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Abstract

This paper exhibits a duality between the theory of Revealed Preference of Afriat and
the housing allocation problem of Shapley and Scarf. In particular, it is shown that Afriat’s
theorem can be interpreted as a second welfare theorem in the housing problem. Using this
duality, the revealed preference problem is connected to an optimal assignment problem,
and a geometrical characterization of the rationalizability of experiment data is given. This
allows in turn to give new indices of rationalizability of the data, and to define weaker
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1 Introduction
The “Revealed Preference” problem and the “Housing problem” are two classical problems in
Economic Theory with for both a distinguished, but separate tradition. This paper is about
connecting them, and exploit the connection to obtain new results on Revealed Preference.

• The Revealed Preference (RP) problem, posed by Samuelson at the end of the 1930’s, was
solved by Houthakker in 1950, and was given an operational solution by Sidney Afriat
in 1967. This classical problem asks whether, given the observation of n consumptions
baskets and corresponding prices, one rationalize these consumptions as the consumption
of a single representative consumer facing different prices.

• The “housing problem” was investigated in 1974 by Shapley and Scarf. Given an initial
allocation of n houses to n individuals, and assuming individuals form preferences over
houses and can trade houses, what is the core of the corresponding game? It is assumed
that houses form no preferences over owners (in sharp contrast to the “Stable matching”
problem of Gale and Shapley). In this setting, they showed non-emptiness of the core,
as well as an algorithm to arrive to a core allocation: the method of “top-trading cycles”,
attributed to David Gale.

Although both problems have generated two well established and distinct literatures, it will
turn out that these problems are in fact dual in a precise sense. As we shall argue, the traditional
expenditure/utility duality from consumer theory extends to the setting of revealed preference,
and it is possible to show that the problem of Pareto efficiency in the housing problem is dual
to a generalization of Afriat’s theorem proven by Fostel, Scarf and Todd (2004). In particular,
we show that Afriat’s theorem can be interpreted as a second welfare theorem in the housing
problem. Once we have established equivalence of both problems, we shall use the aforemen-
tioned results to give new characterization of both problems in terms of an optimal allocation
problem. This will give us a very simple and intuitive characterization of the efficient outcomes
in the indivisible allocation problem.

According to standard revealed preference theory, the data are not rationalizable when one
can exhibit a preference cycle based on the direct revealed preference relation. A stronger
violation of rationalizability occurs when there are subsets of the data where cycles exist. An
even stronger departure from rationalizability occurs when all observations are part of such a
cycle. We shall characterize these three situations in terms of indexes which will measure how
strong the violations of rationalizability are. In the last part, we shall last use these results to
provide a geometric interpretation of revealed preference theory, by showing that the problem of
determining whether data can be rationalized or not can be recast as the problem of determining
whether a particular point is on some part of the boundary of some convex body.
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The literature on revealed preference in consumer demand traces back to Samuelson (1938),
who formulated the problem and left it open. It was solved by Afriat (1967) using nontrivial
combinatorial techniques. Diewert (1973) provided a Linear Programming proof and Varian
(1982) an algorithmic solution. Fostel, Scarf and Todd (2004) and Teo and Vohra (2003) pro-
vided alternative proofs. Matzkin (1991) and Forges and Minelli (2009) extended the theory
to nonlinear budget constraints. Geanakoplos (2006) gives a proof of Afriat’s theorem using a
minmax theorem. Although min-max formulations will appear in our paper, these are distinct
from Geanakoplos’, as it will be explained below. The setting was recently extended to collec-
tive models of household consumptions by Chercheye, De Rock and Vermeulen in a series of
paper (see e.g. 2007, 2010). The literature on the indivisible allocation problem was initiated
by Shapley and Scarf (1974), who formulated as the “housing problem” and gave an abstract
characterization of the core. Roth et al (2004) study a related “kidney problem” and investigate
mechanism design aspect. Finally, recent literature has extended revealed preference theory to
classes of matching problems. Galichon and Salanié (2010) investigate the problem of revealed
preferences in a matching game with transferable utility, with and without unobserved hetero-
geneity. Echenique, Lee and Shum (2010) investigate the problem of revealed preferences in
games with and without transferable utility, and without unobserved heterogeneity.

