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Abstract. This paper presents simple approaches to deal with sample selection in models
with multiplicative errors. GMM estimators are constructed for both cross-section data and
for panel data. These estimators build only on a specification of the conditional mean of the
outcome of interest and are, therefore, semiparametric in nature. In particular, the distribution
of unobservables is left unspecified. In the panel-data case, we further allow for group-specific
fixed effects whose relation to covariates is left unrestricted. We derive distribution theory for
both sampling situations and present Monte Carlo evidence on the finite-sample performance
of the approach.
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1. Introduction

The detrimental effects of estimating economic models from non-randomly selected samples
on statistical inference are well known. While the issue has received a substantial amount
of attention in the literature, the proposed solutions have been confined mostly to the
linear regression model; Gronau (1973) and Heckman (1974, 1978, 1979) have provided
seminal contributions. However, sample selection is no less of a problem with nonlinear
specifications, and the literature has been rather slow with devising flexible approaches to
inference for such situations.1

This paper discusses relatively simple procedures to estimate nonlinear models with an
additive- or multiplicative-error structure when the data is subject to sample selection. One
leading example are models for count data. Such models are widely used in a variety of
fields in economics (see Cameron and Trivedi 2006); Terza (1998), Winkelmann (1998), and
Greene (2009) have given some attention to the issue of sample selection in such cases in
a fully parametric setting. The approach taken here is semiparametric in the sense that
it does not pin down the distribution of unobservables, and is applied both to models
for cross-section data and to models for short panel data. We consider GMM estimators
constructed from moment conditions that are inspired by a differencing argument introduced

†Address for correspondence: Sciences Po, Department of Economics, 28 rue des Saints-Pères,
75007 Paris, France. E-mail: koen.jochmans@sciencespo.fr.

1Of course, one may consider taking a full-information approach to inference, but specifying the
full likelihood will require some tedious choices on the distribution of unobservables, and leads to
estimators that are complicated to compute.
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by Chamberlain (1992) in a different context, present distribution theory, and report on the
results from Monte Carlo experiments.

In the cross-sectional case, our proposal can be seen as a generalization of the classic
contributions of Powell (1987) and Ahn and Powell (1993) on linear sample-selection models
to nonlinear situations. Under rather conventional assumptions, our estimator converges
at the parametric rate and has a limit distribution that is normal, with a variance that
can be consistently estimated. A related generalization of the aforementioned works can be
found in Blundell and Powell (2004). Their suggestion can equally be used to tackle sample
selection, albeit in a different class of nonlinear models. The setup they consider and the
one entertained here are not nested.

One nice feature of our strategy—contrary to, say, Blundell and Powell (2004)—is that
it extends naturally to fixed-effect specifications for panel data. Consistent estimation
of models with group-specific nuisance parameters is well-known to be problematic under
asymptotics where the number of groups grows large while the number of observations per
group remains fixed; see Arellano and Honoré (2001) and Lancaster (2000) for discussions
and literature reviews. It is therefore not surprising that, besides focussing exclusively
on linear models, the literature has favored a random-effect approach to inference in such
cases; see, notably, Verbeek and Nijman (1992), Wooldridge (1995), and Rochina-Barrachina
(2008). Only Kyriazidou (1997, 2001) has taken a fixed-effect perspective on the issue and,
indeed, our proposal here can be interpreted as the corresponding version for models with
multiplicative unobservables. Like in her case, the presence of between-group heterogeneity
implies that our estimator will have a nonparametric convergence rate. Its asymptotic
distribution remains normal, however, and asymptotically-valid inference can be performed
using a plug-in estimator of the asymptotic variance.

In Section 2 below, we first deal with sample selection in a cross-sectional framework.
In Section 3 we modify our approach to fixed-effect models for panel data. Proofs for both
sections are collected in Appendix A and Appendix B, respectively.

2. A semiparametric approach for cross-section data

2.1. The model and moment conditions

For an integer n and i.i.d. random variables {yi, xi, ui}ni=1, consider the conditional-mean
model

E [yi|xi, ui] = µ(xi;α0) + ϕ(xi;β0)ui, (2.1)

where µ and ϕ are functions that are known up to the Euclidean parameter θ0 ≡ (α′0, β
′
0)′.

Our aim will be to infer θ0 from a sample into which observations have self-selected. The
selection process is modelled as a threshold-crossing model for the binary selection indicator
si, with propensity score

Pr[si = 1|pi] = E [1{pi ≥ vi}| pi] , (2.2)
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for pi = p(zi) an estimable aggregator mapping observables zi to the real line; xi and
zi need not be disjoint. We view (ui, vi) as representing unobserved heterogeneity that
jointly influence (yi, si). These latent factors are taken to be independent of the observable
characteristics (xi, zi), but not necessarily of each other. The sample-selection problem,
then, is to perform inference on θ0 from a random sample in which realizations of (si, xi, zi)

are always observed but realizations of yi are observed only when si = 1.2

Before proceeding we note that our general specification covers several models of special
interest. Nonlinear models with additive unobservables, for example, can be represented as

E [yi|xi, ui] = µ(xi;α0) + ui.

Such models are used extensively, with the linear specification µ(xi;α) = x′iα being the
leading case. Models with multiplicative unobservables are also covered. For non-negative
limited dependent variables such models can be written as

E [yi|xi, ui] = ϕ(xi;β0)ui,

where ui ≥ 0 and ϕ maps to the positive real half-line. A prototypical specification for
count data—such as the Poisson and the negative binomial models—would have ϕ(xi;β) =

exp(x′iβ). A binary-choice model where ϕ(xi;β) = G(x′iβ) for some distribution function
G is equally covered here; see Wooldridge (1997, Example 4.2) for a motivation of such a
specification.

Because sampling will not provide information on the distribution of yi given si = 0,
sample selection complicates inference on θ0. To see how the problem manifests itself,
observe that

E*[yi|xi, zi] = µ(xi;α0) + ϕ(xi;β0) E*[ui|xi, zi],

where E* refers to an expectation concerning the subpopulation for which si = 1. Given
the threshold-crossing structure of the selection rule and independence of (ui, vi) from the
observables covariates, we can further dissect the influence of the sample selection by using

λ(pi) ≡
´ pi
−∞
´ +∞
−∞ u f(u, v) dudv

Fv(pi)
= E*[ui| pi], (2.3)

where f denotes the joint density of (ui, vi) and Fv is the marginal distribution of vi. Indeed,

E*[yi|xi, pi] = µ(xi;α0) + ϕ(xi;β0)λ(pi). (2.4)

If ui and vi are independent, λ is constant. Otherwise, λ depends on the data through
the index driving the propensity score of selection. In either case, E [yi|xi] 6= E*[yi|xi], in
general. This implies that an estimation strategy that does not account for sample selection
will typically suffer from misspecification bias in the sense of Heckman (1979). Furthermore,

λ(pi) = −ρσu
φ(−pi/σv)

1− Φ(−pi/σv)
if

(
ui
vi

)
∼ N

( (
0
0

)
,

(
σ2
u ρσuσv

ρσuσv σ2
v

) )
,

2The analysis can easily be extended to situations in which xi, too, is only observed when si = 1.
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which is the correction term originally derived by Heckman (1979) in the context of the linear
model. However, (2.3)–(2.4) hold without restricting f to belong to a known parametric
family of density functions. They also stretch beyond the conventional linear specification,
and so may be of use to construct semiparametric inference techniques for models with
multiplicative errors.

Our approach is inspired by the work of Powell (1987) and Ahn and Powell (1993) on
pairwise differencing and builds on moment conditions that are similar in spirit to the ones
considered by Chamberlain (1992) and Wooldridge (1997) in a different context. As

E* [τi(θ0)|xi, pi] = λ(pi), τi(θ) ≡
yi − µ(xi;α)

ϕ(xi;β)
,

follows from re-arranging (2.4), we have that

E*[τi(θ0)|xi, pi]− E*[τj(θ0)|xj , pj ] = λ(pi)− λ(pj)

for any pair i, j. If λ is a smooth function, the right-hand side of this expression will converge
to zero as |pi − pj | → 0. This suggests an approach based on moment conditions defined
on the product space of the random variables in question that difference-out the selection
bias. For clarity we use E rather than E to indicate the expectations operator with respect
to a product measure, and again use E * as a shorthand to refer to expectations that relate
to the selected subpopulation. Now, introduce the random variable ∆ij ≡ pi − pj on the
product space. If

|λ(pi)− λ(pj)| ≤ Λ(pi, pj) |∆ij |

for some function Λ, then∣∣∣E * [τi(θ0)− τj(θ0)|xi, xj ,∆ij ]
∣∣∣ ≤ E *[Λ(pi, pj)|xi, xj ,∆ij ] |∆ij |

|∆ij | ↓ 0−−−−−→ 0

provided that E *[Λ(pi, pj)|xi, xj ,∆ij ] exists for ∆ij in a neighborhood of zero. This is a
fairly weak condition. For example, if λ is everywhere differentiable with derivative λ′ we
can take

Λ(pi, pj) = sup
p∈[pi,pj ]

|λ′(p)| ,

and a tail condition on this quantity allows the use of a dominated-convergence argument
to establish the existence of the expectation. If λ′ is also continuous, then it is locally
Lipschitz and, therefore, locally bounded. This would equally imply the required condition
to hold for sufficiently small ∆ij . By Leibniz’s rule,

λ′(pi) =
(
E [ui|vi = pi]− λ(pi)

)
r(pi),

where r(pi) ≡ fv(pi)/Fv(pi) is the inverse Mills ratio of vi, and so λ′ will be locally bounded
if E [ui|vi = pi], λ(pi), and r(pi) are continuous. Although routinely done, demanding λ′ to
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be uniformly bounded is somewhat too strong a requirement, particularly if p can take on
values on the whole real line. For example, when (ui, vi) are jointly normal,

λ′(pi) =

(
ρ
σu
σv
pi + ρσu

φ(−pi/σv)/σv
1− Φ(−pi/σv)

)
φ(−pi/σv)/σv
1− Φ(−pi/σv)

.

