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, that efficiency is characterized by a comonotonicity condition. The goal of the paper is to generalize the comonotone dominance principle as well as the equivalence between efficiency and comonotonicity to the multidimensional case. The multivariate case is more involved (in particular because there is no immediate extension of the notion of comonotonicity) and it is addressed by using techniques from convex duality and optimal transportation.

Introduction

The aim of this paper is to study Pareto efficient allocations of risky consumptions of several goods in a contingent exchange economy. A framework 1 where goods are imperfect substitutes and agents have incomplete preferences associated with the concave order is considered.

There is a distinguished tradition in modelling preferences by concave dominance. Introduced in economics by Rothschild and Stiglitz [START_REF] Rothschild | Increasing Risk, I. A Definition[END_REF], the concave order has then been used in a wide variety of economic contexts. To give a few references, let us mention efficiency pricing (Peleg and Yaari [START_REF] Peleg | A Price Characterisation of Efficient Random Variables[END_REF], Chew and Zilcha [START_REF] Chew | Invariance of the efficient sets when the expected utility hypothesis is relaxed[END_REF]), measurement of inequality (Atkinson [3]), finance (Dybvig [START_REF] Dybvig | Distributional Analysis of Portfolio Choice[END_REF], Jouini and Kallal [START_REF] Jouini | Efficient Trading Strategies in the Presence of Market Frictions[END_REF]).

With respect to most of the aforementioned literature, the novelty of this paper is to deal with the multivariate case, i.e. the case where consumption is denominated in several units which are imperfectly substitutable. These units can be e.g. consumption and labor; or future consumptions at various maturities; or currency units with limited exchangeability. The hypothesis of the lack of, or of the imperfect substituability between various consumption units arises in many different fields of the economic and financial literatures. This amounts to the fact that one can no longer model consumption as a random variable, but as a random vector.

The motivation of the paper is to find testable implications of efficiency for the concave order on observable data (for instance, insurance contracts) and a tractable parametrization of efficient allocations. In the case of univariate risk, this tractable characterization exists: the comonotonicity property. Indeed, since the early work of Borch [START_REF] Borch | Equilibrium in a reinsurance market[END_REF], Arrow [START_REF] Arrow | Uncertainty and the welfare of medical care[END_REF], [START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF] and Wilson [START_REF] Wilson | The theory of syndicates[END_REF], it is well-known that efficient allocations of risk between expected utility maximizers fulfill the mutuality principle or equivalently are comonotone. It may easily be proven that these allocations are efficient for the concave order. It is also well-known that if agents have preferences compatible with the concave dominance (they will be referred to as risk averse), then efficient allocations must be comonotone, otherwise there would be mutually profitable transfers among agents (see LeRoy and Werner [START_REF] Leroy | Principles of Financial Economics[END_REF]).

An important step in the theory of efficient risk-sharing was made by Landsberger and Meilijson [START_REF] Landsberger | Comonotone allocations, Bickel Lehmann dispersion and the Arrow-Pratt measure of risk aversion[END_REF] who proved (for two agents and a discrete setting) that any allocation of a given aggregate risk is dominated in the sense of concave dominance by a comonotone allocation. Moreover, this dominance can be made strict if the initial allocation is not itself comonotone. This result, called comonotone dominance principle has been extended to the continuous case by limiting arguments (see [START_REF] Dana | Modelling Agents' Preferences in Complete Markets by. Second Order Stochastic Dominance[END_REF] and [START_REF] Ludkovski | On comonotonicity of Pareto optimal risk sharing[END_REF]). It implies the comonotonicity of efficient allocations for the concave order. The equivalence between comonotonicity and efficiency was only proved recently by Dana [START_REF] Dana | Market behavior when preferences are generated by second order stochastic dominance[END_REF] for the discrete case and by Dana and Meilijson [START_REF] Dana | Modelling Agents' Preferences in Complete Markets by. Second Order Stochastic Dominance[END_REF] for the continuous case. Therefore comonotonicity fully characterizes efficiency and it is a testable and tractable property. Townsend [START_REF] Townsend | Risk and Insurance in village india[END_REF] proposed to test whether the mutuality principle holds in three poor villages in southern India while Attanasio and Davis ([4]) work on US labor data. The general finding of these empirical studies is that comonotonicity can be usually strongly rejected. A possible explanation of why efficiency is usually not observed in the data is that the aforementioned literature only considers risk-sharing in the case of one good (monetary consumption) and does not take into account the cross-subsidy effects between several risky goods which are only imperfect substitutes. Other papers, such as Brown and Matzkin ( [START_REF] Brown | Testable Restrictions on the Equilibrium Manifold[END_REF]) have tried to test whether observed market data on prices, aggregate endowments and individual incomes satisfy restrictions that they must satisfy if they are the outcome of a Walrasian equilibrium. In contrast to this approach, we do not assume prices to be available to the researcher.

From a mathematical point of view, comonotone allocations form a tractable class which is convex and almost compact, in a sense to be made precise later on. Existence results may then be obtained for many risk-sharing problems by restricting attention to comonotone allocations (see for instance [START_REF] Jouini | Optimal risk sharing for law invariant monetary utility functions[END_REF] in the framework of risk measures, or [START_REF] Carlier | Law invariant concave utility functions and optimization problems with monotonicity and comonotonicity constraints[END_REF], [START_REF] Carlier | Two-Persons Efficient Risk-Sharing and Equilibria for Concave Law-Invariant Utilities[END_REF] for classes of law invariant and concave utilities). Furthermore, even though the comonotone dominance principle has mainly been e used to study efficient allocations for particular classes of utility functions (for example convex risk measures, concave law invariant utilities), it is a very general principle that may be useful for incomplete preferences, which are compatible with the concave dominance. This paper will first revisit in detail the comonotone dominance result in the univariate case. In particular, a direct proof will be given under the assumption that the underlying probability space is non-atomic. This proof does not rely on the discrete case and a limiting argument, but instead uses the theory of monotone rearrangements (see [START_REF] Carlier | Rearrangement inequalities in nonconvex economic models[END_REF] for other applications). Efficient allocations for the concave order are then characterized as solutions of a risk-sharing problem between expected utility maximizers or as comonotone allocations. It must be mentioned that a totally different proof of Landsberger and Meilisjon's result, based on the study of a variational problem, will follow from the analysis of the multivariate case.

The remainder and central part of the paper will be devoted to the extension of the comonotone dominance result and its application to the characterization of efficient allocations in the multivariate setting. While the case of a univariate risk has been very much investigated, it is not so for the multivariate case. Until recently, there was no concept of comonotonicity. Ekeland, Galichon and Henry in [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF] have introduced a notion of multivariate comonotonicity to characterize comonotonic multivariate risk measures, which they call µ-comonotonicity. An allocation (X 1 , ..., X p ) (with each X i being multivariate) is called comonotone if there is a random vector Z and convex and differentiable maps ϕ i such that X i = ∇ϕ i (Z) (in [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF], µ is then the distribution of Z). While this is indeed an extension of the univariate definiton, it is by no means the only possible one. In a recent paper [START_REF] Puccetti | Multivariate comonotonicity[END_REF], Puccetti and Scarsini review various possible other multivariate extensions of the notion of comonotonicity and emphasize the fact that naive extensions do not enjoy some of the main properties of the univariate concept. In fact, it turns out that, as will be shown below, the notion of comonotonicity which is related to efficient risk allocations is (up to some regularity subtleties), the one of [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF]. The comonotone dominance principle will be extended to the multivariate case and applied to characterize Pareto efficiency. The statements will be however more complicated than in the univariate case and will require the use of weak closures and of a slightly stronger concept than strict convexity.. This stems from the fact that multivariate comonotone allocations of a given risk do not form neither a convex nor a compact (up to constants) set contrary to the univariate case (counterexamples will be given). While the results of [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF] are strongly related to maximal correlation functionals and to the quadratic optimal transportation problem (and in particular Brenier's seminal paper [START_REF] Brenier | Polar factorization and monotone rearrangement of vectorvalued functions[END_REF]) the present approach will rely on a slightly different optimization problem that has some familiarities with the multi-marginals optimal transport problem of Gangbo and Świȩch [START_REF] Ganbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF].

The paper is organized as follows. Section 2 recalls some definitions and various characterizations of comonotonicity in the univariate case. Section 3 provides a new proof of the comonotone dominance principle of [START_REF] Landsberger | Comonotone allocations, Bickel Lehmann dispersion and the Arrow-Pratt measure of risk aversion[END_REF] in the univariate case. Efficient risk-sharing are characterized. A notion of multivariate comonotoncity is introduced in section 4, an analogue of the comonotone dominance principle is stated and efficient sharing-rules are characterized as the weak closure of comonotone allocations. Section 5 concludes the paper. Proofs are gathered in section 6.

