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QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING

VICTOR CHERNOZHUKOV† IVÁN FERNÁNDEZ-VAL§ ALFRED GALICHON‡

Abstract. This paper proposes a method to address the longstanding problem of lack of

monotonicity in estimation of conditional and structural quantile functions, also known as

the quantile crossing problem. The method consists in sorting or monotone rearranging the

original estimated non-monotone curve into a monotone rearranged curve. We show that the

rearranged curve is closer to the true quantile curve in finite samples than the original curve,

establish a functional delta method for rearrangement-related operators, and derive functional

limit theory for the entire rearranged curve and its functionals. We also establish validity of

the bootstrap for estimating the limit law of the the entire rearranged curve and its func-

tionals. Our limit results are generic in that they apply to every estimator of a monotone

econometric function, provided that the estimator satisfies a functional central limit theorem

and the function satisfies some smoothness conditions. Consequently, our results apply to

estimation of other econometric functions with monotonicity restrictions, such as demand,

production, distribution, and structural distribution functions. We illustrate the results with

an application to estimation of structural quantile functions using data on Vietnam veteran

status and earnings.
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1. Introduction

This paper addresses the longstanding problem of lack of monotonicity in the estimation

of conditional and structural quantile functions, also known as the quantile crossing problem

(He, 1997). The most common approach to estimating quantile curves is to fit a curve, of-

ten linear, pointwise for each probability index.1 Researchers use this approach for a number

of reasons, including parsimony of the resulting approximations and excellent computational

properties. The resulting fits, however, may not respect a logical monotonicity requirement

– that the quantile curve should be increasing as a function of the probability index. This

paper introduces a natural monotonization of these empirical curves by sampling from the es-

timated non-monotone model, and then taking the resulting conditional quantile curves which

by construction are monotone in the probability index. This construction of the monotone

curve may be seen as a bootstrap and as a sorting or monotone rearrangement of the original

non-monotone function (see Hardy et al., 1952, and references given below). We show that the

rearranged curve is closer to the true quantile curve in finite samples than the original curve

is, and derive functional limit distribution theory for the rearranged curve to perform simul-

taneous inference on the entire quantile function. Our theory applies to both dependent and

independent data, and to a wide variety of original estimators, with only the requirement that

they satisfy a functional central limit theorem. Our results also apply to many other economet-

ric problems with monotonicity restrictions, such as demand and production functions, option

pricing functions, yield curves, distribution functions, and structural quantile functions (see

Matzkin, 1994, for more examples and additional references). As an example, we provide an

empirical application to estimation of structural distribution and quantile functions based on

Abadie (2002) and Chernozhukov and Hansen (2005, 2006).

There exist other methods to obtain monotonic fits for conditional quantile functions. He

(1997), for example, proposed to impose a location-scale regression model, which naturally

satisfies monotonicity. This approach is fruitful for location-scale situations, but in numerous

cases the data do not satisfy the location-scale paradigm, as discussed in Lehmann (1974),

Doksum (1974), and Koenker (2005). Koenker and Ng (2005) developed a computational

method for quantile regression that imposes the non-crossing constraints in simultaneous fit-

ting of a finite number of quantile curves. The statistical properties of this method have yet to

be studied, and the method does not immediately apply to other quantile estimation methods.

Mammen (1991) proposed two-step estimators, with mean estimation in the first step followed

1This includes all principal approaches to estimation of conditional quantile functions, such as the canonical

quantile regression of Koenker and Bassett (1978) and censored quantile regression of Powell (1986). This also

includes principal approaches to estimation of structural quantile functions, such as the instrumental quantile

regression methods via control functions of Imbens and Newey (2001), Blundell and Powell (2003), Chesher

(2003), and Koenker and Ma (2006), and instrumental quantile regression estimators of Chernozhukov and

Hansen (2005, 2006).
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by isotonization in the second.2 Similarly to Mammen (1991), we can employ quantile estima-

tion in the first step followed by isotonization in the second, obtaining an interesting method

whose properties have yet to be studied. In contrast, our method uses rearrangement rather

than isotonization, and is much better suited for quantile applications. The reason is that iso-

tonization is best suited for applications with (near) flat target functions, while rearrangement

is best suited for applications with steep target functions, as in typical quantile applications.

Indeed, in a numerical example closely matching our empirical application, presented in Sec-

tion 3, rearrangement significantly outperforms isotonization. Finally, in an independent and

contemporaneous work, Dette and Volgushev (2008) propose to obtain monotonic quantile

curves by applying an integral transform to a local polynomial estimate of the conditional

distribution function, and derive pointwise limit theory for this estimator. In contrast, we

directly monotonize any generic estimate of a conditional quantile function and then derive

generic functional limit theory for the entire monotonized curve.3

In addition to resolving the longstanding problem of estimating quantile curves that avoid

crossing, this paper develops a number of original theoretical results on rearrangement esti-

mators. It therefore makes both practical and theoretical contributions to econometrics and

statistics. In order to discuss these contributions more specifically, it is helpful first to review

some of the relevant literature and available results. We begin by noting that the idea of

rearrangement goes back at least to Chebyshev (see Bronstein et al., 2003, p. 31, Hardy et

al., 1952, and Lorentz, 1953, among others). Rearrangements have been extensively used in

functional analysis and operations research (Villani, 2003, and Carlier and Dana, 2005), but

not in econometrics or statistics until recently. Recent research on rearrangements in statistics

include the work of Fougeres (1997), which used rearrangement to produce a monotonic kernel

density estimator and derived its uniform rates of convergence; Davydov and Zitikis (2005),

which considered tests of monotonicity based on rearranged kernel mean regression; Dette et al.

(2006) and Dette and Scheder (2006), which introduced smoothed rearrangements for kernel

mean regressions and derived pointwise limit theory for these estimators; and Chernozhukov

et al. (2006), which used univariate and multivariate rearrangements on point and interval

estimators of monotone functions based on series and kernel regression estimators. In the con-

text of our problem, rearrangement is also connected to the quantile regression bootstrap of

Koenker (1994). In fact, our research grew from the realization that we could use this boot-

strap for the purpose of monotonizing quantile regressions, and we discovered the link to the

classical procedure of rearrangement later, while reading Villani (2003).

2Isotonization is also known as the “pool-adjacent-violators algorithm” in statistics and “ironing” in econom-

ics. It amounts to projecting an initial estimate on the set of monotone functions.
3We refer to Dette and Volgushev (2008) for a nice, more detailed comparison of the two approaches.
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The theoretical contributions of this paper are threefold. First, our paper derives functional

limit theory for rearranged estimators and functional delta methods for rearrangement opera-

tors, both of which are important original results. Second, the paper derives functional limit

results for estimators obtained by rearrangement-related operations, which are also original

results. For example, our theory includes as a special case the asymptotics of the conditional

distribution function estimator based on quantile regression, whose properties have long re-

mained unknown. Moreover, our limit theory applies to functions, encompassing the pointwise

results. An attractive feature of our theoretical results is that they do not rely on independence

of data, the particular estimation method used, or any parametric assumptions. They only

require that a functional central limit theorem applies to the original estimator of the curve,

and the population curves have some smoothness properties. Our results therefore apply to

any quantile model and quantile estimator that satisfy these requirements. Third, our results

immediately yield validity of the bootstrap for rearranged estimators, which is an important

result for practice.

We organize the rest of the paper as follows. In Section 2 we present some analytical results

on rearrangement and then present all the main results; in Section 3 we provide an application

and a numerical experiment that closely matches the application; and in Section 4 we give

some concluding remarks.

2. Rearrangement: Analytical and Empirical Properties

In this section, we first describe rearrangement, then derive some basic analytical properties

of the rearranged curves in the population, establish functional differentiability results, and

finally establish functional limit theorems and other estimation properties.

2.1. Rearrangement. We consider a target function u 7→ Q0(u|x) that, for each x ∈ X ,

maps (0, 1) to the real line and is increasing in u. Suppose that u 7→ Q̂(u|x) is a parametric or

nonparametric estimator of Q0(u|x). Throughout the paper, we use conditional and structural

quantile estimation as the main application, where u 7→ Q0(u|x) is the quantile function of a

real response variable Y , given a vector of regressors X = x. Accordingly, we will usually refer

to the functions u 7→ Q0(u|x) as quantile functions throughout the paper. In other applications,

such as estimation of conditional and structural distribution functions, other names would be

appropriate and we need to accommodate different domains, as described in Remark 1 below.

Typical estimation methods fit the quantile function Q̂(u|x) pointwise in u ∈ (0, 1).4 A

problem that might occur is that the map u 7→ Q̂(u|x) may not be increasing in u, which

violates the logical monotonicity requirement. Another manifestation of this issue, known as

4See Koenker and Bassett (1978), Powell (1986), Chaudhuri (1991), Buchinsky and Hahn (1998), Yu and

Jones (1998), Abadie et al. (2002), Honoré et al. (2002), and Chernozhukov and Hansen (2006), among

others, for examples of exogenous, censored, endogenous, nonparametric, and other types of quantile regression

estimators.
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the quantile crossing problem, is that the conditional quantile curves x 7→ Q̂(u|x) may cross

for different values of u (He, 1997). Similar issues also arise in estimation of conditional and

structural distribution functions (Hall et al., 1999, and Abadie, 2002).

We can transform the possibly non-monotone function u 7→ Q̂(u|x) into a monotone function

u 7→ Q̂∗(u|x) by quantile bootstrap or rearrangement. That is, we consider the random variable

Yx := Q̂(U |x) where U ∼ Uniform(U) with U = (0, 1), and take its quantile function denoted by

u 7→ Q̂∗(u|x) instead of the original function u 7→ Q̂(u|x). This variable Yx has a distribution

function:

F̂ (y|x) :=

∫ 1

0
1{Q̂(u|x) ≤ y}du, (2.1)

which is naturally monotone in the level y, and quantile function:

Q̂∗(u|x) := F̂−1(u|x) = inf{y : F̂ (y|x) ≥ u}, (2.2)

which is naturally monotone in the index u. Thus, starting with a possibly non-monotone

original curve u 7→ Q̂(u|x), the rearrangement (2.1)-(2.2) produces a monotone quantile curve

u 7→ Q̂∗(u|x). Of course, the rearranged quantile function u 7→ Q̂∗(u|x) coincides with the

original function u 7→ Q̂(u|x) if the original function is non-decreasing in u, but differs from it

otherwise.

The mechanism (2.1)-(2.2) and its name have a direct relation to the rearrangement operator

from functional analysis (Hardy et al., 1952), since u 7→ Q̂∗(u|x) is the monotone rearrangement

of u 7→ Q̂(u|x). Equivalently, as we stated earlier, rearrangement has a direct relation to the

quantile bootstrap (Koenker, 1994), since the rearranged quantile curve is the quantile function

of the bootstrap variable produced by the estimated quantile model. Moreover, we refer the

reader to Dette et al. (2006, p. 470) who, using a closely related motivation, introduced the

idea of smoothed rearrangement, which produces smoothed versions of (2.1) and (2.2), which

can be valuable in applications. Finally, for practical and computational purposes, it is helpful

to think of rearrangement as sorting. Indeed to compute the rearrangement of a continuous

function u 7→ Q̂(u|x) we simply set Q̂∗(u|x) as the u-th quantile of {Q̂(u1|x), ..., Q̂(uk|x)},

where {u1, ...uk} is a sufficiently fine net of equidistant indices in (0, 1).

Remark 1.(Adjusting for domains other than the unit interval). Throughout the paper

we assume that the domain of all the functions is the unit interval, U = (0, 1), but in many

applications we may have to deal with different domains. For example, in quantile estimation

problems, we may consider a subinterval (a, b) of the unit interval as the domain, in order to

avoid estimation of tail quantiles. In distribution estimation problems, we may consider the

entire real line as the domain. In such cases we can first transform these functions to have

the unit interval as the domain. Concretely, suppose we have Q̄ : (a, b) → R. Then using any

increasing bijective mapping ϕ : (a, b) 7→ (0, 1), we can define Q := Q̄ ◦ ϕ−1 : (0, 1) → R, and

then proceed to obtain its rearrangement Q∗. In the case where a 6= −∞ and b 6= ∞, we can
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take ϕ to be an affine mapping. In order to obtain the rearrangement of the original function

Q̄, we then set Q̄∗ = Q∗ ◦ ϕ. �

Let Q denote the pointwise probability limit of Q̂, which we will refer to as the population

curve. In the analysis we distinguish the following two cases:

(1) Monotonic Q: The population curve u 7→ Q(u|x) is increasing in u, and thus satisfies

the monotonicity requirement.

(2) Non-monotonic Q: The population curve u 7→ Q(u|x) is non-monotone due to misspec-

ification.

In case (1) the empirical curve u 7→ Q̂(u|x) may be non-monotone due to estimation error,

while in case (2) it may be non-monotone due to both misspecification and estimation error.

A leading example of case (1) is when the population curve Q is correctly specified, so that

it equals the target quantile curve, namely Q(u|x) = Q0(u|x) for all u ∈ (0, 1). Case (1) also

allows for some degree of misspecification, provided that the population curve, Q 6= Q0, remains

monotone. A leading example of case (2) is when the population curve Q is misspecified,

Q 6= Q0, to a degree that makes u 7→ Q(u|x) non-monotone. For example, the common linear

specification u 7→ Q(u|x) = p(x)Tβ(u) can be non-monotone if the support of X is sufficiently

rich, while the set of transformations of x, p(x), is not (Koenker, 2005, Chap 2.5). Typically,

by using a rich enough set p(x) we can approximate the true function Q0(u|x) sufficiently

well, and thus often avoid case (2). This is the strategy that we generally recommend, since

inference and limit theory under case (1) is theoretically and practically simpler than under

case (2). However, in what follows we analyze the behavior of rearranged estimates both in

cases (1) and (2), since either of these cases could occur in practice.

In the rest of the section, we establish the empirical properties of the rearranged estimated

quantile functions and the corresponding distribution functions:

u 7→ Q̂∗(u|x) and y 7→ F̂ (y|x), (2.3)

under cases (1) and (2).

2.2. Basic Analytical Properties of Population Curves. We start by characterizing cer-

tain analytical properties of the probability limits or population versions of empirical curves

(2.3), namely

y 7→ F (y|x) =
∫ 1
0 1{Q(u|x) ≤ y}du,

u 7→ Q∗(u|x) := F−1(u|x) = inf{y : F (y|x) ≥ u}.
(2.4)

We need these properties to derive our main limit results stated in the following sections.

Recall first the following definitions from Milnor (1965). Let g : U ⊂ R 7→ R be a contin-

uously differentiable function. A point u ∈ U is called a regular point of g if the derivative

of g at this point does not vanish, i.e., ∂ug (u) 6= 0, where ∂u denotes the partial derivative

operator with respect to u . A point u which is not a regular point is called a critical point.
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A value y ∈ g (U) is called a regular value of g if g−1(y) contains only regular points, i.e., if

∀u ∈ g−1(y), ∂ug (u) 6= 0. A value y which is not a regular value is called a critical value.

Define region Yx as the support of Yx, and regions YX := {(y, x) : y ∈ Yx, x ∈ X} and

UX := U × X . We assume throughout that Yx ⊂ Y, a compact subset of R, and that x ∈ X ,

a compact subset of R
d. In some applications the curves of interest are not functions of x, or

we might be interested in a particular value x. In this case, we can take the set X to be a

singleton X = {x}.

Assumption 1. (Properties of Q). We maintain the following assumptions on Q throughout

the paper:

(a) Q : U × X 7→ R is a continuously differentiable function in both arguments.

(b) The number of elements of {u ∈ U | ∂uQ(u|x) = 0} is uniformly bounded on x ∈ X .

Assumption 1(b) implies that, for each x ∈ X , ∂uQ(u|x) is not zero almost everywhere on

U and can switch sign only a bounded number of times. Further, we define Y∗
x be the subset

of regular values of u 7→ Q(u|x) in Yx, and YX ∗ := {(y, x) : y ∈ Y∗
x, x ∈ X}.

We use the following simple example to describe some basic analytical properties of (2.4),

which we state more formally in the proposition given below. Consider the following pseudo-

quantile function: Q(u) = 5{u + sin(2πu)/π}, which is highly non-monotone in (0, 1) and

therefore fails to be a proper quantile function. The left panel of Figure 1 shows Q together

with its monotone rearrangement Q∗. We see that Q∗ partially coincides with Q on the areas

where Q behaves like a proper quantile function, and that Q∗ is continuous and increasing.

Note also that 1/3 and 2/3 are the critical points of Q, and 3.04 and 1.96 are the corresponding

critical values. The right panel of Figure 1 shows the pseudo-distribution function Q−1, which

is multi-valued, and the distribution function F = Q∗−1 induced by sampling from Q. We see

that F is continuous and does not have point masses. The left panel of Figure 2 shows ∂uQ∗,

the sparsity function for Q∗. We see that the sparsity function is continuous at the Q∗−1-image

of the regular values of Q and has jumps at the Q∗−1-image of the critical values of Q. The

right panel of Figure 2 shows ∂yF , the density function for F . We see that ∂yF is continuous

at the regular values of Q and has jumps at the critical values of Q.

The following proposition states more formally the properties of Q∗ and F :

Proposition 1 (Basic properties of F and Q∗). The functions y 7→ F (y|x) and u 7→ Q∗(u|x)

satisfy the following properties, for each x ∈ X : (1) The set of critical values, Yx\Y
∗
x, is finite,

and
∫
Yx\Y∗

x
dF (y|x) = 0. (2) For any y ∈ Y∗

x,

F (y|x) =

K(y|x)∑

k=1

sign{∂uQ(uk(y|x)|x)}uk(y|x) + 1{∂uQ(uK(y|x)(y|x)|x) < 0},
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Figure 1. Left: The pseudo-quantile function Q and the rearranged quantile

function Q∗. Right: The pseudo-distribution function Q−1 and the distribution

function F induced by Q.
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where {uk(y|x), for k = 1, 2, ...,K(y|x) < ∞} are the roots of Q(u|x) = y in increasing order.

(3) For any y ∈ Y∗
x, the ordinary derivative f(y|x) := ∂yF (y|x) exists and takes the form

f(y|x) =

K(y|x)∑

k=1

1

|∂uQ(uk(y|x)|x)|
,

which is continuous at each y ∈ Y∗
x. For any y ∈ Y \ Y∗

x, we set f(y|x) := 0. F (y|x) is

absolutely continuous and strictly increasing in y ∈ Yx. Moreover, y 7→ f(y|x) is a Radon-

Nikodym derivative of y 7→ F (y|x) with respect to the Lebesgue measure. (4) The quantile

function u 7→ Q∗(u|x) partially coincides with u 7→ Q(u|x); namely Q∗(u|x) = Q(u|x), provided

that u 7→ Q(u|x) is increasing at u, and the preimage of Q∗(u|x) under Q is unique. (5) The

quantile function u 7→ Q∗(u|x) is equivariant to monotone transformations of u 7→ Q(u|x),

in particular, to location and scale transformations. (6) The quantile function u 7→ Q∗(u|x)

has an ordinary continuous derivative ∂uQ∗(u|x) = 1/f(Q∗(u|x)|x), when Q∗(u|x) ∈ Y∗
x. This

function is also a Radon-Nikodym derivative with respect to the Lebesgue measure. (7) The

map (y, x) 7→ F (y|x) is continuous on YX and the map (u, x) 7→ Q∗(u|x) is continuous on

UX .

2.3. Functional Delta Method for Rearrangement-Related Operators. Here we derive

a functional delta method for the rearrangement operator Q 7→ Q∗ and the pre-rearrangement

operator Q 7→ F defined by equation (2.4). These results constitute the first set of original

main theoretical results obtained in this paper. In the subsequent sections, these results allow

us to establish a generic functional central limit theorem for the estimated functions Q̂∗ and

F̂ , as well as to establish validity of the bootstrap for estimating their limit laws.

In order to describe the results, let ℓ∞(UX ) denote the set of bounded and measurable

functions h : UX 7→ R, C(UX ) the set of continuous functions h : UX 7→ R, and ℓ1(UX ) the

set of measurable functions h : UX 7→ R such that
∫
U

∫
X |h(u|x)|dudx < ∞, where du and dx

denote the integration with respect to the Lebesgue measure on U and X , respectively.

Proposition 2 (Hadamard derivatives of F and Q∗ with respect to Q). (1) Define F (y|x, ht) :=∫ 1
0 1{Q(u|x) + tht(u|x) ≤ y}du. As t → 0,

Dht
(y|x, t) :=

F (y|x, ht) − F (y|x)

t
→ Dh(y|x), (2.5)

Dh(y|x) := −

K(y|x)∑

k=1

h(uk (y|x) |x)

|∂uQ(uk(y|x)|x)|
. (2.6)

The convergence holds uniformly in any compact subset of YX ∗ := {(y, x) : y ∈ Y∗
x, x ∈ X},

for every |ht − h|∞ → 0, where ht ∈ ℓ∞ (UX ), and h ∈ C(UX ). (2) Define Q∗(u|x, ht) :=
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F−1(y|x, ht) = inf{y : F (y|x, ht) ≥ u}. As t → 0,

D̃ht
(u|x, t) :=

Q∗(u|x, ht) − Q∗(u|x)

t
→ D̃h(u|x), (2.7)

D̃h(u|x) := −
1

f(Q∗(u|x)|x)
Dh(Q∗(u|x)|x). (2.8)

The convergence holds uniformly in any compact subset of UX ∗ = {(u, x) : (Q∗(u|x), x) ∈

YX ∗}, for every |ht − h|∞ → 0, where ht ∈ ℓ∞ (UX ), and h ∈ C(UX ).

This proposition establishes the Hadamard (compact) differentiability of the rearrangement

operator Q 7→ Q∗ and the pre-rearrangement operator Q 7→ F with respect to Q, tangentially

to the subspace of continuous functions. Note that the convergence holds uniformly on regions

that exclude the critical values of the mapping u 7→ Q(u|x). These results are new and could

be of independent interest. Rearrangement operators include inverse (quantile) operators as

a special case. In this sense, our results generalize the previous results of Gill and Johansen

(1990), Doss and Gill (1992), and Dudley and Norvaisa (1999) on functional delta method

(Hadamard differentiability) for the quantile operator. There are two main difficulties in

establishing the Hadamard differentiability in our case: first, like in the quantile case, we allow

the perturbations ht to Q to be discontinuous functions, though converging to continuous

functions; second, unlike in the quantile case, we allow the perturbed functions Q + tht to

be non-monotone even when Q is monotone. We need to allow for such rich perturbations

in order to match empirical applications, where empirical perturbations ht = (Q̂ − Q)/t are

discontinuous functions, though converging to continuous functions by the means of a functional

central limit theorem; moreover, the empirical (pseudo) quantile functions Q̂ = Q + tht are

not monotone even when Q is monotone.

The following result deals with the monotonic case. It is worth emphasizing separately,

because functional derivatives are particularly simple and we do not have to exclude any non-

regular regions from the domains.

Corollary 1 (Hadamard derivatives of F and Q∗ with respect to Q in the monotonic case).

Suppose u 7→ Q(u|x) has ∂uQ(u|x) > 0, for each (u, x) ∈ UX . Then YX ∗ = YX and UX ∗ =

UX . Therefore, the convergence in Proposition 2 holds uniformly over the entire YX and UX ,

respectively. Moreover, D̃h(u|x) = h, i.e., the Hadamard derivative of the rearranged function

with respect to the original function is the identity operator.

Next we consider the following linear functionals obtained by integration:

(y′, x) 7→

∫

Y
g(y|x, y′)F (y|x)dy, (u′, x) 7→

∫

U
g(u|x, u′)Q∗(u|x)du,

with the restrictions on g specified below. These functionals are of interest because they

are useful building blocks for various statistics, for example, Lorenz curves with function
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g(u|x, u′) = 1{u ≤ u′}, as discussed in the next section. The following proposition calcu-

lates the Hadamard derivative of these functionals.

Proposition 3 (Hadamard derivative of linear functionals of Q∗ and F with respect to Q).

The following results are true with the limits being continuous on the specified domains:

1.

∫

Y
g(y|x, y′)Dht

(y|x, t)dy →

∫

Y
g(y|x, y′)Dh(y|x)dy

uniformly in (y′, x) ∈ YX , for any measurable g that is is bounded uniformly in its arguments

and such that (x, y′) 7→ g(y|x, y′) is continuous for a.e. y.

2.

∫

U
g(u|x, u′)D̃ht

(u|x, t)du →

∫

U
g(u|x, u′)D̃h(u|x)du (2.9)

uniformly in (u′, x) ∈ UX , for any measurable g such that supu′,x |g(u|x, u′)| ∈ ℓ1(U) and such

that (x, u′) 7→ g(u|x, u′) is continuous for a.e. u.

It is important to note that Proposition 3 applies to integrals defined over entire domains,

unlike Proposition 2 which states uniform convergence of integrands over domains excluding

non-regular neighborhoods. (Thus, Proposition 3 does not immediately follow from Proposition

2.) Here integration acts like a smoothing operation and allows us to ignore these non-regular

neighborhoods. In order to prove convergence of integrals defined over entire domains, we

couple the pointwise convergence implied by Proposition 2 with the uniform integrability of

Lemma 3 in the Appendix, and then interchange limits and integrals. We should also note

that an alternative way of proving result (2.9), but not other results in the paper, can be based

on the convexity of the functional in (2.9) with respect to the underlying curve, following the

approach of Mossino and Temam (1981), and Alvino et al. (1989). Due to this limitation, we

do not pursue this approach in this paper.

It is also worth emphasizing the properties of the following smoothed functionals. For a

measurable function f : R 7→ R define the smoothing operator S as

Sf(y′) :=

∫
kδ(y

′ − y)f(y)dy, (2.10)

where kδ(v) = 1{|v| ≤ δ}/2δ and δ > 0 is a fixed bandwidth. Accordingly, the smoothed

curves SF and SQ∗ are given by

SF (y′|x) :=

∫
kδ(y

′ − y)F (y|x)dy, SQ∗(u′|x) :=

∫
kδ(u

′ − u)Q∗(u|x)du.

Note that given the quantile function Q∗, the smoothed function SQ∗ has a convenient in-

terpretation of a local average quantile function or fractile. Since we form these curves as

differences of the elementary functionals in Proposition 3 divided by 2δ, the following corollary

is immediate:
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Corollary 2 (Hadamard derivative of smoothed Q∗ and F with respect to Q). We have

that SDht
(y′|x, t) → SDh(y′|x) uniformly in (y′, x) ∈ YX , and SD̃ht

(u′|x, t) → SD̃h(u′|x)

uniformly in (u′, x) ∈ UX . The results hold uniformly in the smoothing parameter δ ∈ [δ1, δ2],

where δ1 and δ2 are positive constants.

Note that smoothing allows us to achieve uniform convergence over the entire domain,

without excluding non-regular neighborhoods.

2.4. Empirical Properties and Functional Limit Theory for Rearranged Estimators.

Here we state a finite sample result and then derive functional limit laws for rearranged esti-

mators. These results constitute the second set of original main theoretical results obtained in

this paper.

The following proposition shows that the rearranged quantile curves have smaller estimation

error than the original curves whenever the latter are not monotone.

Proposition 4 (Improvement in estimation property provided by rearrangement). Suppose

that Q̂ is an estimator (not necessarily consistent) for some true quantile curve Q0. Then, the

rearranged curve Q̂∗ is closer to the true curve than Q̂ in the sense that, for each x ∈ X ,

‖Q̂∗ − Q0‖p ≤ ‖Q̂ − Q0‖p, p ∈ [1,∞],

where ‖ · ‖p denotes the Lp norm of a measurable function Q : U 7→ R, namely ‖Q‖p =

{
∫
U |Q(u)|pdu}1/p. The inequality is strict for p ∈ (1,∞) whenever u 7→ Q̂(u|x) is strictly de-

creasing on a subset of U of positive Lebesgue measure, while u 7→ Q0(u|x) is strictly increasing

on U . The above property is independent of the sample size and of the way the estimate of the

curve is obtained, and thus continues to hold in the population.

This property suggests that the rearranged estimators should be preferred over the original

estimators. Moreover, this property does not depend on the way the quantile model is estimated

or any other specifics, and is thus applicable quite generally. Regarding the proof of this

property, the weak reduction in estimation error follows from an application of a classical

rearrangement inequality of Lorentz (1953) and the strict reduction follows from its appropriate

strengthening (Chernozhukov et al., 2006).5

The following proposition derives functional limit laws for the rearranged quantile estimator

Q̂∗ and the corresponding distribution estimator F̂ , using the functional delta method for

the rearrangement-related operators from the previous section. We maintain the following

assumptions on Q̂ throughout the paper:

5Similar contractivity properties have been shown for the pool adjacent violators algorithm in different

contexts. See, for example, Robertson et al. (1988) for isotonic regression, and Eggermont and LaRiccia (2000)

for monotone density estimation. Glad et al. (2003) shows that a density estimator corrected to be a proper

density satisfies a similar property.
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Assumption 2. (Properties of Q̂). The empirical curve Q̂ takes its values in the space of

bounded measurable functions defined on UX , and, in ℓ∞(UX ),

an(Q̂(u|x) − Q(u|x)) ⇒ G(u|x), (2.11)

as a stochastic process indexed by (u, x) ∈ UX , where (u, x) 7→ G(u|x) is a stochastic process

(typically Gaussian) with continuous paths. Here an is a sequence of constants such that

an → ∞ as n → ∞, where n is the sample size.

Condition (2.11) requires that the original quantile estimator satisfies a functional central

limit theorem with a continuous limit stochastic process over the domain U = (0, 1) for the

index u. If (2.11) holds only over a subinterval of (0, 1), we can accommodate the reduced

domain following Remark 1. This key condition is rather weak, and it holds for a wide variety

of conditional and structural quantile estimators.6 With an appropriate normalization rate

and a fixed x, this assumption also holds for series and local-polynomial quantile regressions.7

Proposition 5 (Functional limit laws for F̂ and Q̂∗). In ℓ∞(K), where K is any compact

subset of YX ∗,

an(F̂ (y|x) − F (y|x)) ⇒ DG(y|x) (2.12)

as a stochastic process indexed by (y, x) ∈ YX ∗; and in ℓ∞(UXK), with UXK = {(u, x) :

(Q∗(u|x), x) ∈ K},

an(Q̂∗(u|x) − Q∗(u|x)) ⇒ D̃G(u|x), (2.13)

as a stochastic process indexed by (u, x) ∈ UXK .

This proposition provides the basis for inference using rearranged quantile estimators and

corresponding distribution estimators. Let us first discuss inference for the case with a mono-

tonic population curve Q. Proposition 5 enables us to perform uniform inference on Q and F

based on the rearranged estimators Q̂∗ and F̂ . It is useful to emphasize the following corollary

of Proposition 5:

Corollary 3 (Functional limit laws for F̂ and Q̂∗ in the monotonic case). Suppose u 7→ Q(u|x)

has ∂uQ(u|x) > 0 for each (u, x) ∈ UX . Then YX ∗ = YX and UX ∗ = UX . Accordingly,

the convergence in Proposition 5 holds uniformly over the entire YX and UX . Moreover,

D̃G(u|x) = G(u|x), i.e., the rearranged quantile curves have the same first order asymptotic

distribution as the original estimated quantile curves.

6For sufficient conditions, see, for example, Gutenbrunner and Jurečková (1992), Portnoy (1991), Angrist et

al. (2006), and Chernozhukov and Hansen (2006).
7See, for example, Chaudhuri (1991) and He and Shao (2000); Belloni and Chernozhukov (2007) have recently

extended the results of He and Shao (2000) to the process case and established the functional central limit

theorem for an( bQ(u|x) − Q(u|x)) for a fixed x.
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Thus, if the population curve is monotone, we can rearrange the original non-monotone

quantile estimator to be monotonic without affecting its (first order) asymptotic properties.

Hence, all the inference tools that apply to the original quantile estimator Q̂ also apply to

the rearranged quantile estimator Q̂∗. In particular, if the bootstrap is valid for the original

estimate, it is also valid for the rearranged estimate, by the functional delta method for the

bootstrap.

Remark 2.(Detecting and avoiding cases with non-monotone Q.) Before discussing infer-

ence for the case with a non-monotonic population curve Q, let us first emphasize that since

non-monotonicity of Q is a rather obvious sign of specification error, it is best to try to detect

and avoid this case. For this purpose we should use sufficiently flexible functional forms and

reject the ones that fail to pass monotonicity tests. For example, we can use the following

generic test of monotonicity for Q: If Q is monotone, the first order behavior of Q̂∗ and Q̂

coincides, and if Q is not monotone, Q̂∗ and Q̂ converge to different probability limits Q∗ and

Q. Therefore, we can reject the hypothesis of monotone Q if a uniform confidence region for

Q based on Q̂ does not contain Q̂∗, for at least one point x ∈ X .8 �

Let us now discuss inference for the case with a non-monotonic population curve Q. In

this case, the large sample properties of the rearranged quantile estimators Q̂∗ substantially

differ from those of the initial quantile estimators Q̂. Proposition 5 still enables us to perform

uniform inference on the rearranged population curve Q∗ based on the rearranged estimator

Q̂∗, but only after excluding certain nonregular neighborhoods (for the distribution estimates,

the neighborhoods of the critical values of the map u 7→ Q(u|x), and, for the rearranged

quantile estimates, the image of these neighborhoods under F ). These neighborhoods can be

excluded by locating the points (u, x) where a consistent estimate of |∂uQ(u|x)| is close to zero;

see Hendricks and Koenker (1991) for a consistent estimator of |∂uQ(u|x)|.

Next we consider the following linear functionals of the rearranged quantile and distribution

estimates:

(y′, x) 7→

∫

Y
g(y|x, y′)F̂ (y|x)dy, (u′, x) 7→

∫

U
g(u|x, u′)Q̂∗(u|x)du.

The following proposition derives functional limit laws for these functionals.9 Here the conver-

gence results hold without excluding any nonregular neighborhoods, which is convenient for

practice in the non-monotonic case.

8This test is conservative, but it is generic and very inexpensive. In order to build non-conservative tests,

we need to derive the limit laws for ‖ bQ − bQ∗‖ for suitable norms ‖ · ‖. These laws will depend on higher-order

functional limit laws for quantile estimators, which appear to be non-generic and have to be dealt with on a

case by case basis.
9 Working with these functionals is equivalent to placing our empirical processes into the space Lp (p = 1 for

rearranged distributions and p = ∞ for quantiles), equipped with weak* topology, instead of strong topology.

Convergence in law of the integral functionals, shown in Proposition 6, is equivalent to the convergence in law

of the rearranged estimated processes in such a metric space.
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Proposition 6 (Functional limit laws for linear functionals of Q̂∗ and F̂ ). Under the same

restrictions on the function g as in Proposition 3, the following results hold with the limits

being continuous on the specified domains:

1. an

∫

Y
g(y|x, y′)(F̂ (y|x) − F (y|x))dy ⇒

∫

Y
g(y|x, y′)DG(y|x)dy, (2.14)

as a stochastic process indexed by (y′, x) ∈ YX , in ℓ∞(YX ).

2. an

∫

U
g(u|x, u′)(Q̂∗(u|x) − Q∗(u|x))du ⇒

∫

U
g(u|x, u′)D̃G(u|x)du, (2.15)

as a stochastic process indexed by (u′, x) ∈ UX , in ℓ∞(UX ).

The linear functionals defined above are useful building blocks for various statistics, such

as partial means, various moments, and Lorenz curves. For example, the conditional Lorenz

curve based on rearranged quantile functions is

L̂(u′|x) :=
( ∫

U
1{u ≤ u′}Q̂∗(u|x)du

)
/
( ∫

U
Q̂∗(u|x)du

)
, (2.16)

which is a ratio of partial and overall conditional means. Hadamard differentiability of the

mapping

Q 7→ L(u′|x) :=
(∫

U
1{u ≤ u′}Q∗(u|x)du

)
/
(∫

U
Q∗(u|x)du

)
, (2.17)

with respect to Q immediately follows from (a) the differentiability of a ratio β/γ with respect

to its numerator β and denominator γ at γ 6= 0, (b) Hadamard differentiability of the numerator

and denominator in (2.17) with respect to Q established in Proposition 6, and (c) the chain

rule for the functional delta method. Hence, provided that
∫
U Q∗(u|x)du 6= 0, we have that in

the metric space ℓ∞(UX )

an(L̂(u′|x) − L(u′|x)) ⇒ L(u′|x) ·

(∫
U 1{u ≤ u′}D̃G(u|x)du∫
U 1{u ≤ u′}Q∗(u|x)du

−

∫
U D̃G(u|x)du∫
U Q∗(u|x)du

)
, (2.18)

as an empirical process indexed by (u′, x) ∈ UX . In particular, validity of the bootstrap for

estimating this functional limit law in (2.18) holds by the functional delta method for the

bootstrap.

We next consider the empirical properties of the smoothed curves obtained by applying the

linear smoothing operator S defined in (2.10) to F̂ and Q̂∗:

SF̂ (y′|x) :=

∫
kδ(y

′ − y)F̂ (y|x)dy, SQ̂∗(u′|x) :=

∫
kδ(u

′ − u)Q̂∗(u|x)du.

The following corollary immediately follows from Corollary 2 and the functional delta method.

Corollary 4 (Functional limit laws for smoothed Q̂∗ and F̂ ). In ℓ∞(YX ),

an(SF̂ (y′|x) − SF (y′|x)) ⇒ SDG(y′|x), (2.19)
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as a stochastic process indexed by (y′, x) ∈ YX , and in ℓ∞(UX ),

an(SQ̂∗(u′|x) − SQ∗(u′|x)) ⇒ SD̃G(u′|x), (2.20)

as a stochastic process indexed by (u′, x) ∈ UX . The results hold uniformly in the smoothing

parameter δ ∈ [δ1, δ2], where δ1 and δ2 are positive constants.

Thus, as in the case of linear functionals, we can perform inference on SQ∗ based on the

smoothed rearranged estimates without excluding nonregular neighborhoods, which is conve-

nient for practice in the non-monotonic case. Furthermore, validity of the bootstrap for the

smoothed curves follows by the functional delta method for the bootstrap. Lastly, we note

that it is not possible to simultaneously allow δ → 0 and preserve the uniform convergence

stated in the corollary.

Our final corollary asserts validity of the bootstrap for inference on rearranged estimators

and their functionals. This corollary follows from the functional delta method for the bootstrap

(e.g., Theorem 13.9 in van der Vaart, 1998).

Corollary 5 (Validity of the bootstrap for estimating laws of rearranged estimators). If

the bootstrap consistently estimates the functional limit law (2.11) of the empirical process

{an(Q̂(u|x)−Q(u|x), (u, x) ∈ UX}, then it also consistently estimates the functional limit laws

(2.12), (2.13), (2.14), (2.15), (2.19), and (2.20).

3. Examples

In this section we apply rearrangement to the estimation of structural quantile and distri-

bution functions. We show how rearrangement monotonizes instrumental quantile and distri-

bution function estimates, and demonstrate how to perform inference on the target functions

using the results developed in this paper. Using a supporting numerical example, we show that

rearranged estimators noticeably improve upon original estimators and also outperform iso-

tonized estimators. Thus, rearrangement is necessarily preferable to the standard approach of

simply ignoring non-monotonicity. Moreover, in quantile estimation problems, rearrangement

is also preferable to the standard approach of isotonization used primarily in mean estimation

problems.

3.1. Empirical Example. We consider estimation of the causal/structural effects of Viet-

nam veteran status X ∈ {0, 1} in the quantiles and distribution of civilian earnings Y . Since

veteran status is likely to be endogenous relative to potential civilian earnings, we employ

an instrumental variables approach, using the U.S. draft lottery as an instrument for the

Vietnam status (Angrist, 1990). We use the same data subset from the Current Population
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Survey as in Abadie (2002).10 We then estimate structural quantile and distribution func-

tions with the instrumental quantile regression estimator of Chernozhukov and Hansen (2005,

2006) and the instrumental distribution regression estimator of Abadie (2002). Under some

assumptions these procedures consistently estimate the structural quantile and distribution

functions of interest.11 However, like most estimation methods mentioned in the introduction,

neither of these procedures explicitly imposes monotonicity of the distribution and quantile

functions. Accordingly, they can produce estimates in finite samples that are nonmonotonic

due to either sampling variation or violations of instrument independence or other modeling

assumptions. We monotonize these estimates using rearrangement and perform inference on

the target structural functions using uniform confidence bands constructed via bootstrap. We

use the programming language R to implement the procedures (R Development Core Team,

2007). We present our estimation and inference results in Figures 3–5.

In Figure 3, we show Abadie’s estimates of the structural distribution of earnings for vet-

erans and non-veterans (left panel) as well as their rearrangements (right panel). For both

veterans and non-veterans, the original estimates of the distributions exhibit clear local non-

monotonicity. The rearrangement fixes this problem producing increasing estimated distribu-

tion functions. In Figure 4, we show Chernozhukov and Hansen’s estimates of the structural

quantile functions of earnings for veterans (left panel) as well as their rearrangements (right

panel). For both veterans and non-veterans, the estimates of the quantile functions exhibit pro-

nounced local non-monotonicity. The rearrangement fixes this problem producing increasing

estimated quantile functions . In the case of quantile functions, the nonmonotonicity problem

is specially acute for the small sample of veterans.

In Figure 5, we plot uniform 90% confidence bands for the structural quantile functions of

earnings for veterans and non-veterans, together with uniform 90% confidence bands for the

effect of Vietnam veteran status on the quantile functions for earnings, which measures the dif-

ference between the structural quantile functions for veterans and non-veterans. We construct

the uniform confidence bands using both the original estimators and the rearranged estimators

based on 500 bootstrap repetitions and a fine net of quantile indices {0.01, 0.02, ..., 0.99}. We

obtain the bands for the rearranged functions assuming that the population structural quantile

regression functions are monotonic, so that the first order behavior of the rearranged estimators

10These data consist of a sample of white men, born in 1950–1953, from the March Current Population

Surveys of 1979 and 1981-1985. The data include annual labor earnings, the Vietnam veteran status and an

indicator on the Vietnam era lottery. There are 11,637 men in the sample, with 2,461 Vietnam veterans and

3,234 eligible for U.S. military service according to the draft lottery indicator. Abadie (2002) gives additional

information on the data and the construction of the variables.
11More specifically, Abadie’s (2002) procedure consistently estimates these functions for the subpopulation

of compliers under instrument independence and monotonicity. Chernozhukov and Hansen’s (2005, 2006) ap-

proach consistently estimates these functions for the entire population under instrument independence and rank

similarity.
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Figure 3. Abadie’s estimates of the structural distributions of earnings for

veteran and non-veterans (left panel), and their rearrangements (right panel).

coincides with the behavior of the original estimators. The figure shows that even for the large

sample of non-veterans the rearranged estimates lie within the original bands, thus passing our

automatic test of monotonicity specified in Remark 2. Thus, the lack of monotonicity of the

estimated quantile functions in this case is likely caused by sampling error. From the figure,

we conclude that veteran status has a statistically significant negative effect in the lower tail,

with the bands for the rearranged estimates showing a wider range of quantile indices for which

this holds.

3.2. Monte Carlo. We design a Monte Carlo experiment to closely match the previous empir-

ical example. In particular, we consider a location model, where the outcome is Y = [1,X]α+ǫ,

the endogenous regressor is X = 1{[1;Z]π + v ≥ 0}, the instrument Z is a binary random vari-

able, and the disturbances (ǫ, v) are jointly normal and independent of Z. The true structural

quantile functions are Q0(u|x) = [1;x]α + Qǫ(u), x ∈ {0, 1}, where Qǫ is the quantile function

of the normal variable ǫ. The corresponding structural distribution functions are the inverse of

the quantile functions with respect to u. We select the value of the parameters by estimating

this location model parametrically by maximum likelihood, and then generate samples from

the estimated model, holding the values of the instruments Z equal to those in the data set.12

12More specifically, after normalizing the standard deviation of v to one, we set π = [−.92; .40]T, α =

[11, 753;−911]T, the standard deviation of ǫ to 8, 100, and the covariance between ǫ and v to 379. We draw
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Figure 4. Chernozhukov and Hansen’s estimates of the structural quantile

functions of earnings for veterans (left panel), and their rearrangements (right

panel).

We use the estimators for the structural distribution and quantile functions described in the

previous section. We monotonize the estimates using either rearrangement or isotonization.

We use isotonization as a benchmark since it is the standard approach in mean regression prob-

lems (Mammen, 1991); it amounts to projecting the estimated function on the set of monotone

functions.

Table 1 reports ratios of estimation errors of the rearranged and isotonized estimates to those

of the original estimates, recorded in percentage terms. The target functions are the structural

distribution and quantile functions. We measure estimation errors using the average Lp norms

‖ · ‖p with p = 1, 2, and ∞, and we compute them as Monte Carlo averages of ‖f0 − f̃‖p, where

f0 is the target function, and f̃ is either the original or rearranged or isotonized estimate of

this function.

We find that the rearranged estimators noticeably outperform the original estimators, achiev-

ing a reduction in estimation error up to 14%, depending on the target function and the norm.

Moreover, in this case the better approximation of the rearranged estimates to the structural

5, 000 Monte Carlo samples of size n = 11, 627. We generate the values of Y and X by drawing disturbances

(ǫ, v) from a bivariate normal distribution with zero mean and the estimated covariance matrix.
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Figure 5. Simultaneous 90% confidence bands for structural quantile func-

tions of earnings and structural quantile effect of Vietnam veteran status on

earnings. The bands for the quantile functions are intersected with the class of

monotone functions.

functions also produces more accurate estimates of the distribution and quantile effects, achiev-

ing a 3% to 9% reduction in estimation error for the distribution estimator and a 3% to 14%

reduction in estimation error for the quantile estimator, depending on the norm.

We also find that the rearranged estimators noticeably outperform the isotonized estimators,

achieving up to a further 4% reduction in estimation error, depending on the target function

and the norm. The reason is that isotonization projects the original fitted function on the

set of monotone functions, finding the flattest fit in this set. In contrast, rearrangement sorts

the original fitted function, finding the steepest fit that preserves measure. In the context

of estimating quantile and distribution functions, the target functions tend to be non-flat,

suggesting that rearrangement should be typically preferred over isotonization.13

13To give some intuition about this point, it is instructive to consider a simple example with a two-point

domain {0, 1}. Suppose that the target function f0 : {0, 1} → R is increasing, and steep, namely f0(0) > f0(1),

and the fitted function bf : {0, 1} → R is decreasing, with bf(0) > bf(1). In this case, isotonization produces

a nondecreasing function f̄ : {0, 1} → R, which is flat, with f̄(0) = f̄(1) = [ bf(0) + bf(1)]/2, and is somewhat

unsatisfactory. In such cases rearrangement can significantly outperform isotonization, since it produces the

steepest fit, namely it produces f∗ : {0, 1} → R with f∗(0) = bf(1) < f∗(1) = bf(0). This observation provides a

simple theoretical underpinning for the estimation results we see in Table 1.
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Table 1. Ratios of estimation error of rearranged and isotonic estimators to

those of original estimators, in percentage terms.

Veterans Non-Veterans Effect

Rearranged Isotonized Rearranged Isotonized Rearranged Isotonized

Distribution function

L1 99 99 97 98 97 98

L2 99 99 97 98 97 99

L∞ 96 98 90 94 91 95

Quantile function

L1 97 98 100 100 97 98

L2 96 97 100 100 96 98

L∞ 86 87 98 99 86 88

4. Conclusion

This paper develops a monotonization procedure for estimation of conditional and structural

quantile and distribution functions based on rearrangement-related operations. Starting from

a possibly non-monotone empirical curve, the procedure produces a rearranged curve that

not only satisfies the natural monotonicity requirement, but also has smaller estimation error

than the original curve. We derive asymptotic distribution theory for the rearranged curves,

and illustrate the usefulness of the approach with an empirical application and a simulation

example. There are many more potential applications of the results of the paper to other

econometric problems with shape restrictions (see e.g. Matzkin, 1994, and Chernozhukov et

al., 2006).

Appendix A. Proofs

A.1. Proof of Proposition 1. First, note that the distribution of Yx has no atoms, i.e.,

Pr[Yx = y] = Pr[Q(U |x) = y] = Pr[U ∈ {u ∈ U : u is a root of Q(u|x) = y}] = 0,

since the number of roots of Q(u|x) = y is finite under (a) - (b), and U ∼ Uniform(U). Next,

by assumptions (a)-(b) the number of critical values of Q(u|x) is finite, hence claim (1) follows.

Next, for any regular y, we can write F (y|x) as

∫ 1

0
1{Q(u|x) ≤ y}du =

K(y|x)−1∑

k=0

∫ uk+1(y|x)

uk(y|x)
1{Q(u|x) ≤ y}du +

∫ 1

uK(y|x)(y|x)
1{Q(u|x) ≤ y}du,

where u0(y|x) := 0 and {uk(y|x), for k = 1, 2, ...,K(y|x) < ∞} are the roots of Q(u|x) =

y in increasing order. Note that the sign of ∂uQ(u|x) alternates over consecutive uk(y|x),

determining whether 1{Q(y|x) ≤ y} = 1 on the interval [uk−1(y|x), uk(y|x)]. Hence the first
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term in the previous expression simplifies to
∑K(y|x)−1

k=0 1{∂uQ(uk+1(y|x)|x) ≥ 0}(uk+1(y|x) −

uk(y|x)); while the last term simplifies to 1{∂uQ(uK(y|x)(y|x)|x) ≤ 0}(1 − uK(y|x)(y|x)). An

additional simplification yields the expression given in claim (2) of the proposition.

The proof of claim (3) follows by taking the derivative of expression in claim (2), noting that

at any regular value y the number of solutions K(y|x) and sign(∂uQ(uk(y|x)|x)) are locally

constant; moreover,

∂yuk(y|x) =
sign(∂uQ(uk(y|x)|x))

|∂uQ(uk(y|x)|x)|
.

Combining these facts we get the expression for the derivative given in claim (3).

To show the absolute continuity of F with f being the Radon-Nykodym derivative, it suffices

to show that for each y′ ∈ Yx,
∫ y′

−∞ f(y|x)dy =
∫ y′

−∞ dF (y|x), cf. Theorem 31.8 in Billingsley

(1995). Let V x
t be the union of closed balls of radius t centered on the critical points Yx\Y

∗
x, and

define Yt
x = Yx\V

x
t . Then,

∫ y′

−∞ 1{y ∈ Yt
x}f(y|x)dy =

∫ y′

−∞ 1{y ∈ Yt
x}dF (y|x). Since the set of

critical points Yx\Y
∗
x is finite and has mass zero under F ,

∫ y′

−∞ 1{y ∈ Yt
x}dF (y|x) ↑

∫ y′

−∞ dF (y|x)

as t → 0. Therefore,
∫ y′

−∞ 1{y ∈ Yt
x}f(y|x)dy ↑

∫ y′

−∞ f(y|x)dy =
∫ y′

−∞ dF (y|x).

Claim (4) follows by noting that at the regions where s → Q(s|x) is increasing and one-to-

one, we have that F (y|x) =
∫
Q(s|x)≤y ds =

∫
s≤Q−1(y|x) ds = Q−1(y|x). Inverting the equation

u = F (Q∗(u|x)|x) = Q−1(Q∗(u|x)|x) yields Q∗(u|x) = Q(u|x).

Claim (5). We have Yx = Q(U |x) has quantile function Q∗. A quantile function is known

to be equivariant to monotone increasing transformations, including location-scale transforma-

tions. Thus, this is true in particular for Q∗.

Claim (6) is immediate from claim (3).

Claim (7). The proof of continuity of F is subsumed in the step 1 of the proof of Proposition

3 (see below). Therefore, for any sequence xt → x we have that F (y|xt) → F (y|x) uniformly

in y, and F is continuous. Let ut → u and xt → x. Since F (y|x) = u has a unique root

y = Q∗(u|x), the root of F (y|xt) = ut, i.e., yt = Q∗(ut|xt), converges to y by a standard

argument, see, e.g., van der Vaart and Wellner (1997). �

A.2. Proof of Propositions 2–6. In the proofs that follow we will repeatedly use Lemma 1,

which establishes the equivalence of continuous convergence and uniform convergence:

Lemma 1. Let D and D
′ be complete separable metric spaces, with D compact. Suppose

f : D 7→ D
′ is continuous. Then a sequence of functions fn : D 7→ D

′ converges to f uniformly

on D if and only if for any convergent sequence xn → x in D we have that fn(xn) → f(x).

Proof of Lemma 1: See, for example, Resnick (1987), page 2. �

Proof of Proposition 2.
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Part 1. We have that for any δ > 0, there exists ǫ > 0 such that for u ∈ Bǫ(uk(y|x)) and

for small enough t ≥ 0

1{Q(u|x) + tht(u|x) ≤ y} ≤ 1{Q(u|x) + t(h(uk(y|x)|x) − δ) ≤ y},

for all k ∈ {1, 2, ...,K(y|x)}; whereas for all u 6∈ ∪kBǫ(uk(y|x)), as t → 0,

1{Q(u|x) + tht(u|x) ≤ y} = 1{Q(u|x) ≤ y}.

Therefore,
∫ 1
0 1{Q(u|x) + tht(u|x) ≤ y}du −

∫ 1
0 1{Q(u|x) ≤ y}du

t
(A.1)

≤

K(y|x)∑

k=1

∫

Bǫ(uk(y|x))

1{Q(u|x) + t(h(uk(y|x)|x) − δ) ≤ y} − 1{Q(u|x) ≤ y}

t
du,

which by the change of variable y′ = Q(u|x) is equal to

1

t

K(y|x)∑

k=1

∫

Jk∩[y,y−t(h(uk(y|x)|x)−δ)]

1

|∂uQ(Q−1(y′|x)|x)|
dy′,

where Jk is the image of Bǫ(uk(y|x)) under u 7→ Q(·|x). The change of variable is possible

because for ǫ small enough, Q(·|x) is one-to-one between Bǫ(uk(y|x)) and Jk.

Fixing ǫ > 0, for t → 0, we have that Jk∩[y, y−t(h(uk(y|x)|x)−δ)] = [y, y−t(h(uk(y|x)|x)−

δ)], and |∂uQ(Q−1(y′|x)|x)| → |∂uQ(uk(y|x)|x)| as Q−1(y′|x) → uk(y|x). Therefore, the right

hand term in (A.1) is no greater than

K(y|x)∑

k=1

−h(uk(y|x)|x) + δ

|∂uQ(uk(y|x)|x)|
+ o (1) .

Similarly
∑K(y|x)

k=1
−h(uk(y|x)|x)−δ
|∂uQ(uk(y|x)|x)| + o (1) bounds (A.1) from below. Since δ > 0 can be made

arbitrarily small, the result follows.

To show that the result holds uniformly in (y, x) ∈ K, a compact subset of YX ∗, we use

Lemma 1. Take a sequence of (yt, xt) in K that converges to (y, x) ∈ K, then the preceding ar-

gument applies to this sequence, since (1) the function (y, x) 7→ −h(uk(y|x)|x)/|∂uQ(uk(y|x)|x)|

is uniformly continuous on K, and (2) the function (y, x) 7→ K(y|x) is uniformly continuous

on K. To see (2), note that K excludes a neighborhood of critical points (Y \ Y∗
x, x ∈ X ),

and therefore can be expressed as the union of a finite number of compact sets (K1, ...,KM )

such that the function K(y|x) is constant over each of these sets, i.e., K(y|x) = kj for some

integer kj > 0, for all (y, x) ∈ Kj and j ∈ {1, ...,M}. Likewise, (1) follows by noting that

the limit expression for the derivative is continuous on each of the sets (K1, ...,KM ) by the

assumed continuity of h(u|x) in both arguments, continuity of uk(y|x) (implied by the Implicit

Function Theorem), and the assumed continuity of ∂uQ(u|x) in both arguments. �
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Part 2. For a fixed x the result follows by Part 1 of Proposition 2, by step 1 of the proof

below, and by an application of the Hadamard differentiability of the quantile operator shown

by Doss and Gill (1992). Step 2 establishes uniformity over x ∈ X .

Step 1. Let K be a compact subset of YX ∗. Let (yt, xt) be a sequence in K, convergent to a

point, say (y, x). Then, for every such sequence, ǫt := t‖ht‖∞+‖Q(·|xt)−Q(·|x)‖∞+ |yt−y| →

0, and

|F (yt|xt, ht) − F (y|x)| ≤
∣∣∣
∫ 1

0
[1{Q(u|xt) + tht(u|x) ≤ yt} − 1{Q(u|x) ≤ y}]du

∣∣∣

≤
∣∣∣
∫ 1

0
1{|Q(u|x) − y| ≤ ǫt}du

∣∣∣→ 0, (A.2)

where the last step follows from the absolute continuity of y 7→ F (y|x), the distribution function

of Q(U |x). By setting ht = 0 the above argument also verifies that F (y|x) is continuous in

(y, x). Lemma 1 implies uniform convergence of F (y|x, ht) to F (y|x), which in turn implies by

a standard argument14 the uniform convergence of quantiles Q∗(u|x, ht) → Q∗(u|x), uniformly

over K∗, where K∗ is any compact subset of UX ∗.

Step 2. We have that uniformly over K∗,

F (Q∗(u|x, ht)|x, ht) − F (Q∗(u|x, ht)|x)

t
= Dh(Q∗(u|x, ht)|x) + o(1),

= Dh(Q∗(u|x)|x) + o(1),
(A.3)

using Step 1, Proposition 2, and the continuity properties of Dh(y|x). Further, uniformly over

K∗, by Taylor expansion and Proposition 1, as t → 0,

F (Q∗(u|x, ht)|x) − F (Q∗(u|x)|x)

t
= f(Q∗(u|x)|x)

Q∗(u|x, ht) − Q∗(u|x)

t
+ o(1), (A.4)

and (as will be shown below)

F (Q∗(u|x, ht)|x, ht) − F (Q∗(u|x)|x)

t
= o(1), (A.5)

as t → 0. Observe that the left hand side of (A.5) equals that of (A.4) plus that of (A.3). The

result then follows.

It only remains to show that equation (A.5) holds uniformly in K∗. Note that for any right-

continuous cdf F , we have that u ≤ F (Q∗(u)) ≤ u + F (Q∗(u)) − F (Q∗(u)−), where F (·−)

denotes the left limit of F , i.e., F (x0−) = limx↑x0 F (x). For any continuous, strictly increasing

14See, e.g., Lemma 1 in Chernozhukov and Fernandez-Val (2005).
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cdf F , we have that F (Q∗(u)) = u. Therefore, write

0 ≤
F (Q∗(u|x, ht)|x, ht) − F (Q∗(u|x)|x)

t

≤
u + F (Q∗(u|x, ht)|x, ht) − F (Q∗(u|x, ht) − |x, ht) − u

t

≤
F (Q∗(u|x, ht)|x, ht) − F (Q∗(u|x, ht) − |x, ht)

t
(1)
=

[F (Q∗(u|x, ht)|x, ht) − F (Q∗(u|x, ht)|x)]

t

−
[F (Q∗(u|x, ht) − |x, ht) − F (Q∗(u|x, ht) − |x)]

t
(2)
= Dh(Q∗(u|x, ht)|x) − Dh(Q∗(u|x, ht) − |x) + o(1) = o(1),

as t → 0, where in (1) we use that F (Q∗(u|x, ht)|x) = F (Q∗(u|x, ht) − |x) since F (y|x) is

continuous and strictly increasing in y, and in (2) we use Proposition 2. �

The following lemma, due to Pratt (1960), will be very useful to prove Proposition 4.

Lemma 2. Let |fn| ≤ Gn and suppose that fn → f and Gn → G almost everywhere, then if∫
Gn →

∫
G finite, then

∫
fn →

∫
f .

Proof of Lemma 2. See Pratt (1960). �

Lemma 3 (Boundedness and Integrability Properties). Under the hypotheses of Proposition

2, we have that, for all (u, x) ∈ UX ,

|D̃ht
(u|x, t)| ≤ ‖ht‖∞, (A.6)

and, for all (y, x) ∈ YX ,

|Dht
(y|x, t)| ≤ ∆(y|x, t) =

∫ 1

0

1{|Q(u|x) − y| ≤ t‖ht‖∞}

t
du, (A.7)

where for any xt → x ∈ X , as t → 0,

∆(y|xt, t) → 2‖h‖∞f(y|x) for a.e y ∈ Y and

∫

Y
∆(y|xt, t)dy →

∫

Y
2‖h‖∞f(y|x)dy.

Proof of Lemma 3. To show (A.6) note that

sup
(u,x)∈UX

|D̃ht
(u|x, t)| ≤ ‖ht‖∞ (A.8)

immediately follows from the equivariance property noted in Claim (5) of Proposition 1.

The inequality (A.7) is trivial. That for any xt → x ∈ X , ∆(y|xt, t) → 2‖h‖∞f(y|x) for

a.e y ∈ Y follows by applying Proposition 2 respectively with functions h′
t(u|x) = ‖ht‖∞ and

h′
t(u|x) = −‖ht‖∞ (for the case when f(y|x) > 0; and trivially otherwise). Similarly, that for

any yt → y ∈ Y, ∆(yt|x, t) → 2‖h‖∞f(y|x) for a.e x ∈ X follows by Proposition 2 (for the

case when f(y|x) > 0; and trivially otherwise) .
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Further, by Fubini’s Theorem,
∫

Y
∆(y|xt, t)dy =

∫ 1

0

(∫

Y

1{|Q(u|xt) − y| ≤ t‖ht‖∞}

t
dy

)

︸ ︷︷ ︸
=: ft(u)

du. (A.9)

Note that ft(u) ≤ 2‖ht‖∞. Moreover, for almost every u, ft(u) = 2‖ht‖∞ for small enough t,

and 2‖ht‖∞ converges to 2‖h‖∞ as t → 0. Then, trivially, 2
∫ 1
0 ‖ht‖∞du → 2‖h‖∞. By Lemma

2 the right hand side of (A.9) converges to 2‖h‖∞. �

A.3. Proof of Proposition 3. Define mt(y|x, y′) := g(y|x, y′)Dht
(y|x, t) and m(y|x, y′) :=

g(y|x, y′)Dh(y|x). To show claim (1), we need to demonstrate that for any y′t → y′ and xt → x
∫

Y
mt(y|xt, y

′
t)dy →

∫

Y
m(y|x, y′)dy, (A.10)

and that the limit is continuous in (x, y′). We have that |mt(y|xt, yt)| is bounded, for some

constant C, by C∆(y|xt, t) which converges a.e. and the integral of which converges to a finite

number by Lemma 3. Moreover, by Proposition 2, for almost every y we have mt(y|xt, y
′
t) →

m(y|x, y′). We conclude that (A.10) holds by Lemma 2.

In order to check continuity, we need to show that for any y′t → y′ and xt → x
∫

Y
m(y|xt, y

′
t)dy →

∫

Y
m(y|x, y′)dy. (A.11)

We have that m(y|xt, y
′
t) → m(y|x, y′) for almost every y. Moreover, m(y|xt, yt) is dominated

by 2‖g‖∞‖h‖∞f(y|xt), which converges to 2‖g‖∞‖h‖∞f(y|x) for almost every y, and, more-

over,
∫
Y ‖g‖∞‖h‖∞f(y|x)dy converges to ‖g‖∞‖h‖∞. Conclude that (A.11) holds by Lemma

2.

To show claim (2), define mt(u|x, u′) = g(u|x, u′)D̃ht
(u|x) and m(u|x, u′) = g(u|x, u′)D̃h(u|x).

Here we need to show that for any u′
t → u′ and xt → x

∫

U
mt(u|xt, u

′
t)du →

∫

U
m(u|x, u′)du, (A.12)

and that the limit is continuous in (u′, x). We have that mt(u|xt, u
′
t) is bounded by g(u|xt)‖ht‖∞,

which converges to g(u|x)‖h‖∞ for a.e. u. Furthermore, the integral of g(u|xt)‖ht‖∞ converges

to the integral of g(u|x)‖h‖∞ by the dominated convergence theorem. Moreover, by Proposi-

tion 2, we have that mt(u|xt, u
′
t) → m(u|x, u′) for almost every u. We conclude that (A.12)

holds by Lemma 2.

In order to check the continuity of the limit, we need to show that for any u′
t → u′ and

xt → x
∫

U
m(u|xt, u

′
t)du →

∫

U
m(u|x, u′)du. (A.13)

We have that m(u|xt, u
′
t) → m(u|x, u′) for almost every u. Moreover, for small enough t,

m(u|xt, u
′
t) is dominated by |g(u|xt, u

′
t)|‖h‖∞, which converges for almost every value of u to
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|g(u|x, u′)|‖h‖∞ as t → 0. Furthermore, the integral of |g(u|xt, u
′
t)|‖h‖∞ converges to the

integral of |g(u|x, u′)|‖h‖∞ by the dominated convergence theorem. We conclude that (A.13)

holds by Lemma 2. �

A.4. Proof of Proposition 5. This proposition simply follows by the functional delta method

(e.g., van der Vaart, 1998). Instead of restating what this method is, it takes less space to

simply recall the proof in the current context.

To show the first part, consider the map gn(y, x|h) = an(F (y|x, h/an) − F (y|x)). The

sequence of maps satisfies gn′(y, x|hn′) → Dh(y|x) in ℓ∞(K) for every subsequence hn′ → h in

ℓ∞(UX ), where h is continuous. It follows by the extended continuous mapping theorem that,

in ℓ∞(K), gn(y, x|an(Q̂(u|x) − Q(u|x))) ⇒ DG(y|x) as a stochastic process indexed by (y, x),

since an(Q̂(u|x) − Q(u|x)) ⇒ G(u|x) in ℓ∞(UX ).

Conclude similarly for the second part. �

A.5. Proof of Proposition 6. This follows by the functional delta method, similarly to the

proof of Proposition 5. �

References

[1] Abadie, A. (2002):“Bootstrap tests for distributional treatment effects in instrumental variable models,”

Journal of the American Statistical Association 457, pp. 284–292.

[2] Abadie, A., Angrist, J., and G. Imbens (2002):“Instrumental Variables Estimates of the Effect of Subsidized

Training on the Quantiles of Trainee Earnings,” Econometrica 70(1), pp. 91–117.

[3] Alvino, A., Lions, P. L., and Trombetti, G. (1989): “On Optimization Problems with Prescribed Rear-

rangements,” Nonlinear Analysis 13 (2), pp. 185–220.

[4] Angrist, J. D. (1990): “Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social

Security Administrative Records,” American Economic Review 80, pp. 313–336.

[5] Angrist, J. D., Chernozhukov, V., and I. Fernandez-Val (2006): “Quantile Regression under Misspecifica-

tion, with an Application to the U.S. Wage Structure,” Econometrica 74, pp. 539–563.

[6] Belloni, A., and V. Chernozhukov (2007): “Conditional Quantile and Probability Processes under Increasing

Dimension,” preprint. MIT.

[7] Billingsley, P. (1995): Probability and measure. Third edition. John Wiley & Sons, Inc., New York.

[8] Blundell, R., and J. Powell (2003): “Endogeneity in Nonparametric and Semiparametric Models,” in M.

Dewatripont, L. P. Hansen, and S. J. Turnovsky (ed.), Advances in Econometrics, Eight World Congress,

Volume II. Cambridge University Press. Cambridge.

[9] Bronshtein, I. N., Semendyayev, K. A., Musiol, G., and H. Muehlig, H. (2003): Handbook of Mathematics.

Fourth Edition. Springer-Verlag. Berlin.

[10] Buchinsky, M. (1994): “Changes in the US Wage Structure 1963-1987: Application of Quantile Regression,”

Econometrica 62, pp. 405-458.

[11] Buchinsky, M., and J. Hahn (1998): “An Alternative Estimator for the Censored Quantile Regression

Model,” Econometrica 66, no. 3, pp. 653-671.

[12] Carlier, G., and R.-A. Dana (2005): “Rearrangement Inequalities in Non-Convex Insurance Problems,”

Journal of Mathematical Economics 41, 483–503.



28

[13] Chamberlain, G. (1994): “Quantile Regression, Censoring, and the Structure of Wages,” in C. A. Sims (ed.),

Advances in Econometrics, Sixth World Congress, Volume 1. Cambridge University Press. Cambridge.

[14] Chaudhuri, S. (1991): “Nonparametric estimates of regression quantiles and their local Bahadur represen-

tation,” Annals of Statistics 19(2), 760–777.

[15] Chernozhukov, V., and I. Fernández-Val (2005): “Subsampling Inference on Quantile Regression Processes.”

Sankhya 67, pp. 253–276.

[16] Chernozhukov, V., Fernandez-Val, I., and A. Galichon (2006): “Improving Point and Interval Estimates of

Monotone Functions by Rearrangement,” forthcoming in Biometrika.

[17] Chernozhukov, V., and C. Hansen (2005): “An IV Model of Quantile Treatment Effects,” Econometrica

73, pp. 245–261.

[18] Chernozhukov, V., and C. Hansen (2006): “Instrumental quantile regression inference for structural and

treatment effect models,” Journal of Econometrics 132(2), 491–525.

[19] Chesher, A., (2003): “Identification in Nonseparable Models,” Econometrica 71(5), pp. 1405–1441.

[20] Davydov, Y., and R. Zitikis (2005): “An index of monotonicity and its estimation: a step beyond econo-

metric applications of the Gini index,” Metron - International Journal of Statistics, 63(3), 351–372.

[21] Dette, H., Neumeyer, N., and K. Pilz (2006): “A simple Nonparametric Estimator of a Strictly Monotone

Regression Function,” Bernoulli, 12, no. 3, pp 469-490.

[22] Dette, H., and R. Scheder (2006): “Strictly monotone and smooth nonparametric regression for two or

more variables,”The Canadian Journal of Statistics, 34(4), 535–561.

[23] Dette, H., and S. Volgushev (2008): “Non-Crossing Nonparametric Estimates of Quantile Curves,”Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 70, pp. 609–627.

[24] Doksum, K. (1974): “Empirical Probability Plots and Statistical Inference for Nonlinear Models in the

Two-Sample Case,” Annals of Statistics 2, pp. 267–277.

[25] Doss, H., and R. D. Gill (1992): “An elementary approach to weak convergence for quantile processes,

with applications to censored survival data.” Journal of the American Statistical Association 87, no. 419,

869–877.

[26] Dudley, R. M., and R. Norvaisa (1999): Differentiability of six operators on nonsmooth functions and

p-variation. Springer-Verlag, Berlin.

[27] Eggermont, P. P. B., and V. N. LaRiccia (2000): “Maximum likelihood estimation of smooth monotone

and unimodal densities,” Annals of Statistics 28(3) , 922–947.

[28] Fougères, A-L. (1997): “Estimation de densités unimodales,” Canad. J. Statist. 25(3) , 375–387.

[29] Gill, R. D., and S. Johansen (1990): “A survey of product-integration with a view toward application in

survival analysis.” Annals of Statistics 18, no. 4, 1501–1555.

[30] Glad, I. K., Hjort, N. L., and N. G. Ushakov (2003): “Corrections of Density Estimators that are not

Densities.” Scandinavian Journal of Statistics 30, 415–427.
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[45] Lehmann, E. (1974): Nonparametrics: Statistical Methods Based on Ranks, San Francisco: Holden-Day.

[46] Lorentz, G. G. (1953): “An Inequality for Rearrangements,” The American Mathematical Monthly 60, pp.

176–179.

[47] Mammen, E. (1991): “Nonparametric Regression Under Qualitative Smoothness Assumptions,” Annals of

Statistics 19, pp. 741–759.

[48] Matzkin, R. L. (1994): “Restrictions of economic theory in nonparametric methods,” in Handbook of

econometrics, Vol. IV, North-Holland, Amsterdam.

[49] Milnor, J. (1965): Topology from the differential viewpoint, Princeton University Press.

[50] Mossino J. and R. Temam (1981): “Directional derivative of the increasing rearrangement mapping and

application to a queer differential equation in plasma physics,” Duke Math. J. 48 (3), 475–495.

[51] Portnoy, S. (1991): “Asymptotic behavior of regression quantiles in nonstationary, dependent cases,” Jour-

nal of Multivariate Analysis 38 , no. 1, 100–113.

[52] Powell, J. L. (1986): “Censored Regression Quantiles,” Journal of Econometrics 32, no. 1, pp. 143-155.

[53] Pratt, J.W. (1960): “On interchanging limits and integrals.” Annals of Mathematical Statistics 31, 74–77.

[54] R Development Core Team (2007): R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

[55] Resnick, S. I. (1987): Extreme values, regular variation, and point processes, Applied Probability. A Series

of the Applied Probability Trust, 4. Springer-Verlag, New York.

[56] Robertson, T., Wright, F.T., and R.L. Dykstra (1988): Order restricted statistical inference, Chichester:

Wiley.

[57] Van der Vaart, A. (1998). Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathe-

matics, 3.

[58] Van der Vaart, A., and J. Wellner (1996): Weak convergence and empirical processes: with applications to

statistics, New York: Springer.

[59] Villani, C. (2003): Topics in Optimal Transportation, Providence: American Mathematical Society.


	1. Introduction
	2. Rearrangement: Analytical and Empirical Properties
	2.1. Rearrangement
	2.2. Basic Analytical Properties of Population Curves
	2.3. Functional Delta Method for Rearrangement-Related Operators
	2.4. Empirical Properties and Functional Limit Theory for Rearranged Estimators

	3. Examples
	3.1. Empirical Example
	3.2. Monte Carlo

	4. Conclusion
	Appendix A. Proofs
	A.1. Proof of Proposition 1
	A.2. Proof of Propositions ??--??
	A.3. Proof of Proposition ??
	A.4. Proof of Proposition ??
	A.5. Proof of Proposition ??

	References