Here, the magnitude of all terms increases without bound when pi → −∞ and, indeed,
λ(pi) itself diverges in this case. A similar pattern arises in the more general case of log-
concave symmetric densities, for which the inverse Mills ratio is known to be monotonically
decreasing in pi.

The above argument suggests a strategy based on unconditional moment conditions
in which more weight is assigned to pairs of variables for which ∆ij lies in a shrinking
neighborhood of zero. More precisely, for some suitable transformation function ω, let
ω(xi, xj) denote instrumental variables.3 Many candidate functions exist that transform
conditional-moment equalities into unconditional ones without any information loss (see,
e.g., Stinchcombe and White 1998 and Domínguez and Lobato 2004). Further, let κ be a
symmetric kernel function and let ς be an associated bandwidth. Then, under conventional
regularity conditions introduced below,

E *

[
ω(xi, xj) (τi(θ0)− τj(θ0))

ς
κ

(
∆ij

ς

)]
|ς|↓0−−−→ 0. (2.5)

Overidentification is allowed for in the sense that the number of moments, saym, can exceed
dim θ. A sample counterpart of these moment conditions is readily constructed using any of
a number of available first-stage estimators of the selection equation, and can be combined
easily through a GMM procedure to yield a two-step semiparametric estimator of θ0. This
estimator will be the topic of the next subsection.

Because our approach relies on pairwise differencing, the parameters associated with
regressors that are constant across observations will not be identified from (2.5). The
leading example would be an intercept in µ(xi;α). This is not surprising. Even in the
classical linear sample-selection model, recovering the intercept term in a semiparametric
fashion requires an argument involving identification at infinity, and yields estimators with
non-standard properties (Andrews and Schafgans 1998).

Deriving sufficient conditions for global identification is difficult in models that are
specified by a set of nonlinear moment conditions (see, e.g., Hall 2005, Section 3.1, for a
discussion). The general model entertained here is a case in point. However, because our
analysis is based on moment conditions that are conditional on the difference between the
pi, it is intuitive that we will need sufficient variation in the xi for given values of pi. For
example, in the standard linear model, where µ(xi;α) = x′iα and we set ω(xi, xj) = xi−xj ,
it can be verified using (2.8) below that, if

rank E*[var∗(xi|pi) f∗(pi)] = dimα,

3The analysis to follow can be extended to allow ω to depend on θ. We could equally extend the
definition of ω by allowing it to depend on variables other than the covariates xi, which we do not
do here for notational simplicity.
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then α0 is globally identified. Here, f∗ denotes the density of pi given selection, and
var∗(xi|pi) is the conditional variance of xi given pi in the selected subpopulation. Although
this condition can be satisfied because of nonlinearity, the key message to take away from it
is that credible identification requires the presence of instrumental variables in the selection
equation.

Local identification is easier to study. For example, in the general nonlinear model with
additive unobservables, again with ω(xi, xj) = xi−xj , local identification is achieved when

rank E*[cov∗(xi, µ
′(xi;α0)| pi) f∗(pi)] = dimα,

where µ′ is the first-derivative vector of µ with respect to α. Of course, in the linear
case, this boils down to the rank condition given earlier. As an example of a model with
multiplicative errors, consider the exponential regression model from above. In this case,
use of (2.8) shows that, if

rank E*[λ(pi) var∗(xi|pi) f∗(pi)] = dimβ,

then β0 is locally identified. Furthermore, because local identification is equivalent to the
Jacobian of the population moments having full rank at θ0, it can be empirically tested by
applying any of a battery of rank tests to a plug-in version of this matrix. For example,
Kleibergen and Paap (2006) provide a simple test statistic that will be applicable to our
setup.

2.2. Estimation
For conciseness I will work with a linear-index specification for the propensity score, that
is, I set pi ≡ p(zi) = z′iγ0 for an unknown finite-dimensional parameter value γ0. Flexible
specifications of this form that include power transforms and interaction terms between
regressors are common practice in empirical work. The distribution theory below could
be extended to allow for a nonparametric selection rule at the cost of stronger smoothness
requirements and more cumbersome notation.

Without loss of generality, take ω(xi, xj) to be antisymmetric in its arguments. Then a
feasible empirical counterpart to the moment condition in (2.5) is

q̂n(θ) ≡
(
n

2

)−1 n∑
i=1

∑
i<j

ω(xi, xj) (τi(θ)− τj(θ))
ς

κ

(
p̂i − p̂j
ς

)
sisj , (2.6)

where p̂i ≡ z′iγn and γn is a consistent estimator of γ0. Our GMM estimator of θ0 is the
minimizer of a quadratic form in q̂n(θ). It is given by

θn ≡ arg min
θ∈Θ

q̂n(θ)′ Vn q̂n(θ)

for a chosen symmetric positive-definite matrix Vn of conformable dimension that serves to
weight the moment conditions when m > dim θ, and a suitably defined parameter space
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Θ over which the minimization is performed. The interpretation of the kernel weight is
immediate; pairs of observations for which |p̂i − p̂j | is smaller receive a higher weight.
Letting ς decrease with n ensures that, asymptotically, only observations for which this
difference converges to zero are taken into account.

One attractive feature of estimation based on pairwise differencing is that the function
λ need not be estimated. Alternative approaches to estimating θ0 could be devised that
replace λ in (2.4) by a nonparametric kernel or series estimator, and subsequently estimate
θ0 via a semiparametric least-squares procedure. Such an approach would be in line with
the work of Robinson (1988), Lee (2007), and Newey (2009). Contrary to the approach
taken here, however, it does not generalize easily to the panel-data context. Furthermore,
if an estimator of λ(p) is desired, we may use

λn(p) ≡

∑n
i=1 τi(θn)κ

(
p̂i−p
ς

)
si∑n

i=1 κ
(
p̂i−p
ς

)
si

,

for example. Of course, a series estimator would be equally well suited for this purpose.
Under the conditions spelled out below, θn will be

√
n-consistent. From this it follows that

the asymptotic behavior of λn is not affected by the estimation noise in θn, so inference on
λ using λn can be performed using standard tools from nonparametric conditional-mean
estimation. The empirical distribution function of the λn(p̂i) may be of interest. For
example, if λn(p̂i) is found to vary substantially across i, this provides evidence on the
presence of sample selection.

We now state the conditions under which we will derive distribution theory for θn. The
first condition imposes standard regularity conditions.

Assumption 2.1 (regularity). The space Θ is compact and θ0 lies in its interior.
Equation (2.5) identifies θ0, and µ and ϕ are twice continuously differentiable in θ. The pi
are absolutely continuous.

The second assumption concerns the first-stage estimator .

Assumption 2.2 (first step). The first-stage estimator, γn, is
√
n-consistent, and

√
n(γn − γ0) =

1√
n

n∑
i=1

ψi + op(1)

for independent and identically distributed random variables ψi that have zero mean and
finite fourth-order moment.

Assumption 2.2 states that γn must satisfy an asymptotic-linearity condition. This is not
very demanding, as most semiparametric candidates for γn do so; Powell (1994) provides a
long list of eligible approaches.

Our third assumption collects standard restrictions on the kernel function and postulates
eligible bandwidth choices.
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Assumption 2.3 (kernel). The kernel function κ is bounded and twice continuously
differentiable with bounded derivatives κ′ and κ′′, symmetric, and integrates to one. For
some integer k,

´ +∞
−∞ |ε

h| |κ(ε)|dε = 0 for all 0 < h < k,
´ +∞
−∞ |κ(ε)|dε < +∞, and´ +∞

−∞ |ε
k| |κ(ε)|dε < +∞. The bandwidth satisfies ς ∝ n−r for 1

2k < r < 1
6 .

Assumption 2.3 requires κ to be a higher-order kernel. An eligible bandwidth sequence can
be constructed as soon as k > 3. Higher-order kernels are used to ensure that the limit
distribution of θn is free of asymptotic bias. They are easy to construct, especially given that
κ is taken to be symmetric (see Li and Racine 2007, Section 1.11). Müller (1984) provides
formulae to do so. For example, a fourth-order kernel based on the standard-normal density
is

κ(ε) =

(
3

2
− 1

2
ε2

)
φ(ε), (2.7)

and is easily shown to satisfy the conditions in Assumption 2.3. We note that the use of
a higher-order kernel is not required for consistency, and that r < 1

4 suffices for such a
purpose.

The fourth assumption contains moment restrictions that are needed to ensure uniform
convergence of the objective function to its large-sample counterpart, and are thus required
for consistency. Let

ζi(pj ; θ) =
(
E*[ω(xi, xj)|pj ] τi(θ) +Ai(pj ; θ)−Bi(pj ; θ)λ(pj)

)
di(pj), (2.8)

where di(pj) ≡ si f∗(pj) Pr[si = 1] and

Ai(pj ; θ) ≡ E*

[
ω(xi, xj)

µ(xj ;α)− µ(xj ;α0)

ϕ(xj ;β)

∣∣∣∣ pj] , Bi(pj ; θ) ≡ E*

[
ω(xi, xj)

ϕ(xj ;β0)

ϕ(xj ;β)

∣∣∣∣ pj] .
Also, let τ ′ denote the first derivative of τ with respect to θ. Denote the Euclidean norm
and the Frobenius norm by ‖·‖.