Preliminaries

Definitions and notations

Given as primitive is a probability space (Ω, F, P). For every (univariate or multivariate) random vector X on such space, the law of X is denoted L(X). Two random vectors X and Y are called equivalent in distribution (denoted

X ∼ Y ), if L(X) = L(Y ).
Definition 2.1. Let X and Y be bounded random vectors with values in R d , then X dominates Y for the concave order, denoted X Y , if and only if E(ϕ(X)) ≤ E(ϕ(Y )) for every convex function ϕ : R d → R. If, in addition, E(ϕ(X)) < E(ϕ(Y )) for some convex function ϕ, then X is said to dominate Y strictly and denoted X ≻ Y .

As the paper makes extensive use of convex analysis (Legendre transforms, infimal convolutions, convex duality), the concave order is defined here in terms of convex loss functions while usually defined with concave utilities. Clearly the definition above coincides with the standard one. As X Y implies that E(X) = E(Y ), comparing risks for only makes sense for random vectors with the same mean. The paper considers the concave order rather than second order stochastic dominance widely used in economics. For the sake of completeness, recall that given two real-valued bounded random vectors X and Y , X is said to dominate Y for second-order stochastic dominance (notation X 2 Y ) whenever E(u(X)) ≥ E(u(Y )) for every concave and nondecreasing function u : R d → R. As is well-known, X Y if and only if X 2 Y and E(X) = E(Y ). We refer to Rothschild and Stiglitz [START_REF] Rothschild | Increasing Risk, I. A Definition[END_REF] and Föllmer and Schied [START_REF] Föllmer | Stochastic finance. An introduction in discrete time[END_REF] for various characterizations of concave dominance in the univariate case and to Müller and Stoyan [START_REF] Müller | Comparaisons Methods for Stochastic Models and Risks[END_REF] for the multivariate case. Using a classical result of Cartier, Fell and Meyer (see [START_REF] Cartier | Comparaison des mesures portées par un ensemble convexe compact[END_REF] or [START_REF] Strassen | The existence of probability measures with given marginals[END_REF]), one deduces a convenient characterization (see section 6 for a proof) of strict dominance as follows: Lemma 2.2. Let X and Y be bounded random vectors with values in R d , then the following statements are equivalent:

1. X strictly dominates Y , 2. X Y and L(X) = L(Y ),
3. X Y and for every strictly convex function ϕ, E(ϕ(X)) < E(ϕ(Y )).

Given X ∈ L ∞ (Ω, R d ) a random vector of aggregate risk of dimension d ≥ 1, the set of admissible allocations or risk-sharing of X among p agents is denoted A(X):

A(X) := {Y = (Y 1 , ..., Y p ) ∈ L ∞ (Ω, R d ) : p i=1 Y i = X}.
For simplicity, the dependence of A(X) on the number p of agents does not appear explicitely. A concept of dominance for allocations of X is next defined.

Definition 2.3. For d ≥ 1, let X = (X 1 , ..., X p ) and Y := (Y 1 , ..., Y p ) be in A(X). Then X is said to dominate Y if X i Y i for every i ∈ {1, ..., p}. If, in addition there is an i ∈ {1, ..., p} such that X i strictly dominates Y i , then X is said to strictly dominate Y. An allocation X ∈ A(X) is Paretoefficient (for the concave order) if there is no allocation in A(X) that strictly dominates X.

It may easily be verified that dominance of allocations can also be defined as follows. Let X and Y be in A(X), then X dominates Y if and only if

E( p i=1 ϕ i (X i )) ≤ E( p i=1 ϕ i (Y i )) (2.1)
for every collection of convex functions ϕ i : R d → R. Moreover X strictly dominates Y if and only if the previous inequality is strict for some collection of convex functions ϕ i : R d → R (equivalently from lemma 2.2, it is equivalent to require that the inequality is strict for every collection of strictly convex functions). Therefore, if X is the unique solution of the problem inf

p i=1 E(w i (Y i )) : (Y 1 , ..., Y p ) ∈ A(X)
for some collection of convex functions ϕ i , then X is efficient. In particular, if X is the solution of 2.1 for some collection of strictly convex functions ϕ i , then X is efficient.

Remark 2.4. Note that (for d = 1) the concave order coincides with second order stochastic dominance on A(X). Indeed if (X 1 , ..., X p ) and (Y 1 , ..., Y p ) belong to A(X) and if X i 2 Y i for every i, then for all i, E(X

i ) ≥ E(Y i ). Since i E(X i ) = i E(Y i ) = E(X), one obtains that E(X i ) = E(Y i
) for all i and, as recalled above, the two notions of dominances coincide on random variable with same expectations.

Finally, recall that in the univariate case, comonotonicity is defined by Definition 2.5. Let X 1 and X 2 be two real-valued random variables on (Ω, F, P), then the pair (X 1 , X 2 ) is comonotone if

(X 1 (ω ′ ) -X 1 (ω))(X 2 (ω ′ ) -X 2 (ω)) ≥ 0 for P ⊗ P-a.e. (ω, ω ′ ) ∈ Ω 2 .
An R p -valued random vector (X 1 , ..., X p ) on (Ω, F, P) is said to be comonotone if (X i , X j ) is comonotone for every (i, j) ∈ {1, ..., p} 2 .

It is well-known that comonotonicity of (X 1 , ..., X p ) is equivalent to the fact that each X i can be written as a nondecreasing function of the sum i X i (see for instance Denneberg [START_REF] Denneberg | Non-additive Measures and Integral[END_REF]). The extension of this notion to the multivariate case (i.e when each X i is R d -valued) is not immediate and will be addressed in section 4.

For d = 1, the set of comonotone allocations in A(X) will be denoted com(X). Therefore (X 1 , ..., X p ) ∈ com(X) if and only if there are nondecreasing functions f i summing to the identity such that X i = f i (X). Note that the functions f i 's are all 1-Lipschitz and that allocations in com(X) are 1-Lipschitz functions of X.

Rearrangement inequalities and comonotonicity in the univariate case

A fundamental tool for the univariate analysis is a supermodular version of Hardy-Littlewood's inequality which we now restate. For this, recall the concepts of nondecreasing rearrangement of f : [0, 1] → R with respect to the Lebesgue measure and that of a submodular function. Two Borel functions on [0, 1], f and g, are equimeasurable with respect to the Lebesgue measure denoted λ, if, for any uniformly distributed (on [0, 1]) random variable U , f (U ) and g(U ) have same distribution. Given f an integrable function on [0, 1], there exists a unique right-continuous nondecreasing function denoted f which is equimeasurable to f , f called the nondecreasing rearrangement of f (with respect to the Lebesgue measure).

A function

L : R 2 → R is submodular if for all (x 1 , y 1 , x 2 , y 2 ) ∈ R 4 such that x 2 ≥ x 1 and y 2 ≥ y 1 : L(x 2 , y 2 ) + L(x 1 , y 1 ) ≤ L(x 1 , y 2 ) + L(x 2 , y 1 ). (2.2) It is strictly submodular if for all (x 1 , y 1 , x 2 , y 2 ) ∈ R 4 such that x 2 > x 1 and y 2 > y 1 : L(x 2 , y 2 ) + L(x 1 , y 1 ) < L(x 1 , y 2 ) + L(x 2 , y 1 ). (2.3) A function L ∈ C 2 is submodular if and only if ∂ 2 xy L(x, y) ≤ 0 for all (x, y) ∈ R 2 . If ∂ 2
xy L(x, y) < 0 for all (x, y) ∈ R 2 , then L is strictly submodular. Important examples of submodular functions are as follows. If ϕ : R → R is convex (strictly convex) and L(x, y) = ϕ(x -y), then L is submodular (strictly submodular). Similarly (x, y) → u(x + y) is submodular for any concave u.

The submodular version of Hardy-Littlewood's inequality then reads as:

Lemma 2.6. Let f and g be in L ∞ ([0, 1], B, λ) and f , g be their nondecreasing rearrangements and L be submodular. One then has, for any random variable U uniformly distributed on [0, 1]

E(L( f (U ), g(U ))) ≤ E(L(f (U ), g(U ))).
Moreover if L is continuous and strictly submodular, then the inequality is strict unless f and g are comonotone, that is fulfill:

(f (t) -f (t ′ ))(g(t) -g(t ′ )) ≥ 0 λ ⊗ λ-a.e. .
Let us give simple applications of Lemma 2.6 that will be very useful for the construction of comonotone allocations dominating a given allocation.

