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A bst ract

We study the dynamics of firm size in a repeated Cournot game
with unkown demand function.We model the firm as a type of artificial
neural network. Each period it must learn to map environmental
signals to both demand parameters and its rival’s output choice. But
this learning game is in the background, as we focus on the endogenous
adjustment of network size. We investigate the long-run behavior of
firm/network size as a function of profits, rival’s size, and the type of
adjustment rules used.
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1 Int roduct ion

In this paper we explore firm size dynamics, with the firm modeled as a
type of artificial neural network (ANN). Two firms/networks compete at two
different levels. The first level, which has been explored in detail in other
work (Barr and Saraceno (BS), 2004; 2005), looks at Cournot competition
between two neural networks. In this paper, this level of competition is
essentially in the background, while the main form of strategic interaction
is in regards to firm size dynamics. The firm, while playing the repeated
Cournot game, has to make long run decisions about its size, which affects
not only its own profits, but those of its rival as well.
Our previous research showed that firm size, which was left exogenous,

is an important determinant of performance in an uncertain environment.
Here we reverse the perspective, taking as given both the learning process
and the dependence of firm profit on size and environmental complexity, and
endogenize firm size in order to investigate whether simple adjustment rules
succeed in yielding the optimal size (defined as the result of a best response
dynamics). The computational requirements needed to discover the optimal
network size may be quite expensive for the firm; and thus we explore less
costly methods for adjusting firm size.
In particular, we explore two types of adjustment rules. The first rule

(”the isolationist”) has the firm adjusting its size simply based on its last pe-
riod profit growth. The second rule (”the imitationist”) has the firm adjust-
ing its size if its rival has larger profits. Lastly we investigate firm dynamics
when the firms use a combined rule.
We explore how the two firms interact to affect their respective dynamics;

we also study how the adjustment rate parameters affect dynamics and long
run firm size. In addition, we investigate the conditions under which the
adjustment rules will produce the Cournot-Nash outcome.
To our knowledge, no other paper has developed the issue of long run

firm growth in an adaptive setting. Here we highlight some of the important
findings of our work:

• In the isolationist case, firm dynamics is a function of both environ-
mental complexity, initial size, rival’s initial size and the adjustment
rate parameter. The value of a firm’s long run size is a non-linear func-
tion of these four variables. Ceteris paribus, we find, for example, that
firms using a simple rule gives decreasing firm size versus increasing
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complexity. In fact, a complex environment causes profit growth, and
consequently, firm growth, to be lower.

• In the imitationist case, firm dynamics is also a function of initial firm
size, initial rival’s size, complexity and the adjustment rate parameter.
In such a case, increasing complexity will yield lower steady state sizes,
though they are not necessarily the same for the two firms.

• Via regression analysis we measure the relative effects of the various
initial conditions and parameters on long run dynamics. We find that
own initial size is positively related to long run size, rival’s initial size
has a negative effect for small initial size, but positive effect for larger
initial sizes. The larger the adjustment parameters, the larger is the
long run size.

• Finally, we show that the simple dynamics that we consider very rarely
converge to the ’best response’ outcome. In particular, the firm’s ad-
justment parameter plays an important role in guaranteeing such a
convergence.

Our work relates to a few different areas. Our approach to using a neural
network fits within the agent-based literature on information processing (IP)
organizations (Chang and Harrington, forthcoming). In this vein, organiza-
tions are modeled as a collection or network of agents that are responsible
for processing incoming data. IP networks and organizations arise because
in modern economies no one agent can process all the data, as well as make
decisions about it. The growth of the modern corporation has created the
need for workers who are managers and information processors (Chandler,
1977; Radner, 1993).
Typical models are concerned with the relationship between the struc-

ture of the network and the corresponding performance or cost (DeCanio and
Watkins, 1998; Radner, 1993; Van Zandt, 1998). In this paper, the network
is responsible for mapping incoming signals about the economic environment
to both demand and a rival’s output decision. Unlike other information
processing models, we explicitly include strategic interaction: one firm’s abil-
ity to learn the environment affects the other firm’s pay-offs. Thus a firm
must locate an optimal network size not only to maximize performance from
learning the environment but also to respond to its rival’s actions. In our
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case, the firm is able to learn over time as it repeatedly gains experience in
observing and making decisions about environmental signals.
A second area of literature that relates to our work is that of the evo-

lutionary and firm decision making models of Nelson and Winter (1982),
Simon (1982) and Cyret and March (1963). In this area, the firm is also
boundedly rational, but the focus is not on information processing per se.
Rather, the firm is engaged in a myriad of activities from production, sales
and marketing, R&D, business strategy, etc. As the firm engages in its busi-
ness activities it gains a set of capabilities that cannot be easily replicated by
other firms. The patterns of behavior that it collectively masters are know
as its ’routines’ (Nelson and Winter,1982). Routines are often comprised of
rules-of-thumb behavior: continue to do something if it is working, change if
not.
In this vein, firms in our paper employ simple adjustment rules when

choosing a firm size. In a world where there is an abundance of information
to process, and when discovering optimal solutions is often computationally
expensive firms will seek relatively easier rules of behavior, ones that produce
satisfactory responses at relatively low cost (Simon, 1982).