Assumption 2.4 (finite moments). For each θ ∈ Θ, E*[τi(θ)
8] and E*[‖τ ′i(θ)‖4] are

finite. Both E [‖ω(xi, xj)‖8] and E [‖zi‖4] are finite. The function ζi(p; θ) is continuous in
p and E [supp‖ζi(p; θ)‖] is finite for each θ ∈ Θ.

The moment conditions ensure the variance of the empirical moment and its derivatives
with respect to γ and θ to exist. The dominance condition on ‖ζi(p; θ)‖ is standard in
nonparametric estimation. Note from the form of ζi(p; θ) that it can be interpreted as a
restriction on its tail behavior. This condition is needed for convergence of the kernel-
weighted objective function as n diverges; see, e.g., Hansen (2008) for the application of
such conditions in generic problems.

The fifth assumption is used to derive the limit distribution of
√
n(θn − θ0). Introduce

ζ ′i(p; θ) ≡
∂ζi(p; θ)

∂θ′
, ∇hζi(p; θ) ≡

∂hζi(p; θ)

∂ph
,
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Assumption 2.5 (smoothness). For each θ ∈ Θ, E*[‖τ ′′i (θ)‖4] is finite. For each
θ ∈ Θ, the function ζ ′i(p; θ) is continuous in p and E [supp‖ζ ′i(p; θ)‖] is finite. ∇hζi(p; θ0)

exists and E [supp‖∇hζi(p; θ0)‖2] are finite for all integers h ≤ k + 1.

The conditions on τ ′′ and ζ ′i(p; θ) are needed to establish convergence of the Jacobian of the
moment conditions uniformly on Θ. The higher-order smoothness requirements are needed
to ensure the limit distribution of

√
n(θn − θ0) to be free of asymptotic bias. Such an

approach to bias control is common in inference problems of this type. To interpret these
restrictions, observe that

ζi(pj ; θ0) = E*[ω(xi, xj)|pj ] [τi(θ0)− λ(pj)] di(pj).

Assumption 2.5 then requires that E*[ω(xi, xj)|pj ], f∗(pj), and λ(pj) are at least five times
differentiable and also restricts the tail behavior of these quantities and their respective
derivatives.

To state the limit distribution of the estimator, let Q0 ≡ E [ζ ′i(pi; θ0)] and introduce

σi ≡ ζi(pi; θ0) +H0 ψi

for H0 ≡ −E [∇1ζj(pj ; θ0) z′j ]; note that E [σi] = 0 and that Σ ≡ E [σiσ
′
i] < +∞.

Theorem 2.1 (asymptotic distribution). Let Assumptions 2.1–2.5 hold. Suppose
that Σ is positive definite, that Q0 has full column rank, and that Vn

P→ V0 for V0 positive
definite. Then

√
n‖θn − θ0‖ = OP (1) and

√
n(θn − θ0)

L→ N (0,Υ), Υ ≡ 4(Q′0V0Q0)−1 (Q′0V0ΣV0Q0) (Q′0V0Q0)−1.

In particular, if Vn
P→ Σ−1, then Υ = 4(Q′0Σ−1Q0)−1.

A choice for Vn so that Vn
P→ Σ−1 is well known to be optimal in terms of asymptotic

efficiency for a given set of moment conditions (Sargan 1958; Hansen 1982).
An estimator of the asymptotic variance matrix in Theorem 2.1 is needed to perform

inference. An estimator of V0 is available from the outset in the form of Vn. Estimators of
Q0 and Σ can be constructed via the plug-in principle. Moreover,

Qn ≡
(
n

2

)−1 n∑
i=1

∑
i<j

ω(xi, xj) (τ ′i(θn)− τ ′j(θn))′

ς
κ

(
p̂i − p̂j
ς

)
sisj ,

Hn ≡
(
n

2

)−1 n∑
i=1

∑
i<j

ω(xi, xj) (τi(θn)− τj(θn))

ς
κ′
(
p̂i − p̂j
ς

)
(zi − zj)′

ς
sisj ,

constitute consistent estimators of the matrices Q0 and H0, respectively. An estimator of
Σ then is Σn ≡ n−1

∑n
i=1 σ̂iσ̂

′
i for

σ̂i ≡ ζ̂i +Hn ψ̂i, ζ̂i ≡
1

n− 1

∑
j 6=i

ω(xi, xj) (τi(θn)− τj(θn))

ς
κ

(
p̂i − p̂j
ς

)
sisj ,
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where ψ̂i is an estimator of the influence function of γn. The precise form of this estimator
will depend on the first-stage estimator used.

The following theorem permits the construction of asymptotically-valid test procedure
based on the Wald principle.

Theorem 2.2 (inference). Let Assumptions 2.1–2.5 hold. Suppose that Σ is positive
definite and that Q0 has full column rank. Then

Υn
P→ Υ, Υn ≡ 4(Q′nVnQn)−1 (Q′nVnΣnVnQn) (Q′nVnQn)−1

if Vn
P→ V0 for Vn and V0 positive definite, and we assume that n−1

∑n
i=1‖ψ̂i−ψi‖2 = oP (1).

Other consequences of Theorem 2.2 are the feasibility of the two-step GMM estimator as
well as the fact that

n q̂n(θn)′Σ−1
n q̂n(θn)

P→ χ2
m−dim θ

for the optimally-weighted estimator. This justifies the asymptotic validity of the usual
overidentification tests (Hansen 1982). We also note that, under the conditions stated in
Lemma 3.4 and Lemma 3.5 of Pakes and Pollard (1989), all results continue to hold for the
continuously-updated version of θn (Hansen, Heaton, and Yaron 1996).

2.3. Simulations
We next discuss the results from a Monte Carlo experiment where yi given (xi, ui) is a
Poisson variate with mean

E [yi|xi, ui] = exp(c+ xiβ0)ui,

where c is a constant. Let wi ≡ log ui. We generate(
wi
vi

)
∼ N

( (
0
0

)
,

(
σ2
w ρσw

ρσw 1

) )
for |ρ| < 1, so that the marginal distribution of ui is log-normal and the selection equation
is a conventional probit. The unconditional mean of ui equals exp(σ2

w/2), and so we set
c = −σ2

w/2 to recenter its distribution at one. Then

E*[yi|xi, pi] = exp(xiβ0)λ(pi), λ(pi) =
Φ(−ρσw + pi)

Φ(pi)
;

see also Terza (1998). For reasons of parsimony, we set pi = xi + γ0ai and draw (xi, ai) as(
xi
ai

)
∼ N

( (
0
0

)
,

(
σ2
x %σxσa

%σxσa 1

) )
for |%| < 1. This specification fixes the coefficient associated with xi to unity, which is a
convenient normalization for our first-stage estimator. It also allows us to get a closed-form
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expression for E*[λ(pi)|xi]. Let

µp ≡
−ρσw√

1 + (|γ0| (1− %)σa)
2
, σp ≡

1 + γ0% σa/σx√
1 + (|γ0| (1− %)σa)

2
.

Then, after some algebra, we find that

E*[yi|xi] = exp(xiβ0)
Φ (µp + σpxi)

Φ (σpxi)
;

the calculation underlying this result equally reveals that Pr[si = 1|xi] = Φ(σpxi). Thus,
indeed, E*[yi|xi] 6= E [yi|xi] and an exponential-regression estimator will be inconsistent
unless µp = 0, which holds only when either ρ = 0 or σw = 0. Below we consider inference
on β0 for different choices of the parameter values based on the vector of empirical moments

1

ς

(
n

2

)−1 n∑
i=1

∑
i<j

(
xi − xj
ai − aj

)(
yi

exp(xiβ)
− yj

exp(xjβ)

)
κ

(
p̂i − p̂j
ς

)
sisj . (2.9)

In this case β0 is overidentified. We consider both one-step and two-step versions of our
estimator; the one-step estimator minimizes the Euclidean norm of the empirical moments,
the two-step estimator uses the one-step estimator to form a plug-in estimator of the optimal
metric.

We use the maximum rank-correlation estimator of Han (1987) to construct estimates
of the pi. Although it is known not to reach the semiparametric efficiency bound for the
binary-choice model, this estimator is a simple and robust choice that does not require
the choice of tuning parameters. It is consistent and asymptotically-linear under weak
conditions; see Sherman (1993). For the implementation of our weighting procedure we
take κ to equal the fourth-order kernel given in (2.7) and set ς = hn n

−1/7 for some scalar
constant hn; we will consider several choices for hn. In any case, it is good practice to
standardize the argument of the kernel function by its empirical standard deviation of p̂i,
and this is done throughout. To get an idea of the severity of the sample selection in each
design we also consider one-step and two-step version of the naive GMM estimator that is
based on an unweighted version of (2.9).