Lemma 2.7. Let f be in L ∞ ([0, 1], B, λ) and f be its nondecreasing rearrangement. Then, for any uniformly distributed random variable U and any increasing and bounded function g on [0, 1], one has

1. g(U ) -f (U ) g(U ) -f (U ), with strict dominance if f is decreasing, 2. g(U ) -f (U ) L p ≤ g(U ) -f (U ) L p for any p ∈ [1, ∞]. 3. If 0 ≤ f ≤ id, then 0 ≤ f ≤ id.
Proof. Letting ϕ : R → R be convex (strictly) and L(x, y) = ϕ(x -y), then L is submodular (strictly). From Lemma 2.6, one has

E(ϕ(g(U ) -f (U ))) ≤ E(ϕ(g(U ) -f (U ))
) with a strict inequality whenever ϕ is strictly convex and f is not nondecreasing, proving the first assertion. To prove the second assertion, take ϕ(x) = |x| p for any p ∈ [1, ∞[, the case p = ∞ is obtained by passing to the limit. To prove the last statement, first remark that if f ≥ 0 then f ≥ 0 since it is equimeasurable to f . Then define the submodular function

(x, y) → (x -y) + . If f ≤ id , it follows from lemma 2.6 that 0 = E((f (U ) -U ) + ) ≥ E(( f (U ) -U ) + ) so that f ≤ id.

Characterization of comonotonicity by maximal correlation

We now provide another characterization of comonotonicity based on the notion of maximal correlation. From now on, assume that the underlying probability space (Ω, F, P) is non-atomic which means that there is no A ∈ F such that for every

B ∈ F if P(B) < P(A) then P(B) = 0. It is well-known that (Ω, F, P) is non-atomic if and only if a random variable U ∼ U ([0, 1]) (that is U is uniformly distributed on [0, 1]
) can be constructed on (Ω, F, P).

Let Z ∈ L 1 (Ω, F, P) and define for every X ∈ L ∞ (Ω, F, P) (both Z and X being univariate here) the maximal correlation functional:

̺ Z (X) := sup X∼X E(Z X) = sup Z∼Z E( ZX) = sup Z∼Z, X∼X E( Z X).
(2.4)

The functional ̺ Z has extensively been discussed in economics and in finance, therefore only a few useful facts are recalled. Let F -1 X be the quantile function of X, that is the pseudo-inverse of distribution function F X ,

F -1 X (u) := inf {y : F X (y) > u} .
From Hardy-Littlewood's inequalities, one has

̺ Z (X) = 1 0 F -1 X (t)F -1 Z (t)dt
and the supremum is achieved by any pair ( Z, X) of comonotone random variables (F -1 Z (U ), F -1 X (U )) for U uniformly distributed. By symmetry, one can either fix Z or fix X. Fixing for instance Z, the supremum is achieved by

F -1 X (U ) where U ∼ U ([0, 1]) and satisfies Z = F -1 Z (U ). When Z is non- atomic, there exists a unique U = F Z (Z) such that Z = F -1
Z (U ) and the supremum is uniquely attained by the non-decreasing function of Z, F -1

X • F Z (Z): ̺ Z (X) = E(ZF -1 X • F Z (Z)) (2.5)
Clearly ̺ µ is a subadditive functional and

̺ Z i X i ≤ i ̺ Z (X i ). (2.6) Proposition 2.8. Let (X 1 , ..., X p ) be in L ∞ (Ω, F, P).
The following assertions are equivalent:

1. (X 1 , ..., X p ) are comonotone, 2. for any Z ∈ L 1 (Ω, F, P) nonatomic,

̺ Z i X i = i ̺ Z (X i ) , (2.7) 
3. For some Z ∈ L 1 (Ω, F, P) nonatomic, (2.7) holds true.

Proof. For the sake of simplicity, we restrict ourselves to p = 2 and set

(X 1 , X 2 ) = (X, Y ). 1 implies 2 for any Z since F -1 X+Y = F -1 X + F -1
Y for X and Y comonotone. To show that 3 implies 1, assume that for some Z non atomic, one has (2.7) or equivalently from (2.6) that

̺ Z (X + Y ) ≥ ̺ Z (X) + ̺ Z (Y )
Let Z X+Y (resp Z X and Z Y ) be distributed as Z and solve sup Z∼Z E( ZX) (resp ̺ Z (X) and ̺ Z (Y )). One then has:

E(Z X+Y (X + Y )) ≥ E(Z X X) + E(Z Y Y ) As E(Z X+Y X) ≤ E(Z X X) and E(Z X+Y Y ) ≤ E(Z Y Y ), it comes E(Z X+Y X) = E(Z X X) = ̺ Z (X) and E(Z X+Y Y ) = E(Z Y Y ) = ̺ Z (Y ), hence from (2.5), X = F -1 X • F Z X+Y (Z X+Y )) and Y = F -1 Y • F Z X+Y (Z X+Y )) proving their comonotonicity.
Proposition 2.8 was the starting point of Ekeland, Galichon and Henry [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF], for providing a multivariate generalization of the concept of comonotonicity. In the sequel we shall further discuss this multivariate extension and compare it with the one proposed in the present paper.

3 The univariate case

An extension of Landsberger and Meilijson's dominance result

A landmark result, originally due to Landsberger and Meilijson [START_REF] Landsberger | Comonotone allocations, Bickel Lehmann dispersion and the Arrow-Pratt measure of risk aversion[END_REF] states that any allocation is dominated by a comonotone one. The original proof was carried in the discrete case for two agents and the results were extended to the general case by approximation. We give a different proof based on rearrangements, which is of interest per se since it does not require approximation arguments and slightly improves on the original statement by proving strict dominance of non-comonotone allocations. Like in Landsberger's and Meilijson's work, our argument is constructive in the case of two agents -but the two constructions are different. Contrary to Landsberger and Meilijson, one needs however to assume, as before that the probability space (Ω, F, P) is non-atomic.

Theorem 3.1. Let X be a bounded real-valued random variable on the nonatomic probability space (Ω, F, P) and let X = (X 1 , ..., X p ) ∈ A(X) be an allocation. There exists a comonotone allocation in A(X) that dominates X. Moreover, if X is not comonotone, then there exists an allocation that strictly dominates X.

Proof. Let us start with the case p = 2 and let (X 1 , X 2 ) ∈ A(X). It is well known that X can be written as X = F -1 X (U ) with U uniformly distributed and F -1 X is nondecreasing. By Jensen's conditional inequality E(X i |X) dominates X i and thus one may assume that the X i 's are functions of X hence of U :

X 1 = f 0 (U ), X 2 = g 0 (U ), f 0 (x) + g 0 (x) = F -1 X (x), ∀x ∈ [0, 1]
for Borel and bounded functions f 0 and g 0 . Let us then define

X 1 1 = f 1 (U ), X 1 2 = g 1 (U ) := F -1 X (U ) -f 1 (U ), with f 1 := f 0 .
By construction, X 1 1 ∼ X 1 and it follows from lemma 2.7 that X 1 2 dominates X 2 . Let us also remark that if (X 1 , X 2 ) is not comonotone, then either f 0 or g 0 is not nondecreasing. Let us assume without loss of generality that f 0 is not nondecreasing. It thus follows again from lemma 2.7 that X 1 2 strictly dominates X 2 . One then defines a sequence (X k 1 , X k 2 ) by taking alternated rearrangements as follows:

(X k 1 , X k 2 ) = (f k (U ), g k (U ))
with for every k ∈ N:

f 2k+1 = f 2k , g 2k+1 = F -1 X -f 2k , g 2k+2 = g 2k+1 , f 2k+2 = F -1 X -g 2k+2 .
By construction, the sequence (X k 1 , X k 2 ) belongs to A(X) and its terms are monotone for the concave order. Moreover, the sequences f k and g k are bounded in L ∞ (use lemma 2.6 again). It thus follows from Helly's theorem that the sequences of nondecreasing functions (f 2k+1 ) and (g 2k ) admit (pointwise and in L p ) converging subsequences. Moreover since (f k (U )) is monotone for the concave order if f and f ′ are two cluster points of (f 2k+1 ), then f (U ) and f ′ (U ) have same law hence f = f ′ since both are nondecreasing. This proves that the whole sequence (f 2k+1 ) converges to some nondecreasing f and similarly, the whole sequence (g 2k ) converges to some nondecreasing g.

