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Abstract

We provide several characterizations of unanimity decision rules, in a public choice

model where preferences are constrained by attributes possessed by the alternatives

(Nehring and Puppe, 2007a,b). Solidarity conditions require that when some para-

meters of the economy change, the agents whose parameters are kept fixed either all

weakly lose or they all weakly win. Population-monotonicity (Thomson, 1983a,b) ap-

plies to the arrival and departure of agents, while replacement-domination (Moulin,

1987) applies to changes in preferences. We show that either solidarity property is

compatible with voter-sovereignty and strategy-proofness if and only if the attribute

space is quasi-median (Nehring, 2004), and with Pareto-effi ciency if and only if the

attribute space is a tree. Each of these combinations characterizes unanimity.
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1 Introduction

Unanimity decision rules are used in many political institutions, such as the United Na-

tions Security Council, the ratification procedure for treaties in the European Union, and

criminal law juries. Surprisingly few justifications for such rules are available (Berga,

Bergantiños, Massó and Neme, 2004; Ju, 2005). We provide several characterizations of

unanimity in a general public choice problem. Decision rules prescribe an outcome as a

function of the preferences submitted by individuals. The set of admissible preferences is

constrained by a set of objective attributes possessed by the alternatives: we consider the

class of attribute-based domains, introduced by Nehring and Puppe (2007a, 2007b, 2005,

2010). Solidarity conditions are the key element in all of our characterizations.

Solidarity is a principle of justice with respect to changes in circumstances. It says

that all agents not responsible for these changes should be affected in the same direction.

Possible changes include the arrival or departure of individuals, as well as changes in their

preferences. “Replacement-domination” is introduced by Moulin (1987) in the context

of quasi-linear binary public decision. It applies to a model with a fixed population of

agents and requires that the replacement of the preferences of one agent causes the other

agents to either all weakly win or all weakly lose. “Population-monotonicity”is introduced

by Thomson (1983a, 1983b) in the context of bargaining. It applies to a model with a

variable population of agents and requires that when one agent joins the population, the

other agents whose preferences are kept fixed either all weakly win or they all weakly lose.1

In the context of public choice, solidarity conditions are first studied in location models.

Thomson (1993) considers a continuous line over which agents have single-peaked prefer-

ences. For any preference profile, a target rule selects the Pareto-effi cient alternative that

is closest to some exogenously fixed alternative on the line. Thomson (1993) shows that

the target rules are the only Pareto-effi cient rules that satisfy replacement-domination.

1For surveys on these two conditions, see Thomson (1995, 1999).
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Ching and Thomson (1997) show that these rules are also the only Pareto-effi cient rules

that satisfy population-monotonicity. Ching and Thomson (1997), Vohra (1999) and Klaus

(1999, 2001) extend these results for single-peaked preferences on a tree network. Klaus

(1999, 2001) further shows that the target rules are the only ones that satisfy unanimity

(if all agents’preferred alternative is the same, it should be selected), strategy-proofness

(reporting true preferences is a weakly dominant strategy for all agents) and either con-

dition of solidarity, on a tree network. Finally Klaus (1999, 2001) extends this second

result to Euclidean spaces, when agents’preferences are separable across dimensions and

quadratic, and characterizes coordinatewise target rules on this domain. Gordon (2007b)

obtains an impossibility result for single-peaked preferences on a circle, except on small

discrete domains (less than five alternatives) of symmetric preferences.2

In this paper, we extend the analysis to a larger class of models in which the set

of admissible preferences is constrained by a set of objective attributes possessed by the

alternatives. This class of domains generalizes discrete versions of all of the locations models

listed in the last paragraph. One difference is that these models assume a continuum of

alternatives, while we assume a discrete set. This difference is however not fundamental.

The real novelty of our work is that the class of attribute-based domains is larger than

the class of domains structured around a location model. For example, the unrestricted

domain, the domain of separable preferences over sets of objects (Barberà, Sonnenschein

and Zhou 1991) and models of voting under constraints (Barberà, Massó and Neme, 1997

and 2005) can be viewed as attribute-based domains.

Our starting point, in section 3, is a characterization by Nehring and Puppe (2007b),

which mirrors results by Barberà, Massó and Neme (1997, 2005) in the closely related model

of voting under constraints These authors show that the rules that satisfy voter-sovereignty

(any alternative is selected for some profile) and strategy-proofness in any attribute-based

domain form a class of “voting by issues” rules which make separate decisions between

2Solidarity conditions were also studied in the problem of locating multiple public goods by Miyagawa

(1998, 2001), Ehlers (2002, 2003), and Umezawa (2012) and in the problem of selecting a probabilitic

location by Ehlers and Klaus (2001). These models differ from ours in that they include some alternatives

which are not considered best by any preference in the domain.
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each attribute and its complement.

In section 4, we show that in any attribute-based domain, the rules satisfying voter-

sovereignty, strategy-proofness and solidarity, when they exist, are unanimity rules, in

which each of the attributes of some prespecified “target”alternative can only be defeated

by an unanimous vote. This result can be viewed as a generalization of a discrete counter-

part of the similar characterizations by Klaus (1999, 2001) on trees and Euclidean spaces.

Nehring and Puppe (2007b) have characterized the class of attribute spaces in which una-

nimity voting by issues rules exist, the “quasi-median” spaces (Nehring 2004). It follows

that the quasi-median domains are exactly the ones where these three conditions are com-

patible. We provide examples to illustrate how this class of domains extends the discrete

counterparts of the domains studied by Klaus (1999, 2001).

In section 5, we study the compatibility of Pareto-effi ciency and solidarity in attribute-

based domains. Here, we do not assume strategy-proofness and hence cannot restrict

attention to “voting by issues”rules from the outset, but this last condition turns out to

be implied by the other two.3 Unfortunately, our result is negative. “Trees”, which are pre-

cisely the discrete counterpart of the domains studied by Ching and Thomson (1997), Vohra

(1999) and Klaus (1999, 2001) in continuous location models are the only attribute-based

domains where the two conditions are compatible. Finally, we provide a characterization

on discrete trees, that mirrors the results obtained by these authors in the continuum case.