Simulation results for three designs are presented. The designs differ only in the severity
of the sample-selection issue, by varying ρ. A full description of the designs is given below
Tables 1 and 2. For each design we evaluate the performance of the estimators for n = 250

and n = 500. Note that Pr[si = 1] = 1
2 , so the effective sample sizes are only 125 and

250, on average, which is fairly small for semiparametric techniques. We computed βn

using four different but fixed values for hn to evaluate the sensitivity of the results to the
bandwidth choice, and also using one automated choice. The latter bandwidth is obtained
by minimizing

q̂n(β, hn)′Vn q̂n(β, hn)

jointly with respect to (β, hn), using obvious notation. That is, we treat hn as a parameter
to be estimated. This is similar to the proposal of Härdle, Hall, and Ichimura (1993) in
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Table 1. One-step estimators
ρ n bias standard deviation

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 250 .017 .020 .019 .018 .018 .018 .188 .299 .288 .236 .214 .271
0 500 .009 .016 .016 .015 .015 .004 .127 .205 .201 .175 .159 .173

-.5 250 -.202 -.010 -.016 -.057 -.084 .000 .167 .274 .264 .217 .195 .255
-.5 500 -.199 .007 .003 -.033 -.060 .002 .117 .193 .189 .163 .147 .169
.5 250 .281 .038 .047 .105 .139 .030 .205 .307 .296 .247 .230 .232
.5 500 .262 .036 .040 .080 .111 .010 .141 .212 .208 .179 .164 .130
ρ n standard error to standard deviation rejection frequency

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 250 .908 1.072 1.092 1.056 1.013 1.211 .067 .033 .020 .033 .052 .033
0 500 .948 1.071 1.065 1.065 1.036 1.260 .065 .030 .022 .019 .031 .038

-.5 250 .911 1.122 1.157 1.132 1.046 1.217 .320 .037 .028 .060 .085 .031
-.5 500 .931 1.079 1.079 1.121 1.055 1.228 .453 .044 .036 .046 .067 .034
.5 250 .936 1.069 1.132 1.061 .993 1.428 .295 .032 .019 .046 .075 .021
.5 500 .961 1.042 1.061 1.102 1.036 1.690 .486 .038 .036 .053 .081 .032

Parameters: % = −.5, σx =
√
.5, σa =

√
.5, σw =

√
.5; β0 = 1; γ0 = −1.

the semiparametric least-squares context, where it is known to possess certain optimality
properties. Although we make no claim that such optimality carries over to the current
setting we will find that this approach works quite well in our simulations. Tables 1 and 2
contain the bias, the standard deviation, the ratio of the average estimated standard error
to the standard deviation, and the empirical rejection rate of 95%-confidence intervals for
β0 for the one-step and the two-step GMM estimators, respectively, obtained over 1, 000

Monte Carlo replications. The columns with hn =∼ refer to the naive estimator. The
columns with hn = ĥn relate to the estimator constructed by estimating the bandwidth as
just described.

Both tables show that the naive estimator does well when sample selection is exogenous
but suffers from large bias when it is not. Our estimator has much smaller bias for all
designs considered. Like in standard nonparametric regression, the choice of hn affects
both the bias and variance of the estimator. The larger hn, the smaller the variance but
the larger the bias, and vice versa. Nonetheless, the plug-in estimator of the asymptotic
variance does quite well in capturing the variability of the estimator across the Monte Carlo
replications for all choices of hn. Similarly, the empirical rejection frquencies are close to
their nominal value of .05 for all choices while the bias in the naive estimator implies poor
coverage of the confidence intervals constructed from it.

3. A semiparametric approach for panel data

3.1. The model and moment conditions

Now consider a semiparametric model for group-level data with stratum-specific nuisance
parameters. For independent groups i = 1, 2 . . . , n, let yi ≡ (yi1, yi2) be outcomes whose
conditional mean given observables xi ≡ (xi1, xi2), unobservables ui ≡ (ui1, ui2), and a
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Table 2. Two-step estimators
ρ n bias standard deviation

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 250 .026 .021 .019 .027 .026 .026 .185 .301 .303 .212 .193 .307
0 500 .013 .016 .015 .016 .015 .006 .124 .203 .204 .152 .131 .207

-.5 250 -.163 -.009 -.004 -.109 -.125 .001 .166 .275 .284 .209 .176 .275
-.5 500 -.161 .006 .010 -.085 -.134 -.002 .115 .192 .194 .171 .122 .190
.5 250 .271 .039 .032 .196 .191 .044 .204 .312 .317 .233 .211 .315
.5 500 .245 .037 .032 .188 .209 .017 .140 .212 .214 .182 .145 .207
ρ n standard error to standard deviation rejection frequency

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 250 .889 .990 .940 1.014 .997 .997 .081 .050 .050 .050 .057 .056
0 500 .935 1.041 .993 1.029 1.056 1.013 .074 .036 .038 .028 .042 .045

-.5 250 .886 1.025 .966 .944 .996 1.026 .277 .055 .062 .124 .140 .046
-.5 500 .913 1.035 1.000 .872 1.011 1.040 .375 .049 .059 .152 .217 .043
.5 250 .905 .974 .924 1.012 1.012 .987 .297 .044 .058 .099 .116 .045
.5 500 .929 1.002 .970 .950 1.055 1.023 .457 .048 .055 .184 .230 .047

Parameters: % = −.5, σx =
√
.5, σa =

√
.5, σw =

√
.5; β0 = 1; γ0 = −1.

group-specific fixed effect ηi is given by

E [yij |xi, ui, ηi] = µ(xij ;α0) + ηi ϕ(xij ;β0)uij . (3.1)

The focus on two datapoints per group will simplify the subsequent exposition in terms of
notational burden but is without loss of generality. A panel analog of the cross-sectional
selection rule from above has

Pr[sij = 1|pi, ιi] = E [1{pij + ιi ≥ vij}|pi, ιi], (3.2)

where pi ≡ (pi1, pi2) with pij ≡ z′ijγ0 for regressors zi ≡ (zi1, zi2)′, and ιi a fixed effect.
Interest again lies in consistently estimating the finite-dimensional parameter θ0 = (α′0, β

′
0)′

under asymptotics where the number of groups, n, diverges.
Similar to before, let τij(θ) ≡ (yij − µ(xij ;α))/ϕ(xij ;β). Suppose that (ui, vi) are

jointly independent of (xi, zi) conditional on (ηi, ιi). Then, if the {(ui1, vi1), (ui2, vi2)} are
exchangeable conditional on (ηi, ιi),

E*[τi1(θ0)− τi2(θ0)|xi, pi, ηi, ιi] = ηi λi(pi1 + ιi, pi2 + ιi)− ηi λi(pi2 + ιi, pi1 + ιi), (3.3)

where, now, the superscript on the expectations operator is a shorthand for the conditioning
event {si1 = 1, si2 = 1} holding, and

λi(pi1 + ιi, pi2 + ιi) ≡ E*[ui1|vi1 ≤ pi1 + ιi, vi2 ≤ pi2 + ιi, ηi, ιi],

λi(pi2 + ιi, pi1 + ιi) ≡ E*[ui2|vi1 ≤ pi1 + ιi, vi2 ≤ pi2 + ιi, ηi, ιi].

The i subscript on λ stresses that the function can be heterogenous because the distribution
of (ui, vi) can vary with i beyond its dependence on (ηi, ιi). For example, if (uij , vij) would
be independent of (ηi, ιi) and would be i.i.d. within groups, then λi would simplify to

λi(pij + ιi) =

´ pij+ιi
−∞

´ +∞
−∞ u fi(u, v) dudv

Fi(pij + ηi)
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for fi the joint distribution of (uij , vij) and Fi the marginal distribution of the vij . This
function varies with i because ιi and fi do.

In (3.3), the differencing is done within groups, not across groups. Indeed, the additional
heterogeneity across i that is allowed for here, as compared to the cross-sectional model,
invalidates any approach based on the pairwise comparison of observations along the cross-
sectional dimension of the panel. However, exchangeability implies that, for ∆i ≡ pi1− pi2,

|λi(pi1 + ιi, pi2 + ιi)− λi(pi2 + ιi, pi1 + ιi)|
|∆i| ↓ 0−−−−→ 0

provided λi is a smooth function in the same sense as discussed above. This motivates a
strategy that aims to recover θ0 from moment conditions of the form

E*

[
ω(xi1, xi2) (τi1(θ0)− τi2(θ0))

ς
κ

(
∆i

ς

)]
|ς|↓0−→ 0, (3.4)

where we recycle notation for the kernel function κ and bandwidth ς, and retain ω(xi1, xi2)

to indicate a vector of instrumental variables. We will provide distribution theory for
estimators based on (3.4) in the next subsection.

Like in the cross-sectional case, these moment conditions can be linked to an approach to
sample selection problem in the linear model, in this case Kyriazidou (1997, 2001); see also
the work of Honoré and Kyriazidou (2000) for a related approach to a different problem.
Indeed, Kyriazidou (1997, 2001) can be interpreted as a fixed-effect version of Powell (1987).
It is, perhaps, useful to stress that the presence of fixed effects makes it difficult to extend
the approach of Robinson (1988) and Newey (2009) to models for panel data. Indeed, an
operational version of (3.4) requires only a consistent estimator of γ0, but not of the ιi
nor the λi. The latter two cannot be constructed under asymptotics where the number of
observations per group is treated as fixed.4

3.2. Estimation
Similar to before, (3.4) suggests estimating θ0 by a GMM estimator of the form

θn = arg min
θ∈Θ

q̂n(θ)′Vnq̂n(θ),

where Vn is a weight matrix and, now,

q̂n(θ) ≡ 1

n

n∑
i=1

ω(xi1, xi2) (τi1(θ)− τi2(θ))

ς
κ

(
∆̂i

ς

)
si1si2

for ∆̂i ≡ p̂i1− p̂i2, p̂ij ≡ z′ijγn, and γn a first-stage estimator of γ0. Although this estimator
looks similar to the one introduced for the cross-sectional model above, its asymptotic

4Fernández-Val and Vella (2011) consider two-step estimation of a class of fixed-effect models
under asymptotics where the number of groups and the number of observations per group diverge at
the same rate. Implementation requires the distribution of (uij , vij) to be parametrically specified.
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behavior is quite different. Most importantly, it will converge at the nonparametric rate
1/
√
nς rather than at the parametric rate 1/

√
n. The reason for this is the need to resort

to within-group differences rather than between-group differences. Indeed, here, q̂n(θ) has
the form of (the numerator of) a kernel-based nonparametric conditional-mean estimator,
while it was a U -statistic of order two in the cross-sectional case. The smoothing that arises
from the additional averaging is what leads to 1/

√
n convergence in that case.

The conditions under which we will derive distribution theory for θn are provided next.
The first assumption is again standard.