This paper will be organized as follows. We first study Pareto efficient allocations, and
show the connection with the generalized theory of revealed preferences. We deduce a novel
characterization of data rationalizability in terms of an optimal matching problem, and a geo-
metric interpretation of revealed preference in terms of convex geometry. We then move on to
providing indexes of increasingly weaker forms of rationalizability.

2 Revealed preference and the housing problem

2.1 The Generalized Afriat’s theorem
Assume as in Forges and Minelli (2009) that consumer has budget constraint gi (x) ≤ 0 in
experiment i, and that xi is chosen where gi (xi) = 0. This is a nonlinear generalization of
Afriat (1969), in which gi (xj) = xj · pi − xi · pi. Forges and Minelli ask whether there exists a
utility function v (x) with appropriate properties such that

xi ∈ argmaxx {v (x) : gi (x) ≤ 0} .

As in the original Afriat’s paper, the first part of their proof necessitates the existence of a
utility level vj associated to good j such that

gi (xj) < 0 implies vj − vi < 0. (1)
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Once the number vi’s have been determined, the second part of their proof consists in con-
structing a locally nonsatiated and continuous utility function v (x) such that v (xj) = vj . The
preference induced by v are said to rationalize the data in the sense that

i ∈ argmaxj {vj : gi (xj) ≤ 0} .

The existence of real numbers vi such that (1) holds is non-trivial and it turns out to be
equivalent to a property of matrix Rij = gi (xj) called “cyclical consistency”. This is done
by appealing to an extension of Afriat’s original theorem beyond linear budget sets, proved by
Fostel, Scarf and Todd (2004). This result can be slightly reformulated as follows:

Theorem 0 (Afriat’s theorem). The following conditions are equivalent:

(i) The matrix Rij satisfies “cyclical consistency”: for any cycle i1, ..., ip+1 = i1,

∀k, Rikik+1
≤ 0 implies ∀k, Rikik+1

= 0, (2)

(ii) There exist numbers (vi, λi), λi > 0, such that

vj − vi ≤ λiRij,

(iii) There exist numbers vi such that

Rij ≤ 0 implies vj − vi ≤ 0, and
Rij < 0 implies vj − vi < 0.

Before we give the proof of the result, let us briefly comment on it. Although we call
it “Afriat’s theorem”, this result is in some sense a fundamental lemma upon which Afriat’s
analysis rests. In the original Afriat’s work and in the subsequent literature, notably Forges
and Minelli (2009), a full description of the budget sets is provided, that is the functions gi (x)
defined on a larger domain than the set of observed consumption bundles {x1, ..., xn}. Here,
the result that we give only depends on the value gi (xj) of the functions gi over the set of the
observed consumption bundles. Actually, even only the signs of these values matter. Here the
analysis is intrinsiquely discrete and the approach relies neither on a particular consumption
space, nor on explicit consumption bundles xj .

We now turn to the proof of Theorem 0.

Proof of Theorem 0. (i) implies (ii) is proven in Fostel, Scarf and Todd (2004). (ii) immediately
implies (iii). We now show that (iii) implies (i). Consider a cycle i1, ..., ip+1 = i1, such that

∀k, Rikik+1
≤ 0.

4



Then by (iii) there exist numbers vi such that

Rij ≤ 0 implies vj − vi ≤ 0, and
Rij < 0 implies vj − vi < 0.

thus one has vik+1
− vik ≤ 0 for all k, hence all the vik are equal. Assume now that there is a k

such that Rikik+1
< 0. Then vik+1

− vik < 0, which is a contradiction. Therefore,

∀k, Rikik+1
= 0,

which proves the cyclical consistency of matrix R, that is (i).

2.2 Pareto efficient allocation of indivisible goods
We now turn to the problem of allocation of indivisible goods, which was initially studied by
Shapley and Scarf (1974). Consider n indivisible goods (eg. houses) j = 1, ..., n to be allocated
to n individuals. Cost of allocating (eg. transportation cost) house j to individual i is cij . An
allocation is a permutation σ of the set {1, .., n} such that individual i gets house j = σ (i). Let
S be the set of such permutations. We assume for the moment that the initial allocation is given
by the identity permutation: good i is allocated to individual i. The problem here is to decide
whether this allocation is efficient in a Pareto sense.