Our proof differs from theirs, in that we rely on the theory of voting by issues.

2 The model

In this section, we present the class of attribute-based domains (Nehring and Puppe

2007a,b). Then we present the fixed and variable population models and the conditions we

are interested in.

Let A be a nonempty finite set of alternatives. Let H ⊆ 2A be a non-empty family of

3 In a companion paper, Gordon (2007a) studies Pareto-effi ciency and solidarity in a general public choice

problem and establishes several of these conditions’general implications. We defer the discussion of the

relation between the two papers to the end of section 5.
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subsets of A, with typical element H ⊆ A. The elements of H are called attributes. We

can think of each of them as a descriptive characteristic relevant for the choice and defined

by the set of alternatives that possess it. For example, if the set A is a set of possible

constitutions for a nation, the attributes could be “federal”, “non-federal”, “presidential”,

“parliamentary”and the attribute “presidential” is defined as the subset of constitutions

in A that are presidential. Suppose that H satisfies the following three conditions. Non-

triviality: for all H ∈ H, H 6= ∅. Closedness under negation: for all H ∈ H, Hc ∈ H.
Separation: for all x 6= y ∈ A, there is H ∈ H such that x ∈ H and y /∈ H. A family H
that satisfies these three conditions is called an attribute space.4 Following Nehring (1999),

an attribute space enables us to define a notion of betweenness of alternatives as follows.

Let a, b, c ∈ A. We say that b is between a and c, denoted by b ∈ [a, c] if b possesses all
attributes that are common to a and c. For all a, b, c ∈ A,

b ∈ [a, c] :⇔ for all H ∈ H, {a, c} ⊆ H ⇒ b ∈ H.

Here are some simple examples. It is important to realize that an attribute space could be

much more intricate than the ones shown here.

Example 1 (Lines and Trees) Suppose that the alternatives can be ordered from left

to right by some linear ordering ≤ on X. The family H of all sets of the form H≤x :=

{a ∈ A : a ≤ x} or H≥x := {a ∈ A : a ≥ x} for all x ∈ A define an attribute space. Each at-
tribute is thus of the form “greater than or equal to x”or “lesser than or equal to x”. The in-

duced line betweenness is given, for all a, b, c ∈ A, by b ∈ [a, c] :⇔ [a ≤ b ≤ c or c ≤ b ≤ a] .
More generally, an attribute space can be defined on a tree, defined as a graph (set of

undirected edges) on A without cycles. For each x ∈ A, the set A \ {x} can be uniquely
represented as the union of two connected components H+

x and H−x whose intersection is

the singleton {x} . The family H of all sets of the form H+
x and H−x for all x ∈ A define

an attribute space.

Example 2 (The hypercube) Let A = {0, 1}K . An alternative is represented by a se-
quence a =

(
a1, ..., aK

)
with ak ∈ {0, 1} . For all k, let Hk

0 := {a : ak = 0} and Hk
1 :=

4Note that the set A can be recovered from an attribute space H since A =
⋃

H∈H
H.
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{a : ak = 1} and consider the family H of all such subsets. The induced hypercube be-

tweenness is given, for all a, b, c ∈ A, by b ∈ [a, c] :⇔
[
for all k : ak = ck ⇒ bk = ak = ck

]
.

Geometrically, b is between a and c if and only if b is contained in the subcube spanned by

a and c.

Example 3 (Cycles) Let A = {a1, ..., ak} and consider the k-cycle on A, i.e. the graph
with the edges (al, al+1) with the convention al+k = al. If k is odd, define H as the family

of sets of the form
{
al, ..., al−1+ k±1

2

}
. If k is even, define H as the family of sets of the

form
{
al, ..., al−1+ k

2

}
.

A subset S ⊆ A is convex if it is the intersection of attributes. By convention ∩∅ = A,
hence A is also convex. For all B ⊆ A, the convex hull of B, denoted by Co (B) is the
smallest convex set that contains it. For all a, b ∈ A, the segment [a, b] is the convex hull
of {a, b}. The elements of [a, b] are exactly the alternatives that are between a and b.

A binary relation Ri is called a preference if it is reflexive, transitive and complete,

i.e. a weak ordering.5 Let Pi and Ii be the associated strict preference and indifference

relation. Let H be an attribute space. A preference Ri is adapted to H if there exists

p (Ri) ∈ A such that for all a 6= b ∈ A, a ∈ [p (Ri) , b] ⇒ a Pi b. This means that p (Ri) is

the “single peak”of preference Ri, i.e. its most preferred alternative. Moreover if a has

more attributes (in an inclusion sense) in common with p (Ri) than b, then preference Ri

prefers a to b.

Let R be the set of preferences, which are adapted to H. In this paper, we focus on
domains of preferences, which are adapted to some attribute space.

The line attribute space in Example 1 generates a discrete version of the classic single-

peaked domain on a line studied by Moulin (1980), Thomson (1993) and Ching and Thom-

son (1997). The tree attribute space in Example 1 generates a discrete version of the

domain of single-peaked preferences on a tree studied by Ching and Thomson (1997),

Vohra (1999), Klaus (1999, 2001) and Schummer and Vohra (2002). The attribute space in

5Nehring and Puppe work with linear orderings (2007a,b). Here we consider weak orderings. Either

domain is rich enough for our results to hold.
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Example 2 generates the separable domain over subsets of objects, introduced by Barberà,

Sonnenschein and Zhou (1991). The attribute space in Example 3 generates a discrete

version of the domain of single-peaked preferences on a circle studied by Gordon (2007a)

and Schummer and Vohra (2002). The unrestricted domain, the domain of separable and

single-peaked domains on product of lines are also special cases.

We consider problems with a fixed population and problems with a variable population.

For each, we define a relevant solidarity condition.

