem B and input for that problem, z, and generates in polynomial a Boolean expression that can be satisfied iff the B-answer on z is YES. With the help of one problem that is known to be NP-Complete (NPC), one may show that other problems, to which the NPC problem can be reduced, are also NPC. Indeed, it has been shown that many combinatorial problems are NPC.

NPC problem are NP-Hard, but the converse is false. First, NP-Hard problems need not be in NP themselves, and they may not be YES/NO problems. Second, NPC problems are also defined by a particular way in which the conditional solution property is proved, namely, by reduction.

There are by now hundreds of problems that are known to be NPC. Had we known one polynomial algorithm for one of them, we would have a polynomial algorithm for each problem in NP. As mentioned above, it is believed that no such algorithm exists.

Lemma 2

 2 The map f satisfies the following property. Let d, d 0 ∈ R + ∪ {+∞},a n d ,f o rτ =1 ,...,t,l e ty(τ ) ∈ Z 3

  solves Ax ≤ b as well. Given d, d 0 ∈ R + ∪ {+∞},a n dt h r e et-dimensional vectors α, β,a n d γ, we will slightly abuse terminology and say that (α, β, γ) solves S(d, d 0 ) when (α(τ ),β(τ ),γ(τ )) solves S(d, d 0 ) for each τ . L e m m a2t h u ss a y st h a t (f (α),f(β),f(γ)) is a solution to S(d, d 0 ) whenever (α, β, γ) solves S(d, d 0 ).

Lemma 3 Step 1 :Lemma 8

 318 One has f (c,...,c)=c, for every c ∈ Z + . Proof. We a ppl y Lemma 2 wi t h d = a × c,a n dd 0 = a 0 × c.F o re a c hτ = 1,...,t, set y(τ ):=(k, 0, 0), and observe that y(τ ) is a solution to the system S(d, d 0 ). B yL e m m a2a n du s i n gt h ef a c tt h a tf(0,...,0) = 0,t h et r i p l e (f (c,...,c), 0, 0) is also a solution to S(d, d 0 ).T h i si m p l i e saf (c,...,c) ≤ d and a 0 f(c,...,c) ≥ d 0 ,s ot h a tf(c,...,c)=c, as desired. The restriction of f to {0, 1} t is a most-similar-case function Throughout Step 1, we restrict inputs in {0, 1} t , and use the following piece of notation. Given a set B ⊂ {1, ..., t},w ed e n o t eb y 1 B ∈ {0, 1} t the indicator function of B.T h a ti s , 1 B (τ )=1iff τ ∈ B, and we similarly denote by 0 B the vector defined by 0 B (τ )=0iff τ ∈ B.F o rB = {1, ..., t}, we will abbreviate 0 B and 1 B to 0 and 1, respectively. Note that 1 B = 0 B where B is the complement of B in {1, ..., t}. Any vector α ∈ {0, 1} t can be written Proof. Assume to the contrary that f( 1 B∩C )=0,s ot h a tf ( 1 B∪ C )=1 . Plainly, 1 B∪ C (τ )=0as soon as 1 B (τ )=1 C (τ )=1and 1 B∪ C (τ )=1 as soon as 1 B (τ )=1 C (τ )=0 . Therefore, ( 1 B , 1 C , 1 B∪ C ) solves S(d, d 0 ). Yet, (f( 1 B ),f( 1 C ),f( 1 B∪ C )) = (1, 1, 1) -a contradiction. Hence we obtain f( 1 B∩C )=1. This implies B ∩ C 6 = ∅,s i n c ef( 1 ∅ )=f( 0) = 0.By exchanging the roles of zeroes and ones, one gets the following version of Lemma 7. Let B, C ⊂ {1,...,t} be given. If f( 0 B )=0and f ( 0 C )=0,t h e n B ∩ C 6 = ∅ and f( 0 B∩C )=0.