If there are two individuals, say i1 and i2 that would both benefit from swapping houses
(strictly for at least one), then this allocation is not efficient, as the swap would improve on the
welfare of both individuals. Thus if allocation is efficient, then inequalities ci1i2 ≤ ci1i1 and
ci2i1 ≤ ci2i2 cannot hold simultaneously unless they are both equalities. More generally, Pareto
efficiency rules out the existence of exchange rings whose members would benefit (strictly for
at least one) from a circular trade. In fact, we shall argue that this problem is dual to the problem
of Generalized Revealed Preferences.

2.3 A dual interpretation of revealed preference
Let us now formalize the notion of efficient allocation in the previous discussion. Allocation
σ0 (i) = i is Pareto efficient if and only if for any σ ∈ S, inequalities

ciσ(i) ≤ cii

cannot hold simultaneously unless these are all equalities. By the decomposition of a permuta-
tion into cycles, we see that this definition is equivalent to the fact that for every “trading cycle”
i1, ..., ip+1 = i1,

∀k, cikik+1
≤ cikik implies ∀k, cikik+1

= cikik
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that is, introducing Rij = cij − cii,

∀k, Rikik+1
≤ 0 implies ∀k, Rikik+1

= 0,

which is to say that allocation is efficient if and only if the matrix Rij is cyclically consistent.

By the equivalence between (i) and (ii) in Theorem 0 above, we have the following state-
ment:

Proposition 1. In the housing problem, allocation σ0 (i) = i is efficient if and only if

∃vi and λi > 0, vj − vi ≤ λiRij. (PARETO)

Before giving an interpretation of this result, we would like to understand the link between
efficiency and equilibrium in the housing problem. Assume we start from allocation σ0 (i) = i,
and we let people trade. Given a price system π where πi is the price of house i, we assume that
individual i can sell her house for price πi, and therefore can afford any house j whose price
πj is less than πi. Therefore, individual i’s budget set Bi is the set of houses that sell to a price
lower than his’

Bi = {j : vj ≤ vi}

We can now define the notion of a competitive equilibrium in this setting. Allocation σ ∈ S
is an equilibrium supported by price system π if for each individual i, 1) house σ (i) is weakly
preferred by individual i among all houses that she can afford, while 2) house σ (i) is strictly
preferred by i among all houses she can strictly afford (i.e., that trade for prices strictly less
than her house i). While condition 1) is a necessary requirement, refinement 2) is natural from
a behavioral point of view as it implies that if i is indifferent between two houses, then she is
going to choose the cheapest house of the two.

In particular, σ0 (i) = i is a No-Trade equilibrium if there is a system of prices π, where πj
is the price of house j, such that: 1) whenever house j is affordable for individual i, then it is
not strictly preferred by i to i’s house, that is πj ≤ πi implies cij ≥ cii, and 2) for any house
j in the strict interior of i’s budget set, i.e. that trades for strictly cheaper than house i, then
individual i strictly prefers her own house i to house j, that is πj < πi implies cij > cii.

Hence, σ0 (i) = i is a No-Trade equilibrium supported by prices π when conditions (E1)
and (E2) below are met, where:

(E1) if house j can be afforded by i, then individual i does not strictly prefer house j to
house i, that is,

πj ≤ πi implies cij ≥ cii,
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that is
πj ≤ πi implies Rij ≥ 0,

that is, yet equivalently:
Rij < 0 implies πj > πi.

(E2) if house j is (strictly) cheaper than house i, then individual i strictly prefers house i to
house j, that is

πj < πi implies cij > cii,

that is
πj < πi implies Rij > 0,

that is, yet equivalently:
Rij ≤ 0 implies πj ≥ πi.

Proposition 2. In the housing problem, allocation σ0 (i) = i is a No-Trade equilibrium sup-
ported by prices π if and only if

Rij < 0 implies πj > πi, and (EQUILIBRIUM)
Rij ≤ 0 implies πj ≥ πi.