Assumption 3.1 (regularity). The space Θ is compact and θ0 lies in its interior.
Equation (3.4) identifies θ0, and µ and ϕ are twice continuously differentiable in θ. The
∆i are absolutely continuous and its density given selection, f∗, is strictly positive in a
neighborhood of zero.

Assumption 3.1 does not require stationarity of the data, but identification clearly requires
that the support of pi1 and the support of pi2 overlap to some extent.

The next two assumptions deal with the first-stage estimator, and with the kernel and
bandwidth, respectively.

Assumption 3.2 (first step). ‖γn − γ0‖ = Op(n
−s) for s ∈ (2/5, 1/2].

Assumption 3.3 (kernel). The kernel function κ is bounded and twice continuously
differentiable with bounded derivatives κ′ and κ′′, symmetric, and integrates to one. For
some integer k,

´ +∞
−∞ |ε

h| |κ(ε)|dε = 0 for all 0 < h < k,
´ +∞
−∞ |κ(ε)|dε < +∞, and´ +∞

−∞ |ε
k| |κ(ε)|dε < +∞. Also,

´ +∞
−∞ |κ(ε)|2 dε < +∞. The bandwidth satisfies ς ∝ n−r

for max{ 1
1+2k , 1− 2s} < r < s

2 .

Assumptions 3.2 and 3.3 are different from Assumptions 2.2 and 2.3. First, fixed-effect
estimation of binary-choice models is known to be difficult, and possible at the parametric
rate only in a logit specification (Chamberlain 2010). Thus, we need to allow for estimators
that converge at a slower rate. Second, the permissible convergence rates of the bandwidth
depend on the first-stage estimator. Under Assumptions 3.2 and 3.3,

√
nς ‖γn−γ0‖ = oP (1),

so θn will converge slower than γn, and the asymptotic variance of the former will not depend
on the estimation noise in the latter. The rates in Assumption 3.2 allow for estimation by
smoothed maximum score (Horowitz 1992; Charlier, Melenberg, and van Soest 1995) but
rule out the original maximum-score estimator (Manski 1975, 1985, 1987), which converges
at the rate n−1/3.

To move on to the formulation of moment requirements and smoothness conditions, let

ζ(∆i; θ) ≡ E*[{Ai1(θ)−Ai2(θ)}+ ηi {λi(pi1 + ιi)Bi1(θ)− λi(pi2 + ιi)Bi2(θ)} |∆i] d(∆i),

where, recalling that f∗ is the density of ∆i given selection, d(∆i) ≡ f∗(∆i) Pr[si1si2 = 1],
and

Aij(θ) ≡ ω(xi1, xi2)
µ(xij ;α0)− µ(xij ;α)

ϕ(xij ;β)
, Bij(θ) ≡ ω(xi1, xi2)

ϕ(xij ;β0)

ϕ(xij ;β)
.
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Consistency will follow from the following restrictions. The motivation for these conditions
is as before.

Assumption 3.4 (finite moments). For each θ ∈ Θ, both E*[|τi1(θ) − τi2(θ)|6] and
E*[‖τ ′i1(θ) − τ ′i2(θ)‖4] are finite. Both E [‖ω(xi1, xi2)‖6] and E [‖zi1 − zi2‖4] are finite. The
function ζ(∆; θ) is continuous in ∆ in a neighborhood of zero and sup∆‖ζ(∆; θ)‖ is finite
for each θ ∈ Θ.

The moment conditions validate the use of laws of large numbers. The requirements on
ζ(∆i; θ) allow the use of a bounded-convergence argument to establish uniform consistency
of the empirical moment. It can again be seen as a tail condition on the various conditional
expectations involving Aij(θ), Bij(θ), ηi, and λi that appear in it.

The next assumption is used to obtain asymptotic normality and zero asymptotic bias.
To state it, again let

ζ ′(∆; θ) ≡ ∂ζ(∆; θ)

∂θ′
, ∇hζ(∆; θ) ≡ ∂hζ(∆; θ)

∂∆h
,

Q0 ≡ ζ ′(0; θ0), and τ ′′ for the second-derivative matrix of τ . The proof to asymptotic
normality shows that, under Assumptions 3.1–3.5,

√
nς q̂n(θ0)

L→ N (0,Σ),

where Σ ≡ Σ(0; θ0)
´ +∞
−∞ |κ(ε)|2 dε for

Σ(∆i; θ0) ≡ E*[ω(xi1, xi2)ω(xi1, xi2)′(τi1(θ0)− τi2(θ0))2|∆i] d(∆i).

The expression for the asymptotic variance cannot be simplified further given that our
model does not restrict the conditional variance of the yij and does not rule out serial
correlation in the (uij , vij). Observe that, indeed, Σ does not depend on the asymptotic
variance of the first-stage estimator γn. We will need a technical restriction on the matrix

H(∆i) ≡ E*[ω(xi1, xi2) (zi1 − zi2)′ ηi {λi(pi1 + ιi)− λi(pi2 + ιi)}|∆i] d(∆i)

to justify this formally. This matrix arises in an expansion of the empirical moment around
γ0.

Assumption 3.5 (smoothness). For each θ ∈ Θ, E*[‖τ ′′i1(θ) − τ ′′i2(θ)‖4] is finite and
ζ ′(∆; θ) is continuous in ∆, and sup∆‖ζ ′(∆; θ)‖ is finite. Σ(∆; θ0) is continuous in ∆ in
a neighborhood of zero, sup∆‖Σ(∆; θ0)‖ is finite, and H(∆) is continuously-differentiable
in ∆ and the derivative is bounded. The functions ∇hζ(∆; θ0) exist and sup∆‖∇hζ(∆; θ0)‖
are finite for all integers h ≤ k.

Note that

ζ(∆i; θ0) = E* [ηi ω(xi1, xi2) {λi(pi1 + ιi)− λi(pi2 + ιi)}|∆i] d(∆i)

and so, indeed, ζ(0; θ0) = 0.
The delta method then yields the asymptotic distribution of θn.
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Theorem 3.1 (asymptotic distribution). Let Assumptions 3.1–3.5 hold. Suppose
that Σ is positive definite, that Q0 has full column rank, and that Vn

P→ V0 for V0 positive
definite. Then

√
nς‖θn − θ0‖ = OP (1) and

√
nς(θn − θ0)

L→ N (0,Υ), Υ ≡ (Q′0V0Q0)−1 (Q′0V0ΣV0Q0) (Q′0V0Q0)−1.

In particular, if Vn
P→ Σ−1, then Υ = (Q′0Σ−1Q0)−1.

The asymptotic variance can be estimated using the plug-in estimates

Qn ≡
1

n

n∑
i=1

ω(xi1, xi2)(τ ′i1(θn)− τ ′i2(θn))′

ς
κ

(
∆̂i

ς

)
si1si2,

Σn ≡
1

n

n∑
i=1

ω(xi1, xi2)ω(xi1, xi2)′ (τi1(θn)− τi2(θn))2

ς
κ

(
∆̂i

ς

)2

si1si2,

for Q0 and Σ, respectively.

Theorem 3.2 (inference). Let Assumptions 3.1–3.5 hold. Suppose that Σ is positive
definite and that Q0 has full column rank. Then

Υn
P→ Υ, Υn ≡ (Q′nVnQn)−1 (Q′nVnΣnVnQn) (Q′nVnQn)−1

if Vn
P→ V0 for Vn and V0 positive definite.

Theorem 3.2 allows to conduct hypothesis tests on θ0 or transformations thereof, and also
again implies validity of overidentification tests based on the optimally-weighted GMM
criterion.

3.3. Simulations
As a numerical illustration we apply the fixed-effect estimator to a panel-data version of
the Poisson model we used in the cross-sectional simulation exercise. To maximize the
comparison between both sampling situations the data was generated in exactly the same
way as before. Thus, For each of n groups, two observations were generated from a Poisson
distribution with conditional mean

E [yij |xi, ui] = exp(c+ xijβ0)ui,

and all conditioning variables were drawn as before. The sample-selection process, too, was
designed in the same way. The only design change, relative to the cross-sectional model,
we consider is the sample size. Indeed, because, now, Pr[si1si2 = 1] = Pr[si1 = 1] Pr[si2 =

1] = 1
4 , we double n as to keep the effective sample size as before, on average. Smoothed

maximum score was used as first-stage estimator. We again compare our estimator to the
naive unweighted estimator based on the same set of moment conditions. Note that this
estimator is

√
n-consistent when sample selection is exogenous.
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Table 3. One-step estimators
ρ n bias standard deviation

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 500 .008 .071 .035 .020 .010 .051 .176 .744 .473 .336 .210 .383
0 1000 .006 .038 .012 .004 .001 .030 .122 .474 .315 .241 .156 .253

-0.5 500 -.184 .075 .046 .001 -.090 .049 .155 .679 .432 .306 .198 .446
-0.5 1000 -.198 .027 .008 -.013 -.093 .025 .112 .450 .301 .250 .154 .326
0.5 500 .257 .073 .051 .078 .168 .037 .195 .760 .475 .323 .225 .330
0.5 1000 .254 .058 .047 .064 .146 .025 .136 .522 .337 .260 .168 .244
ρ n standard error to standard deviation rejection frequency

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 500 .956 1.226 .875 .921 .971 1.115 .059 .076 .062 .068 .050 .049
0 1000 .979 .943 .954 .967 .987 1.149 .046 .057 .060 .056 .053 .034

-0.5 500 .971 .934 .934 .952 .956 1.103 .263 .064 .061 .061 .102 .059
-0.5 1000 .944 .937 .941 .883 .933 .929 .488 .070 .064 .059 .130 .042
0.5 500 .957 1.064 .875 .957 .952 1.260 .255 .075 .069 .061 .108 .043
0.5 1000 .969 1.262 .924 .927 .965 1.326 .477 .064 .056 .055 .129 .038

Parameters: % = −.5, σx =
√
.5, σa =

√
.5, σw =

√
.5; β0 = 1; γ0 = −1.