  )) is a solution to S(d, d 0 ).M o r e o v e r ,f o rτ>1,o n eh a s aα(τ )+bβ(τ )+cγ(τ )=aα(τ ) ≤ a(k +1)≤ d, where the first inequality follows from the fact that α ∈ [0; k +1] t (and that β(τ )=γ(τ )=0)andthesecond-frominequality(2). Thus,(α(τ ),β(τ ),γ(τ )) is a solution to S(d, d 0 ) for all τ ≥ 1. Hence, (f(α),f(β),f(γ)) is a solution to S(d, d 0 ).Y e tf(β)=f(γ)=k by the induction hypothesis, and therefore, af (α)+bf (β)+cf (γ) >aα(1) + (b + c)k = d -a contradiction.

Observe that we use the term "implementation" in its everyday meaning, and not in the formal sense used in the mechanism design literature.

For extensive introductions to organization theory, seeHandel (2003),[START_REF] Hatch | Organization Theory. 2nd Edition[END_REF], and[START_REF] Scott | Organizations and Organizing: Rational, Natural, and Open System Perspectives[END_REF].

See Appendix B for an informal explanation of these concepts.

All proofs are relegated to Appendix A.

And typically are integer-valued in the final analysis.

We comment on condition (ii) after the statement of the theorem.

as α = 1 B ,f o rB = B α := { τ | α(τ )=1}. We abuse notation and write ᾱ to denote 0 Bα = 1α.

Observe that f( 0) = 0 and f( 1) = 1 because f retains the status quo.

Lemma 4 For every α ∈ {0, 1} t , one has f(α) ∈ {0, 1}.

Proof. Assume to the contrary that f(α) ≥ 2 for some α ∈ {0, 1} t . Choose

In the rest of Step 1 of the proof, we derive consequences of Lemma 2, with d := max(a + b, a + c, b + c) and d 0 := min(a 0 ,b 0 ,c 0 ).N o t et h a tt h es e t of integer-valued solutions of S(d, d 0 ) in {0, 1} 3 consists of all vectors in this set, apart from (0, 0, 0) and (1, 1, 1).

Lemma 5 For every α ∈ {0, 1} t , one has f(ᾱ)=1-f(α).

Proof. Assume to the contrary that

Lemma 6 f is non-decreasing on {0, 1} t (w.r.t. the product order).

Proof. Assume to the contrary that

Appendix B: Computational Complexity

A problem can be thought of as a set of legitimate inputs, and a correspondence from it into a set of legitimate outputs. For instance, consider the problem "Given a graph, and two nodes in it, s and t, find a minimal path from s to t". An input would be a graph and two nodes in it. These are assumed to be appropriately encoded into finite strings over a given alphabet. The corresponding encoding of a shortest path between the two nodes would be an appropriate output.

An algorithm is a method of solution that specifies what the solver should do at each stage. Church's thesis maintains that algorithms are those methods of solution that can be implemented by Tu ri ng ma ch i ne s . It is neither a theorem nor a conjecture, because the term "algorithm" has no formal definition. In fact, Church's thesis may be viewed as defining an "algorithm" to be a Turing machine. It has been proved that Turing machines are equivalent, in terms of the algorithms they can implement, to various other computational models. In particular, a PASCAL program run on a modern computer with an infinite memory is also equivalent to a Turing machine and can therefore be viewed as a definition of an "algorithm".

It is convenient to restrict attention to YES/NO problems. Such problems are formally defined as subsets of the legitimate inputs, interpreted as the inputs for which the answer is YES. Many problems naturally define corresponding YES/NO problems. For instance, the previous problem may be represented as "Given a graph, two nodes in it s and t,a n dan u m b e r k, is there a path of length k between s and t in the graph?" It is usually t h ec a s et h a ti fo n ec a ns o l v ea l ls u c hY E S / N Op r o b l e m s ,o n ec a ns o l v et h e corresponding optimization problem. For example, an algorithm that can solve the YES/NO problem above for any given k can find the minimal k for which the answer is YES (it can also do so efficiently). Moreover, such an algorithm will typically also find a path that is no longer than the specified k.