The rest of the paper is organized as follows. Section 2 discusses the
motivation for using a neural network as a model of the firm. Then, in section
3, we give a brief discussion of the set up of the model. A more detailed
treatment is given in the Appendix. Next, section 4 gives the benchmark
cases of network size equilibria. Sections 5 to 7 discuss the heart of the
paper—the firm size adjustment algorithms and the results of the algorithms.
Finally, section 8 presents a discussion on the implications of the model and
also gives some concluding remarks.

2 N eural N etworks as a M odel of t he Firm

In previous work (BS, 2002; 2005) we argued that information processing is
a crucial feature of modern corporations, and that efficiency in performing
this task may be crucial for success or failure. We further argued that when
focussing on this aspect of firm behavior, computational learning theory may
give useful insights and modelling techniques. In this perspective, it is useful
to view the firm as a learning algorithm, consisting of agents that follow a
series of rules and procedures organized in both a parallel and serial man-
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ner. Firms learn and improve their performance by repeating their actions
and recognizing patterns (i.e., learning by doing). As the firm processes
information, it learns its particular environment and becomes proficient at
recognizing new and related information.
Among the many possible learning machines, we focussed on Artificial

Neural Networks as models of the firm, because of the intuitive mapping
between their parallel processing structure and firm organization. Neural
networks, like other learning machines, can generalize from experience to un-
seen problems, i.e., they recognize patterns. Firms (and in general economic
agents) do the same: the know-how acquired over time is used in tackling
new, related problems.
What is specific about ANNs, as learning machines, is the parallel and

decentralized processing. ANNs are composed of multiple units processing
relatively simple tasks in parallel. The combined result of this multiplicity
is the ability to process very complex tasks. In the same way firms are often
composed of different units working autonomously on very specific tasks, and
are coordinated by a management that merges the results of these simple
operations in order to design complex strategies.
Furthermore, the firm, like learning algorithms, faces a trade-off linked to

the complexity of its organization. Small firms are likely to attain a rather
imprecise understanding of the environment they face; but on the other hand
they act pretty quickly and are able to design decent strategies with small
amounts of experience. Larger and more complex firms, on the other hand,
produce more sophisticated analyses, but they need time and experience
to implement their strategies. Thus, the optimal firm structure may only
be determined in relation with the environment, and it is likely to change
with it. Unlike computer science, however, in economics the search for an
optimal structure occurs given a competitive landscape, which imposes time
and money constraints on the firm.
In our previous work we showed, by means of simulations, that the trade-

off between speed and accuracy generates a hump-shaped profit curve in
firm size (BS, 2002). We also showed that as complexity of the environment
increases the firm size that maximizes profit also increases. These results
reappeared when we applied the model to Cournot competition. Here, we
leave the Cournot competition and the learning process in the background,
and investigate how network size changes endogenously.
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3 Set up of t he M odel

The setup of the neural network model is taken from BS (2004) and BS
(2005). Two firms competing in quantities face a linear demand function
whose intercept is unobserved. They observe a set of environmental variables
that are related to demand, and have to learn the mapping between the two.
Furthermore, firms have to learn their rival’s output choice. Appendix B
gives the details of the model. BS (2005) shows that in general firms are
capable of learning how to map environmental factors to demand, which
allows them to converge to the Nash equilibrium. We further showed that
the main determinants of firm profitability are, on one hand, firm sizes (i.e.,
the number of processing units of the two firms, m1 and m2); and on the
other environmental complexity, which we modeled as being the number of
inputs to the network (n), i.e., the number of environmental factors affecting
demand.
These facts may be captured by a polynomial in the three variables:

πi = f (m1,m2, n) i = 1, 2. (1)

To obtain a specific numerical form for equation 1, we simulated the
Cournot learning process with different randomly drawn firm sizes (m1, m2 ∈
[2,20]) and complexity (n ∈ [5, 50]), recording each time the profit of the two
firms. With this data set we ran a regression, which is reported in table 4 in
the appendix (notice that the setup is symmetric, so that either firm could
be used).
The specific polynomial relating profits to size and complexity, which

will serve as the basis for our firm size dynamics, is given in the following
equation:1

π1 = 271 + 5.93m1 − 0.38m2
1 + 0.007m3

1 + 0.49m2 (2)

− 0.3m1m2 − 2.2n + 0.0033n2 + 0.007m1m2n− 0.016m2n.