Fixed population. Let N be a fixed nonempty finite set of agents with generic agent

denoted by i. A fixed population problem is defined by an attribute space H and a fixed

population N. Each agent i is equipped with a preference Ri ∈ R. A preference profile is a
list RN = (Ri)i∈N ∈ RN . A rule is a mapping f : RN → A. We are interested in solutions

such that when the preference of one agent changes, the other agents are all affected in the

same direction: either they all weakly win or the all weakly lose.

Replacement-domination. For all RN ∈ RN , all i ∈ N, all R′i ∈ R, either for all j ∈ N \{i} ,
f
(
R′i, RN\{i}

)
Rj f (RN ) , or for all j ∈ N \ {i}, f (RN ) Rj f

(
R′i, RN\{i}

)
.

We assume that |N | ≥ 3, which is the minimal cardinality for which replacement-

domination has bite.

Variable population. Let N be a finite set of potential agents with generic agent de-

noted by i. A variable population problem is defined by an attribute space H and a set of

potential agents N . It consists of the collection of problems with fixed population (H, N)
for all nonempty N ⊆ N . A preference profile is given by a set N and a list RN ∈ RN .
A (variable population) rule is a mapping f : ∪NRN → A. For all N ⊂ N finite, the

restriction of f to RN is denoted by fN .We are interested in solutions such that when one
agent joins the economy and the preferences of the agents already present in the economy

are kept fixed, these agents who were present before the change are all affected in the same

direction: either they all weakly win or they all weakly lose.

Population-monotonicity. For all N ⊂ N , RN ∈ RN , all i ∈ N \N, all R′i ∈ R, either for
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all j ∈ N, f (R′i, RN ) Rj f (RN ) , or for all j ∈ N, f (RN ) Rj f (R′i, RN ) .

We assume that |N | ≥ 3, which is the minimal cardinality for which population-

monotonicity has bite.

In each of these models, we study the compatibility of these conditions with the fol-

lowing additional requirements. A fixed population rule satisfies voter-sovereignty if it is

onto, i.e. if every alternative is selected by the rule for some profile in its domain. Next, a

rule is strategy-proof if revealing their true preferences is a weakly dominant strategy for

all agents: for all RN ∈ RN , all i ∈ N and all R′i ∈ R, we have f (RN ) Ri f
(
R′i, RN\{i}

)
.

Last, a rule satisfies Pareto-effi ciency, if at any profile, there is no alternative that is weakly

preferred by all agents in the economy and strictly preferred by at least one agent to the al-

ternative selected by the choice function: for all RN ∈ RN , there exists no a ∈ A such that
for all i ∈ N, a Ri f (RN ) and for some j ∈ N , a Pj f (RN ) . A variable population rule f
satisfies either of these three properties if for all N, the restriction fN satisfies it. We are in-

terested in rules that satisfy solidarity and either voter-sovereignty and strategy-proofness,

or Pareto-effi ciency.

3 Voting by issues

In this Section, we present a classic result in the literature, on which our results are based.

It characterizes the class of rules that satisfy voter-sovereignty and strategy-proofness as

“voting by issues.”The results in this section were obtained by Nehring and Puppe (2007b)

in the attribute-based framework. Similar results were previously obtained by Barberà,

Massó and Neme (1997, 2005) in the related model of voting under constraints.

An issue is defined as the pair formed by an attribute and its complement. Under

“voting by issues,” the agents vote separately on each issue, over the two corresponding

competing attributes, using an issue-specific voting rule for each of the issues. The alter-

native that is selected is the one that possesses all of the adopted attributes. Of course,

such a procedure is well defined only if the issue-specific voting rules satisfy certain joint

restrictions.
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More precisely, consider a fixed population problem (H, N). A family of winning coali-
tions is a non-empty family W of subsets of N satisfying [W ∈ W and W ⊆W ′]⇒ W ′ ∈
W. For example, for any q ∈ (0, 1) , the quota q family consists of the coalitions W ⊆ N
such that |W | > q |N | . A structure of winning coalitions is a list (WH)H∈H of families of

winning coalitions indexed by the attributes of H such that for each W ⊆ N and each

attribute H, we have

W ∈ WH ⇔ N \W /∈ WHc . (1)

Let W = (WH)H∈H be a structure of winning coalitions. Voting by issues associated

with W is the rule f : RN → A such that for all RN ∈ RN ,

a = f (RN ) :⇔ for all H ∈ H such that a ∈ H we have {i : p (Ri) ∈ H} ∈ WH .

In general, the rule f need not be well-defined.6 Nehring and Puppe (2007b) provide the

following important characterization.

Proposition 1 (Nehring and Puppe, 2007b) A rule f satisfies voter-sovereignty and

strategy-proofness if and only if it is voting by issues and well-defined.

Obviously, this result extends to variable population problems in the following way.

Corollary 1 A variable population rule satisfies voter-sovereignty and strategy-proofness

if for each nonempty N ⊆ N , the rule fN is voting by issues and well-defined.

An important feature of voting by issues is that the rules in this class always selects

an alternative that lies in the convex hull of the peaks of the agents: for all RN ∈ RN ,
f (RN ) ∈ Co ({p (Ri) : i ∈ N}) . In particular, for all preference profile with exactly two
distinct peaks, the choice function selects an alternative that lies between the two peaks: for

all RN such that there is a 6= b ∈ A such that {p (Ri)}i∈N = {a, b} , we have f (RN ) ∈ [a, b] .
6Nehring and Puppe (2007b) provide a necessary and suffi cient condition on the structure of winning

coalitions under which voting by issues is well-defined: the “intersection property.” Barberà, Massó and

Neme (1997) provide a different necessary and suffi cient condition, also labelled “intersection property”

under which separable voting under constraints is well-defined.
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4 Strategy-proofness and Solidarity

In this section, we study the compatibility of voter-sovereignty, strategy-proofness and

either solidarity conditions.