But (EQUILIBRIUM) is exactly formulation (iii) of Theorem 0 with πi = −vi. By The-
orem 0, we know that this statements is equivalent to statement (PARETO). Hence, we get an
interpretation of the Generalized Afriat’s Theorem as a second welfare theorem

(EQUILIBRIUM) ⇐⇒ (PARETO),

which we summarize in the following proposition:

Proposition 3. In the allocation problem of indivisible goods, Pareto allocations are no-trade
equilibria supported by prices, and conversely, no-trade equilibria are Pareto efficient.

This is a “dual” interpretation of revealed preference, where vi (utilities in generalized RP
theory) become budgets here, and cij (budgets in generalized RP theory) become utilities here.
To summarize this duality, let us give the following table:
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Revealed prefs. Pareto indiv. allocs.

setting consumer demand allocation problem

budget sets {j : cij ≤ cii} {−v : −v ≤ −vi}
cardinal utilities to j vj −cij
# of consumers one, representative n, i ∈ {1, ..., n}
# of experiments n one

goods divisible indivisible

unit of cij dollars utils

unit of vi utils dollars

interpretation Afriat’s theorem Welfare theorem

In the light of this duality, it would be interesting to characterize the dual theory to the
Revealed Preference theory for collective models of household consumption as in Chercheye,
De Rock and Vermeulen (2007, 2010).

2.4 A characterization of rationalizability
The connection of both the revealed preference problem and the housing problem with assign-
ment problems is clear; we shall now show that there is a useful connection with the optimal
assignment problem, where the sum of the individual utilities is maximized. We shall recall this
problem shortly.

With this in mind, we have the following novel characterization of rationalizability of the
data, which extends Theorem 0:

Theorem 4. In the revealed preference problem, the data are rationalizable if and only if there
exist weights λi > 0 such that

min
σ∈S

n∑
i=1

λiRiσ(i) = 0,

that is

min
σ∈S

n∑
i=1

λiciσ(i) =
n∑
i=1

λicii. (3)

Proof of Theorem 4. Start from (3). One has
(3)⇐⇒ ∃λi > 0, minσ∈S

∑n
i=1 λiRiσ(i) = 0

⇐⇒ ∃λi > 0, minσ∈S
∑n

i=1 λiRiσ(i) is reached for σ = Id
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This problem is to find the assignment σ ∈ S which minimizes the utilitarian welfare loss
computed as the sum of the individual costsKij = λiRij , setting weight one to each individuals.
This problem is therefore

min
σ∈S

n∑
i=1

Kiσ(i).

This problem was reformulated as a Linear Programming problem by Dantzig in the 1930s;
see Shapley and Shubik 1971 for a game-theoretic interpretation), and by the standard Linear
Programming duality of the optimal assignment problem (Dantzig 1939; Shapley-Shubik 1971;
see Ekeland 2010 for a recent review using the theory of Optimal Transportation)

min
σ∈S

n∑
i=1

Kiσ(i) = max
ui+vj≤Kij

n∑
i=1

ui +
n∑
j=1

vj, (4)

where S is the set of permutations of {1, ..., n}. It is well-known that for a σ0 ∈ S solution to
the optimal assignment problem, there is a pair (u, v) solution to the dual problem such that

ui + vj ≤ Kij

if j = σ0 (i) , then ui + vj = Kij .

Hence, (3)
⇐⇒ ∃λi > 0, u, v ∈ Rn

ui + vj ≤ λiRij

ui + vi = 0

⇐⇒ ∃λi > 0, v ∈ Rn

vj − vi ≤ λiRij,

which is (ii) in Theorem 0.

The previous result leads to the following remark. Introduce

F = conv
((
ciσ(i)

)
i=1,...,n

: σ ∈ S
)
⊂ Rn

which is a convex polytope. Note that

min
σ∈S

n∑
i=1

λiciσ(i) = min
C∈F

n∑
i=1

λiCi.

We have the following geometric characterization of the fact that the data are rationalizable:
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Proposition 5. The data are rationalizable if and only if 0 is an extreme point of F with a
componentwise positive vector in the normal cone.