Since (f (U ), F -1 X (U ) -f (U )) and (F -1 X (U ) -g(U ), g(U )) are limit points of the sequence (X k 1 , X k 2 )
) that is monotone for the concave order then one has

f (U ) ∼ F -1 X (U ) -g(U ) and g(U ) ∼ F -1 X (U ) -f (U ) and then f = F -1 X -g, g = F -1 X -f . Now, if F -1
X -g = f were to hold true, then by lemma 2.7, F -1 X -f would strictly dominate g which is absurd. Thus f = F -1 X -g and the whole sequence (X k 1 , X k 2 ) therefore converges to the comonotone allocation (f (U ), g(U )) that dominates (X 1 , X 2 ). Moreover, this dominance is strict if (X 1 , X 2 ) is not itself comonotone since in this case (up to switching the role of X 1 and X 2 ) we have seen that (X 1 1 , X 1 2 ) already strictly dominates (X 1 , X 2 ).

Let us now treat the case p = 3, the case p ≥ 4 generalizes straightforwardly by induction. Let (X 1 , X 2 , X 3 ) ∈ A(X), it follows from the previous step that there are F 1 and F 2 in A(X) with each F i being a nondecreasing functions of X and such that F 1 dominates X 1 + X 2 and F 2 dominates X 3 . Since F 1 dominates X 1 + X 2 , there is a bistochastic linear operator T (see [START_REF] Chong | Equimeasurable Rearrangements of functions[END_REF]) such that F

1 = T (X 1 + X 2 ) = T (X 1 ) + T (X 2 ). Let us then define Y 1 = T (X 1 ) and Y 2 = T (X 2 ), one has Y 1 + Y 2 = F 1 and Y i dominates X i i = 1, 2.
It follows from the previous step that there are Z 1 and Z 2 summing to F 1 , comonotone (hence nondecreasing in F 1 hence in X) such that Z i dominates Y i for i = 1, 2. Set then Z 3 := F 2 , one then has (Z 1 , Z 2 , Z 3 ) is comonotone, belongs to A(X) and dominates (X 1 , X 2 , X 3 ).

Let us finally prove that dominance can be made strict if the initial allocation is not comonotone. Let X = (X 1 , ..., X p ) ∈ A(X) and let us assume that X is not comonotone. It follows from the previous steps that there is a Y = (Y 1 , ..., Y p ) ∈ A(X) that is comonotone and dominates X. Since X is not comonotone there is an i for which X i = Y i , and then the allocation (X + Y)/2 strictly dominates X. There is finally a comonotone allocation Z ∈ A(X) that dominates (X + Y)/2 and thus strictly dominates X. Remark 3.2. Theorem 3.1 may be also applied if aggregate risk is non negative and allocations are restricted to be non negative. Indeed, from lemma 2.7, if X 1 ≥ 0 and X 2 ≥ 0, then for each k, X k 1 ≥ 0, X k 2 ≥ 0 and non negativity holds true for their pointwise limit. As far as the second step of the proof of theorem 3.1 is concerned, it is enough to remark that, if Z X and X ≥ 0, then E(Z -) ≤ E(X -) = 0 so that Z ≥ 0.

Application to efficiency for the concave order

Theorem 3.3. Let X be a bounded real-valued random variable on the nonatomic probability space (Ω, F, P) and let X = (X 1 , ..., X p ) ∈ A(X). Then the following statements are equivalent:

1. X is efficient, 2. X ∈ com(X),
3. there exist continuous and strictly convex functions (ψ 1 , ..., ψ p ) such that X solves

inf{ p i=1 E(ψ i (Y i )) : p i=1 Y i = X},
4. for every Z ∈ L 1 (Ω, F, P) nonatomic one has

̺ Z p i=1 X i = p i=1 ̺ Z (X i ) ,
where ̺ Z is the maximal correlation functional defined by (2.4).

Proof. 1 implies 2 : the comonotonicity of efficient allocations of X followsdirectly from theorem 3.1. 2 implies 3: if X = (X 1 , ..., X p ) ∈ com(X), let us write X i = f i (X) for some nondecreasing and 1-Lipschitz functions f i : [m, M ] → R (with M := EsssupX, m := EssinfX) summing to the identity map. Extending the f i 's by

f i (x) = f i (M ) + (x -M )/p for x ≥ M and f i (x) = f i (m)+(
x-m)/p for x ≤ m one gets 1-Lipschitz nondecreasing functions summing to the identity everywhere. Let ϕ(x) :=

x 0 f i (s)ds for every x. The functions ϕ i are convex and C 1,1 and have quadratic growth at ∞. The convex conjugates ψ i := ϕ * i are strictly convex and continuous functions and by construction, one has for every i, X ∈ ∂ψ i (X i ) a.s., which implies that (X 1 , ..., X p ) minimizes E( i ψ i (Y i )) subject to i Y i = X which proves 3. 3 implies 1 since the functions ψ i 's are strictly convex, if (X 1 , ..., X p ) satisfies 3 then it is an efficient allocation of X. Finally, the equivalence between 2 and 4 follows from proposition 2.8.

The following properties of efficient allocations are immediate consequences of the previous result: Corollary 3.4. let (Ω, F, P) be non-atomic, then the set of efficient allocations of X is convex and compact in L ∞ up to zero-sum translations (which means that it can be written as {(λ 1 , ..., λ p ) :

p i=1 λ i = 0} + A 0 with A 0 compact in L ∞ ). In particular, the set of efficient allocations of X is closed in L ∞ .
Proof. Let M := EsssupX, m := EssinfX and define K 0 as the set of functions (f 1 , ..., f p ) ∈ C([m, M ], R p ) such that each f i nondecreasing, f i (0) = 0 and p i=1 f i (x) = x for every x ∈ [m, M ] and let

K := K 0 + {(λ 1 , ..., λ p ) : p i=1 λ i = 0}.
Convexity follows from the theorem 3. Convexity and compactness of efficient allocations are quite remarkable features and as will be shown later, they are no longer true in the multivariate case. Note also that efficient allocations are regular : they are 1-Lipschitz functions of aggregate risk. Finally, it follows from theorems (3.1) and (3.3) that any allocation is dominated by an efficient one.

The multivariate case

The aim of this section is to generalize to the multivariate case, the results obtained in the univariate case and more particularly Landsberger and Meilijson's comonotone dominance principle that 1. any allocation is dominated by a comonotone allocation, 2. any non comonotone allocation is strictly dominated by a comonotone allocation.

What is not clear a priori, to address these generalizations, is what the appropriate notion of comonotonicity is in the multivariate framework. Let us informally give an intuitive presentation of the approach developed in the next paragraphs. A natural generalization of monotone maps in several dimensions is given by subgradients of convex functions. It is therefore tempting to say that an allocation (X 1 , ..., X p ) ∈ A(X) is comonotone whenever there is a common random vector Z (interpreted as a price) and convex functions f i (interpreted as individual costs) such that X i ∈ ∂f i (Z) a.s. for every i. Formally, this is nothing but the optimality condition for the risk-sharing or infimal convolution problem inf X∈A(X)

p i=1 E(ψ i (X i )) (4.1)
where ψ i = f * i (the Legendre Transform of f i ). This suggests to define comonotone allocations as the allocations that solve a risk-sharing problem of the type above. This has a natural interpretation in terms of risk-sharing but one has to be cautious about such a definition whenever the functions ψ i are degenerate 1 . Indeed, if all the functions ψ i are constant, then any allocation is comonotone in that sense! This means that one has to impose strict convexity in the definition. We shall actually go one step further in quantifying strict convexity as follows. Given an arbitrary collection w = (w 1 , ..., w p ) of strictly convex functions, we will say that an allocation is w-strictly comonotone whenever it solves a risk-sharing problem of the form (4.1) for some functions ψ i 's which are more convex than the w i 's (i.e. ψ i -w i is convex for every i). Allocations which can be approached (in law) by strictly w-comonotone will be called comonotone. Since they solve a strictly convex risk-sharing problem, w-strictly comonotone allocations are efficient and the main goal of this section will be to generalize the univariate comonotone dominance result. We shall indeed prove that for any allocation X ∈ A(X) and any choice of w, there is a w-comonotone allocation Y ∈ A(X) that dominates X ( strictly whenever X is not itself w-comonotone). The full proof is detailed in section 6, but its starting point is quite intuitive and consists in studying the optimization problem:

inf p i=1 E(w i (Y i )) : (Y 1 , ..., Y p ) ∈ A(X), Y i X i , i = 1, ..., p . (4.2)
Clearly, the solution Y of (4.2) dominates X. A careful study of the dual of (4.2) will enable us to prove that Y is necessarily w-comonotone giving the desired multivariate extension of Landsberger and Meilijson's comonotone dominance principle. Note also, that our proof is constructive since it relies on an explicit (although difficult to solve in practice) convex minimization problem. This section is organized as follows. In paragraph 4.1, we shall reformulate the problem ? in terms of joint laws rather than with random allocations. Problem (4.2) is then linear. A concept of multivariate comonotonicity is defined in paragraph 4.2. Paragraph 4.3 states the multivariate comonotone dominance result, i.e. the multivariate generalization of Landsberger and Meilijson's results. Finally, in paragraph 4.4, a few comments on multivariate comonotonicity are made and important qualitative differences between the univariate and multivariate cases emphasized.