In the last section, we introduced voting by issues. A rule in this class is a unanimity

rule if there exists a “target” â ∈ A whose attributes can only be defeated by unanimity,
i.e. such thatWH = 2

N \{∅} for all H such that â ∈ H andWH = {N} for all H such that

â /∈ H. Such a rule is denoted by f â. As Nehring and Puppe (2005) note, it follows directly
from this definition that for any RN ∈ RN , f â (RN ) is well-defined if and only if there
exists an alternative that is both in Co ({p (R1) , ..., p (Rn)}) and in [â, p (Ri)] for all i ∈ N.
If there is such an alternative, it is necessarily unique and it is precisely f â (RN ). The

condition f â (RN ) ∈ Co ({p (R1) , ..., p (Rn)}) expresses the fact that any attribute that is
unanimously supported gets approved. The condition f â (RN ) ∈ [â, p (Ri)] expresses the
fact that any attribute possessed by â and supported by at least one agent gets approved.

Similarly, in a variable population model, a rule f is a variable-population unanimity rule

if there exists â ∈ A, such that for all N, the restriction fN is the unanimity rule f â.
We now show that unanimity rules are the only rules that satisfy voter-sovereignty,

strategy-proofness and the relevant solidarity condition both with a fixed and a variable

population.

Proposition 2 (i) A rule f satisfies voter-sovereignty, strategy-proofness and replacement-

domination if and only if it is a unanimity rule. (ii) A variable-population rule f satisfies

voter-sovereignty, strategy-proofness and population-monotonicity if and only if it is a una-

nimity rule.

Proof. It is clear that a unanimity rule satisfies the conditions. We prove the converse

implications.

(i) From Proposition 1, we know that f is voting by issues and well-defined, character-

ized by a winning coalition structure (WH)H .

First, we show that for all H ∈ H, either WH = 2N \ {∅} or WH = {N} . Suppose
by contradiction that this is not the case. Then let H ∈ H, W ∈ WH and i ∈ W,
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such that W 6= N and W \ {i} 6= ∅ and W \ {i} /∈ WH . Let a ∈ H and b /∈ H. Let
Ra ∈ R be a preference such that p (Ra) = a and for all x ∈ H and all y /∈ H, x P a y.
Similarly, let Rb ∈ R be such that p

(
Rb
)
= b and for all x /∈ H and all y ∈ H, x P b

y. Let RN ∈ RN such that for all j ∈ W, Rj := Ra and for all j ∈ N \W, Rj := Rb.

Next, let R′i := Rb. By definition of voting by issues, this implies that f (RN ) ∈ H but

f
(
R′i, RN\{i}

)
/∈ H. Therefore the replacement of Ri by R′i hurts all agents in W \ {i}

and benefits all agents in N \W, which contradicts replacement-domination. Thus, for all
H ∈ H, either WH = 2

N \ {∅} or WH = {N} .
Next, letHf :=

{
H ∈ H :WH = 2

N \ {∅}
}
.We now show that

⋂
H∈Hf H 6= ∅. Suppose

by contradiction that this set is empty. Then there is H1, ...,Hl ∈ Hf , where l > 2, such
that

⋂l−1
k=1Hk 6= ∅ and

⋂l
k=1Hk = ∅. Let Let Ra, Rb ∈ R be such that p (Ra) ∈

⋂l−1
k=1Hk

and p (Rb) ∈ Hl. Let R be the profile (Ra, Rb, ..., Rb) where Rb is repeated |N | − 1 times.
Since all the Hk for k = 1, ..., l are in Hf , we have f (R) ∈

⋂l
k=1Hk = ∅, which is a

contradiction. Therefore
⋂
H∈Hf H 6= ∅.

Last, we show that this intersection has exactly one element â. Suppose that a 6= b ∈⋂
H∈Hf H. Let H ∈ H such that a ∈ H and b /∈ H. If H ∈ Hf , then b ∈

⋂
H∈Hf H is

contradicted. If instead H /∈ Hf , then by (1), Hc ∈ Hf and a ∈
⋂
H∈Hf H is contradicted.

Therefore there is â ∈ A such that â =
⋂
H∈Hf H. Moreover, for all RN ∈ R

N , we have

f (RN ) ∈ Co (p (Ri) : i ∈ N) and f (RN ) ∈ [f (Ri) , â] for all i ∈ N. Therefore f is a

unanimity rule with parameter â.

(ii) First, we show that for each H ∈ H, each population N ⊆ N with |N | ≥ 3, each
W  N such that |W | ≥ 2, and each i ∈W, we have W ∈ WH,N =⇒ W \{i} ∈ WH,N\{i}.

Let H,N,W and i satisfy these conditions and suppose that W ∈ WH,N . Let a ∈ H and

b /∈ H. Let Ra ∈ R be a preference such that p (Ra) = a and for all x ∈ H and all

y /∈ H, x P a y. Similarly, let Rb ∈ R be such that p
(
Rb
)
= b and for all x /∈ H and all

y ∈ H, x P b y. Let RN ∈ RN such that for all j ∈ W, Rj := Ra and for all j ∈ N \W,
Rj := R

b. By definition of voting by issues, since W ∈ WH,N , we have f (RN ) ∈ H. Next,
consider the profile RN\{i}, where agent i has left. By population-monotonicity, we have

f
(
RN\{i}

)
∈ H. By definition of voting by issues, this implies that W \ {i} ∈ WH,N\{i}.
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Second, we show that for each H ∈ H, each population N  N with |N | ≥ 2, each
W  N such that |W | ≥ 1, and each i /∈ N, we have W ∈ WH,N =⇒ W ∈ WH,N∪{i}.

Let H,N,W and i satisfy these conditions and suppose that W ∈ WH,N . Let a ∈ H and

b /∈ H. Let Ra ∈ R be a preference such that p (Ra) = a and for all x ∈ H and all y /∈ H,
x P a y. Similarly, let Rb ∈ R be such that p

(
Rb
)
= b and for all x /∈ H and all y ∈ H, x

P b y. Let RN ∈ RN such that for all j ∈W, Rj := Ra and for all j ∈ N \W, Rj := Rb. By
definition of voting by issues, we have f (RN ) ∈ H. Next, consider the profile (R′i, RN ) ,
where agent i is added, with the preference R′i := R

b. By population-monotonicity, we have

f (R′i, RN ) ∈ H. By definition of voting by issues, this implies that W ∈ WH,N∪{i}.