Proof. Introduce W (λ) = minC∈F
∑n

i=1 λiCi. This concave function is the support function
of C. C0

i = ciσ0(i) is an extreme point of F with a componentwise positive vector in the normal
cone if and only 0 is in the superdifferential ofW at such a vector λ. This holds if and only if
W (λ) =

∑n
i=1 λiC

0
i .

3 Strong and weak rationalizability

3.1 Indices of rationalizability
Rationalizability of the data by a single representative consumer’s, as tested by Afriat’s inequal-
ities, is an important empirical question. Hence it is of interest to introduce measures of how
close the data is from being rationalizable. Since Afriat’s original work on the topic, many
authors have set out proposals to achieve this. Afriat’s original “efficiency index” is the largest
e ≤ 1 such that Re

ij = Rij + (1− e) bi is cyclically consistent, where bi > 0 is a fixed vector
with positive components. In Afriat’s setting, Rij = xj · pi− xi · pi, and Re

ij = xj · pi− exi · pi,
so bi = xi · pi. Many other tests and empirical approaches have followed and are discussed in
Varian’s (2006) review paper. A recent proposal is given in Echenique, Lee and Shum (2011),
who introduce the “money pump index” as the amount of money that could be extracted from a
consumer with non-rationalizable preferences.

In the same spirit, we shall introduce indices that will measure how far the dataset is from
being rationalizable. The indices we shall build are connected to the dual interpretation of
revealed preferences we have outlined above. Our measures of departure from rationalizability
will be connected to measures of departure from Pareto efficiency in that problem. One measure
of departure from efficiency is the welfare gains that one would gain from moving to the efficient
frontier; this is interpretable as Debreu’s (1951) coefficient of resource utilization1, in the case
of a convex economy. This is only an analogy, as we are here in an indivisible setting, but this
exactly the idea we shall base the construction of our indices on.

It seems natural to introduce index A as

A = max
λ∈∆

min
σ∈S

n∑
i=1

λiRiσ(i)

where ∆ = {λ ≥ 0,
∑n

i=1 λi = 1} is the simplex of Rn. Indeed, we have

A ≤ 0,

1We thank Don Brown for suggesting this interpretation to us.
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and by compacity of ∆, equality holds if and only if there exist λ ∈ ∆ such that

min
σ∈S

n∑
i=1

λiRiσ(i) = 0.

Of course, this differs from our characterization of rationalizability in Theorem 4, as there
the weights λi’s need to be all positive, not simply nonnegative. It is easy to construct examples
where (3) holds with some zero λi’s and σ0 (i) = i is not efficient. For example, in the housing
problem, if individual i = 1 has his most preferred option, then λ1 6= 0 and all the other λi’s are
zero, and A = 0, thus (3) holds. However, allocation may not be Pareto because there may be
inefficiencies among the rest of the individuals.

Hence imposing λ > 0 is crucial. Fortunately, it turns out that one can restrict the simplex
∆ to a subset which is convex, compact and away from zero, as shown in the next lemma.

Lemma 6. There is ε > 0 (dependent only on the entries of matrix c, but independent on the
matching considered) such that the following disjuction holds

• either there exist no scalars λi > 0 satisfying the condtions in Theorem 4

• or there exist scalars λi > 0 satisfying the condtions in Theorem 4 and such that{
λi ≥ ε for all i,∑n

i=1 λi = 1.

Proof. Standard construction (see (Fostel et al. (2004))) of the λi’s and the vi’s provides a
deterministic procedure that returns strictly positive λi ≥ 1 within a finite and bounded number
of steps, with only the entries of Rij as input; hence λ, if it exists, is bounded, so there exists M
depending only on R such that

∑n
i=1 λi ≤ M . Normalizing λ so that

∑n
i=1 λi = 1, one sees

that one can choose ε = 1/M .

We denote ∆ε the set of such vectors λ, and we recall that ∆ is the set of λ such that λi ≥ 0
for all i and

∑n
i=1 λi = 1. Recall Rij = cij − cii, and introduce

A∗ = max
λ∈∆ε

min
σ∈S

n∑
i=1

λiRiσ(i),

so that we have
A∗ ≤ 0
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and equality if and only if the data are rationalizable (as in this case there exist λi > 0 such that
the characterization of rationalizability in 4 is met). Further, as ∆ε ⊂ ∆, one gets

max
λ∈∆ε

min
σ∈S

n∑
i=1

λiRiσ(i)︸ ︷︷ ︸
A∗

≤ max
λ∈∆

min
σ∈S

n∑
i=1

λiRiσ(i)︸ ︷︷ ︸
A

≤ 0.