Table 4. Two-step estimators
ρ n bias standard deviation

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 500 .013 .162 .064 .029 .012 .123 .171 .769 .464 .317 .206 .638
0 1000 .006 .089 .036 .017 .005 .061 .117 .481 .311 .223 .150 .462

-0.5 500 -.148 .145 .059 -.033 -.115 .101 .151 .698 .435 .285 .192 .636
-0.5 1000 -.162 .059 .011 -.050 -.129 .036 .111 .444 .304 .237 .146 .451
0.5 500 .235 .173 .122 .155 .208 .123 .188 .733 .478 .327 .225 .585
0.5 1000 .230 .118 .099 .137 .199 .069 .132 .510 .334 .253 .168 .431
ρ n standard error to standard deviation rejection frequency

hn ∼ 1 1.5 2.5 3 ĥn ∼ 1 1.5 2.5 3 ĥn

0 500 .940 1.100 .837 .891 .949 .781 .070 .086 .071 .069 .046 .073
0 1000 .982 .877 .927 .959 .981 .748 .044 .066 .063 .056 .049 .066

-0.5 500 .962 .817 .859 .916 .935 .695 .211 .080 .075 .073 .131 .113
-0.5 1000 .930 .908 .894 .849 .921 .743 .396 .071 .067 .080 .203 .097
0.5 500 .938 1.051 .843 .898 .936 .857 .254 .082 .082 .080 .143 .097
0.5 1000 .956 1.733 .905 .902 .943 .810 .436 .067 .065 .080 .232 .088

Parameters: % = −.5, σx =
√
.5, σa =

√
.5, σw =

√
.5; β0 = 1; γ0 = −1.

Tables 3 and 4 have the same layout as before. The performance of the estimator, too,
is in line with the cross-sectional case and so we can be brief in our description of the tables.
The naive estimator is again heavily biased when selection into the sample is endogenous.
Our approach tends to deliver estimators with relatively small bias, except in some cases
when the bandwidth is large. Eventhough the effective sample size is quite small, the ratio
of the estimated standard error to the standard deviation is reasonably close to unity across
the designs, so that inference based on the asymptotic distribution theory derived above
may be reliable. A look at the rejection frequencies confirms this.



Multiplicative-error models 19

Acknowledgments

A previous version of this paper circulated under the title ‘Simple estimators for count data
models with sample selection’. I am grateful to Han Hong, an associate editor, and two
referees for very constructive comments.

Appendix A. Proof of Theorems 2.1 and 2.2

Notation. The following notation will be used. Let ξij(θ) ≡ ω(xi, xj) (τi(θ)− τj(θ)). Then

qn(θ) ≡
(
n

2

)−1 n∑
i=1

∑
i<j

ξij(θ)

ς
κ

(
pi − pj
ς

)
sisj .

Also, q0(θ) ≡ E [ζi(pi; θ)]. Note that qn(θ) is an infeasible version of q̂n(θ) where the kernel
weight depends on the true pi and that, under our assumptions, q0(θ) is the limit of this
empirical moment condition, i.e, q0(θ) = limn↑+∞ E [qn(θ)], as will be verified below. We
let ξ′ij(θ) ≡ ω(xi, xj) (τ ′i(θ) − τ ′j(θ))′ and write Q̂n(θ), Qn(θ), and Q0(θ) for the Jacobian
matrices associated with q̂n(θ), qn(θ), and q0(θ), respectively.

Consistency. Given the regularity conditions in Assumption 2.1 and the fact that Vn
P→ V0

by construction, it suffices to show that

sup
θ∈Θ
‖q̂n(θ)− q0(θ)‖ = oP (1).

Consistency will then follow from Theorem 2.1 of Newey and McFadden (1994). Note that
the moment conditions in Assumption 2.4 imply that there exist a > 0 and Cn = OP (1)

such that, for all pairs θ1, θ2 ∈ Θ, sisj ‖ξij(θ1)−ξij(θ2)‖ ≤ Cn ‖θ1−θ2‖a. Together with the
boundedness of the kernel function, this implies that ‖q̂n(θ1)− q̂n(θ2)‖ ≤ OP (1) ‖θ1− θ2‖a.
Therefore, the uniform convergence result will follow if we can show that q̂n(θ)

P→ q0(θ) for
all θ ∈ Θ; see Lemma 2.9 in Newey and McFadden (1994). To do so, we use the triangle
inequality to get the bound

‖q̂n(θ)− q0(θ)‖ ≤ ‖q̂n(θ)− qn(θ)‖+ ‖qn(θ)− q0(θ)‖ (A.1)

for each θ ∈ Θ, and establish the pointwise convergence in probability of each of the terms
on the right-hand side.

To tackle the estimation noise in the p̂i, use the continuity of the kernel function and
boundedness of its derivative stated in Assumption 2.3 to validate a mean-value expansion
around γ0. This shows that ‖q̂n(θ)− qn(θ)‖ is bounded by

supε|κ′(ε)|
(
n
2

)−1∑n
i=1

∑
j 6=i sisj ‖ξij(θ)‖ ‖zi‖

ς2
‖γn − γ0‖ = OP

(
1

ς2
√
n

)
. (A.2)
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The first transition follows from the symmetry of the functions ξij(θ) and κ, and the second
transition follows from the finite-moment requirements in Assumption 2.4 and by the

√
n-

consistency of γn stated in Assumption 2.2. Assumption 2.3 then ensures the bandwidth
sequence to be so that this term is oP (1).

To see that ‖qn(θ)− q0(θ)‖ = oP (1), first note that ‖qn−E [qn(θ)]‖ = oP (1). Indeed, by
the Cauchy-Schwarz inequality, E *[‖ξij(θ)‖2] ≤

√
2 E *[‖ω(xi, xj)‖4] E*[|τi(θ)|4], which is

OP (1) by Assumption 2.3. Furthermore, by the boundedness of the kernel function stated
in Assumption 2.4, E [qn(θ)] exists and

E *

[∥∥∥∥ξij(θ)ς
κ

(
pi − pj
ς

)∥∥∥∥2
]
≤ E *[‖ξij(θ)‖2] supε|κ(ε)|

ς2
= OP

(
1

ς2

)
= o(n),

with the last transition following from the rate conditions on the bandwidth sequence.
Lemma 3.1 of Powell, Stock, and Stoker (1989) then provides the appropriate law of large
numbers. Next,

E

[
ξij(θ)

ς
κ

(
pi − pj
ς

)
sisj

]
= E

[ˆ +∞

−∞

ζi(p; θ)

ς
κ

(
pi − p
ς

)
dp

]
→E [ζi(pi; θ)],

by a dominated-convergence argument validated through the dominance condition on ζi(p; θ)
in Assumption 2.4, and so we have that ‖E [qn(θ)]−q0(θ)‖ = o(1). By the triangle inequality,

‖qn(θ)− q0(θ)‖ ≤ ‖qn − E [qn(θ)]‖+ ‖E [qn(θ)]− q0(θ)‖, (A.3)

and the result follows.
Combining (A.1) through (A.3) then implies that ‖q̂n(θ)−q0(θ)‖ = oP (1) for each θ ∈ Θ,

which is what we wanted to show. 2

Projection of the empirical moment. The main step in deriving the limit distribution of
θn is showing that

q̂n(θ0) =
2

n

n∑
i=1

σi + oP (1/
√
n). (A.4)

To do so, note that a second-order expansion of q̂n(θ) around the first-stage estimator gives

q̂n(θ)− qn(θ) =

(
n

2

)−1 n∑
i=1

∑
j 6=i

ξij(θ)

ς
κ′
(

(zi − zj)′γ0

ς

)
z′i(γn − γ0)

ς
sisj +Rn (A.5)

for a remainder term Rn which will be shown to be asymptotically negligible. To show (A.4)
we will proceed in two steps. The first is to work out the expression for q̂n(θ0) − qn(θ0)

above up to oP (1/
√
n), the second is to approximate the U -statistic qn(θ0) by its projection

and to show that the approximation error is oP (1/
√
n).

To quantify the impact of first-stage estimation error, first note that Rn is bounded by

1
2

(
n
2

)−1∑n
i=1

∑
j 6=i sisj ‖ξij(θ)‖ ‖zi‖2 supε|κ′′(ε)|

ς3
‖γn − γ0‖2 = OP

(
1

ς3n

)
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by the conditions on the kernel in Assumption 2.3, the moment conditions in Assumption
2.4, and the

√
n-convergence rate of ‖γn − γ0‖ in Assumption 2.2. Furthermore, because

ς ∝ n−r for some r < 1
6 , this term is oP (1/

√
n) and, thus, is asymptotically negligible.

Replacing γn − γ0 by its influence-function expression in (B.2) gives

q̂n(θ)− qn(θ) =
1

3

(
n

3

)−1 n∑
i=1

∑
j 6=i

∑
k 6=i,j

ξij(θ) sisj
ς

κ′
(

(zi − zj)′γ0

ς

)
z′iψk
ς

+ oP

(
1√
n

)
,

where we ignore terms for which either k = i or k = j, as they are asymptotically negligible,
and rescale appropriately; the effect of this rescaling is asymptotically negligible. Indeed,
the contribution of terms with k = i, for example, is bounded by(

n

2

)−1 n∑
i=1

∑
j 6=i

1

n

∥∥∥∥ξij(θ) sisjς
κ′
(

(zi − zj)′γ0

ς

)
z′iψi
ς

∥∥∥∥ = OP

(
1

ς2n

)
= oP

(
1√
n

)
,

which follows from Assumptions 2.2, 2.3, and 2.4. A symmetrization argument then allows
writing (B.2) as a third-order U -statistic whose second moment is o(n); this can be verified
using the same arguments as were used to show consistency. Therefore, by Lemma 3.1 of
Powell, Stock, and Stoker (1989), q̂n(θ)− qn(θ) differs from its projection by a term that is
oP (1/

√
n). The projection itself equals

2

3
E [hi(θ)]−

2

n

n∑
i=1

{hi(θ)− E [hi(θ)]} , hi(θ) ≡ E

[
ξjk(θ) z′j

ς2
κ′
(
pj − pk

ς

)
sjsk

]
ψi.