The implication proved in last paragraph, together with the implication for all H,N,W,

[W ∈ WN,H and W ⊆W ′] ⇒ W ′ ∈ WN,H implies that for all H, either WH,N = 2
N \ {∅}

for all N or WH,N = {N} for all N.
Last, we define the family Hf :=

{
H ∈ H :WH = 2

N \ {∅}
}
, which as we saw does

not depend on N, and â =
⋂
H∈Hf H exactly like in (i) . Thus for all N, the rule fN is the

unanimity rule with parameter â.�

For all (a, b, c) ∈ A, if the set [a, b] ∩ [b, c] ∩ [a, c] is not empty, it necessarily contains a
single element called the median of (a, b, c) , denoted by med (a, b, c) . An alternative a ∈ A
is called a median alternative for H if and only if for all b, c ∈ A the triple (a, b, c) has a
median. Nehring and Puppe (2005, 2010) obtained the following result.

Proposition 3 (Nehring and Puppe 2005, 2010) For all â ∈ A, and all N such that

|N | ≥ 2, the unanimity rule f â is well-defined on RN , if and only if â is a median alternative
for H.

It is easy to see that the direct implication is true. If f â is well-defined at some profile

with peaks located at b and c, it is necessarily a median of â, b and c. The fact that when â

is a median point, the rule f â is well-defined is less clear. Nehring and Puppe (2005, 2010)

provide an abstract proof of this fact. For completeness, we provide here a constructive

proof of this result, which we believe is more transparent.
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Proof. First, suppose that the rule f â is well-defined on RN , with |N | ≥ 2. Let b, c be
arbitrary alternatives in A. Consider a profile RN such that all agents have their peaks in

{b, c} and not all agents have the same peak. Then by definition, f â (RN ) is an element of
[â, b] ∩ [â, c] ∩ [b, c] . Therefore this set is not empty. Since this is true for all b, c ∈ A, then
â is a median alternative.

Conversely, suppose that â is a median alternative. Let |N | ≥ 2. Without loss of

generality, let 1, ..., n be the agents in N. Define the sequence x1 := p1 and for all i ∈
{2, ..., n} , let xi := med (â, xi−1, pi) . Since â is a median point, the sequence is well-defined.
By construction, xn ∈ Co ({xn−1, pn}) ⊆ Co ({xn−2, pn−1, pn}) ⊆ ... ⊆ Co ({x1, ..., pk}) .
Again by construction, we know that xn ∈ [â, pn]; xn ∈ [â, xn−1] ⊆ [â, pn−1] ; ... and

xn ∈ [â, xn−1] ⊆ ... ⊆ [â, x2] ⊆ [â, p1] . Therefore xn is an element in Co ({x1, ..., pk}) that is
in the interval [â, pi] for all i = 1, ..., n. Therefore f â (RN ) is well-defined and f â (RN ) = xn.

Since this construction is feasible for all RN ∈ RN , the rule f â is well-defined.�

An attribute space is called quasi-median (Nehring 2004) if it contains at least one

median alternative and it is called median if all alternatives in A are median. From

these definitions and Proposition 3, it follows that the attribute-structures that admit a

unanimity rule are exactly the quasi-median spaces. From this observation and Proposition

2, we obtain the following characterization.

Corollary 2 The following three statements are equivalent.

(i) The attribute space H admits a rule that satisfies voter-sovereignty, strategy-proofness
and replacement-domination.

(ii) The attribute space H admits a variable population rule that satisfies voter-sovereignty,
strategy-proofness and population-monotonicity.

(iii) H is quasi-median.

Nehring and Puppe (2005) provide several interesting characterizations of quasi-median

spaces. We end this section by two examples of such spaces, whose associated domains are

not discrete counterparts of the domains considered by Klaus (1999, 2001).
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Example 4 A subset of at most L out of K public projects, with 1 ≤ L < K, has to be

selected. An alternative specifies which of the projects will be carried out. Attributes are the

sets of alternatives of the form “yes to project k”and “no to project k”for all k = 1, ...,K.

This attribute space has exactly K + 1 median alternatives. These are all the alternatives

of the form“only project k is carried out” for all k = 1, ...,K and “no project is carried

out”. Consequently, exactly K + 1 rules satisfy the conditions of Proposition 2. In any

rule in this class, each of the projects, except perhaps one, require unanimous support for

approval. If a project does not require unanimous support for approval, a single vote in its

favour suffi ces to get it approved.

Example 5 Let A := {a, b, c, d, e} . The attributes are the sets {a, b, c} , {b, c, d} , {c, d, e} ,
{a, e} , {a, b} and {d, e} . This attribute space has two median points b and d. Therefore the
two rules that satisfy the conditions of Proposition 2 are the unanimity rules with parameter

either b or d.

5 Pareto-effi ciency and Solidarity

In this section, we study the compatibility of Pareto-effi ciency and either solidarity con-

ditions. Ching and Thomson (1997), Vohra (1999) and Klaus (1999, 2001) have shown

that Pareto-effi ciency is compatible with either replacement-domination or population-

monotonicity on domains of single-peaked preferences defined on trees.7 Both the set of

alternatives and the preference domain these authors consider are continua. Their discrete

counterpart in our setting is the class of domains of single-peaked preferences on discrete

trees, such as the ones presented in Example 1.

In the light of the results by Ching and Thomson (1997), Vohra (1999) and Klaus

(1999, 2001), it is natural to ask the following question: Are these properties compatible

in other attribute-based preferences domains? Unfortunately, we find that the answer to

this question is negative: tree structures are the only attribute-based domains on which

7Other properties are studied on these domains by Demange (1982) and Danilov (1994) and Schummer

and Vohra (2002).
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Pareto-effi ciency and solidarity properties are compatible.

To establish this result, we first provide an abstract characterization of the attribute

spaces that generate domains in the class presented in Example 1. It is well known and

easily verified that the attribute spaces H constructed in Example 1 are median and in

addition satisfy the following condition.