The max-min formulation for indexA leads naturally to introduce a new index which comes
from the dual min-max program

B = min
σ∈S

max
λ∈∆

n∑
i=1

λiRiσ(i)

= min
σ∈S

max
i∈{1,...,n}

Riσ(i)

Note that the inequality max min ≤ min max always hold, so A ≤ B, and further, we have

B ≤ max
i∈{1,...,n}

Rii = 0.

Therefore we have

max
λ∈∆ε

min
σ∈S

n∑
i=1

λiRiσ(i)︸ ︷︷ ︸
A∗

≤ max
λ∈∆

min
σ∈S

n∑
i=1

λiRiσ(i)︸ ︷︷ ︸
A

≤ min
σ∈S

max
λ∈∆

n∑
i=1

λiRiσ(i)︸ ︷︷ ︸
B

≤ 0.

We shall come back to the interpretation of A∗ = 0, A = 0 and B = 0 as stronger or weaker
forms of rationalizability of the data. Before we do that, we summarize the above results.

Proposition 7. We have:
(i) A∗ = 0 if and only if there exist scalars vi and weights λi > 0 such that

vj − vi ≤ λiRij.

(ii) A = 0 if and only if there exist scalars vi and weights λi ≥ 0, not all zero, such that

vj − vi ≤ λiRij.

(iii) B = 0 if and only if

∀σ ∈ S, ∃i ∈ {1, ..., n} : Riσ(i) ≥ 0.

(iv) One has
A∗ ≤ A ≤ B ≤ 0.
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Proof. (i) follows from Lemma 6. To see (ii), note that A = 0 is equivalent to the existence
of λ ∈ ∆ such that minσ∈S

∑n
i=1 λiRiσ(i) = 0, and the rest follows from Theorem 4. (iii) is

equivalent to the fact that for all σ ∈ S, maxi∈{1,...,n}Riσ(i) ≥ 0, that is for all σ ∈ S, there
exists i ∈ {1, ..., n} such that Riσ(i) ≥ 0. The inequalities in (iv) were explained above.

In an unpublished manuscript ( (Geanakoplos (2006))) that he kindly communicated to us
on our request, John Geanakoplos introduces the following minmax problem, which in our
notations can be defined as

G = max
λ∈∆

min
σ∈C

n∑
i=1

λiRiσ(i)

where C ⊂ S is the set of permutations that have only one cycle, ie. such that there exist a cycle
i1, ..., ip+1 = i1 such that σ (ik) = ik+1 and σ (i) = i if i /∈ {i1, ..., ip}. As C ⊂ S one has

A ≤ G ≤ 0.

Geanakoplos uses index G and von Neuman’s minmax theorem in order to provide an in-
teresting alternative proof of Afriat’s theorem. However, it seems that index G is not directly
connected with the assignment problem.

3.2 Interpretation of indexes A∗, A, B
As seen above, the index A∗ was constructed so that A∗ = 0 if and only if the data are rational-
izable. The indexes A and B will both be equal to 0 if the data are rationalizable; hence A < 0
or B < 0 imply that the data is not rationalizable; however the converse is not true, so these
indexes can be interpreted as measures of weaker form of rationalizability. Hence we would
like to give a meaningful interpretation of the situations where A = 0 and B = 0. It turns
out that A = 0 is equivalent to the fact that a subset of the observations can be rationalized,
the subset having to have a property of coherence that we now define. B = 0 is equivalent
to the fact that one cannot partition the set of observations into increasing cycles, a notion we
will now define. In other words, the condition B < 0 means that any observation is part of a
preference cycles–indeed a very strong departure from rationalizability. These indexes may be
used to compute identified regions in models with partial identification; see Ekeland, Galichon
and Henry (2010) and references therein.

Throughout this subsection it will be assumed that no individual is indifferent between two
distinct consumptions for the direct revealed preference relation, that is:

Assumption A. In this subsection, R is assumed to verify Rij 6= 0 for i 6= j.