Now, by a change-of-variable in the first step and integration by parts in the second step,

hi(θ) = E

[´ +∞
−∞ ζj(pj − ςη; θ) z′j κ

′ (η) dη

ς

]
ψi

= E

[
ζj(pj − ςη; θ) z′j κ(η)|+∞−∞

ς

]
ψi − E

[ˆ +∞

−∞
∇1ζj(pj − ςη; θ)κ(η) dη z′j

]
ψi.

On evaluating in θ0 the first right-hand side term is zero, being bounded in magnitude by

E

[∥∥∥∥∥ζj(pj − ςη; θ0) z′j κ(η)|+∞−∞
ς

∥∥∥∥∥
]
ψi ≤

√
E [‖zj‖2] E [supp‖ζj(p; θ0)‖2] κ(η)|+∞−∞

ς
ψi = 0,

because the relevant moments exist and κ(ε)−κ(−ε) = 0 for any ε > 0. Further, because κ
is a kth-order kernel, a kth-order Taylor expansion of ∇1ζj(pj − ςη; θ0) around η = 0 yields

E
[ˆ +∞

−∞
∇1ζj(pj − ςη; θ)κ(η) dη z′j

]
= E

[
∇1ζj(pj ; θ0) z′j +

´ +∞
−∞ ∇k+1ζj(∗; θ0) ηk κ(η) dη z′j

ς−k k!

]
,

where ∗ lies between pj − ςη and pj . Invoking Assumptions 2.3 and 2.5 and applying a
dominated-convergence argument to the remainder term gives∥∥∥∥∥E

[´ +∞
−∞ ∇k+1ζj(∗; θ0) ηk κ(η) dη z′j

k!

]∥∥∥∥∥ ≤ C
√
E [‖zj‖2] E [supp‖∇k+1ζj(p; θ0)‖2]

k!
= OP (1)
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for C ≡
´ +∞
−∞ |ε

k| |κ(ε)|dε. Because Assumption 2.3 implies that ςk = oP (1/
√
n), we obtain

hi(θ0) = −E
[
∇1ζj(pj ; θ0)z′j

]
ψi + oP (1/

√
n).

Moreover,

q̂n(θ0)− qn(θ0) = − 2

n

n∑
i=1

E
[
∇1ζj(pj ; θ0)z′j

]
ψi + oP

(
1√
n

)
, (A.6)

because E [ψi] = 0.
Now turn to the projection of qn(θ0). By the arguments in the proof of consistency,

we may again invoke Lemma 3.1 of Powell, Stock, and Stoker (1989) to justify that qn(θ0)

equals its projection

E [gi(θ0)] +
2

n

n∑
i=1

{gi(θ0)− E [gi(θ0)]} , gi(θ) ≡ E
[
ξij(θ)

ς
κ

(
pi − pj
ς

)
sisj

]
,

up to a term that is oP (1/
√
n). By using a kth-order Taylor expansion and proceeding as

before, Assumption 2.5 yields gi(θ0) = ζi(pi; θ0) + oP (1/
√
n), and so

qn(θ0) =
2

n

n∑
i=1

ζi(pi; θ0) + oP

(
1√
n

)
(A.7)

because E [gi(θ0)] = oP (1/
√
n).

Combine (A.6) and (A.7) to see that they imply (A.4). 2

Convergence of the Jacobian matrix. The same steps as those used to prove consistency
will yield pointwise convergence of the Jacobian matrix, i.e.,

‖Q̂n(θ)−Q0(θ)‖ ≤ ‖Q̂n(θ)−Qn(θ)‖+ ‖Qn(θ)−Q0(θ)‖ = oP (1) (A.8)

for al θ ∈ Θ. Also, Q̂n(θ) is continuous in θ and sisj ‖Q̂n(θ1)− Q̂n(θ2)‖ ≤ OP (1) ‖θ1− θ2‖a

for some a > 0, and so Lemma 2.9 in Newey and McFadden (1994) will again imply the
uniform-convergence result sought for. For the first right-hand side term in (A.8), observe
that

‖Q̂n(θ)−Qn(θ)‖ ≤ 1

ς2

(
n

2

)−1 n∑
i=1

∑
i<j

sisj ‖ξ′ij(θ)‖ ‖zi‖ ‖γn − γ0‖ = OP

(
1

ς2
√
n

)
= oP (1).

For the second right-hand side term, use the triangle inequality to get

‖Qn(θ)−Q0(θ)‖ ≤ ‖Qn(θ)− E [Qn(θ)]‖+ ‖E [Qn(θ)]−Q0(θ)‖ = oP (1).

Because E [Qn(θ)] exists and

E *

[∥∥∥∥ξ′(θ)ς κ

(
pi − pj
ς

)∥∥∥∥2
]

= o(n),
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Lemma 3.1 of Powell, Stock, and Stoker (1989) establishes that ‖Qn(θ)−E [Qn(θ)]‖ = oP (1).
Also

E

[
ξ′(θ)

ς
κ

(
pi − pj
ς

)
sisj

]
= E

[ˆ +∞

−∞

ζ ′i(p; θ)

ς
κ

(
pi − p
ς

)
dp

]
→E [ζ ′i(pi; θ)],

and so ‖E [Qn(θ)] − Q0(θ)‖ = oP (1). Put together this verifies (A.8) and yields uniform
convergence. 2

Asymptotic distribution. By continuity of q̂n(θ) in θ, in tandem with (A.4) and the uniform
convergence of Q̂n(θ) to Q0(θ) on Θ, an expansion of the first-order conditions of the GMM
minimization problem yields

√
n(θn − θ0) = −(Q′0V0Q0)−1Q′0V0

2√
n

n∑
i=1

σi + oP (1);

where, recall Vn
P→ V0. Now, Assumptions 2.2 and 2.5 imply that var[σi] = Σ < +∞ while,

clearly, E [σi] = 0. Hence, θn is asymptotically linear, and
√
n(θn − θ0)

L→ N (0,Υ) . When
Vn is so that V0 = Σ−1, a calculation verifies that Υ = 4(Q′0Σ−1Q0)−1. 2

Inference. Because Vn
P→ V0 by assumption, it suffices to show that (i) ‖Qn−Q0‖ = oP (1)

and that (ii) ‖Σn − Σ‖ = oP (1).
To see that (i) holds, note that we have ‖Q̂n(θn)− Q̂n(θ0)‖ = OP (1) ‖θn−θ0‖a for some

a > 0 from the argument above, and observe that Qn = Q̂n(θn). Further, because we have
shown that ‖θn − θ0‖ = OP (1/

√
n), Qn = Q̂n(θ0) + oP (1). The results then follows from

the pointwise convergence result in (A.8).
To see that (ii) holds, first note that it is implied by n−1

∑n
i=1‖σ̂i−σi‖2 = oP (1). Now,

1

n

n∑
i=1

‖σ̂i − σi‖2 ≤
1

n

n∑
i=1

{
‖ζ̂i − ζi‖2 + ‖H0‖2 ‖ψ̂i − ψi‖2 + ‖ψi‖2 ‖Hn −H0‖2

}
+Rn,

where Rn captures lower-order terms and ζi ≡ ζi(pi; θ0). All the dominant right-hand
side contributions will be oP (1) provided we can show that ‖Hn − H0‖ = oP (1) and
n−1

∑n
i=1‖ζ̂i − ζi‖2 = oP (1), as we assume that ψ̂i is so that n−1

∑n
i=1‖ψ̂i − ψi‖2 = oP (1).

Start with the convergence of Hn. By an analogous reasoning as for Qn, and a further
expansion around γ0,

Hn =

(
n

2

)−1 n∑
i=1

∑
j 6=i

ξij(θ0) sisj
ς

κ′
(
pi − pj
ς

)
z′i
ς

+ oP (1).

The summand on the right-hand side is already known to satisfy the conditions for the law
of large numbers to apply. Further,

E

[
ξij(θ0) sisj

ς
κ′
(
pi − pj
ς

)
z′i
ς

]
→H0,
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as was shown in the derivation of (A.6), and so ‖Hn − H0‖ = oP (1). Also, again using
similar arguments,

1

n

n∑
i=1

‖ζ̂i − ζ̃i‖2 = oP (1), ζ̃i ≡
1

n− 1

∑
j 6=i

ω(xi, xj) (τi(θ0)− τj(θ0))

ς
κ

(
pi − pj
ς

)
sisj ,

is established. Finally, from the proof of Theorem 3.4 in Powell, Stock, and Stoker (1989)
we immediately have

E [‖ζ̃i − ζi‖2] = O

(
1

ς3n

)
= o(1), ζi ≡

ˆ +∞

−∞

ζi(p; θ0)

ς
κ

(
pi − p
ς

)
dp,

while the smoothness and dominance conditions in Assumption 2.5 imply that E [‖ζi− ζi‖2]

equals

E

[(ˆ +∞

−∞
‖ζi(pi − ςη; θ0)− ζi(pi; θ0)‖ κ(η) dη

)2
]
≤ ς E [sup

p
‖∇1ζi(p; θ0)‖2]C2 = O(ς),

for C ≡
´ +∞
−∞ |ε| |κ(ε)|dε, which is o(1). Therefore, n−1

∑n
i=1‖ζ̃i − ζi‖2 = oP (1) and

n−1
∑n
i=1‖ζi − ζi‖2 = oP (1) by the law of large numbers, and n−1

∑n
i=1‖ζ̃i − ζi‖2 = oP (1)

follows. Therefore, (ii) has been shown and the proof is complete. 2

Appendix B. Proof of Theorems 3.1 and 3.2

Notation. The following notation will be used. Let ξi(θ) ≡ ω(xi1, xi2) (τi1(θ)− τi2(θ)) and
si ≡ si1si2. Then

qn(θ) ≡ 1

n

n∑
i=1

ξi(θ)

ς
κ

(
∆i

ς

)
si

Also, q0(θ) ≡ ζ(0; θ). Note that qn(θ) is the empirical moment condition that takes γ0

as known, and that q0(θ) is the large-n limit of this function. Similarly, we again let
ξ′i(θ) ≡ ω(xi1, xi2)(τ ′i1(θ) − τ ′i2(θ))′ and write Q̂n(θ), Qn(θ), and Q0(θ) for the Jacobian
matrices associated with q̂n(θ), qn(θ), and q0(θ), respectively.

Consistency. We follow the same steps as in Appendix A to establish consistency of θn in
the panel-data case. For any fixed θ ∈ Θ, by a mean-value expansion around γ0, we have
that

‖q̂n(θ)− qn(θ)‖ ≤
supε|κ′(ε)| 1

n

∑n
i=1 si ‖ξi(θ)‖ ‖zi1 − zi2‖

ς2
‖γn − γ0‖ = OP

(
1

ns−2r

)
,

by the the moment conditions in Assumption 3.4 and the convergence rate of the first-stage
estimator. Because we set r < s/2, this term converges to zero in probability. Also, by a
standard law of large numbers, ‖qn(θ)− E [qn(θ)]‖ is∥∥∥∥∥ 1

n

n∑
i=1

ξi(θ)

ς
κ

(
pi1 − pi2

ς

)
si − E

[
ξi(θ)

ς
κ

(
pi1 − pi2

ς

)
si

]∥∥∥∥∥ = OP

(
1√
n

)
.
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Further, ‖E [qn(θ)− q0(θ)]‖ = o(1) because

E [qn(θ)] = E
[
ξi(θ)

ς
κ

(
pi1 − pi2

ς

)
si

]
=

ˆ +∞

−∞

ζ(∆; θ)

ς
κ

(
∆

ς

)
d∆→ q0(θ)

by a standard bounded-convergence argument, validated by the conditions in Assumption
3.4. Therefore, ‖q̂n(θ)− q0(θ)‖ = op(1). The regularity conditions in Assumption 3.1 then
ensure the remaining conditions for Lemma 2.9 in Newey and McFadden (1994) to apply,
and consistency follows. 2

Expansion of the empirical moment. The limit distribution of θn is the same as the limit
distribution of the infeasible estimator arg maxθ∈Θ qn(θ)′Vn qn(θ). To show this it suffices
to show that

√
nς {q̂n(θ0)− qn(θ0)} = oP (1), (B.1)

that is, that the contribution of the estimation noise introduced by the first-stage estimator
of γ0 is asymptotically negligible. To do so, consider a second-order expansion around γ0

to get

q̂n(θ0)− qn(θ0) =
1

n

n∑
i=1

si
ξi(θ0)

ς
κ′
(

∆i

ς

)
(zi1 − zi2)′

ς
(γn − γ0)

+
1

n

n∑
i=1

si
ξi(θ0)

ς
κ′′ (∗) (zi1 − zi2)′

ς
(γn − γ0)(γn − γ0)′

(zi1 − zi2)

ς
,

(B.2)

where ∗ is as before. As shown in the proof to consistency above, the expectation of the first
term on the right-hand side in (B.2) exists. With H(∆i) = E*[ξi(θ0) (zi1− zi2)′|∆i] f

∗(∆i),

E*

[
ξi(θ0) (zi1 − zi2)′

ς2
κ′
(

∆i

ς

)]
=

ˆ +∞

−∞

H(∆)

ς2
κ′
(

∆

ς

)
d∆

which, by a change-of-variable argument, can be shown to converge to ∂H(∆)/∂∆|∆=0,
which is O(1). Because

√
nς (γn − γ0) = oP (1), this implies that the first term in (B.2) is

oP (1/
√
nς). Similarly, the second term is bounded by

supε|κ′′(ε)| 1
n

∑n
i=1 si ‖ξi(θ0)‖ ‖zi1 − zi2‖2

ς3
‖γn−γ0‖2 = OP

(
n3r
)
OP

(
n−2s

)
= oP

(
1
√
nς

)
,

and so, too, can be ignored asymptotically. This establishes (B.1). 2

Asymptotic behavior of the infeasible moment. We next show that
√
nς qn(θ0)

L→ N (0,Σ).

Add and subtract E [gn(θ0)] to write
√
nς qn(θ0) =

√
nς E [qn(θ0)] +

√
nς {qn(θ0)− E [qn(θ0)]} . (B.3)

The first term constitutes bias and is asymptotically negligible. Indeed,

‖E [qn(θ0)]‖ =

∥∥∥∥ˆ +∞

−∞

ζ(∆; θ0)

ς
κ

(
∆i

ς

)
d∆

∥∥∥∥ ≤ ςk sup∆‖∇kζ(∆; θ0)‖
´ +∞
−∞ |η

k| |κ(η)|dη
k!

.
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Because the constant is bounded by Assumptions 3.3 and 3.5,
√
nς E [qn(θ0)] =

√
nςO(ςk),

which is o(1) as we require that r > 1
1+2k .

The second term in (B.3) is the dominant term. To deal with it we verify the conditions
for Lyapunov’s central limit theorem for triangular arrays. Write

√
nς {qn(θ0)− E [qn(θ0)]} =

1√
n

n∑
i=1

{σi − E [σi]} , σi ≡
ξi(θ0)
√
ς

κ

(
∆i

ς

)
si.

Then it suffices to show that (i) var[σi] < +∞ and limn↑+∞ var[σi] = Σ, and that (ii)∑n
i=1 E [‖σi/

√
n‖3] = o(1). To show (i), recall that var[σi] = E [σiσ

′
i]− E [σi] E [σ′i], and that

E [σi] =
√
ς

ˆ +∞

−∞

ζ(∆; θ0)

ς
κ

(
∆

ς

)
d∆, E [σiσ

′
i] =

ˆ +∞

−∞

Σ(∆; θ0)

ς
κ

(
∆

ς

)2

d∆.

From above, E [σi] exists and is o(1), while

E [σiσ
′
i] =

ˆ +∞

−∞
Σ(ςη; θ0)κ (η)

2
dη → Σ(0; θ0)

ˆ
κ(η)2 dη = Σ

by bounded convergence because sup∆‖Σ(∆; θ0)‖ < +∞ and Σ(∆; θ0) is continuous in ∆

in a neighborhood of zero. Thus, (i) is satisfied. To verify (ii), observe that

n∑
i=1

E

[∥∥∥∥ σi√n
∥∥∥∥3
]

=

n∑
i=1

E

[∥∥∥∥ξi(θ0)
√
nς

κ

(
∆i

ς

)∥∥∥∥3
]
≤ 1
√
nς

ˆ +∞

−∞

g(∆)

ς

∣∣∣∣κ(∆

ς

)∣∣∣∣3 d∆,

which is O(1/
√
nς) because g(∆i) ≡ E*[‖ξi(θ0)‖3|∆i] f

∗(∆i) Pr[si = 1] is bounded. Hence,
(ii) holds and

√
nς qn(θ0)

L→ N (0,Σ) (B.4)

has been shown. 2

Convergence of the Jacobian matrix. We use the same approach as used when establishing
consistency. Fix θ ∈ Θ. An expansion gives

‖Q̂n(θ)−Qn(θ)‖ ≤
supε|κ′(ε)| 1

n

∑n
i=1 si ‖ξ′i(θ)‖ ‖zi1 − zi2‖

ς2
‖γn − γ0‖ = oP (1).

Also, ‖Qn(θ)− E [Qn(θ)]‖ = oP (1) by the law of large numbers, and

E [Qn(θ)] =

ˆ +∞

−∞

ζ ′(∆; θ)

ς
κ

(
∆

ς

)
d∆→ Q0(θ)

by bounded convergence. Pointwise convergence of the Jacobian has been established.
Uniform convergence, i.e.,

sup
θ∈Θ
‖Q̂n(θ)−Q0(θ)‖ = oP (1) (B.5)

follows from Lemma 2.9 in Newey and McFadden (1994). 2
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Asymptotic distribution. Using the results obtained so far the asymptotic distribution of θn
is readily established. An expansion of the first-order conditions to the GMM minimization
problem gives

√
nς(θn − θ0) = −(Q′0V0Q0)−1Q′0V0

√
nς qn(θ0) + oP (1),

on invoking ‖θn− θ0‖ = oP (1) and appealing to (B.1)–(B.5). The delta method then yields

√
nς(θn − θ0)

L→ N (0,Υ),

where Υ = (Q′0V0Q0)−1(Q′0V0ΣV0Q0)(Q′0V0Q0)−1 for a generic positive definite V0, and
Υ = (Q′0Σ−1Q0)−1 for the optimally-chosen V0. 2

Inference. Given that Vn
P→ V0 by construction, it suffices to consider consistency of Qn

and Σn. Qn
P→ Q0 follows from ‖θn − θ0‖ = oP (1) and supθ∈Θ‖Q̂n(θ) − Q0(θ)‖ = oP (1),

because Qn = Q̂n(θn). The argument for Σn
P→ Σ is similar and is omitted. 2
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