Condition (T ) : For all H,H ′ ∈ H, at least one of the sets H ∩ H ′, H ∩ H ′c, Hc ∩ H ′,
Hc ∩H ′c is empty.

Conversely, we establish that these two conditions, the median condition and (T ),

characterize tree structures, a result we believe is of independent interest.8 From any

median attribute space H that satisfies (T ) , one can recover a discrete graph-theoretic

tree, that is a graph (a finite set of vertices and edges) that is connected (any two vertices

are connected through some path) and has no cycles.

Proposition 4 Let H be a median attribute space that satisfies (T ). Then the graph on

A =
⋃
H∈H

H whose edges are the pairs (a, b) such that there exists a unique attribute Ha ∈ H

such that a ∈ Ha and b ∈ Hc
a is a tree, i.e. it is connected and has no cycles.

Proof. Throughout the proof, let H be a tree attribute space.
Step 1: The graph defined in the Proposition is connected.

For any two alternatives a, b let a ∼ b if [a, b] = {a, b} . We will show that (a, b) is an
edge if and only if a ∼ b. Let a, b be alternatives such that a ∼ b. Let H and H ′ be any

two attributes such that a ∈ H ∩H ′ and b ∈ Hc ∩H ′c. We need to prove that H = H ′. By

contradiction, suppose that this is not the case. For example H ′  H. Then there exists

c ∈ H ′ \H. Then by condition (T ) it must be that either H ⊂ H ′. Moreover b and c are in
Hc and b is in H ′c. Then the median of a, b and c is an element of [a, b] , but it is neither a

8Buneman (1971) and Bandelt and Dress (1986) provide related constructions, without assuming a

median space. Their construction, however, allows introducing “latent alternatives”, i.e. additional alter-

natives outisde of the set A in order to construct a tree consistent with an attribute structure that satisfies

(T ). Our result shows that when the space is median, latent alternatives are not needed. In addition, our

construction relies on elementary arguments.
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nor b, since it is an element of Hc (ruling out a) and it is also an element of H (ruling out

b). This contradicts that [a, b] = {a, b} . Therefore necessarily H = H ′, which proves that

(a, b) is an edge.

It follows immediately from the previous paragraph that the graph defined in the Propo-

sition is connected.

Step 2: Monotonicity of attributes along a path.

Let a and b be arbitrary alternatives. Consider a path a0, ..., an with a0 = a and an = b

connecting a and b. For all i, since (ai, ai+1) is an edge, there exists exactly one attribute,

let it be denoted Hi, such that ai ∈ Hi and ai+1 /∈ Hi. We will show that for all i, we have
Hi−i ⊂ Hi. Since (ai−1, ai) form an edge, and ai−1 and ai are already separated by Hi−1

and Hc
i−1, then they are not separated by Hi and H

c
i . Since ai ∈ Hi, then ai−1 ∈ Hi.

Similarly, since (ai, ai+1) form an edge, and ai and ai+1 are already separated by Hi

and Hc
i , then they are not separated by Hi−1 and H

c
i−1. Since ai ∈ Hc

i−1, then ai+1 ∈ Hc
i−1.

Thus Hi ∩ Hi−1 contains ai−1, Hi ∩ Hc
i−1 contains ai and H

c
i ∩ Hc

i−1 contains ai+1,

therefore (T ) implies that Hi−1 ⊆ Hi. The inclusion is strict because ai ∈ Hi ∩Hc
i−1.

Step 3: The graph does not contain any cycles. Suppose by contradiction that there

exists a path a0, ..., an with an = a0. By Step 2, we find that H0 ⊂ ... ⊂ Hn ⊂ H0, a

contradiction. We conclude that the graph does not contain any cycles, i.e. it is a tree in

a graph theoretic sense.�

From now on, a tree attribute space is a median attribute space that satisfies (T ) .

We are now ready to show that Pareto-effi ciency and solidarity are only compatible on tree

attribute spaces. Note that we do not assume strategy-proofness, thus we cannot restrict

attention to voting by issues from the outset, as we did in the previous section.

Proposition 5 Let H be an attribute space. (i) Let |N | ≥ 3. Let f be a rule. If f satisfies
Pareto-effi ciency and replacement-domination, then H is a tree attribute space. (ii) Let

|N | ≥ 3. Let f be a variable-population rule. If f satisfies Pareto-effi ciency and population-
monotonicity, then H is a tree attribute space.

The idea of proof is the following. We associate to any rule satisfying the conditions a
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two agents rule, which turns out to be a Pareto-effi cient unanimity rule (Steps 1 and 2).

Then in Steps 3 and 4, we show that this implies that H is a tree.
Proof. Throughout the proof, let H be an attribute space.

(i) . Let |N | ≥ 3. Let f be a rule that satisfies Pareto-effi ciency and replacement-

domination.

Let M := {1, 2} and g : RM → A, such that for all (R1, R2) ∈ RM , we have
g (R1, R2) := f (R

′
N ) , where R

′
N ∈ RN is such that R′1 = R1 and R′i = R2, for all i ≥ 2.

Step 1: The rule g satisfies anonymity, strategy-proofness and Pareto-effi ciency.

First, it is obvious that the rule g satisfies Pareto-effi ciency.