We first define the notion of coherent subset of observations.
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Definition 8 (Coherent subset). In the revealed preference problem, a subset of observations
included in {1, ..., n} is said to be coherent when i ∈ I and i directly revealed preferred to j
implies j ∈ I . Namely, I is coherent when

i ∈ I and Rij < 0 implies j ∈ I.

In particular, {1, ..., n} is coherent; any subset of observations where each observation is
directly revealed preferred to no other one is also coherent. Next, we define the notion of
increasing cycles.

Definition 9 (Increasing cycles). A cycle i1, ..., ip+1 = i1 is called increasing when each obser-
vation is strictly directly revealed preferred to its predecessor. Namely, cycle i1, ..., ip+1 = i1 is
increasing when

Rikik+1
< 0 for all k ∈ {1, ..., p} .

Of course, the existence of an increasing cycle implies that the matrix R is not cyclically
consistent, hence it implies in the revealed preference problem that the data are not rationaliz-
able. It results from the definition that an increasing cycle has length greater than one.

We now state the main result of this section, which provides an economic interpretation for
the indexes A∗, A and B.

Theorem 10. We have:
(i) A∗ = 0 iff the data are rationalizable,
(ii) A = 0 iff a coherent subset of the data is rationalizable,
(iii) B = 0 iff there is no partition of {1, ..., n} in increasing cycles.
and (i) implies (ii), which implies (iii).

Proof. (i) was proved in Theorem 4 above.

Let us show the equivalence in (ii). From Proposition 7 A = 0 is equivalent to the existence
of ∃λi ≥ 0,

∑n
i=1 λi = 1 and v ∈ Rn such that

vj − vi ≤ λiRij,

so defining I as the set of i ∈ {1, ..., n} such that λi > 0, this implies a subset I of the data is
rationalizable. We now show that I is coherent. Indeed, for any two k and l not in I and i in I ,
one has vk = vl′ ≥ vi; thus if i ∈ I and Rij < 0, then vj < vi, hence j ∈ I , which show that I
is coherent.

14



Conversely, assume a coherent subset of the data I is rationalizable. Then there exist (ui)i∈I
and (µi)i∈I such that µi > 0 and

uj − ui ≤ µiRij

for i, j ∈ I . Complete by ui = maxk∈I uk for i /∈ I , and introduce R̃ij = 1{i∈I}Rij . One has
R̃ij < 0 implies i ∈ I andRij < 0 hence j ∈ I by the coherence property of I , thus uj−ui < 0.
Now R̃ij = 0 implies either i /∈ I or Rij = 0 thus i = j; in both cases, uj ≤ ui. Therefore, one
has

R̃ij < 0 implies uj − ui < 0, and
R̃ij ≤ 0 implies uj − ui ≤ 0.

Hence by Theorem 0, there exist vi and λ̄i > 0 such that

vj − vi ≤ λ̄iR̃ij

and defining λi = λ̄i1{i∈I}, one has

vj − vi ≤ λiRij

which is equivalent to A = 0.

(iii) Now Proposition 7 implies that B < 0 implies that there is σ ∈ S such that ∀i ∈
{1, ..., n} , Riσ(i) < 0. The decomposition of σ in cycles gives a partition of {1, ..., n} in
increasing cycles.

(iv) The implication (i)⇒ (ii)⇒ (iii) results from inequality A∗ ≤ A ≤ B ≤ 0.

3.3 Discussion and examples
Two observations

First, note that with two observations (n = 2), the general form of matrix R is

R =

(
0 a
b 0

)
and assume both a and b are not zero. We shall first see that with two observations n = 2,
A∗ < A in general but A = B. This comes from the fact that there is only one cycle that does
not leave {1, 2} invariant.
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Proposition 11. With two observations (n = 2), one can set

ε = min

(
1

2
;

max {a, b, 0}
max {a, b} −min {a, b}

)
if a 6= b

ε = 1/2 otherwise

and one has

A∗ = min {0, (1− ε) max {a, b}+ εmin {a, b}}
A = B = min {0,max {a, b}}

Hence, A∗ = 0 if and only if a ≤ 0 and b ≤ 0 cannot hold at the same time; A = B = 0 if
and only if a < 0 and b < 0 cannot hold at the same time.