From random vectors to joint laws

From now on, it is assumed that the underlying probability space (Ω, F, P) is non-atomic, that there are p agents and that risk is d-dimensional. X is a given R d -valued L ∞ random vector modelling an aggregate random multivariate risk, while X = (X 1 , ...., X p ) is a given L ∞ sharing of X among the p agents that is

X = p i=1 X i .
Let γ 0 := L(X) be the joint law of X and m 0 := L(X). Let γ be a probability measure on (R d ) p and γ i denote its i-th marginal. Note that, L(Y i ) is the i-th marginal of L(Y). Let Π Σ γ be the probability measure on R d defined by

R d ϕ(z)dΠ Σ γ(z) = R d×p ϕ( p i=1 x i )dγ(x 1 , ..., x p ), ∀ϕ ∈ C 0 (R d , R). (4.3)
(where C 0 denotes the space of continuous function that tend to 0 at ∞). It follows from this definition that if

γ = L(Y), then Π Σ γ = L( Y i ). Hence, if Y ∈ A(X) and γ = L(Y), then Π Σ γ = m 0 = L(X). In other words, if γ = L(Y) with Y ∈ A(X), then ϕ(x 1 + ... + x d )dγ(x 1 , ..., x d ) = ϕ(z)dm 0 (z), ∀ϕ ∈ C 0 (R d , R). (4.4)
Since Y is bounded, γ is compactly supported. It follows from the next lemma that {L(Y), Y ∈ A(X)} coincides with the set of compactly supported probability measures γ on (R d ) p that satisfy (4.4): Lemma 4.1. If (Ω, F, P) is non-atomic, γ is a compactly supported probability measure on (R d ) p and satisfies (4.4), then there exists a random vector

Y = (Y 1 , ..., Y p ) ∈ A(X) such that L(Y) = γ. Hence {L(Y), Y ∈ A(X)} = M(m 0 )
where M(m 0 ) is the set of compactly supported probability measures on (R d ) p such that Π Σ γ = m 0 = Π Σ γ 0 .

In the sequel, joint laws M(m 0 ) will be used instead of admissible allocations A(X). For compactness issues, a closed ball B ∈ R d centered at 0 such that m 0 is supported by B p is chosen and attention is restricted to the set of elements of M(m 0 ) supported by pB (meaning that only risk-sharings of X whose components take value in B will be considered). Denote then

M B (m 0 ) := {γ ∈ M(m 0 ) : γ(B p ) = 1}.

Efficiency and comonotonicity in the mutivariate case

Let C be the cone of convex and continuous functions on B, dominance and efficiency in terms of joint laws are defined as follows:

Definition 4.2. Let γ and π be in M B (m 0 ), then γ dominates π whenever

B p p i=1 ϕ i (x i )dγ(x 1 , ..., x p ) ≤ B p p i=1 ϕ i (x i )dπ(x 1 , ..., x p ) (4.5)
for every functions (ϕ 1 , ..., ϕ p ) ∈ C p . If, in addition, inequality (4.5) is strict whenever the functions ϕ i are further assumed to be stricly convex, then γ is said to dominate strictly π. The allocation γ ∈ M B (m 0 ) is efficient if there is no other allocation in M B (m 0 ) that strictly dominates it.

Given γ 0 ∈ M B (m 0 ), it is easy to check (taking test functions ϕ i = |x i | n and letting n → ∞) that any γ ∈ M(m 0 ) dominating γ 0 (without the a priori restriction that it is supported on B p ) actually belongs to M B (m 0 ). Hence the choice to only consider allocations supported by B p is in fact not a restriction. Indeed, if γ is supported by B p , then efficiency of γ in the usual sense, i.e. without restricting to competitors supported by B p , is equivalent to efficiency among competitors supported by B p and is therefore, the translation in terms of measures of 2.1.

To define comonotonicity, let ψ := (ψ 1 , ..., ψ p ) be a family of strictly convex continuous functions (defined on B). For any x ∈ pB, let us consider the risk sharing (or infimal convolution) problem:

i ψ i (x) := inf p i=1 ψ i (y i ) : y i ∈ B, p i=1 y i = x .
This problem admits a unique solution which will be denoted

T ψ (x) := (T 1 ψ (x), ..., T p ψ (x)).
Note that, by definition

p i=1 T i ψ (x) = x, ∀x ∈ pB. (4.6) 
The map x → T ψ (x) gives the optimal way to share x so as to minimize the total cost when each individual cost is ψ i . It defines the efficient allocation T ψ (X) := (T 1 ψ (X), ..., T p ψ (X)) which joint law γ ψ is characterized by:

B p f (y 1 , ..., y p )dγ ψ (y) := pB f (T ψ (x))dm 0 (x)
for any f ∈ C(B p ). One then defines comonotonicity as follows:

Definition 4.3. An allocation γ ∈ M B (m 0 ) is strictly comonotone if there exists a family of strictly convex continuous functions ψ := (ψ 1 , ..., ψ p ) such that γ = γ ψ . Given a family of strictly convex functions in C 1 (B) w := (w 1 , ..., w p ), an allocation γ ∈ M B (m 0 ) is w-strictly comonotone if there exists a family of convex continuous functions ψ := (ψ 1 , ..., ψ p ) such that ψ i -w i ∈ C for every i and γ = γ ψ .

We shall soon show that strictly comonotone random vectors are in the image of monotone operators (subgradients of convex functions) evaluated at the same random vector, p(X), which justifies the terminology "comonotonicity" in the multivariate setting. By definition, any strictly comonotone allocation is efficient. As the set of strictly comonotone allocations is not closed, we are lead to introduce another definition. Definition 4.4. An allocation γ ∈ M B (m 0 ) is comonotone if there exists a sequence of strictly comonotone allocations that weakly star converges to γ. Given a family of strictly convex functions in C 1 (B), w := (w 1 , ..., w p ), an allocation γ ∈ M B (m 0 ) is w-comonotone, if there exists a sequence of w-strictly comonotone allocations that weakly star converges to γ. Definitions 4.3 and 4.4 will be discussed in more details in paragraph 4.4. To understand the previous notions of comonotonicity and in particular why these allocations are called comonotone, it is important to understand the structure of the maps T ψ .

Let us first ignore regularity issues and further assume that the functions ψ i are smooth as well as their Legendre transforms ψ * i . Without the constraints x i ∈ B, then the optimality conditions imply that there is some multiplier p = p(x) such that

∇ψ i (T i ψ (x)) = p, hence, T i ψ (x) = ∇ψ * i (p).
Using (4.6), one gets

x = p j=1 ∇ψ * j (p), hence, p = ∇( p j=1 ψ * j ) * (x),
thus,

T i ψ (x) = ∇ψ * i ∇( p j=1 ψ * j ) * (x) .
The maps T i ψ are therefore composed of gradients of convex functions that sum up to the identity. In dimension 1, gradients of convex functions are simply monotone maps (and so are composed of such maps). In higher dimensions, a richer and more complicated structure emerges that will be discussed later.

Considering now the full problem with the constraints that x i ∈ B but still assume that the ψ i 's are smooth then the optimality conditions read as the existence of a p and a λ i ≥ 0 such that

∇ψ i (T i ψ (x)) = p -λ i T i ψ (x)
together with the complementary slackness conditions

λ i = 0, if T i ψ (x) lies in the interior of B.

A multivariate dominance result and equivalence between efficiency and comonotonicity

Let us fix an allocation X = (X 1 , ..., X p ) ∈ A(X) such that X ∈ B p a.s. and set γ 0 = L(X) so that γ 0 ∈ M B (m 0 ). A family of C 1 functions w := (w 1 , ..., w p ) is also given, each of them being strictly convex on B as in section 4.2. The first main result in the multivariate case is a dominance result that is very much in the spirit of dimension 1, namely that every allocation is dominated by an w-comonotone one and that the dominance is strict if the initial allocation is not itself w-comonotone.