Next, we prove that for all (R1, R2) , we have g (R1, R2) Ii g (R2, R1) for all i ∈ {1, 2}.
Let (R1, R2) ∈ RM . Then g (R1, R2) = f (R′N ) , where R

′
N ∈ RN is such that R′1 = R1

and R′i = R2, for all i ≥ 2.. Consider the transformation of R′N = (R1, R2, ..., R2) in R′′N =
(R2, R1, ..., R1) where for each agent i ∈ {3, ..., n} , the preference R′i = R2 is replaced by
the preference R′′i = R1 in decreasing index order. Then the preference R

′
1 = R1 is replaced

by the preference R′′1 = R2 and last the preference R
′
2 = R2 is replaced by the preference

R′′2 = R1. At each step in the transformation, the Pareto-set for the preference subprofile

of the agents whose preferences are kept fixed is the same at the Pareto-set for the entire

profiles (of any profile along the path). By Pareto-effi ciency and replacement-domination,

this implies that the preferences R1 and R2 remain indifferent between the images by f

along the path. Therefore g (R1, R2) = f (R1, R2, ..., R2) Ii f (R2, R1, ..., R1) = g (R2, R1) ,

for all i ∈ {1, 2}.
Last, we prove that g satisfies strategy-proofness. By anonymity, it suffi ces to prove

that for all (R1, R2) ∈ RM and all R′2 ∈ R, we have g (R1, R2) R2 g (R1, R′2) . We have
g (R1, R2) = f (R1, R2, ..., R2) . Consider the sequence of transformations where the pref-

erence Ri = R2 is replace by the preference R′i = R
′
2, for each i ∈ {2, ..., n} in increasing

order. When replacing the preference of an agent of indices in {3, ..., n− 1} , the image by
f remains unchanged by the same argument as in the last paragraph. In the first replace-

ment, agent 2 cannot strictly benefit, since this would imply agent 3 strictly benefits, which

would imply that f
(
R′2, RN\{2}

)
Pareto-dominates f (R1, R2, ..., R2) for (R1, R2) , i.e. for
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RN . Similarly, in the last replacement, agent n cannot strictly benefit. If this where the

case, since all agents 1, ..., n−1 are affected in the same direction, these agents must weakly
lose (at least one of them strictly), otherwise f (R1, R′2, ..., R

′
2, R2) is not Pareto-effi cient for

(R1, R
′
2, ..., R

′
2, R2) . But this in turns contradicts the Pareto-effi ciency of f (R1, R

′
2, ..., R

′
2)

for (R1, R′2, ..., R
′
2) . Therefore agent n weakly loses. Last f (R1, R

′
2, ..., R

′
2) = g (R1, R

′
2) .

In summary, we obtain that g (R1, R2) R2 g (R1, R′2) , i.e. g satisfies strategy-proofness.

Last, since g satisfies strategy-proofness and voter-sovereignty, it only depends on the

agents’peaks. Therefore, the property established in the second paragraph of Step 1 implies

that g satisfies anonymity.

Step 2: The rule g is a unanimity rule. Let â be the unique alternative such that for

all (R1, R2) , g (R1, R2) = med (â, p (R1) , p (R2)) .

Step 3: The attribute space H satisfies condition (T ) .9

Suppose by contradiction that H violates condition (T ) . If this is the case, then there

are alternatives a1, ..., a4 ∈ A and attributes H and H ′, such that a1 ∈ H ∩ H ′, a2 ∈
H ∩H ′c, a3 ∈ Hc ∩H ′c, and a4 ∈ Hc ∩H ′. Then â is an element of exactly one of these
four sets. Suppose for example that â ∈ H ∩ H ′. Consider now a profile (R1, R2) such

that p (R1) = a2 and p (R2) = a4, and moreover for all a ∈ H ∩ H ′, we have a3 P1 a
and a3 P2 a. Therefore none of the alternatives in H ∩ H ′ is Pareto-effi cient. However,
g (R1, R2) = med (â, p (R1) , p (R2)), which is an element of H ∩H ′, contradicting Pareto-
effi ciency. Therefore the attribute space H satisfies condition (T ) .

Step 4: The space H is a median space.

Suppose, by contradiction that H is not a median space. Then, we know from Nehring

and Puppe (2007b, Proposition 4.1) that there is a family of attributes H1, ...,Hk, with

k ≥ 3, such that
⋂k
l=1Hl = ∅ and for each h ∈ {1, ..., k} ,

⋂
l 6=hHl 6= ∅.For each h = 1, ..., k,

let aj ∈
⋂
l 6=hHl. For each pair l, l

′, l 6= l′, the sets Hl ∩ Hl′ , Hc
l ∩ Hl′ and Hl ∩ Hc

l′ are

non-empty. Therefore, by Step 3, it must be that, for each pair l, l′, l 6= l′, Hc
l ∩Hc

l′ = ∅.
9Steps 3 and 4 in the proof can be deduced from the main result in Nehring and Puppe (2007a), more

precisely from Claim (a) in their Theorem. For the sake of completeness, we provide a direct proof that

exploits the special structure of this model to avoid the complexities of their analysis.
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Therefore any alternative a ∈ A is an element of exactly k − 1 sets Hl and one set Hl′ .
Without loss of generality, let’s suppose that â ∈ H1∩...∩Hk−1∩Hc

k. Consider now a profile

(R1, R2) such that p (R1) = a1 and p (R2) = a2. Then g (R1, R2) = med (â, p (R1) , p (R2)) ,

which is an element of [p (R1) , p (R2)] ⊆
⋂k
l=3Hl, of [â, p (R1)] ⊆ H2 and of [â, p (R2)] ⊆ H1.

Since
⋂k
l=1Hl = ∅, this is a contradiction. Therefore H is a median space.

Therefore H is a tree attribute space.
(ii) . The proof follows exactly the same steps, therefore we only provide a sketch. Let

|N | ≥ 3. Let f be a variable-population rule that satisfies Pareto-effi ciency and population-
monotonicity. Let g be the restriction of f to RM with M := {1, 2} . Each preference
replacement in the proof of (i) is achieved in two steps by first withdrawing the agent

whose preference is replaced and then adding him back with the new preference. At the

end, all agents with labels other than 1 and 2 are removed. The remaining steps are

identical to those in (i).�

To end this section, we provide the discrete counterparts of the characterizations ob-

tained by Ching and Thomson (1997), Vohra (1999) and Klaus (1999, 2001) on trees.10

Our proof differs from theirs, as it relies on the theory of voting by issues and does not

require an infinite set of alternatives.

Proposition 6 Let H be a tree attribute space. (i) Let |N | ≥ 3. Let f be a rule. Then f
satisfies Pareto-effi ciency and replacement-domination if and only if f is a unanimity rule.

(ii) Let |N | ≥ 3. Let f be a variable population rule. Then f satisfies Pareto-effi ciency
and population-monotonicity if and only if f is a unanimity rule.

Proof. It is clear that a unanimity rules satisfies the conditions. We prove the converse

implication. Throughout the proof, let H be a tree.
(i) . Let |N | ≥ 3. Let f be a rule that satisfies Pareto-effi ciency and replacement-

domination. Let M := {1, 2} and g : RM → A, such that for all (R1, R2) ∈ RM , we
have g (R1, R2) := f (R′N ) , where R

′
N ∈ RN is such that R′1 = R1 and R′i = R2, for all

10The proofs in Vohra (1999) and Klaus (1999, 2001) require infinitely many alternatives. This assumption

is implicitly used, for example, in Vohra’s Lemma 3.
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i ≥ 2. From Step 1 in the proof of Proposition 5, we know that g satisfies Pareto-effi ciency

and strategy-proofness and that it is a unanimity rule with status quo â. Let f â be the

unanimity rule with status quo â on RN . We will prove here that f = f â.
Let RN ∈ RN . Let a∗ := f â (RN ) and b∗ := f (RN ) . Since a∗ and b∗ are in the

Pareto-set for RN , there are two distinct agents i, j ∈ N such that a∗ ∈ [p (Ri) , p (Rj)]
and b∗ ∈ [p (Ri) , p (Rj)] . We will transform the profile RN into the profile R′N such that

R′1 = Ri and R
′
2 = ... = R

′
n = Rj .

Step 1. First, let L := N \{i, j} . Let R′l := Rj . Replace one by one the preference Rl of
each agent l ∈ L by R′l := R2. Once this is done, we obtain the profile R′N such that R′i = Ri
and R′l = Rj for all l 6= i. If i = 1, the transformation ends here. If not, then 1 6= i, so that
R′1 = Rj . In this case, let R

′′
1 := Ri and R

′′
i := Rj . Replace first the preference R

′
1 = Rj by

R′′1 = Ri and then the preference R
′
i = R1 by the preference R

′′
i = R2. The transformation

ends and we obtain the profile R′′N such that R′′1 = Ri and R′′2 = ... = R′′n = Rj . At

each elementary step in this transformation, there are always at least two agents whose

preferences are kept fixed and are Ri and Rj .We will show that the image by f remains b∗

along the path. Along the path, the set of preferences represented in the profile decreases

or remains constant at each step. By Pareto-effi ciency and replacement-domination, this

implies that the change weakly benefits preferences Ri and Rj . Since this is true at each

step, and by transitivity, it must be that f (R′′N ) Ri f (RN ) and f (R
′′
N ) Rj f (RN ) . But

since f (RN ) = b∗ ∈ [p (Ri) , p (Rj)] , this implies that f (R′′N ) = b∗.
But f (R′′N ) = g (R′′1 , R

′′
2) = g (Ri, Rj) = med (â, p (Ri) , p (Rj)) . By definition of a∗,

we know that a∗ ∈ [a∗, p (Rj)] ∩ [a∗, p (Ri)] . By definition of i and j, we know that a∗ ∈
[p (Ri) , p (Rj)] . Therefore med (â, p (Ri) , p (Rj)) = a∗, i.e. f (RN ) = f â (RN ) . Since this

is true for all RN ∈ RN , we conclude that f is the unanimity rule with status quo â.
(ii) The proof follows exactly the same steps, therefore we only provide a sketch. In

this case the rule g is the restriction of the variable-population rule f to R{1,2}. Each
preference replacement in the proof of (i) is achieved in two steps by first withdrawing

the agent whose preference is replaced and then adding him back with the new preference.

Last all agents with labels other than 1 and 2 are removed.�
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Vohra (1999) and Klaus (2001) both point out that their characterization on trees is

valid even in the subdomain of symmetric preferences. This is not the case in the discrete

setting, as shown in the following example.

Example 6 Let A := {0, 1, x} , with x ≥ 2. Consider the domain of preferences represented
by the utility functions u0 (a) = − |a| , u1 (a) = − |a− 1| and ux (a) = − |a− x| for all a ∈
A. Then the rule, which for any preference profile maximizes the linear ordering x � 0 � 1
on the set of Pareto-effi cient alternatives satisfies the conditions of Proposition 6 and is

not the restriction to this domain of any voting by issues rule.

We end this section by discussing the relation between the results by Gordon (2007a)

and the ones in this paper. Gordon (2007a) considers a general variable population

public choice problem, without assumptions on the preference domain, other than sym-

metry (all agents have the same set of possible preferences) and that the set of alter-

natives does not depend on the population. In this very general framework, Gordon

(2007a) does not provide a characterization, but establishes that under Pareto-effi ciency,

both population-monotonicity the one hand, and replacement-domination together with

replication-indifference (the decision change that follows the cloning replication of the en-

tire population leaves all agents indifferent) have the following strong implications. First,

either combination implies strategy-proofness and even the stronger requirement of group-

strategy-proofness (no group of agents can jointly benefit from misrepresenting the prefer-

ences of its members). Second, they imply anonymity (up to Pareto-indifference). Third,

they imply that there is a “status-quo alternative”that is always Pareto-dominated by the

choice of the rule. These results are obtained under the assumption that the population is

variable and that the set N is infinite.11

In contrast, we do not assume that such an infinite variable population is available and

focus on a more restricted class of models. Our results confirm that, in this more specific

11 In a similarly general framework, Bu (2013) establishes a general equivalence between false-name-

proofness, which requires non-manipulability via the creation of fictitious identities, and strategy-proofness,

anonymity and population-monotonicity. It would be interesting to study the implications of false-name-

proofness in the class of attribute-based preference domains.
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context, the above implications remain true as long as the fixed population has at least three

agents in the fixed population model, or as long as there are at least three potential agents

in the variable population model, and without the assumption of replication-indifference.

The status quo alternative of a unanimity rule on a tree is its target â. Moreover, both

anonymity and the existence of a status quo alternative are also shown to be implications

of the weaker conditions of voter-sovereignty, strategy-proofness and solidarity.
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