Proof. It is easily verified that

A = B = min {0,max {a, b}} .

Similarly, as ε ≤ 1/2, maxλ∈∆ε (λ1a+ λ2b) = (1− ε) max (a, b) + εmin (a, b), so A∗ =
min {0, (1− ε) max {a, b}+ εmin {a, b}}. But with this choice of ε, it can be seen that max {a, b} ≥
0 implies (1− ε) max {a, b} + εmin {a, b} ≥ 0, the converse holding always. Hence one can
set ε as announced.

We shall now give some examples with n = 2. Consider

R =

(
0 −1
0 0

)
then

A∗ = −ε
A = B = 0.

In other words, the data is not rationalizable, but coherent subset {2} is; and it is impossible to
partition the data in increasing cycle, as the only candidate would be σ (i) = i+ 1(mod 2), but
that cycle is not increasing as R21 = 0.

Next, consider

R =

(
0 −1
−1 0

)
then

A∗ = A = B = −1,
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so the data is not rationalizable, even in the weakest sense as cycle σ (i) = i + 1(mod 2) is
increasing.

Finally, consider

R =

(
0 1
−1 0

)
here, the data is rationalizable, and

A∗ = A = B = 0.

Three observations

We saw above that with two observations, we have in generalA∗ ≤ A can hold strict butA = B.
We now show that with three observations, inequality A ≤ B can hold strict as well. Introduce

c =

 0 −1 −1
2 0 −1
2 −1 0


We have

A = −0.4

B = 0;

indeed,
B = min

σ∈S
max
i
Riσ(i)

but we can rule out the σ’s with a fixed point, so we are left with σ = (231) and (312); but
maxi ciσ(i) on these permutation is worth 2; hence B = 0. To compute A, one may use a
Linear Programming formulation for A which results from the LP formulation of the optimal
assignment problem (4):

A = minφ

subject to constraints

φ−
∑
j

πijcij ≥ 0 ∀i∑
j

πij = 1 ∀i∑
i

πij = 1 ∀j

πij ≥ 0 ∀ij
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A LP solver returns A = −0.4. This means that neither the entire dataset, nor a coherent
subset of the data is rationalizable (asA < 0), but there is no partition of {1, 2, 3} into increasing
cycles (as B = 0).

4 Concluding remarks
To conclude, we make a series or remarks.

First, we have shown how our dual interpretation of Afriat’s theorem in its original Revealed
Preference context as well as in a less traditional interpretation of efficiency in the housing
problem could shed new light and give new tools for both problems. It would be interesting to
undestand if there is a similar duality for problems of revealed preferences in matching games,
recently investigated by Galichon and Salanié (2010) and Echenique, Lee and Shum (2010).

Also, we argue that it makes sense to investigate “weak rationalizability” (ie. A = 0 or
B = 0) instead of “strong rationalizability” (ie. A∗ = 0), or equivalently, it may make sense
to allow some λi’s to be zero. In the case of A = 0, recall the λi’s are interpreted in Afriat’s
theory as the Lagrange multiplier of the budget constraints. Allowing for λ = 0 corresponds to
excluding wealthiest individuals as outliers. It is well-known that when taken to the data, strong
rationalizability is most often rejected. It would be interesting to test econometrically for weak
rationalizability, namely whether A = 0.

B < 0 is a very strong measure of nonrationalizability, as B < 0 means that one can find
a partition of the observation set into increasing cycles, which seems a very strong violations
of the Generalized Axiom of Revealed Preference. But this may arise in some cases, especially
with a limited number of observations.

Finally, we emphasize on the fact that indexes A∗, A and B provide a measure of how close
the data is from being rationalizable, in the spirit of Afriat’s efficiency index. It is clear for every
empirical researcher that the relevant question about revealed preference in consumer demand is
not whether the data satisfy GARP, it is how much they violate it. These indexes are an answer
to that question. Also the geometric interpretation of rationalizable is likely to provide useful
insights for handling unobserved heterogeneity. We plan to investigate this question in further
research.
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