Theorem 4.5. Let γ 0 = L(X) and w be as above. Then there exists γ ∈ M(m 0 ) that is w-comonotone and dominates γ 0 . Moreover if γ 0 is not itself w-comonotone, then γ strictly dominates γ 0 .

The proof of this result will be given in section 6. Without giving details at this point, let us explain the main arguments of the proof:

• Consider the optimization problem: inf p i=1 E(w i (Y i )) : (Y 1 , ..., Y p ) ∈ A(X), Y i X i , i = 1, ..., p (4.7) 
This problem admits a unique solution Y with law γ = L(Y), which is efficient and dominates γ 0 = L(X).

• One then proves that γ is necessarily w-comonotone, by showing that that w-comonotonicity is an optimality condition for (4.7). As usual in convex programming, optimality conditions can be obtained by duality. This leads to consider the problem inf

E p i=1 ψ i (X i ) -i ψ i ( p i=1 X i ) : ψ i -w i convex, i = 1, ..., p . (4.8 
) By a careful study of (4.8), one can prove (but this is rather technical) that γ is w-comonotone.

• It remains to show that γ strictly dominates γ 0 unless γ 0 is itself wcomonotone. From lemma 2.2, it suffices to show that Y = X. But if γ 0 is not w-comonotone, then X cannot be optimal for (4.7) and thus Y = X.

In terms of efficiency, the following thus holds: holds almost surely. Therefore, the present notion of multivariate comonotonicity approximately consists in declaring X 1 and X 2 comonotone if and only if there is some measure µ such that X 1 and X 2 are µ-comonotone.

There are, however, qualifications to be added. Indeed, [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF] require some regularity on the measure µ. In the current setting no regularity restrictions are imposed on µ; but instead restrictions on the convexity of ψ 1 and ψ 2 have to be imposed to define the notion of w-comonotonicity before passing to the limit. Although not equivalent, these two sets of restrictions originate from the same concern: two random vectors are always optimally coupled with very degenerate distributions, such as the distribution of constant vectors. Therefore one needs to exclude these degenerate cases in order to avoid a definition which would be void of substance. This is the very reason why the strictly convex functions w i 's had to be introduced.

Comonotone allocations do not form a bounded set. In the scalar case, comonotone allocations are parametrized by the set of nondecreasing functions summing to the identity map. This set of functions is convex and equilipschitz hence compact (up to adding constants summing to 0). This compactness is no longer true in higher dimension (at least when w = 0 and we work on the whole space instead of B) and we believe that this is a major structural difference with respect to the univariate case. For simplicity assume that p = 2, as outlined in paragraph 4.2, a comonotone allocation (X 1 , X 2 ) of X is given by a pair of functions that are composed of gradient of convex functions and sum to the identity map. It is no longer true, in dimension 2 that this set of maps is compact (up to constants). Indeed let us take n ∈ N * , ψ 1 and ψ 2 quadratic

ψ i (x) = 1 2 S -1 i x, x , i = 1, 2, x ∈ R 2 with S 1 = 1 2 1 8 √ n 1 8 √ n 1 2n , S 2 = 1 2 -1 8 √ n -1 8 √ n 1 2n
, the corresponding map T ψ is linear and T 1 ψ is given by the matrix

S 1 (S 1 + S 2 ) -1 = 1 2 √ n 8 1 8 √ n 1 2
this is an unbouded sequence of matrices which proves the unboundedness claim.

• the intrinsic difficulty of the multivariate case, as many features of the univariate case do not extend to higher dimensions: computational ease, the compactness and convexity of efficient risk-sharing allocations.

• the need for qualification. Contrary to the univariate case, the need to quantify strict convexity as we did in this paper comes by no coincidence. In fact, just as the authors of [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF] impose regularity conditions on their "baseline measure" to avoid degeneracy, we work with cones which are strictly included in the cone of convex functions by quantifying the strict convexity of the functions used.

Getting back to our initial motivation, namely, finding testable implications of efficiency for the concave order, we already emphasized in paragraph 4.3 that one obtains as a byproduct of our variational approach a numerical criterion that could in principle be used as a test statistic for comonotonicity and thus for efficiency. We thus believe that the present work paves the way for an interesting research agenda. First of all, an efficient algorithm to decide whether a given allocation in the multivariate case is comonotone or not remains to be discovered -we are currently investigating this point. The convex nature of the underlying optimization problem helps, but the constraint of problem (P * ) are delicate to handle numerically. Next, we would like to investigate the empirical relevance of the theory by taking it to the data: do observations of realized allocations of risk satisfy restrictions imposed by multivariate comonotonicity? As mentioned above, tests in the univariate case have been performed by [START_REF] Attanasio | Relative Wage Movements and the Distribution of Consumption[END_REF] and [START_REF] Townsend | Risk and Insurance in village india[END_REF] and suggest rejection. But there is hope that in the more flexible setting of multivariate risks, efficiency would be less strongly rejected. This is a research line we shall pursue in upcoming work.

Proofs

Proof of Lemma 2.2

Clearly 1 ⇒ 2 and 3 ⇒ 1 are obvious. To prove that 2 ⇒ 3, assume that 2 holds true. Let µ := L(X) and ν := L(Y ). These probability measures are supported by some closed ball B, and the Cartier-Fell-Meyer states that there is a measurable family of conditional probability measures (T x ) x∈B such that, T x has mean x and for every continuous function f , one has

E(f (Y )) = B f (y)dν(y) = B B f (y)dT x (y)dµ(x)
Since µ = ν, µ({x ∈ B : T x = δ x }) > 0 and from Jensen's inequality, one has that, for every strictly convex function ϕ,

E(ϕ(Y )) > E(ϕ(X))
which concludes the proof.

Proof of Lemma 4.1

For notational simplicity, let us assume d = 1, p = 2, X takes values in [0, 2] a.s. (so that m 0 has support in [0, 2]) and γ is supported by [0, 1] 2 . For every n ∈ N * and k ∈ {0, ..., 2 n+1 }, set

X n := 2 n+1 k=0 k 2 n 1 A k ,n , where A k,n := ω ∈ Ω : X(ω) ∈ k 2 n , k + 1 2 n and C k,n := (y 1 , y 2 ) ∈ [0, 1] 2 : y 1 + y 2 ∈ k 2 n , k + 1 2 n .
Let us decompose the strip C k,n into a partition by triangles

C k,n = k≤i+j≤k+1 T i,j k,n , T i,j k,n := C k,n ∩ i 2 n , i + 1 2 n × j 2 n , j + 1 2 n .
Since Π Σ (γ) = m 0 one has:

P(A k,n ) = γ(C k,n ) = k≤i+j≤k+1 γ(T i,j k,n )
and since (Ω, F, P) is non-atomic, it follows from Lyapunov's convexity theorem (see [START_REF] Lyapunov | Sur les fonctions-vecteurs completement additives[END_REF]) that there exists a partition of A k,n into measurable subsets A i,j k,n such that

γ(T i,j k,n ) = P(A i,j k,n ), ∀(i, j) ∈ {0, ..., 2 n } : k ≤ i + j ≤ k + 1. (6.1)
Choose (y 1 , y 2 ) i,j k,n ∈ T i,j k,n and define

Y n = (Y n 1 , Y n 2 ) := 2 n+1 k=0 k≤i+j≤k+1 (y 1 , y 2 ) i,j k,n 1 A i,j k,n
.

We may also choose inductively the partition of A k,n by the A i,j k,n to be finer and finer with respect to n. By construction, it then comes

max X n -X L ∞ , X n -Y n 1 -Y n 2 L ∞ , Y n+1 -Y n L ∞ ≤ 1 2 n so that Y n is a Cauchy sequence in L ∞ thus converging to some Y = (Y 1 , Y 2 ).
One then has Y 1 + Y 2 = X and passing to the limit in (6.1), it follows that L(Y) = γ.