Note that we do not directly consider the costs of the firm’s network since
under standard assumptions they do not affect the qualitative results. Figure
1, shows the hump shape of profit with respect to own size, that we discussed

1In previous work other variables affected profit, be here we hold then constant. Fur-
thermore, the regression results are reported for 10,000 · π1 to make the equation easier
to read.
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in previous work. Three curves are reported, corresponding to small, medium
and large opponent’s size (complexity is fixed at n = 10).
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2 4 6 8 10 12 14 16 18 20m1

Figure 1: A firm’s profit function vs. own size (m2 = 2, solid line; m2 = 10,
crosses; m2 = 20, diamonds). n = 10.

4 T he Best Response Funct ion and N etwork
Size Equil ibr ium

In this section, as a benchmark, we discuss the firm’s best response function
and equilibria that arise from the game. We can derive the best response
function in size by setting the derivative of profit with respect to size equal
to zero, i.e.,

∂πi

∂mi

= f 0 (mi,m−i, n) = 0 i = 1,2. (3)

Given the functional form for profit of equation (2), this yields the fol-
lowing solution for firm 1 (as usual either firm can be used, as the problem
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is symmetric)2:

mbr
1 (m2, n) = 16.9± 2.26

√
2.6m2 − 0.058nm2 + 3.9

The ’best response’ function is polynomial in mi and as a result, there is
generally more than one solution, and often some of the solutions are complex
numbers. Nevertheless, for values of m2 and n in the admissible range (mi ∈
[2,20], n ∈ [5,50]), the solution is unique and decreasing. The Network Size
Equilibrium (NSE) is given by the intersection of the best responses for the
two firms. Figure 2 shows the best response mappings for equation (2), and
the corresponding Nash equilibria in size; notice that these equilibria are
stable. In fact, in spite of the complexity of the profit function, the best
response is quasi-linear. Notice further the relationship between the best
responses and environmental complexity: increasing complexity shifts the
best response functions, and consequently the Nash equilibrium upwards.In
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Figure 2: Best response functions (n = 10, diamonds; n = 25, crosses;
n = 40, solid lines) for firms 1 and 2. The Network Size Equilibria are given
by the intersection of the lines.

general, we can express optimal firm size, m∗

i , as a function of environmental

2For simplicity we ignore the integer issue in regards to firm size and assume that firm
size can take on any real value greater than zero.
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complexity. If we take the two best responses, and we impose m∗

1 = m∗

2 = m∗

by symmetry, we obtain the following:

m∗ = 23.5− 0.15n− 4.5
p

(14.1− 0.34n + 0.001n2) (4)

The plot of this expression may be seen in figure 3.3

Finally, we can ask whether profits are increasing or decreasing at the
equilibrium firm size. To answer this question, we substitute the optimal
value given by equation (4) into the profit equation (2), to obtain a decreasing
relationship; the plot is also reported in figure 3.
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Figure 3: Profit (solid line, left axis) at equilibrium is decreasing in environ-
mental complexity. On the other hand, equilibrium size (crosses, right axis)
is increasing.

To conclude, we have shown that best response dynamics yield a unique
and stable equilibrium. Furthermore, we were able to show that the firm size
in equilibrium is increasing in complexity, while profit is decreasing. In the
next section we turn to simpler firm size adjustment rules, that require lower
computational capacity for the firm.

3As was the case before, we actually have two solutions for firm size. Nevertheless, one
root gives values that are outside the relevant range for m∗

, and can be discarded.
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5 A dapt ive A djust ment Dynamics

As discussed above, firms often face a large amount of information to process.
In standard economic theory, firms are assumed to understand many details
about how the world functions and how various variables interact. They are
assumed to know their cost functions, profit functions, and the effect of a
rival’s decisions on profits. But in a complex world, with boundedly rational
agents, the cost to discover such knowledge is relatively high. As a result,
firms learn as they engage in their activities and use this knowledge to help
guide them.
For this reason, in this section, we explore relatively simple dynamics for

firm size: dynamics that assume on the part of firms simply being able to
observe the effect that changing the number of agents (nodes) has on profits.
The best response function in section 4 is quite complex, and assumed that
the firm knows it; more specifically, it is assumed to know the expected max-
imal profit obtainable for the entire range of a rival’s choice of network size.4

(Note also that the best response functions graphed above are numerical
approximations.)
In addition in a world in which production and market conditions con-

stantly change, past information may quickly become irrelevant. Meaning
that even if a firm has perfect knowledge of its best response function at
a certain point in time, that function may quickly become outdated. That
means that even when the firm is in possession of the computational capabil-
ities necessary to compute the best response, a firm may not find it efficient
to actually do so.
Using the profit function generated in section 3, we explore adjustment

dynamics for firms using rule-of-thumb type adjustment rules with the fol-
lowing general adjustment dynamics:

mi,t = mi,t−1 + β (πi,t−1 − πi,t−2) + αIi [(m−i,t−1 −mi,t−1)(π−i,t−1 − πi,t−1)] .
(5)

First, β represents the sensitivity of firm size to own profit growth. In
other words, if a firm has positive profit growth it will increase its firm size
by β (πi,t−1 − πi,t−2), units; if profit growth is negative, it will decrease by
β (πi,t−1 − πi,t−2) . Again, we assume that firm size can take on a real-valued

4A common assumption in game theory is that firms know the equilbrium and that
they know that their rival knows it, and they know that their rival knows they know it,
ad infitinum (Fudenberg and Tirole, 1996).
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positive number.
Next, the parameter α captures the ”imitation” factor behind size ad-

justment; Ii is an indicator function taking the value of 1 if the opponent’s
profit is larger than the firm’s, and a value of 0 otherwise:

Ii =
½

1⇔ (π−i,t−1 − πi,t−1) > 0
0⇔ (π−i,t−1 − πi,t−1) ≤ 0

In case Ii = 1, then size will be adjusted in the direction of the opponents’.
Thus, the firm will adjust towards the opponent’s size, whenever it observes a
better performance of the latter (note that we do not have any discounting).
To sum up, our adjustment rule only uses basic routines: first, the firm

expands if it sees its profit increasing; second it adapts towards the opponent’s
size whenever it sees that the latter is doing better. These are the most
basic and commonsensical routines a firm would employ, and require very
little observation and computation on the part of the firm. In short, we can
think of the Cournot game as happening on a short term basis, while the
adjustment dynamics occurs over longer periods of time.
In the next section we investigate the following questions: what kinds

of firm dynamics can we expect to see given the simple adjustment rules?
And under what parameter choices using equation (5) will firms reach the
equilibrium level presented in figure 3 and, what kinds of behavior can we
expect for firm size as a function of the parameter space?

6 Result s

6.1 Scenar io 1: T he I solat ionist Firm

Suppose that α = 0. Then each firm will only look at its own past perfor-
mance when deciding whether to add or to remove nodes:

mi,t = mi,t−1 + β [πi,t−1(mi,t−1,m−i,t−1, n) − πi,t−2(mi,t−2,m−i,t−2, n)]

Of course, this does not mean that the firm’s own dynamics is independent
of the other, as in fact πi,t−1 and πi,t−2 depend on both sizes. Figure 4 shows
the adjustment dynamics of two isolationist firms for different complexity
levels. The adjustment rate β is kept fixed (at β = 0.05).
The dynamics are relatively simple and show a few things. The first is

that the long-run level, in general, is reached fairly quickly. The second is
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Figure 4: Firm dynamics when the firms start at different sizes (m1(0) = 10;
m2(0) = 20), for three different levels of complexity.

that this level seems to depend on initial own size. For example, a firm
starting at say 10 nodes will converge at a value around 17-18 nodes; both
the opponent’s initial size, and the complexity level seem to have a very
limited effect, if any. These qualitative features do not change for different
initial conditions (other figures available upon request). This result is hardly
surprising regarding the opponent’s size if we consider that the two firms
have a simple adjustment rule, so that interaction only takes place indirectly,
through the profit function.
Thus, at first sight the picture does not show strong differences in long

run dynamics. However a deeper look will show that initial size, initial rival’s
size complexity and β all have statistically significant effects on long run size.
In section 6.3 below we show regression results for the dynamics of equation
(5), where it appears that n and β are important determinants of long run
size. Thus, we conclude that in figure 4 the effects of these parameters are
hidden by the predominant effect of initial size.
Finally, figure 5 shows the adjustment dynamics for three different values

of β.When β = 0.025, firm size adjusts to approximately 15, when β = 0.075,
long run firm size is larger, finally when β = 0.125, we see that long run firm
size is the largest (about 25) and that there are oscillatory dynamics, with
decreasing amplitude, but with apparently regular frequency. Thus we can
see that a larger β leads to larger long run firm size.

12



0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

β=0.025 β=0.075 β=0.125

time

m1

Figure 5: m1(0) = m2(0) = 10, n = 20, three different β.

6.2 Scenar io 2: T he Imit at ionist

In this case the contrary of the isolationist firm holds: firms do not care about
their own situation, but rather about the comparison with the opponent:
β = 0. Thus,

mi,t = mi,t−1 + αIi [(m−i,t−1 −mi,t−1)(π−i,t−1 − πi,t−1)] .

In this case, the firm will not change its size if it has a larger profit, and it
will adjust towards the opponent if it has a smaller profit. Thus, we can say
a number of things before feeding actual parameter values. First, at each
period, only one firm moves. Second, at the final equilibrium, the two profits
must be equal, which happens when firm sizes are equal, but not necessarily
only in this situation. For n = 5, suppose one firm begins small and the
other large (m1 = 4 and m2 = 15). The resulting dynamics depend on α, as
shown in figure 6.
For low levels of α, in fact, the drive to imitation is not important enough,

and the two firms do not converge to the same size. For intermediate values
(around α = 0.125), instead, convergence takes place to an intermediate size.
When α is too large, on the other hand, the initial movement (in this case
of firm 1) is excessive, and may overshoot.
Complexity has a role as well, as shown in figure 7 (where n = 40). In

fact, as greater complexity yields larger firm size, we see that the adjustment
is faster (for each given α), and that for large enough values of α, the system
explodes.
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Figure 6: Firm dynamics for different values of α. n = 5.

Both in the imitationist and in the isolationist cases, the dynamics show
a very strong dependence on initial conditions. This feature of the time series
calls for a systematic analysis of the parameter space and we present below
regression results for the combined scenario.

6.3 Scenar io 3: Combined Dynamics Regression A naly-
sis

In this section, we investigate via regression analysis the effects of initial
firm size, adjustment parameters and complexity on long run firm size. Here
we combine the two types of dynamics, exploring the outcomes based on
equation 5. To do this we generate 5, 000 random combinations of initial firm
sizes from mi (0) ∈ {2,20} , α ∈ [0.025, 0.075] , β ∈ [0.025, 0.075] and n ∈
{5, 10, ....,40} and then we look at the long run steady state firm size for firm
1, which ranges from 2.6 to 39.6 nodes. The regression results are presented
in table 1. The regression equation is non-linear in the variables and includes
several interaction terms. Also a dummy variable, δ [m1 (0) > m2 (0)] = 1 if
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Figure 7: Firm dynamics for different values of α. n = 40.

m1 (0) > m2 (0) and 0 otherwise, was included since it was found to be
statistically significant.
Column (4) of table 1 also includes coefficients for the normalized vari-

ables, which all have mean of zero and standard deviation of one. These
coefficients then allow us to compare the relative magnitudes of the variables
on the dependant variable.
>From the regression table we can draw the following conclusions:

• Increasing initial own firm size, increases long run size, and increasing
rival’s size initially has a negative effect, but for m2 (0) > 8, the effect
is positive.

• The parameters α and β both have positive effects on firm size, though
negative interaction effects with initial size.

• The dummy variable, which reflects the relative starting position of the
two firms, shows that relative initial size matters in determining long
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D ependent Var iable: m1(100)
Var iable Coef. St d. Er r . N orm. Coef.
m1 (0) 0.517 0.032 0.475
[m1 (0)]2 0.009 0.001 0.190
m2 (0) -0.289 0.030 -0.264
[m2 (0)]2 0.031 0.001 0.632
m1 (0) ·m2 (0) -0.020 0.001 -0.308
δ [m1 (0) > m2 (0)] 0.447 0.090 0.038
α 58.159 3.763 0.208
β 159.342 4.536 0.569
α ·m1 (0) -3.110 0.310 -0.175
β ·m1 (0) -2.042 0.289 -0.114
β ·m2 (0) 3.907 0.309 0.216
n -0.040 0.008 -0.077
n · β 1.401 0.125 0.163
n ·m1 (0) 0.006 0.001 0.170
Constant 3.157 0.301 .
Nobs. 5000
R2 0.878

Table 1: Regression results for adjustment dynamics. Dep. Var. m1(100).
Robust standard errors given. All variables stat. sig. at 99% or greater
confidence level.

run size. If firm 1 starts larger than firm two, all else equal, it will have
a larger long run size.

• Ceteris paribus, increasing complexity is associated with smaller firm
size. The reason is that greater environmental complexity reduces prof-
its and thus in turn reduces the long run size.

• However, there are several interaction effects that capture the non-
linear relationship between the independent variables and long run firm
size. For example, both initial own size and the adjustment parameters
have positive effects, but there are also off-setting interaction effects
that reduce the total effect of starting size and the adjustment parame-
ters. That is to say, the interaction variables, α ·m1 (0) and β ·m1 (0)
have negative effects, while n · β has a positive effect. Interestingly,
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n · α has no statistically significant effect on long run size (coefficient
not included).

7 Convergence t o N ash Equil ibr ium

As we saw in the previous section, the long run size of the firm is determined
by several variables and, as a result, the convergence to the Nash equilib-
rium is not guaranteed by the simple adaptive dynamics that we study in
this paper. As a result, this section investigates the conditions under which
convergence takes place.
We made random draws of the relevant parameters (α and β in the range

[0,0.2], m1(0) and m2(0) in, the range [2,20]), and we ran the dynamics.
Then, we retained only the runs that ended up with both firms within one
node of the Nash value (i.e. mi(50) ∈ [m∗−0.5, m∗+ 0.5]. That was done one
million times for each complexity value n ∈ {5, 10, 15,20, 25, 30, 35,40, 45}.
Table 2 shows the results, reporting the success rate, the average α, β,

and initial m1, and the mode of the latter (given the symmetric setting, the
values for m2(0) are identical). The numbers in parenthesis are the standard
deviations.

n (m∗) Succ. α β m1(0) mod[m1(0)]
5 (6.85) 0.492% 0.122

(0.052)
0.082
(0.042)

8.758
(5.380)

5

10 (7.19) 0.413% 0.115
(0.057)

0.087
(0.056)

7.897
(5.267)

4

15 (7.58) 0.296% 0.093
(0.056)

0.082
(0.075)

4.137
(1.476)

5

20 (8.01) 0.190% 0.106
(0.053)

0.009
(0.007)

4.845
(1.792)

5

25 (8.53) 0.207% 0.106
(0.054)

0.011
(0.007)

4.972
(1.896)

5

30 (9.15) 0.247% 0.105
(0.053)

0.012
(0.008)

5.408
(2.137)

5

35 (9.91) 0.293% 0.105
(0.053)

0.014
(0.010)

5.700
(2.347)

6

40 (10.93) 0.354% 0.110
(0.050)

0.016
(0.011)

6.304
(2.583)

5

45 (12.50) 0.356% 0.119
(0.048)

0.021
(0.014)

6.967
(2.948)

6

Table 2: Convergence to Nash equilibrium for different complexity levels
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The first result that emerges is that only a very small number of runs con-
verged close to the Nash value. In fact, the success ratio does not even attain
half of a percentage point. The value was particularly low for intermediate
complexity values. Thus, we find that even extremely simple and common-
sensical adjustment rules, while allowing for convergence to a steady state
value, do not yield the equilibrium ’full information’ outcome. This result
calls for a careful assessment of the conditions under which a Nash outcome
may be seen as a plausible outcome.
Another striking result is that the mode of the initial size is in fact in-

sensitive to complexity, whereas the mean has a slight u-shape (i.e., larger
values at the extremes of the complexity range). Thus, with respect to both
statistics, we do not observe that the increase in complexity, and in the as-
sociated Nash value for firm size, requires larger initial firms for convergence
to happen.
In fact, from the table we can induce that the only variable that seems

to vary significantly with complexity is the profit coefficient β. The others
are quite similar across complexity values, both regarding the value and the
standard deviation.
To further investigate the relationship between the exogenous variables

and the likelihood of the system settling down to a Nash equilibrium, we
conducted a probit regression analysis. We created data set of 50,000 obser-
vations from random draws of the relevant parameters from the respective
parameter sets given above. The probit analysis allows us to measure how
the parameters affect the probability that the system will reach a Nash equi-
librium. The results of this regression are given in table 3, where we report
the results of the marginal changes in probability with a change in the inde-
pendent variable. A few conclusions can be drawn from the table:

• The probability of firm size reaching a Nash equilibrium is decreasing
with environmental complexity. This is quite intuitive, as more complex
environments have a perturbing effect on the dynamics

• Cet. par. larger α is associated with a higher probability of reaching
Nash. This is due to the fact that the α parameter reflects the firm
interaction with the opponent, and thus may be a proxy for a best
response dynamics. The more important this factor in the adjustment
dynamics, the greater the chances to mimic the best response dynamics.
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Var iable dF/ dx st d. er r .
n -0.00015 3.51E-05
n2 2.90E-06 6.55E-07
α 0.0046 0.0014
β -0.0583 0.0072
β2 0.170 0.028
m1 (0) -0.00039 5.66E-05
m2 (0) -0.00039 5.58E-05
β ·m1 (0) 0.00089 0.00024
β ·m2 (0) 0.00047 0.00019
m1 (0) ·m2 (0) 0.000022 3.65E-06
nobs. 50,000
prob(Nash) 0.0033

\prob(Nash) .00076 (at x̄)
pseudo R2 0.243

Table 3: Probit regressions results. Dep. var. is 1 if long run firm size is
equal to Nash equilibrium, 0 otherwise. Robust standard error are presented.
All coefficients are stat. sig. at 99% or greater confidence level.

• β has a quadratic relationship: having a negative effect for small betas
but increasing for values of β above 0.325.

• Initial firm size matters; the larger the initial size the lower the prob-
ability of hitting the Nash equilibrium; though there are positive, off-
setting interaction effects between own and rivals sizes.

• Lastly there is a positive interaction effect between β and initial own
and rival’s size.

8 Discussion and Conclusion

This paper has presented a model of the firm as an artificial neural network.
We explored the long run size dynamics of firms/neural networks playing a
Cournot game in an uncertain environment. Building on previous papers
we derived a profit function for the firm that depends on its own size, the
rival’s size and environmental complexity. We then looked at long-run firm
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size resulting from two types of simple adaptive rules: the ’isolationist’ and
the ’imitationist.’ These dynamics were compared to a benchmark ’best
response’ case.
First we find that when using simple adjustment rules, long run firm size

is a function of initial firm size, initial rival’s size, environmental complexity
and the adjustment rate parameters. These variables interact in a non-linear
way. We also find that only under only very precise initial conditions and
parameter values does the firm converge to the Nash equilibrium size given
by the best response. The reason is that the dynamics we consider tend to
settle rapidly (no more than a few iterations) on a path that depends on
initial conditions. The simple rules generally yield suboptimal long run equi-
libria, and only fairly specific combinations of parameters and initial sizes
yield the optimal size. Thus, our results suggest cautiousness in taking the
Nash equilibrium as a focal point of simple dynamics (the standard ’as if’
argument). Interestingly, we further find that when firms use simple adjust-
ment rules, environmental complexity has a negative effect on size, even if
the Nash equilibrium size is increasing in environmental complexity. This
is particularly true in the isolationist case, and is explained by the nega-
tive correlation between profits and complexity: complex environments yield
lower profits, and hence less incentives for firm growth; ceteris paribus, this
yields lower steady state size, and suboptimal profits. Thus, in our model
more efficient information processing, and more complex adjustment rules
would play a positive role in the long run profitability of the firm, and would
deserve investment of resources. It may be interesting to build a model in
which firms face a trade-off between costs and benefits of costly but efficient
adjustment rules.
Finally, we found that β, the effect of own profit on firm size, is more

important than the comparison with the rival’s performance in determining
whether the Nash outcome is reached or not. In fact, it emerged from our
analysis that values of β in particular ranges significantly increased the prob-
ability of convergence to the optimal size. This result triggers the question of
why such a parameter should be considered exogenous. One could imagine
a ’superdynamics’, in which firms adjust their reactivity to market signals,
i.e., their β, in order to maximize the chances of converging to the optimal
size. Such an investigation may also be the subject of future research. Other
extensions may include to link the findings with these models to stylized facts
around firm growth and size (i.e., the literature on Gibrat’s Law).
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A ppendix

A N eural N etworks

This appendix briefly describes the working of Artificial Neural Networks..
For a more detailed treatment, the reader is referred to Skapura (1996).
Neural networks are nonlinear function approximators that can map virtu-
ally any function. Their flexibility makes them powerful tools for pattern
recognition, classification, and forecasting. The Backward Propagation Net-
work (BPN), which we used in our simulations, is the most popular network
architecture. It consists in a vector of x ∈ Rn inputs, and a collection of m
processing nodes organized in layers.
For our purposes (and for the simulations) we focus on a network with

a single layer. Inputs and nodes are connected by weights, wh ∈ Rn×m,
that store the knowledge of the network. The nodes are also connected to
an output vector y ∈Ro, where o is the number of outputs (2 in our case),
and w o ∈ Rm×o is the weight vector. The learning process takes the form
of successive adjustments of the weights, with the objective of minimizing
a (squared) error term.5 Inputs are passed through the neural network to
determine an output; this happens through transfer (or squashing) functions,
such as the sigmoid, to allow for nonlinear transformations. Then supervised
learning takes place in the sense that at each iteration the network output
is compared with a known correct answer, and weights are adjusted in the
direction that reduces the error (the so called ‘gradient descent method’).
The learning process is stopped once a threshold level for the error has been
attained, or a fixed number of iterations has elapsed. Thus, the working of
a network (with one hidden layer) may be summarized as follows. The feed
forward phase is given by

ŷ
1×o

= g

·
g

µ
x

1×n
· wh

n×m

¶
w o

m×o

¸

where g(·) is the sigmoid function that is applied both to the input to the hid-
den layer and to the output. To summarize, the neural network is comprised
of three ’layers’: the environmental data (i.e., the environmental state vec-
tors), a hidden/managerial layer, and an output/decision layer. The ’nodes’

5The network may be seen as a (nonlinear) regression model. The inputs are the inde-
pendent variables, the outputs are the dependent variables, and the weights are equivalent
to the regression coefficients.
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in the managerial and decision layers represent the information processing
behavior of agents in the organization.
The error vector associated with the outputs of the network is:

ε =
©

(yj−ŷj)
2ª , j = 1, ..., o

Total error is then calculated:

ξ =
oX

j= 1

εj

where y is the true value of the function, corresponding to the input vector
x .
This information is then propagated backwards as the weights are ad-

justed according to the learning algorithm, that aims at minimizing the total
error, ξ. The gradient of ξ with respect to the output-layer weights is

∂ξ

∂wo
= −2(y − ŷ ) [ŷ (1− ŷ )] g

¡
x · wh

¢
,

since for the sigmoid function, ∂ŷ/∂w o = ŷ(1− ŷ ).
Similarly, we can find the gradient of the error surface with respect to the

hidden layer weights:

∂ξ

∂wh
= −2

£
(y − ŷ ) [ŷ (1 − ŷ )] g

¡
x · wh

¢¤
w og0(x · wh)x .

Once the gradients are calculated, the weights are adjusted a small amount
in the opposite (negative) direction of the gradient. We introduce a propor-
tionality constant η, the learning-rate parameter, to smooth the updating
process. Define δo = .5(y − ŷ ) [ŷ (1− ŷ )] .. We then have the weight adjust-
ment for the output layer as

wo(t + 1) = wo(t) + ηδog
¡
x · wh

¢

Similarly, for the hidden layer,

wh(t + 1) = wh(t) + ηδhx ,

where δh = g0(x · wh)δow o. When the updating of weights is finished, the
firm views the next input pattern and repeats the weight-update process.
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B Der ivat ion of t he Profit Funct ion

This appendix briefly describes the process that leads to equation 2, that in
the present paper is left in the shadow. Details of the model can be found in
BS (2004) and BS (2005).

B.1 Cournot Compet it ion in an Uncer t ain Environ-
ment

We have two Cournot duopolists facing the demand function

pt = γt − (q1t + q2t) .

where γt changes and is ex ante unknown to firms. Assume that production
costs are zero. Then, the best response function, were γt known, would be
given by

qbrj =
1
2

[γ − q−j] ,

with a Nash Equilibrium of

qne =
γ

3
, πne

j =
1
9
γ2.

When deciding output, firms do not know γ, but have to estimate it. They
only know that it depends on a set of observable environmental variables
x ∈ {0, 1}n:

γt = γ(x t) =
1
2n

nX

k= 1

xk2n−k

where γ(·) is unknown ex ante. Each period, the firm views an environmental
vector x and uses this information to estimate the value of γ (x) . Note that
γ(x t) can be interpreted as a weighted sum of the presence or absence of
environmental features.
To measure the complexity of the information processing problem, we

define environmental complexity as the number of bits in the vector, n, which,
ranges from a minimum of 5 bits to a maximum of 50. Thus, in each period:

1. Each firm observes a randomly chosen environmental state vector x .
Note that each x has a probability of 1/2n of being selected as the
current state.
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2. Based on that each firm estimates a value of the intercept parameter,
γ̂j. The firm also estimates its rival’s choice of output, q̂j

−j, where q̂j
−j

is firm j 0s guess of firm −j0s output.

3. It then observes the true value of and γ, and q−j, and uses this infor-
mation to determine its errors using the following rules:

ε1j =
¡
γ̂j − γ

¢2
(6)

ε2j =
¡
q̂j
−j − q−j

¢2
(7)

4. Based on these errors, the firm updates the weight values in its network.

This process repeats for a number T = 250 of iterations. At the end, we
can compute the average profit for the two firms as

πi =
1
T

TX

t= 1

qit(γt − (q1t + q2t)). (8)

C Regression Result s for Profit

Equation (2) was derived by using the model described in the preceding
appendix. We built a data set by making random draws of n ∈ [5, 50],
mi ∈ [2, 20]. We ran the Cournot competition process for T = 250 iterations
(random initial conditions were appropriately taken care of by averaging over
multiple runs). We recorded average profit for the two firms computed as in
eq. (8), and the values of m1, m2, and n. This was repeated 10, 000 times, in
order to obtain a large data set. We then ran a regression to obtain a precise
polynomial form for profit as a function of sizes and environmental complex-
ity. Table 4 gives the complete results of the regression, which is reflected in
equation (1).
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Variable Coefficient Std. Error
constant 270.688 0.898
m1 5.932 0.229
m2

1 -0.375 0.023
m3

1 0.007 0.001
m2 0.490 0.056
m1 ·m2 -0.304 0.004
n -2.201 0.034
n2 0.003 0.001
m1 ·m2 · n 0.007 0.000
m2 · n -0.016 0.002
nobs. 10,000
R2 0.864
R̄2 0.864

Table 4: Profit function for firm 1. Dep. var 10, 000 · π1. Robust standard
errors given. All coefficients stat. sig. at 99% or greater confidence level.
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