Proofs and variational characterization for the multivariate dominance result

The proofs will very much rely on the following linear programming problem (which has its own interest):

(P * ) sup γ∈K(γ 0 ) - B p p i=1 w i (x i )dγ(x)
where K(γ 0 ) consists of all γ ∈ M B (m 0 ) such that for each i the marginal γ i dominates the corresponding marginal of γ 0 i.e.:

B p ϕ(x i )dγ(x) ≤ B p ϕ(x i )dγ 0 (x), ∀ϕ convex on B.
Problem (P * ) presents some similarities with the multi-marginal Monge-Kantorovich problem solved by Gangbo and Świȩch in [START_REF] Ganbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF]. In the optimal transport problem considered in [START_REF] Ganbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF], one minimizes the average of some quadratic function over joint measures having prescribed marginals whereas (P * ) includes dominance constraints on the marginals. To shorten notations, let us set η(x) := -p i=1 w i (x i ), ∀x = (x 1 , ..., x p ) ∈ B p (P * ) is the dual problem (see the next lemma for details) of (P) inf

B p p i=1 ϕ i (x i ) -ϕ 0 p i=1 x i dγ 0 (x), (ϕ 0 , ..., ϕ p ) ∈ E where E consists of all families ϕ := (ϕ 1 , ...., ϕ p , ϕ 0 ) ∈ C(B) p × C(pB) such ϕ i ∈ C and p i=1 ϕ i (x i ) -ϕ 0 p i=1 x i ≥ - p i=1 w i (x i ).
It will also be convenient to consider

(Q) inf J(ψ) , ψ = (ψ 1 , ..., ψ p ) : each ψ i is such that ψ i -w i is convex with J(ψ) := B p p i=1 ψ i (x i ) -i ψ i p i=1
x i dγ 0 (x).

Note that by construction J(ψ) ≥ 0 for every admissible ψ and J(ψ) = 0 if and only if γ 0 = γ ψ .

Lemma 6.1. The following holds

max(P * ) = inf(P) = inf(Q) - B p p i=1 w i (x i )dγ 0 (x)
Proof. Let us write (P) in the form inf ϕ=(ϕ 1 ,...,ϕp,ϕ 0 )∈C(B) p ×C(pB)

F (Λϕ) + G(ϕ)
where Λ is the linear continuous map

C(B) p × C(pB) → C(B p ) defined by Λϕ(x) := p i=1 ϕ i (x i ) -ϕ 0 p i=1 x i , ∀x = (x 1 , ..., x p ) ∈ B p ,
and F and G are the convex lsc (for the uniform norm) functionals defined respectively by

F (θ) = B p θdγ 0 if θ ≥ η +∞ otherwise .
for any θ ∈ C(B p ) and

G(ϕ) = 0 if (ϕ 1 , ..., ϕ p ) ∈ C p +∞ otherwise.
for any ϕ = (ϕ 1 , ..., ϕ p , ϕ 0 ) ∈ C(B) p × C(pB). Since η is bounded on B p , it is easy to see that inf(P) is finite and choosing ϕ of the form (M, 0, ..., 0) with M constant such that M ≥ η + 1 on B p , one has G(ϕ) = 0 and F continuous at Λϕ, it thus follows from Fenchel-Rockafellar's duality theorem (see for instance [START_REF] Ekeland | Convex analysis and variational problems[END_REF]) that one has

inf(P) = max γ∈M(B p ) -F * (γ 0 -γ) -G * (Λ * (γ -γ 0 )).
Note that the fact that the sup is attained in the primal is part of the theorem. The adjoint of Λ, Λ * is easily computed as : M(B p ) → M(B) p × M(pB) (where M denotes the space of Radon measures):

Λ * γ = (γ 1 , ..., γ p , -Π Σ γ), ∀γ ∈ M(B p ).
Direct computations give

F * (γ -γ 0 ) = -B p ηdγ if γ ≥ 0 +∞ otherwise . and G * (Λ * (γ -γ 0 )) = 0 if γ ∈ K(γ 0 ) +∞ otherwise .
One then has that (P * ) is the dual of (P) in the usual sense of convex programming and max(P * ) = inf(P).

To prove that inf

(P) = inf(Q) - B p p i=1 w i (x i )dγ 0 (x)
let us take ϕ admissible for (P) and set ψ i := w i + ϕ i for i = 1, .., p, the constraint then reads as

p i=1 ψ i (x i ) ≥ ϕ 0 p i=1 x i , ∀x ∈ B p .
Now in (P), one wants to make ϕ 0 as large as possible without violating this constraint, the best ϕ 0 given (ϕ 1 , ..., ϕ p ) is then

ϕ 0 = i ψ i ,
this proves the desired identity. Lemma 6.2. Let ψ i be such that ψ i -w i ∈ C for every i and g = (g 1 , ..., g p ) ∈ C p then

lim δ→0 + 1 δ [J(ψ + δg) -J(ψ)] = p i=1 B g i (x i )d(γ i 0 -γ i ψ ) = B p p i=1 g i (x i )d(γ 0 -γ ψ )(x)
Proof. For δ > 0, one first gets that

1 δ [J(ψ + δg) -J(ψ)] = p i=1 B g i (x i )d(γ i 0 )- pB 1 δ i (ψ i + δg i )(x) -i ψ i (x) dm 0 (x).
And let us remark that the integrand in the second term is bounded since g is. Let us then fix some (x 1 , ..., x p ) ∈ B p and set x = p i=1 x i , y i := T i ψ (x) and y δ i := T ψ+δg (x). Since p i=1 y i = p i=1 y δ i = x, it comes as a direct consequence of the definition of infimal convolutions that:

1 δ i (ψ i + δg i )(x) -i ψ i (x) ≤ p i=1 g i (y i ) (6.2) and 1 δ i (ψ i + δg i )(x) -i ψ i (x) ≥ p i=1 g i (y δ i ). (6.3) 
Using the compactness of B and the strict convexity of ψ i , it is easy to check that y δ i → y i as δ → 0 + . Therefore, from (6.2) and (6.3) one has lim

δ→0 + 1 δ i (ψ i + δg i )(x) -i ψ i (x) = p i=1 g i (T i ψ (x))
and this holds for every x ∈ pB. It then follows from Lebesgue's dominated convergence Theorem that lim

δ→0 + 1 δ [J(ψ + δg) -J(ψ)] = p i=1 B g i (x i )d(γ i 0 ) - p i=1 pB g i (T i ψ (x))dm 0 (x) = p i=1 B g i (x i )d(γ i 0 -γ i ψ ) = B p p i=1 g i (x i )d(γ 0 -γ ψ )(x).
It follows from the previous lemma that, if ψ solves (Q), then γ ψ dominates γ 0 . Hence, if one knew that (Q) possesses solutions, the existence of an ω-strictly comonotone allocation dominating γ 0 would directly follow. Unfortunately, it is not necessarily the case that the infimum in (Q) is attained-or at least we haven't been able to prove without additional conditions-the difficulty coming from the fact that minimizing sequences need not be bounded (see paragraph 4.4). Maybe additional assumptions on γ 0 (recall here that no assumption such as absence of atoms were made) would guarantee existence, but in the following, this difficulty will be overcome by using Ekeland's variational principle: Lemma 6.3. Letting ε > 0, there exists ψ ε admissible for (Q) such that

1. J(ψ ε ) ≤ inf(Q) + ε 2. lim sup ε→0 + B p p i=1 ϕ i (x i )d(γ ψε -γ 0 ) ≤ 0 for every (ϕ 1 , ..., ϕ p ) ∈ C p 3. lim inf ε→0 + B p p i=1 ϕ ε i (x i )d(γ ψε -γ 0 ) ≥ 0
for ϕ ε i = ψ i,ε -w i (these are convex functions by definition).

Proof. For ε > 0, let f ε be admissible for (Q) and such that J(f ε ) ≤ inf(Q) + ε.

Let then k ε > 0 be such that

lim ε→0 + εk ε [1 + f ε ] = 0 (for instance k ε = 1 ε 1/2 (1 + f ε )
). (6.4) It follows from Ekeland's variational principle (see [START_REF] Ekeland | On the variational principle[END_REF] and [START_REF] Aubin | Applied Nonlinear Analysis[END_REF]) that for every ε > 0, there is some ψ ε admissible for (Q) such that

ψ ε -f ε ≤ 1 k ε , J(ψ ε ) ≤ J(f ε ) ≤ inf(Q) + ε (6.5) 
(where h stands for the sum of the uniform norms of the h i 's) and: for every (ϕ 1 , ..., ϕ p ) ∈ C p . Let us finally prove the last assertion of the lemma; let us write ψ ε = ϕ ε + w with ϕ ε ∈ C p , then for δ ∈ (0, 1) one has ψ ε -δϕ ε = (1 -δ)ϕ ε + w and then one may apply (6.6) to ψ ε -δϕ ε , this yields 1 δ [J(ψ ε -δϕ ε ) -J(ψ ε )] ≥ -k ε ε ϕ ε letting δ → 0 + and arguing as in lemma 6.2, one gets:

J(ψ) ≥ J(ψ ε ) -k ε ε ψ -ψ ε , ∀ψ = (
B p p i=1 ϕ ε i (x i )d(γ ψε -γ 0 ) ≥ -k ε ε ϕ ε .
Thanks to (6.4) and (6.5), it follows that

k ε ε ϕ ε ≤ k ε ε( w + ψ ε -f ε + f ε ) ≤ k ε ε w +ε+k ε ε f ε → 0 as ε → 0 + .
This enables us to conclude that lim inf ε→0 + B p p i=1 ϕ ε i (x i )d(γ ψε -γ 0 ) ≥ 0. (6.9) Lemma 6.4. Let ψ ε be as in lemma 6.3 and set γ ε := γ ψε then up to some subsequence, γ ε weakly star converges to some γ (w-comonotone by construction) such that γ ∈ M B (m 0 ) and γ dominates γ 0 . Moreover γ solves (P * ).

Proof. By the Banach-Alaoglu-Bourbaki theorem, one may indeed assume that γ ε weakly star converges to some γ. Obviously, γ is w-comonotone and Π Σ γ = Π Σ γ 0 = m 0 hence γ ∈ M B (m 0 ). The fact that γ dominates γ 0 directly follows from letting ε → 0 + in (6.8). Let us finally prove that γ solves (P * ). Defining ϕ ε := ψ ε -w as in lemma 6.3 one has:

J(ψ ε ) = B p p i=1 ϕ ε i (x i )d(γ 0 -γ ε ) + B p
ηd(γ ε -γ 0 ) → inf(Q) as ε → 0 + .

Passing to the limit in (6.9) thus yields inf(Q) ≤ B p ηd(γ -γ 0 ) which with lemma 6.1 gives:

B p ηdγ ≥ inf(Q) + B p
ηdγ 0 = max(P * ) so that γ solves (P * ).

Lemma 6.5. Let γ be as in lemma 6.4, then:

1. if γ 0 solves (P * ) then γ 0 is w-comonotone, 2. γ strictly dominates γ 0 unless γ 0 is itself w-comonotone.

Proof. If γ 0 solves (P * ), it follows from lemma 6.1 that inf(Q) = 0. For any minimizing sequence ψ ε (not necessarily the one constructed in lemma 6.3) of (Q) one thus has 0 = lim ε→0 + J(ψ ε ) = lim x i dγ 0 (x).

By density, we may consider a minimizing sequence ψ ε such that each ψ ε belongs to C 1 (B). Let us fix (x 1 , ..., x p ) and set x := p i=1 x i , y ε := T ψε (x) can be characterized as follows : there is a p ∈ R d and nonnegative λ i 's such that ∇ψ i,ε (y ε i ) = p -λ i y ε i , λ i = 0 if y ε i / ∈ ∂B, The function θ i (modulus of strict convexity of w i ) is a nondecreasing function such that θ i (0) = 0 and θ i (t) > 0 for t > 0. Combining (6.10) and (6.11), one gets

p i=1 ψ i,ε (x i ) - p i=1 ψ i,ε (y ε i ) ≥ p i=1 ∇ψ i,ε (y ε i ) • (x i -y ε i ) + p i=1 θ i (|x i -y ε i |) = p • p i=1 (x i -y ε i ) - p i=1 λ i y ε i (x i -y ε i ) + p i=1 θ i (|x i -y ε i |) ≥ p i=1 θ i (|x i -y ε i |).
Hence the fact that J(ψ ε ) → 0 as ε → 0 + gives lim Hence, γ ψε weakly star converges to γ 0 which proves that γ 0 is w-comonotone.

Let us now prove 2. If γ 0 is not w-comonotone then by 1., it does not solve (P * ) and thus ηd(γ -γ 0 ) > 0 so that 

  3 and the convexity of K. Let us remark that elements of K 0 have 1-Lipschitz components and are bounded. The compactness of K in C([m, M ], R p ) then follows from Ascoli's theorem. The compactness and closedness claims directly follow.

  ψ 1 , ..., ψ p ) : ψ i -w i ∈ C, ∀i. (6.6) Taking ψ = ψ ε + δϕ with δ > 0 and ϕ ∈ C p in (6.6), dividing by δ and letting δ → 0 + , one thus gets thanks to lemma 6.2B p p i=1 ϕ i (x i )d(γ 0 -γ ψε ) ≥ -k ε ε ϕ .(6.7)Using (6.4) and letting ε → 0 + one then obtains: x i )d(γ ψε -γ 0 ) ≤ 0 (6.8)

ε→0 + B p p i=1 ψ

 i=1 i,ε (x i )i ψ i,

  hand since w i is strictly convex and ψ i,ε -w i ∈ C for any a and b in B 2 one hasψ i,ε (b) -ψ i,ε (a) ≥ ∇ψ i,ε (a) • (b -a) + θ i (|b -a|) (6.11)where the function θ i is defined by, for any t ∈ [0, diam(B)]θ i (t) := inf{w i (b) -w i (a) -∇w i (a) • (b -a), (a, b) ∈ B 2 , |a -b| ≥ t}.

ε→0 + B p p i=1 θ

 i=1 i (|x i -T i ψε ( j x j )|)dγ 0 (x) = 0 so that T ψε ( j x j ) -x → 0 as ε → 0 + for γ 0 -a.e. x.By Lebesgue's dominated convergence theorem, one thus has for all f ∈ C(B p ):B p f (x)dγ 0 (x) = lim ε→0 + B p f (T ψε ( j x j ))dγ 0 (x) = lim ε→0 + pB f (T ψε (x))dm 0 (x) = lim ε→0 + B p f dγ ψε .

  x i )dγ 0 and then γ strictly dominates γ 0 .

In the univariate case, the situation is much simpler since one can take Z = X and since the X i 's sum to X, each convex function f i has to be differentiable i.e. all the ψ i 's necessarily are strictly convex. In other words, degeneracies can be ruled out easily in the univariate case.
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Theorem 4.6. Let γ ∈ M B (m 0 ) and w be as before. Then 1. if γ is strictly w-comonotone, then it is efficient, 2. if γ is efficient, then it is w-comonotone for any w, 3. the closure for the weak-star topology of efficient allocations coincides with the set of w-comonotone allocations which is therefore independent of w.

Proof. 1. is a property already mentioned several times. 2. follows from theorem 4.5 and 3. follows from 1. and 2.

It also follows from the proof of theorem 4.5 that γ 0 is w-comonotone if and only if the value of problem (4.8) is 0. Therefore, the value of (4.8) as a function of the joint law γ 0 is a numerical criterion for w-comonotonicity and thus for efficiency. One can therefore, in principle, use on data this value as a test statistic for efficiency.

Remarks on multivariate comonotonicity

Comparison with the notion of µ-comonotonicity of [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF]. The notion of multivariate comonotonicity considered in this paper is to be related to the notion of µ-comonotonicity proposed by Ekeland, Galichon and Henry in [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF]. Recall the alternative characterization of comonotonicity given in the univariate case in proposition 2.8 : X 1 and X 2 are comonotone if and only if

) for a measure µ that is regular enough. In dimension d, [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF] have introduced the concept of µ-comonotonicity, based on this idea: if µ is a probability measure on R d which does not give positive mass to small sets, two random vectors X 1 and X 2 on R d are called µ-comonotone if and only if

where the (multivariate) maximum correlation functional (see e.g. [START_REF] Rüschendorf | Law invariant convex risk measures for portfolio vectors[END_REF] or [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF]) is defined by

The authors of [START_REF] Ekeland | Comonotonic measures of multivariate risk[END_REF] show that X 1 and X 2 are µ-comonotone if and only if there are two convex functions ψ 1 and ψ 2 , and a random vector U ∼ µ such that X 1 = ∇ψ 1 (U ) and X 2 = ∇ψ 2 (U )

Comonotone allocations do not form a convex set. Another difference with the univariate case is that the set of maps of the form T ψ used to define comonotonicity is not convex. To see this (again in the case p = d = 2), it is enough to show that the set of pairs of 2 × 2 matrices

have a positive determinant. Now for n ∈ N * , and ε ∈ (0, 1) consider

and

this defines two elements of K:

). If K was convex then the matrix

would have a positive determinant which is obviously false for n large enough and ε small enough.

Concluding remarks

In this paper, we have first revisited Landsberger and Meilijson's comonotone dominance principle in the univariate case and given a self-contained proof using monotone rearrangements. Another proof may be given by solving problem (4.7).

We have then extended the univariate theory of efficient risk-sharing to the case of several goods without perfect substitutability, and we derived tractable implications. The main technical findings of this work are the following: