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1 Introduction

Because it does not distinguish between aversion to risk and aversion to intertemporal sub-

stitution, the traditional theory of precautionary saving based on intertemporal expected

utility maximization is a framework within which one cannot ask questions that are funda-

mental to the understanding of consumption in the face of labor income risk. For instance,

how does the strength of the precautionary saving motive vary as the elasticity of intertem-

poral substitution changes, holding risk aversion constant? Or, how does the strength of

the precautionary saving motive vary as risk aversion changes, holding the elasticity of

intertemporal substitution constant?

Moreover, one might wonder whether some of the results from an intertemporal ex-

pected utility framework continue to hold once one distinguishes between aversion to risk

and resistance to intertemporal substitution. For instance, does decreasing absolute risk

aversion imply that the precautionary saving motive is stronger than risk aversion regard-

less of the elasticity of intertemporal substitution? And under what conditions does the

precautionary saving motive decline with wealth?

To make sense of these questions, and to gain a better grasp on the channels through

which precautionary saving may affect the economy,1 we adopt a representation of pref-

erences based on the Selden and Kreps-Porteus axiomatization, which separates attitudes

towards risk and attitudes towards intertemporal substitution.2

The existing literature on the theory of precautionary saving under Selden/Kreps-

Porteus preferences is not very extensive. Barsky (1986) addresses some of the aspects

of this theory in relation to rate-of-return risks in a two-period setup, Weil (1993) analyzes

a parametric infinite-horizon model with mixed isoelastic/constant absolute risk aversion

1 There has been a considerable resurgence of interest in precautionary saving in the last twenty-two years.
For some early papers in this period, see for instance Barsky, Mankiw, and Zeldes (1986), Skinner (1988),
Kimball and Mankiw (1989), Zeldes (1989), Caballero (1990), Kimball (1990b), and Weil (1993). The subse-
quent citation patterns of these early papers indicate continuing interest in precautionary saving.

2See, for instance, Selden (1978), Selden (1979), Kreps and Porteus (1978), Hall (1988), Epstein and Zin
(1989), Farmer (1990), Weil (1990), and Hansen, Sargent, and Tallarini (1999).



preferences (which do not allow one to look at the consequences of decreasing absolute risk

aversion), but there has not been as yet any systematic treatment of precautionary saving

under Selden/Kreps-Porteus preferences.

Under intertemporal expected utility maximization, the strength of the precautionary

saving motive is not an independent quantity, but is linked to other aspects of risk pref-

erences. In that case, the absolute prudence −v′′′/v′′ of a von-Neumann Morgenstern

second-period utility function v measures the strength of the precautionary saving motive

(see Kimball (1990b)]), and there is an identity linking prudence to risk aversion under

additively time- and state-separable utility:

−
v′′′(x)

v′′(x)
= a(x)−

a′(x)

a(x)
, (1.1)

where

a(x) = −
v′′(x)

v′(x)
(1.2)

is the Arrow-Pratt measure of absolute risk aversion. Similarly, the coefficient of relative

prudence −x v′′′(x)/v′′(x) satisfies

−
x v′′′(x)

v′′(x)
= γ(x) + ǫ(x), (1.3)

where

γ(x) =−
x v′′(x)

v′(x)
= xa(x) (1.4)

is relative risk aversion, and

ǫ(x) =−
xa′(x)

a(x)
(1.5)

is the elasticity of absolute risk tolerance,3 which approximates the wealth elasticity of risky

investment.

The purpose of this paper is to determine what links exist—in the more general

3Absolute risk tolerance is defined as the reciprocal of absolute risk aversion: 1/a(x).
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Selden/Kreps-Porteus framework that allows for risk preferences and intertemporal sub-

stitution to be varied independently from each other—between the strength of the precau-

tionary saving motive, risk aversion, and intertemporal substitution.

In Section 2, we set up the model. In Section 3 we derive a local measure of the

precautionary saving motive for small risks. Section 4 deals with large risks: it performs

various comparative statics experiments to provide answers to the questions we asked in

our first two paragraphs. The conclusion discusses the implications of our main results.

2 Setup

This section describes our basic model, and characterizes optimal consumption and saving

decisions.

2.1 The model

We use essentially the same two-period model of the consumption-saving decision as in

Kimball (1990b), except for departing from the assumption of intertemporal expected util-

ity maximization.4 We assume that the agent can freely borrow and lend at a fixed risk-free

rate, and that the constraint that an agent cannot borrow against more than the minimum

value of human wealth is not binding at the end of the first period. Since the interest rate

is exogenously given, all magnitudes can be represented in present-value terms— so that,

without loss of generality, the real risk-free rate can be assumed to be zero. We also assume

that labor supply is inelastic, so that labor income can be treated like manna from heaven.

Finally, we assume that preferences are additively time-separable.

4Because there is enough to be said about the two-period case, we leave comprehensive treatment of the
multi-period case to future research. ? follows up our research by studying the multi-period case computa-
tionally. The results derived by Weil (1993) and van der Ploeg (1993) for particular multi-period parametric
versions of Kreps-Porteus preferences suggest that the two-period results of this paper have natural general-
izations to multi-period settings. In the case of intertemporal expected utility maximization, Kimball (1990a)
extends two-period results about precautionary saving effects decreasing with wealth to multi-period settings.
As in that paper, characterization of the multiperiod case must rely on the tools developed in the two-period
case. In addition, the two-period model highlights what cannot possibly be proven for the multiperiod case.
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The preferences of our agent can be represented in two equivalent ways. First, there is

the Selden ordinal certainty equivalence representation,

u(c1) + U(v−1(E v(c̃2))) = u(c1) + U(M(c̃2)),

where c1 and c2 are first- and second-period consumption, u is the first-period utility func-

tion, U is the second-period utility function for the certainty equivalent of random second-

period consumption (computed according to the atemporal von Neumann-Morgenstern

utility function v),5 E is an expectation conditional on all information available during

the first period, and M is the certainty equivalent operator associated with v:

M(c̃2) = v−1(E v(c̃2)).

According to this representation, the utility our consumer derives from the consumption

lottery (c1, c̃2) is the sum of the felicity provided by c1 and the felicity provided by the

certainty equivalent M(c̃2) of c̃2. Obviously, v plays no role, and M is an identity, under

certainty. These functions thus capture pure risk preferences.

Second, there is the Kreps-Porteus representation,

u(c1) +φ(E v(c̃2)),

where nonlinearity of the function φ indicates departure from intertemporal expected util-

ity maximization. This formulation expresses total utility as the nonlinear aggregate of

current felicity and expected future felicity.6

These two representations are equivalent as long as v is a continuous, monotonically

increasing function, so that M(c̃2) is well defined whenever E v(c̃2) is well defined. The

5Since U is a general function, any time discounting can be embedded in the functional form of U .
6Thus, when we refer in this paper to the Kreps-Porteus representation or to Kreps-Porteus preferences,

we point to the specific form of the aggregator function between current and future consumption proposed by
Kreps and Porteus (1978) in their multi-period axiomatization.
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link between the two representations is that

φ(ν) = U(v−1(ν)). (2.1)

Thus, as can be seen by straightforward differentiation, φ is concave if −U ′′/U ′ ≥ −v′′/v′,

while φ is convex if −U ′′/U ′ ≤ −v′′/v′. We will mainly use the Selden representation—

which is more intuitive—but, when more convenient mathematically, we use the Kreps-

Porteus representation.

2.2 Optimal consumption and saving

Our consumer solves the following problem:

max
x

u(w − x) + U(M(x + ỹ)), (2.2)

where w is the sum of initial wealth, first-period income, and the mean of second-period

income, x is “saving” out of this whole sum, and ỹ is the deviation of second-period income

from its mean.

The first-order condition for the optimal level of saving x is

u′(w − x) = U ′(M(x + ỹ))M ′(x + ỹ), (2.3)

where M ′ is defined by

M ′(x + ỹ) =
∂

∂ x
M(x + ỹ). (2.4)

To guarantee that the solution to (2.3) is uniquely determined, we would like the

marginal utility of saving,

U ′(M(x + ỹ))M ′(x + ỹ),

to be a decreasing function of x .7 In the main body of the paper, we will simply assume
7Throughout the paper, verbal characterizations of gradients (increasing, decreasing) or inequalities
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that this condition holds; it is equivalent to the reasonable assumption that first-period

consumption is a normal good. Appendix A gives a deeper treatment, proving that the

marginal utility of saving is decreasing under plausible restrictions on preferences.

Equation (2.3) and the assumption of a decreasing marginal utility of saving imply that

the uncertainty represented by ỹ will cause additional saving if

U ′(M(x + ỹ))M ′(x + ỹ)> U ′(x), (2.5)

that is, if the risk ỹ raises the marginal utility of saving.

As in Kimball (1990b), we can study the strength of precautionary saving effects by

looking at the size of the precautionary premium θ ∗ needed to compensate for the effect of

the risk ỹ on the marginal utility of saving. The precautionary premium θ ∗ is the solution

to the equation

U ′(M(x + θ ∗+ ỹ))M ′(x + θ ∗ + ỹ) = U ′(x), (2.6)

or equivalently, using the Kreps-Porteus representation of preferences, the solution to the

equation

φ′[E v(x + θ ∗+ ỹ)]E v′(x + θ ∗ + ỹ) = φ′[v(x)]v′(x). (2.7)

To be more specific, θ ∗ is the compensating Kreps-Porteus precautionary premium. It gen-

eralizes the compensating von Neumann-Morgenstern precautionary premium ψ∗ that is

defined8 as the solution to

E v′(x +ψ∗+ ỹ) = v′(x). (2.8)

As illustrated in Figure 1, the Kreps-Porteus precautionary premium θ ∗, which obviously

depends (among other things) on x , measures at each point the rightward shift of the

marginal utility of saving curve due to the risk ỹ . It enables us to isolate the effect of

uncertainty from the other (purely intertemporal) factors that determine optimal savings

(greater than, smaller than) should be understood as weak inequalities except where we emphasize strictness.
8See Kimball (1990b).
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x0 x0

θ ∗(x0)

u′(w − x)

U ′[M(x + ỹ)]M ′(x + ỹ)

U ′(x)

Figure 1: Precautionary saving

under certainty.

Also, as shown in Kimball (1990b), Appendix B, the compensating precautionary pre-

mium θ ∗ is the rightward shift of the consumption function due to ỹ . The closely related

equivalent precautionary premium9 θ gives the leftward shift of the consumption function

due to eliminating the risk ỹ . Hence, the extra consumption due to eliminating ỹ , or equiv-

alently the reduced consumption and increased saving due to the presence of ỹ is equal to
∫ w

w−θ
c′(ω, 0)dω, where c′(w, 0) is the marginal propensity to consume out of wealth in the

absence of uncertainty. If the marginal propensity to consume is constant in the absence of

uncertainty, the increment to saving from ỹ will be directly proportional to the size of the

equivalent precautionary premium.

9The equivalent Kreps-Porteus precautionary premium is the solution to the equation U ′[M(x + ỹ)]M ′(x +

ỹ) = U ′[x − θ (x)] according to the Selden representation of preferences, or to φ′[E v(x + ỹ)]E v′(x + ỹ) =

φ′[v(x−θ )]v′(x−θ ) according to the Kreps-Porteus representation. Kimball (1990b), Appendix A shows that
comparative statics of the compensating precautionary premium carry over to the equivalent precautionary
premium.
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3 Small risks: a local measure of the strength of the precaution-

ary saving motive

In appendix B, we prove that, for a small risk ỹ with mean zero and variance σ2,

θ ∗(x) = a(x)[1+ s(x)ǫ(x)]
σ2

2
+ o(σ2), (3.1)

where

s(x) =
−U ′(x)

xU ′′(x)
(3.2)

denotes the elasticity of intertemporal substitution for the second period utility function

U(x),10 o(σ2) collects terms going to zero faster than σ2, a(x) is the absolute risk aversion

of v defined in (1.2), and ǫ(x) denotes the elasticity of absolute risk tolerance defined in

(1.5).

Therefore, the local counterpart for Kreps-Porteus preferences to the concept of absolute

prudence defined for intertemporal expected utility preferences by Kimball (1990b) is

a(x)[1+ s(x)ǫ(x)].

Similarly, the local counterpart for Kreps-Porteus preferences to relative prudence is

P (x) = γ(x)[1+ s(x)ǫ(x)], (3.3)

where γ(x) = xa(x) is relative risk aversion as above. Therefore, in the more general

framework of Kreps-Porteus preferences, the strength of the precautionary saving motive is

determined both by attitudes towards risk and attitudes towards intertemporal substitution.

Three important special cases should be noted:

10In our definition, the elasticity of intertemporal substitution s(x) is therefore the elasticity of the ratio of
consumption between periods to the gross real interest rate holding first-period consumption constant.
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• For intertemporal expected utility maximization, s(x) = 1/γ(x), so that P (x) =

γ(x) + ǫ(x)—which is the expression given in (1.3).

• For constant relative risk aversion, γ(x) = γ and ǫ(x) = 1, so thatP (x) = γ[1+s(x)].

• For constant relative risk aversion γ(x) = γ, and constant (but in general distinct)

elasticity of intertemporal substitution11 s(x) = s, and P (x) = γ[1+ s].

From (3.3), the local condition for positive precautionary saving is simply

ǫ(x)≥ −
1

s(x)
, (3.4)

or, by calculating ǫ(x) from (1.5) and moving one piece to the right-hand side of the

equation:
−x v′′′(x)

v′′(x)
≥ γ(x)−ρ(x), (3.5)

where

ρ(x) = 1/s(x)

denotes the resistance to intertemporal substitution. The right-hand side of (3.5) is zero un-

der intertemporal expected utility maximization, in which case (3.5) reduces to the familiar

condition v′′′(x)≥ 0.

Intriguingly, equation (3.5) shows that when one departs from intertemporal expected

utility maximization, quadratic risk preferences do not in general lead to the absence of

precautionary saving effects that goes under the name of “certainty equivalence.”

Though the local measure P (x) cannot be used directly to establish global results,

equation (3.1) does suggests several principles which are valid globally, as the next section

shows. First, if one holds the outer intertemporal utility function U fixed, a change in risk

preferences v which raises both risk aversion and its rate of decline tends to strengthen

the precautionary saving motive. Second, decreasing absolute risk aversion (which implies

11 This special case characterizes the framework used by Selden (1979).
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ǫ(x) ≥ 0) guarantees that the precautionary saving motive is stronger than risk aversion.

Third, if one holds risk preferences constant, raising the elasticity of intertemporal substitu-

tion s(x) and lowering the resistance to intertemporal substitution ρ(x) = 1/s(x), widens

the gap between the strength of the precautionary saving motive and risk aversion. In par-

ticular, when absolute risk aversion is decreasing, lowering the resistance to intertemporal

substitution from the intertemporal utility maximizing level, so that ρ(x) falls below γ(x),

makes the precautionary saving motive stronger than it is under intertemporal expected

utility maximization. Conversely, a resistance to intertemporal substitution ρ(x) greater

than relative risk aversion γ(x) makes the precautionary saving motive weaker than under

intertemporal expected utility maximization.12

4 Large risks

4.1 Precautionary saving and decreasing absolute risk aversion

In the case of intertemporal expected utility maximization, Drèze and Modigliani (1972)

prove that decreasing absolute risk aversion leads to a precautionary saving motive stronger

than risk aversion. Kimball (1997) shows that there is a fundamental economic logic behind

this result: decreasing absolute risk aversion means that greater saving makes it more

desirable to take on a compensated risk. But the other side of such a complementarity

between saving and a compensated risk is that a compensated risk makes saving more

attractive.

This argument follows not from any model-specific features but rather from the logic

of complementarity itself. To understand this claim, consider an arbitrary, concave indirect

utility function of saving and the presence or absence of a compensated risk: J(x ,λ), where

12There are several further minor but interesting propositions suggested by (3.1) which are valid globally.
First, constant absolute risk aversion implies that ε = 0, so that the precautionary saving motive and risk aver-
sion are of exactly equal strength, regardless of intertemporal substitution. Second, two easy sets of sufficient
conditions for a positive precautionary saving motive that are valid globally are (a) decreasing absolute risk
aversion or (b) v′′′(·)≥ 0 and ρ(x)≥ γ(x).
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x is saving and λ is 1 in the presence of the compensated risk ỹ + π∗ and zero in its

absence.13 The definition of a compensated risk insures that

J(x , 1)− J(x , 0) = 0,

i.e., that the consumer is indifferent to the presence or absence of the risk ỹ +π∗.

In the most fundamental sense (i.e., independently of any particular model), the prop-

erty of decreasing absolute risk aversion means that a risk to which an agent is indifferent

at one level of saved wealth will become desirable at a slightly higher level of saved wealth.

Thus,
∂

∂ x
[J(x , 1)− J(x , 0)] = Jx(x , 1)− Jx(x , 0)≥ 0

if absolute risk aversion is decreasing. But this implies that if the first-order condition for

optimal saving is satisfied in the absence of the compensated risk—i.e., if Jx(x , 0) = 0, then

Jx(x , 1)≥ 0,

implying that a compensated risk makes the agent want to save more. In other words, the

risk premium needed to compensate the agent for the risk he or she is bearing does not

eliminate the total effect of the (compensated) risk on saving. This is what we mean when

we say that the precautionary saving motive is stronger than risk aversion.14

We now examine more formally how this general logic manifests itself in the specific

framework we are studying.

13In the Kreps-Porteus model, for instance, J(x ,λ) = u(w − x) + U[M(x + λ( ỹ +π∗))]. See equation (4.1)
below for a precise definition of the compensating risk premium π∗.

14Note that while a nonnegative precautionary saving motive is equivalent to supermodularity between sav-
ing and mean zero risks, U(M(x + δ + ε̃) + U(M(x))− U(M(x + δ))− U(M(x + ε̃)) ≥ 0, where δ > 0 and
Eε̃ = 0, the line of reasoning connecting decreasing absolute risk aversion and a precautionary saving motive
stronger than risk aversion uses the more subtle symmetry of a single-crossing property in two arguments that
both have a zero marginal effect on the objective function at a joint crossing point. Supermodularity between
saving and ỹ +π∗ typically does not hold, since ỹ +π∗ is likely to be strictly desirable at high levels of x and
strictly undesirable at low levels of x .
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4.1.1 Intertemporal expected utility maximization: a reminder

Under intertemporal expected utility maximization, decreasing absolute risk aversion im-

plies that if π∗ is the compensating risk premium for ỹ , which satisfies

E v(x +π∗+ ỹ) = v(x), (4.1)

then

E v(x +δ+π∗+ ỹ)≥ v(x +δ) (4.2)

for any δ ≥ 0.15 Equation (4.1) and inequality (4.2) together imply that the derivative of

the left-hand side of (4.2) at δ = 0 must be greater than the derivative of the right-hand

side of (4.2) at δ = 0:

E v′(x +π∗+ ỹ)≥ v′(x). (4.3)

Equation (2.8) defining the compensating von Neumann-Morgenstern precautionary pre-

mium ψ∗ differs from (4.3) only by having ψ∗ in place of π∗ and by holding with equal-

ity. Therefore, since v′ is a decreasing function, ψ∗ ≥ π∗. In words, (4.3) says that a

risk compensated by π∗, so that the agent is indifferent to the combination π∗ + ỹ , still

raises expected marginal utility. Therefore, the von Neumann-Morgenstern precautionary

premium ψ∗— which brings expected marginal utility back down to what it was under

certainty—must be greater than π∗.

4.1.2 Kreps-Porteus preferences

The same economic logic applies to the Kreps-Porteus case. Any property that ensures that

extra saving makes compensated risks more attractive guarantees that extra compensated

risk makes saving more desirable. Formally, decreasing absolute risk aversion guarantees

15In other words, the risk premium π∗ that compensates for the effect of the risk ỹ on utility when wealth is
x more than compensates for the effect of risk ỹ when wealth is x +δ.
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that M ′(·)≥ 1, since differentiating the identity

M(x +π∗(x) + ỹ)≡ x (4.4)

yields

(1+π∗′(x))M ′(x +π∗(x) + ỹ) = 1. (4.5)

Decreasing absolute risk aversion implies that π∗′(x) ≤ 0. (Monotonicity of v implies that

1+π∗′(x)≥ 0.) Thus,

U ′(M(x +π∗+ ỹ))M ′(x +π∗+ ỹ) = U ′(x)M ′(x +π∗+ ỹ)≥ U ′(x), (4.6)

where the equality on the left follows from (4.4),16 and the inequality on the right follows

from M ′(·) ≥ 1. Combined with the assumption of a decreasing marginal utility of saving,

(4.6) implies θ ∗ ≥ π∗. We have thus proved:

Proposition 1 Assuming a decreasing marginal utility of saving, if risk preferences v exhibit

decreasing absolute risk aversion, then the Kreps-Porteus precautionary premium is always

greater than the risk premium (θ ∗ ≥ π∗).

Remark. By reversing the direction of the appropriate inequalities above, one can see that

globally increasing absolute risk aversion guarantees that θ ∗ ≤ π∗, just as globally decreas-

ing absolute risk aversion guarantees that θ ∗ ≥ π∗. If absolute risk aversion is constant, both

inequalities must hold, implying that θ ∗(x) ≡ π∗(x) ≡ constant,17 regardless of the form of

the intertemporal utility function U .

16Note that the risk premium π∗ is the same as it would be under intertemporal expected utility maximiza-
tion.

17Weil (1993) exploits the fact that θ ∗(x) ≡ π∗(x) under constant absolute risk aversion to solve a multi-
period saving problem with Kreps-Porteus utility.
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4.1.3 Patent increases in risk

Proposition 1 can be extended to patent increases in risk, which, as defined by Kimball

(1993), are increases in risk for which the risk premium increases with risk aversion, at

least when a utility function with decreasing absolute risk aversion is involved. The set of

patent increases in risk includes increases in the scale of a risk coupled with any change of

location, and the addition of any independent risk, but does not include all mean-preserving

spreads.18

The compensating risk premium Π∗(x) for the difference between two risks Ỹ and ỹ is

defined by

E v(x +Π∗(x) + Ỹ ) = E v(x + ỹ), (4.7)

or equivalently, by

M(x +Π∗(x) + Ỹ ) = M(x + ỹ). (4.8)

If Ỹ is a patently greater risk than ỹ , then decreasing absolute risk aversion guarantees that

Π∗(x) is a decreasing function of x . (Given decreasing absolute risk aversion, reducing x

increases risk aversion and therefore increases Π∗ by the definition of a patently greater

risk.) Differentiating equation (4.8) with respect to x , one finds that

M ′(x + ỹ) = [1+Π∗′(x)]M ′(x +Π∗(x) + Ỹ )

≤ M ′(x +Π∗(x) + Ỹ ), (4.9)

where the inequality on the second line follows from Π∗′(x)≤ 0. In combination, equations

18As noted in Kimball (1993), “. . . the results of Pratt (1988) make it clear that X̃ is patently more risky
than x̃ if X̃ can be obtained from x̃ by adding to x̃ a random variable ν̃ that is positively related to x̃ in the
sense of having a distribution conditional on x̃ which improves according to third-order stochastic dominance
for higher realizations of x̃ . This sufficient condition for patently greater risk includes as polar special cases ν̃
perfectly correlated with x̃—which makes the movement from x̃ to X̃ a simple change of location and increase
in scale—and ν̃ statistically independent of x̃ .”
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(4.8) and (4.9) imply that

U ′(M(x +Π∗(x) + Ỹ ))M ′(x +Π∗(x) + Ỹ )≥ U ′(M(x + ỹ))M ′(x + ỹ). (4.10)

Defining the compensating Kreps-Porteus precautionary premium Θ∗(x) for the difference

between the two risks Ỹ and ỹ by

U ′(M(x +Θ∗(x) + Ỹ ))M ′(x +Θ∗(x) + Ỹ ) = U ′(M(x + ỹ))M ′(x + ỹ), (4.11)

a decreasing marginal utility of saving implies that Θ∗(x)≥ Π∗(x).

Proposition 2 (extension of Proposition 1) Assuming a decreasing marginal utility of sav-

ing, if risk preferences v exhibits decreasing absolute risk aversion and Ỹ is patently riskier

than ỹ, then the Kreps-Porteus precautionary premium for the difference between Ỹ and ỹ is

always greater than the risk premium for the difference between Ỹ and ỹ—i.e., Θ∗ ≥ Π∗.

Proof: See above. �

4.2 Comparative statics

We now examine how the strength of the precautionary saving motive is affected by

changes in intertemporal substitution, risk aversion, and wealth.

4.2.1 Intertemporal substitution

Before analyzing the effect of intertemporal substitution on the size of the precautionary

premium in general, it is instructive to examine how departures from intertemporal ex-

pected utility maximization affect the precautionary premium:

Proposition 3 Assuming a decreasing marginal utility of saving for the Kreps-Porteus utility

function u(c1) +φ(E v(c̃2)), if the von Neumann-Morgenstern precautionary premium ψ∗ is

15



greater than the risk premium π∗ (as it will be if absolute risk aversion is decreasing), then

the Kreps-Porteus precautionary premium θ ∗ ≤ ψ∗ when the function φ(·) is concave, but

θ ∗ ≥ψ∗ when φ(·) is convex. If ψ∗ ≤ π∗ (as it will be if absolute risk aversion is increasing),

then θ ∗ ≥ψ∗ when φ(·) is concave, but θ ∗ ≤ψ∗ when φ(·) is convex.

Proof: Assume first that ψ∗ ≥ π∗ and φ(·) is concave. Then

φ′(E v(x +ψ∗ + ỹ))E v′(x +ψ∗ + ỹ) = φ′(E v(x +ψ∗ + ỹ))v′(x)

≤ φ′(v(x))v′(x). (4.12)

The equality on the first line follows from the definition of ψ∗, and the inequality on the second line follows

from ψ∗ ≥ π∗, the monotonicity of v and the concavity of φ(·), which makes φ′(·) a decreasing function.

Together with a decreasing marginal utility of saving, (4.12) implies that

θ ∗ ≤ψ∗. (4.13)

Either the convexity of φ(·) or the inequality ψ∗ ≤ π∗ would reverse the direction of the inequalities in both

(4.12) and (4.13), while convexity of φ(·) and ψ∗ ≤ π∗ together leave the direction of the inequalities un-

changed. �

The results of Proposition 3 are summarized in Table 1.19

φ concave φ convex

(ρ > γ) (ρ < γ)

v DARA π∗ ≤ θ ∗ ≤ψ∗ π∗ ≤ψ∗ ≤ θ ∗

v IARA ψ∗ ≤ θ ∗ ≤ π∗ θ ∗ ≤ψ∗ ≤ π∗

Table 1: Summary of Proposition 3

Concavity of φ brings the Kreps-Porteus precautionary premium θ ∗ closer than the von

Neumann-Morgenstern precautionary premium ψ∗ to the risk premium π∗. Convexity of

φ pushes θ ∗ further than ψ∗ from π∗. For example, for quadratic utility—which exhibits

19 The comparisons between π∗ and θ ∗ follow from Proposition 1.
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IARA and for which ψ∗ = 0— the precautionary premium θ ∗ is positive if φ is concave and

negative if φ is convex.

Since concavity of φ is equivalent to the elasticity of intertemporal substitution s(x)

below relative risk tolerance 1/γ(x), and convexity of φ is equivalent to the elasticity of

intertemporal substitution s(x) above relative risk tolerance 1/γ(x), one can see that the

pattern is one of greater intertemporal substitution increasing the distance between the risk

premium π∗ and the Kreps-Porteus precautionary premium θ ∗.

Proposition 4 indicates that, holding risk preferences fixed, higher intertemporal sub-

stitution (or equivalently, a lower resistance to intertemporal substitution) leads quite gen-

erally to a Kreps-Porteus precautionary premium that is further from the risk premium:

Proposition 4 If, for two Kreps-Porteus utility functions ui(c1)+Ui(M(c̃2)), i = 1,2, with the

same risk preferences,

(a) the optimal amount of saving under certainty is the same,

(b) the marginal utility of saving is decreasing for both utility functions, and

(c) U2 has greater resistance to intertemporal substitution than U1—that is,
−U ′′2 (x)

U ′2(x)
≥
−U ′′1 (x)

U ′1(x)

for all x,

then |θ ∗2 − π
∗| ≤ |θ ∗1 − π

∗|, where θi is the Kreps-Porteus precautionary premium for utility

function i and π∗ is the risk premium for both utility functions. Also, θ ∗2 − π
∗ and θ ∗1 − π

∗

have the same sign.

Proof: See Appendix C. �

The conditions of the proof apply, for instance, when

ui(c1) + Ui(M(c̃2)) =
c

1−ρi

1

1−ρi

+
[M(c̃2)]

1−ρi

1−ρi
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with ρi > 0, i.e., when the elasticity of intertemporal substitution is constant, and the sub-

jective discount rate equals the interest rate (which we have assumed to be zero). In that

case, the optimal amount of saving under certainty does not depend on ρi , as there is per-

fect consumption smoothing (condition a of proposition 4). Mild conditions on M , spelled

out in Appendix A, guarantee that the marginal utility of saving is decreasing (condition

b of proposition 4). The utility function U2 displays greater resistance to intertemporal

substitution than U1 if ρ2 > ρ1 (condition c).

Remark. Using the machinery for the proof of Proposition 4, Appendix C also provides

graphical intuition for why intertemporal substitution, risk aversion and the rate of decline

of risk aversion matter in the way they do for the strength of the precautionary saving

motive.

4.2.2 Risk aversion

Next, we examine how the strength of the precautionary saving motive is affected by

changes in risk aversion.

Given two inner interpossibility functions v1 and v2, define

Mi(x + ỹ) = v−1
i (E vi(x + ỹ)) (4.14)

for i = 1,2, and define θ ∗1 and θ ∗2 by appropriately subscripted versions of (2.6). Then one

can state the following lemma:

Lemma 1 Assuming a decreasing marginal utility of saving and a concave intertemporal util-

ity function U that is held fixed when risk preferences are altered, if

U ′(M2(ξ+ ỹ))M ′2(ξ+ ỹ)≥ U ′(M1(ξ+ ỹ))M ′1(ξ+ ỹ)

for all ξ, then θ ∗2 (x)≥ θ
∗
1 (x).
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Proof: Letting ξ= x + θ ∗1 (x),

U ′(M2(x+θ
∗
1 (x) + ỹ))M ′2(x + θ

∗
1 (x) + ỹ)

≥ U ′(M1(x + θ
∗
1 (x) + ỹ))M ′1(x + θ

∗
1 (x) + ỹ)

= U ′(x). (4.15)

Thus, the Kreps-Porteus precautionary premium θ ∗1 for the first set of risk preferences is insufficient under the

second set of risk preferences to bring the marginal utility of saving back down to U ′(x). By the assumption of

a decreasing marginal utility of saving, this means that θ ∗2 must be greater than θ ∗1 to bring the marginal utility

of saving all the way back down to U ′(x). �

This lemma has an obvious corollary:

Corollary 1 Assuming a decreasing marginal utility of saving and a concave outer intertem-

poral utility function U that is held fixed when risk preferences are altered, if M2(ξ+ ỹ) ≤

M1(ξ+ ỹ) and M ′2(ξ+ ỹ)≥ M ′1(ξ+ ỹ) at ξ= x + θ ∗1 (x), then θ ∗2 (x)≥ θ
∗
1 (x).

The corollary is less helpful than one might hope because it is not easy to find suitable

conditions to guarantee that M ′2 ≥ M ′1. To see why it is not easy, consider the case of a two-

point risk and two different interpossibility functions that both go from infinite positive risk

aversion at zero, to zero risk aversion at infinity. Then, at zero, both certainty equivalents

will converge to the lower outcome of the two-point risk, while at infinity, both certainty

equivalents will converge to the mean value of the two-point risk. Since the certainty

equivalents start and end at the same values, unless M2 and M1 are identical functions the

difference in their slope, M ′2 − M ′1, must change sign at least once, so one cannot always

have M ′2 ≥ M ′1. There is, though, at least one case in which it is easy to establish that

M ′2 ≥ M ′1: when v1 has increasing (or constant) absolute risk aversion, so that M ′1 ≤ 1,

while v2 has decreasing (or constant) absolute risk aversion, so that M ′2 ≥ 1. This result is

equivalent to Proposition 3 and Table 1.

We do get clear results covering one important class of utility functions: the constant
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elasticity of intertemporal substitution, constant relative risk aversion (CEIS-CRRA) class.

The next proposition focuses on the effect of risk aversion on the strength of the pre-

cautionary saving motive. Within the CEIS-CRRA class, it takes care of the case where the

resistance to intertemporal substitution (the reciprocal of the elasticity of intertemporal

substitution) is greater than risk aversion.

Proposition 5 Suppose two Kreps-Porteus utility functions share the same intertemporal func-

tion U but have different inner interpossibility functions v1 and v2. If

(a) the resistance to intertemporal substitution is greater than the risk aversion of v1 (that is,

U is an increasing, concave transformation of v1),

(b) v2 is globally more risk averse than v1 (that is, −v′′2 (x)/v
′
2(x) ≥ −v′′1 (x)/v

′
1(x) for all

x),

(c) v2 is globally more prudent than v1 (that is, −v′′′2 (x)/v
′′
2 (x)≥ −v′′′1 (x)/v

′′
1 (x) for all x),

(d) v2 has decreasing absolute risk aversion, and

(e) both Kreps-Porteus utility functions have a decreasing marginal utility of saving,

then the Kreps-Porteus precautionary premium given v2 is greater than the Kreps-Porteus pre-

cautionary premium given v1.

Proof: See Appendix D. �

Within the CEIS-CRRA class, all the conditions of Proposition 5 are satisfied when v2 is

more risk averse than v1 and U also has greater curvature than v1.

A second proposition about the effect of greater risk aversion on the strength of the

precautionary saving motive takes care of the case within the CEIS-CRRA class where the

elasticity of intertemporal substitution is less than one:

Proposition 6 Suppose two Kreps-Porteus utility functions share the same outer intertemporal

function U but have different inner interpossibility functions v1 and v2. If
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(a) the resistance to intertemporal substitution is greater than 1 (that is, U(x) is an increas-

ing, concave transformation of ln(x)),

(b) v2 is globally more risk averse than v1 (that is, −v′′2 (c)/v
′
2(c)≥ −v′′1 (c)/v

′
1(c) for all c),

(c) v1 has constant or increasing relative risk aversion

(d) v2 has constant or decreasing relative risk aversion, and

(e) both Kreps-Porteus utility functions have a decreasing marginal utility of saving,

then the Kreps-Porteus precautionary premium given v2 is greater than the Kreps-Porteus pre-

cautionary premium given v1.

Proof: See Appendix E. �

Within the CEIS-CRRA class, all the conditions of Proposition 6 are satisfied when v2

is more risk averse than v1 and the elasticity of intertemporal substitution is less than or

equal to one.

Empirically, there is strong evidence that the elasticity of intertemporal substitution is

no larger than one, so this proposition takes care of all the empirically relevant cases within

the CEIS-CRRA class.20

In Proposition 6, as in Proposition 5, an assumption is needed that insures that the

absolute risk aversion of v2 decreases fast enough relative to the absolute risk aversion

of v1. In Proposition 5, the assumption of greater prudence for v2 plays that role. In

Proposition 6, the assumption that v2 has constant or decreasing relative risk aversion,

while v1 has constant or increasing relative risk aversion plays that role.

Together, Propositions 5 and 6 guarantee that if a CEIS-CRRA utility function has values

of γ and ρ in the shaded region of Figure 2, while the second function has parameter values

directly to the right (whether or not in the shaded region), the precautionary premium will

be greater for the second utility function.

20See for example Hall (1988) and Barsky, Juster, Kimball, and Shapiro (1997).

21



γ

ρ

0 1

1

Figure 2: Risk aversion and precautionary saving: CEIS-CRRA case

4.2.3 Limitations on what can be proven about the effect of risk aversion on the

strength of the precautionary saving motive

It is reasonable to wonder if stronger results are possible. In particular, what about those

utility functions within the CEIS-CRRA class not addressed by Propositions 5 and 6? Propo-

sition 7 says that there are no corresponding results when raising risk aversion starting

from any CEIS-CRRA utility function in the interior of the unshaded region of Figure 2.

Proposition 7 For every Kreps-Porteus utility function u(c1) +
[E (c̃2)

1−γ]
1−ρ
1−γ

1−ρ
with γ 6= 1 and

ρ ∈ (0,min{γ, 1}), and (when γ = 1) for every Kreps-Porteus utility function u(c1) +

e(1−ρ)[E ln(c̃2)]

1−ρ
with ρ ∈ (0,1), there are two-point risks for which local increases in γ reduce

the size of the precautionary premium θ ∗.

Proof: See Appendix F. �

4.2.4 Wealth

Kimball (1990a,b) shows that a precautionary premium that declines with wealth implies

that labor income risk raises the marginal propensity to consume out of wealth at a given
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level of first-period consumption. As can be seen from studying Figure 1, this connection

between a decreasing precautionary premium and the marginal propensity to consume

holds for Kreps-Porteus preferences as well. In the two-period case with intertemporal ex-

pected utility maximization, decreasing absolute prudence is necessary and sufficient for a

decreasing precautionary premium. Section 3 points to a necessary condition for a decreas-

ing precautionary premium that is sufficient only for small risks: d

d x
a(x)[1+s(x)ε(x)]≤ 0.

This subsection identifies conditions for a decreasing precautionary premium that are suf-

ficient both for both small and large risks.

Given a decreasing marginal utility of saving, define Q(w̃) by the identity

U ′(Q(w̃))≡ U ′(M(w̃))M ′(w̃). (4.16)

Then

Q(x + θ ∗(x) + ỹ)≡ x ,

and

[1+ θ ∗
′

(x)]Q′(x + θ ∗(x) + ỹ) = 1.

As a consequence, the precautionary premium is decreasing in x if and only if Q′(w̃) ≥ 1

with w̃ = x + θ ∗(x , ỹ) + ỹ .

Differentiation of (4.16) yields

U ′′(Q(w̃))Q′(w̃) = U ′′(M(w̃))[M ′(w̃)]2+ U ′(M(w̃))M ′′(w̃).

Changing signs and dividing by the square of (4.16), we find

�

−
U ′′(Q)

[U ′(Q)]2

�

Q′ =

�

−
U ′′(M)

[U ′(M)]2

�

+

�

1

U ′(M)

�
�

−
M ′′

[M ′]2

�

, (4.17)
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with the argument w̃ suppressed for clarity.

Appendix A shows, following Hardy, Littlewood, and Polya (1952, pp. 85-88), that con-

cave absolute risk tolerance of v is sufficient to guarantee that the certainty equivalent

function M is concave. Since CRRA, exponential and quadratic utility—with or without

a shifted origin—yield linear absolute risk tolerance, weakly concave absolute risk toler-

ance holds for an important set of inner interpossibility functions v. This result makes the

following proposition very useful:

Proposition 8 Given the Kreps-Porteus utility function u(c1) + U(v−1(E v(c̃2))) with U and

v increasing and concave, if

(a) absolute risk aversion is decreasing,

(b) the certainty-equivalent function M for the inner interpossibility function v is concave,

and

(c) −
U ′′(x)

[U ′(x)]2
is (weakly) increasing,

then the precautionary premium is decreasing in wealth.

Proof: First, as shown in Appendix A, if both M(w̃) and U(x) are increasing and concave, then the marginal

utility of saving is decreasing. Second, decreasing absolute risk aversion guarantees not only that M ′ ≥ 1, but

also, by (4.16), that Q(w̃)≤ M(w̃). Since − U ′′(x)

[U ′(x)]2
is increasing,

−
U ′′(Q)

[U ′(Q)]2
≤ −

U ′′(M)

[U ′(M)]2
.

Therefore,

�

−
U ′′(Q)

[U ′(Q)]2

�

≤

�

−
U ′′(M)

[U ′(M)]2

�

+

�

1

U ′(M)

�
�

−
M ′′

[M ′]2

�

,

implying by (4.17) that Q′ ≥ 1. �

Remark. If the elasticity of intertemporal substitution is constant, condition (c), which

requires − U ′′(x)

[U ′(x)]2
to be increasing, is equivalent to ρ ≥ 1, or to an elasticity of intertem-
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poral substitution s less than or equal to 1. More generally, this condition is equivalent to

s′(x)≤
1−s(x)

x
, where s(x) = −

U ′(x)

xU ′′(x)
.

For the effect of greater risk aversion on the precautionary premium, Section 4.2.2

provides results that cover the CEIS-CRRA case not only for ρ ≥ 1, but also for ρ ≥ γ.

We can do the same for the effect of wealth on the precautionary premium. Proposition 9

shows that if the precautionary premium is decreasing for a utility function at any point in

Figure 2, the precautionary premium will also be decreasing at any utility function directly

above it on Figure 2, up to the point where ρ = 1. Proposition 10 combines this result

with the fact that the precautionary premium is decreasing for the CRRA intertemporal

expected utility case ρ = γ to demonstrate that within the CEIS-CRRA class, ρ ≥ γ is

enough to guarantee a decreasing precautionary premium, even if ρ < 1.

Proposition 9 Suppose two Kreps-Porteus utility functions share the same inner interpossibil-

ity function v but have different increasing, concave intertemporal functions U1 and U2 and

associated precautionary certainty equivalence functions Q1(w̃) and Q2(w̃). If

(a) v has decreasing absolute risk aversion,

(b) Q′1(w̃)≥ 1 so that the precautionary premium for the first utility function is decreasing,

(c) −
U ′′2 (x)

U ′2(x)
≥ −

U ′′1 (x)

U ′1(x)
, or equivalently U2 has a greater resistance to intertemporal substitution

than U1,

(d) 2
U ′′2 (x)

U ′2(x)
−

U ′′′2 (x)

U ′′2 (x)
≤ 2

U ′′1 (x)

U ′1(x)
−

U ′′′1 (x)

U ′′1 (x)
, and

(e) either 2
U ′′1 (x)

U ′1(x)
−

U ′′′1 (x)

U ′′1 (x)
or 2

U ′′2 (x)

U ′2(x)
−

U ′′′2 (x)

U ′′2 (x)
is a decreasing function,

then Q′2(w̃)≥ 1, so that the precautionary premium for the second utility function is decreasing

at the corresponding point.

Proof: See Appendix G. �
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Remark. When the elasticity of intertemporal substitution s and its reciprocal ρ are con-

stant, condition (c) boils down to ρ2

x
≥

ρ1

x
, condition (d) boils down to 1−ρ2

x
≤

1−ρ1

x
,

and condition (e) boils down to 1−ρi

x
being a decreasing function for one of the functions,

which is guaranteed if either ρi ≤ 1. Thus, for the CEIS-CRRA utility functions, Proposition

9 applies in exactly the region where Proposition 8 cannot be used.

The foregoing proposition has an obvious corollary. Set U1(x) = v(x) and denote

U2(x) = U(x):

Proposition 10 (corollary to Proposition 9) Suppose a Kreps-Porteus utility function satis-

fies the conditions

(a) the inner interpossibility function v is increasing, concave, has decreasing absolute risk

aversion and decreasing absolute prudence,

(b) −
U ′′(x)

U ′(x)
≥ −

v′′(x)

v′(x)
, or equivalently ρ(x)≥ γ(x),

(c) 2 U ′′(x)

U ′(x)
−

U ′′′(x)

U ′′(x)
≤ 2 v′′(x)

v′(x)
−

v′′′(x)

v′′(x)
, and

(d) either 2 v′′(x)

v′(x)
−

v′′′(x)

v′′(x)
or 2 U ′′(x)

U ′(x)
−

U ′′′(x)

U ′′(x)
is a decreasing function,

then the precautionary premium θ ∗(x) is decreasing.

The condition that v has decreasing absolute prudence is needed to guarantee that Q′1 ≥ 1

with U1 = v.

Within the CEIS-CRRA class, the conditions of Proposition 10 are all guaranteed when

1 > ρ > γ. Propositions 8 and 10 taken together thus establish that the precautionary pre-

mium is decreasing for large risks for any set of parameters in the shaded region of Figure

2. This is the same region in which greater risk aversion increases the size of the precau-

tionary premium. Conversely, Proposition 11 demonstrates that one cannot guarantee a

decreasing precautionary premium for any of the utility functions in the interior of the un-

shaded region in Figure 2. Thus, the utility functions in the unshaded region—those with
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a resistance to intertemporal substitution below one and below relative risk aversion—are

badly behaved in relation to both the effect of risk aversion and the effect of wealth on the

strength of the precautionary saving motive:

Proposition 11 For every Kreps-Porteus utility function u(c1) +
[E (c̃

1−γ
2 )]

1−ρ
1−γ

1−ρ
with γ 6= 1

and ρ ∈ (0,min{γ, 1}), and (when γ = 1) for every Kreps-Porteus utility function u(c1) +

e(1−ρ)[E ln(c̃2)]

1−ρ
with ρ ∈ (0,1), there are two-point risks for which increases in wealth raise the

size of the precautionary premium θ ∗.

Proof: See Appendix H. �

5 Conclusion

We have made considerable progress in understanding the determinants of the strength of

the precautionary saving motive under Kreps-Porteus preferences in the two-period case.

Perhaps one of the more surprising results is that greater risk aversion tends to increase

the strength of the precautionary saving motive, while greater resistance to intertemporal

substitution reduces the strength of the precautionary saving motive in the typical case

of decreasing absolute risk aversion. Thus, distinguishing between risk aversion and the

resistance to intertemporal substitution is very important in discussing the determinants

of the strength of the precautionary saving motive, since these two parameters—which

are forced to be equal under intertemporal expected utility maximization—have opposite

effects when allowed to vary separately.

Our results also bear on judgments about the likely empirical magnitude of the precau-

tionary saving motive. Remember that we show in Section 3 that, for preferences exhibiting

a constant elasticity of intertemporal substitution and constant relative risk aversion, the

local measure (in relative terms) of the strength of the precautionary saving motive is

P = γ(1+ s) = γ(1+ρ−1),
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γ= 2 γ= 6 γ= 18
ρ = 2 3 9 27
ρ = 6 2.33 7 21
ρ = 18 2.11 6.33 19

Table 2: The local coefficient of relative prudence P = γ(1 + ρ−1) for isoelastic Kreps-
Porteus preferences

where γ is the coefficient of relative risk aversion, s is the elasticity of intertemporal substi-

tution, and ρ = 1/s is the resistance to intertemporal substitution.

To give some idea of what this formula means in practice, Table 2 shows the implied

value of the coefficient of relative prudence,P , for γ and ρ both ranging over the three rep-

resentative “low,” “medium,” and “high” values 2, 6 and 18. The words “low,” “medium,”

and “high,” are in quotation marks because the values of both γ and ρ and what values

would count as “low,” “medium” and “high,” in relation to the data are hugely contro-

versial. For instance, economist A might find γ = 2 intuitively reasonable, while being

convinced by consumption Euler equation evidence like that of Hall (1988) that the elas-

ticity of intertemporal substitution s is very small, with s about .055 and thus ρ = 18. By

contrast, economist B might find the value ρ = 2, and the higher implied s = .5, intuitively

more reasonable in relation to what is needed to explain business cycles, but might be con-

vinced by the evidence behind the equity premium puzzle that relative risk aversion should

be at least γ= 18.

If they do not know how to relax the von Neumann-Morgenstern restriction ρ = γ,

these economists with quite divergent views and data about risk aversion and intertempo-

ral substitution might be compelled to compromise on some intermediate value ρ = γ = 6

(taken here for computational simplicity to be the geometric mean of 2 and 18 for both γ

and ρ). This would lead them to agree on a precautionary saving motive strength given

by the relative prudence of 7. This agreement is artificial as, freed by Kreps-Porteus pref-

erences from the restriction ρ = γ, economists A and B would strongly disagree about the

strength of the precautionary saving motive. Economist A would expect a very strong pre-
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cautionary saving motive with P = 27, while Economist B would expect a much weaker

precautionary saving motive with P = 2.11. In addition, they also would differ widely on

the implied magnitude of the equilibrium equity premium and real interest rate implied by

their model.21

The dramatic quantitative differences illustrated in this example underline the impor-

tance of refining the empirical evidence for the magnitude of risk aversion, and of obtain-

ing distinct estimates of the resistance to intertemporal substitution.22 Kreps-Porteus pref-

erences provide the conceptual foundation of this further empirical research program. In

turn, understanding the precautionary saving effects of Kreps-Porteus preferences is central

to a sound theoretical and empirical understanding of consumption and saving behavior.

21See, for instance, the computations in ?.
22One of the key practical implications of distinguishing between risk aversion and the resistance to in-

tertemporal substitution is that, without the restriction that they be equal, there is only half as much empirical
evidence on the value of each as one might otherwise think.
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Appendix A Conditions guaranteeing a decreasing marginal

utility of saving

Almost every proof in the preceding sections relies in some way on the assumption of a de-

creasing marginal utility of saving. If that assumption fails, the marginal utility of saving

U ′(M(x + ỹ))M ′(x + ỹ) can intersect first-period marginal utility u′(w − x) more than once when

the first-period utility function u is close to being linear. Regardless of the shape of the first-period

utility function, an increasing marginal utility of saving results in a negative first-period marginal

propensity to consume out of wealth, as illustrated in Figure 3. In Figure 3, the first-period marginal

x0 x1

u′(w1− x)

u′(w2− x)

x2

U ′[M(x+ ȳ)]M ′(x+ ȳ)

Figure 3: A marginal utility of saving increasing on one interval

utility of consumption u′ rises as wealth rises from w1 to w2, indicating that first-period consumption

falls.

In order to assess how restrictive this assumption is, we now derive conditions sufficient to

guarantee that the marginal utility of saving will be decreasing.

The simplest sufficient condition for a decreasing marginal utility of saving is concavity of φ

and v—or equivalently, ρ ≥ γ > 0.

Proposition 12 If both v and φ are monotonically increasing and concave—that is, if the resistance
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to intertemporal substitution is greater than risk aversion, which in turn is positive—then the marginal

utility of saving is decreasing.

Proof: Concavity of both v and φ guarantees that both factors of the Kreps-Porteus representation of the

marginal utility of saving, φ′(E v(x + ỹ))E v′(x + ỹ), decrease as x increases. �

Alternatively, concavity of both the outer intertemporal function U and of the certainty equiva-

lent function M is enough to guarantee a decreasing marginal utility of saving:

Proposition 13 If both the outer intertemporal utility function U and the certainty equivalent function

M(x + ỹ) are increasing and concave in x, then the marginal utility of saving is decreasing.

Proof: Concavity of both U and M guarantees that both factors of the Selden representation of the marginal

utility of saving, U ′(M(x + ỹ))M ′(x + ỹ), decrease as x increases. �

This result becomes very useful in conjunction with Proposition 14 below (adapted from

Hardy, Littlewood, and Polya’s classic book Inequalities) that the certainty equivalent function M is

always concave for risk preference function function v with concave absolute risk tolerance, which

includes any v in the hyperbolic absolute risk aversion class, including quadratic, exponential, linear,

and constant relative risk aversion utility functions, which all have linear absolute risk tolerance.23

Proposition 14 If v′(x) > 0, v′′(x) < 0, and −
v′(x)

v′′(x)
is a concave function of x, then M(ξ+ ỹ) =

v−1(E v(ξ+ ỹ)) is a concave function of ξ.

Proof: As noted above, this proof is adapted from Hardy, Littlewood, and Polya (1952). Write ξ + ỹ = w̃.

Differentiating the identity

23Utility functions in the hyperbolic absolute risk aversion class are those that can be expressed in the form

v(x) =
γ

1−γ

§
�

x−b

γ

�1−γ
− 1
ª

together with the logarithmic limit as γ→ 1 and the exponential limit as γ→∞

with b

γ
→−a. As pointed out by an anonymous referee, outside of the constant relative risk aversion class, an

increasing concave utility function must either have a subsistence level of consumption or strictly increasing
relative risk aversion above a certain level in order to have globally concave absolute risk tolerance. We
do not view either a subsistence level of consumption or some level of increasing relative risk aversion as
inherently unreasonable, but it is good to be aware of this constraint. Suppose t(x) = 1/a(x) is well defined
and strictly positive on the strictly positive reals. If t ′(x∗) < 0 for some x∗, then concave t(·) would force
t(x) < 0 for large enough x . Also, t ′(x) ≤ t(x)/x is necessary in order to rule out t(x) < 0 for small x .
t ′(x) ≤ t(x)/x is equivalent to (weakly) increasing relative risk aversion. Furthermore, concave t(·) implies
that if t ′(x∗)< t(x∗)/x∗ for any x∗, then t ′(x)< t(x)/x for all x > x∗ as well. Thus, strictly increasing relative
risk aversion at any point implies strictly increasing relative risk aversion above that point as well.
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v(M(w̃))≡ E v(w̃)

yields

v′(M(w̃))M ′(w̃) = E v′(w̃) (A.1)

and

v′(M(w̃))M ′′(w̃) + v′′(M(w̃))[M ′(w̃)]2 = E v′′(w̃). (A.2)

Dividing (A.2) by the square of (A.1) and rearranging,

M ′′(w̃)

v′(M(w̃))[M ′(w̃)]2
=

�

−v′′(M(w̃))

[v′(M(w̃))]2

�

−

�

−E v′′(w̃)

[E v′(w̃)]2

�

(A.3)

The sign of M ′′ is the same as the sign of the right-hand-side of (A.3).

For any particular realization of w̃, the matrix







−
[v′(w)]2

v′′(w)
v′(w)

v′(w) −v′′(w)







is positive semi-definite. Since an expectation over positive semi-definite matrices is positive semi-definite,







−E
[v′(w̃)]2

v′′(w̃)
E v′(w̃)

E v′(w̃) −E v′′(w̃)







is also positive semi-definite. Therefore,24

�

E
[v′(w̃)]2

v′′(w̃)

�

E v′′(w̃)≥ [E v′(w̃)]2.

This implies the first inequality in (A.4):

[E v′(w̃)]2

[−E v′′(w̃)]
≤ E

�

[v′(w̃)]2

[−v′′(w̃)]

�

≤ −
[v′(M(w̃))]2

v′′(M(w̃))
. (A.4)

The second inequality in (A.4) follows from the concavity of absolute risk tolerance − v′(x)

v′′(x)
. Consider the

24 This equality can also be derived by applying the Cauchy-Schwarz inequality to −v′(w̃)/
p

−v′′(w̃) and
p

−v′′(w̃).

32



function ℓ(z) defined by

ℓ(z)≡ −
[v′(v−1(z))]2

v′′(v−1(z))
.

Its first derivative is

ℓ′(z)≡
v′′′(v−1(z))v′(v−1(z))

[v′′(v−1(z))]2
− 2.

For comparison,

∂

∂ x

�

−v′(x)

v′′(x)

�

≡
v′′′(x)v′(x)

[v′′(x)]2
− 1.

Let z = v(x). Since dz

d x
> 0, ℓ′(z) is decreasing if and only if ∂

∂ x

�

−v′(x)

v′′(x)

�

is decreasing. Therefore, ℓ(z) is

concave as a function of z if and only if absolute risk tolerance −v′(x)

v′′(x)
is concave as a function of x . In turn,

concavity of ℓ implies

E

�

[v′(w̃)]2

[−v′′(w̃)]

�

= Eℓ(v(w̃))≤ ℓ(E v(w̃)) = −
[v′(M(w̃))]2

v′′(M(w̃))
.

Inequality (A.4) and equation (A.3) prove that M is concave. �

As for the converse of Proposition 13, a necessary condition on v for U ′(M(x + ỹ))M ′(x + ỹ)

to be decreasing for any concave U (that is, regardless of the size of the resistance to intertemporal

substitution) is for M to be concave.

Only a partial converse is available for Proposition 14. For small risks, the necessary and suffi-

cient condition for M to be concave is for absolute risk aversion
−v′′(x)

v′(x)
to be convex. (See equation

(B.2).) This is a weaker condition than the concavity of absolute risk tolerance that guarantees con-

cavity of M for large risks, so this does not provide a full converse to Proposition 14. Still, it does

indicate how to find cases where M is convex, which have the potential to violate the assumption

of a decreasing marginal utility of saving for a low enough resistance to intertemporal substitution.

Hardy, Littlewood, and Polya (1952, pp. 85-88) look at a more general result than Proposition 14

(in our notation, they are interested in M( ỹ + xz̃) being concave in x for any random variable z̃),

so their converse does not apply.

33



Appendix B Local approximation of section 3

Define the equivalent Kreps-Porteus precautionary premium θ , expressed as a function of x , as the

solution to the equation

U ′[M(x + ỹ)]M ′(x + ỹ) = U ′[x − θ (x)]. (B.1)

It is easiest to find the small-risk approximation for the equivalent Kreps-Porteus precautionary

premium θ first, and then the small risk approximation for the compensating Kreps-Porteus pre-

cautionary premium θ ∗. For a small risk ỹ with mean zero and variance σ2, Pratt (1964) shows

that

M(x + ỹ) = x − a(x)
σ2

2
+ o(σ2). (B.2)

As long as M ′′(·) is bounded in the neighborhood of x , (B.2) can be differentiated to obtain

M ′(x + ỹ) = 1− a′(x)
σ2

2
+ o(σ2). (B.3)

Finally, substituting from (B.2) and (B.3) into (B.1), and doing a Taylor expansion of U(x − θ )

around x ,

U ′[M(x + ỹ)]M ′(x + ỹ) = [U ′(x)− U ′′(x)a(x)
σ2

2
+ o(σ2)] [1− a′(x)

σ2

2
+ o(σ2)]

= U ′(x)− [U ′′(x)a(x) + U ′(x)a′(x)]
σ2

2
+ o(σ2)

= U ′(x)− U ′′(x)θ (x) + o(θ (x)). (B.4)

Using the last equality, we conclude that

θ (x) =

�

a(x) +
U ′(x)

U ′′(x)
a′(x)

�

σ2

2
+ o(σ2). (B.5)

Inspecting (2.6) and (B.1) and then using (B.5) makes it clear that

θ ∗(x) = θ (x + θ ∗(x))

=

�

a(x + θ ∗(x)) +
U ′(x + θ ∗(x))

U ′′(x + θ ∗(x))
a′(x + θ ∗(x))

�

σ2

2
+ o(σ2)

=

�

a(x) +
U ′(x)

U ′′(x)
a′(x)

�

σ2

2
+ o(σ2), (B.6)
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as long as a′ and U ′

U ′′
are continuous at x . Using (3.2), (B.6) can be rewritten as

θ ∗(x) = a(x)[1+ s(x)ǫ(x)]
σ2

2
+ o(σ2), (B.7)

which establishes (3.1) in the text.

Appendix C Proof of Proposition 4

The optimal amount of saving for the two utility functions is the same under certainty only if there

is an x0 for which

u′
i
(w − x0) = U ′

i
(x0) i = 1,2. (C.1)

Define the normalized marginal utility of saving functions f1 and f2 by

fi(x) =
U ′

i
(M(x + ỹ))M ′(x + ỹ)

U ′
i
(x0)

. (C.2)

For either utility function, the normalized marginal utility of saving fi equals 1 when x = x0 +

θ ∗
i
(x0). Therefore, f1 and f2 can be used to establish comparative statics for the Kreps-Porteus

precautionary premium θ ∗.

Equation (C.1) says that f1 and f2 meet at x = x0 +π
∗(x0), since

U ′
i
(M(x0 +π

∗(x0) + ỹ))M ′(x0 +π
∗(x0) + ỹ)

U ′
i
(x0)

=
U ′

i
(x0)M ′(x0 +π

∗(x0) + ỹ)

U ′
i
(x0)

= M ′(x0 +π
∗(x0) + ỹ) (C.3)

for i = 1,2. Since the identity M(x +π∗(x) + ỹ)≡ x can be differentiated to obtain

[1+π∗′(x0)]M
′(x0 +π

∗(x0) + ỹ) = 1, (C.4)

both f1(x0 +π
∗(x0)) and f2(x0 +π

∗(x0)) are greater than 1 if π′(x0) ≤ 0 and both are less than 1

if π∗′(x0)≥ 0.
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The ratio between f2 and f1 simplifies as follows:

f2(x)

f1(x)
=

U ′2(M(x + ỹ))

U ′1(M(x + ỹ))

U ′1(x0)

U ′2(x0)
. (C.5)

The condition
−U ′′2 (x)

U ′2(x)
≥
−U ′′1 (x)

U ′1(x)
implies that the ratio

U ′2(x)

U ′1(x)
is a decreasing function of x since

d

d x
ln

�

U ′2(x)

U ′1(x)

�

=
U ′′2 (x)

U ′2(x)
−

U ′′1 (x)

U ′1(x)
≤ 0. (C.6)

Since M(x + ỹ) is an increasing function of x , this means that f2(x)

f1(x)
is a decreasing function of x .

Therefore, f2(x)≥ f1(x) for x ≤ x0 +π
∗(x0) and f2(x)≤ f1(x) for x ≥ x0 +π

∗(x0).

We are now in a position to draw an instructive graph of f1 and f2. Figures 4 and 5 depict the

two main cases. Decreasing marginal utility of saving means that fi is decreasing for both utility

functions. If π∗′(x0) ≤ 0, then f2 and f1 are both above 1 at x = x0 +π
∗(x0) and f2 must hit 1 first

as x moves to the right from x0 +π
∗(x0) since f2 is below f1 to the right of x0 +π

∗(x0). Therefore

x0 + θ
∗
2 (x0)≤ x0 + θ

∗
1 (x0) and θ ∗2 (x0)≤ θ

∗
1 (x0).

If π∗′(x0) ≥ 0, then f2 and f1 are both below 1 at x = x0 + π
∗(x0) and f2 must hit 1 first

as x moves to the left from x0 + π
∗(x0) since f2 is above f1 to the left of x0 + π

∗(x0). Therefore

x0 + θ
∗
2 (x0)≥ x0 + θ

∗
1 (x0) and θ ∗2 (x0)≥ θ

∗
1 (x0).

If one or the other of fi(x) never hits 1, these inequalities remain valid if one writes θ ∗
i
(x0) =

+∞ when fi(x) > 1 for all x , and θ ∗
i
(x0) = −∞ when fi(x) < 1 for all x . In all of these cases,

θ1(x0) and θ2(x0) are on the same side of π∗(x0) and |θ ∗2 (x0)−π
∗(x0)| ≤ |θ

∗
1 (x0)−π

∗(x0)|.

Figures 4 and 5 can be used to illustrate not only the effects of changing the elasticity of in-

tertemporal substitution but also the effects of changing the level and rate of decline of risk aver-

sion. Let us begin by presenting what would be a satisfying intuitive story except that it neglects

one effect. Focusing on the point (x0 + π
∗(x0), M ′(x0 + π

∗(x0) + ỹ)) at which the curves f1 and

f2 intersect, increases in risk aversion move this point to the right by increasing π∗, more quickly

declining risk aversion tends to move this point upward by increasing M ′, while increases in the

elasticity of intertemporal substitution swivel the curve describing f counterclockwise around this

point (increases in the resistance to intertemporal substitution swivel the curve clockwise around

this point.) The effects of each change on the strength of the precautionary saving motive can be

seen in the horizontal movement of the intersection with the dashed line f (x) = 1. The message

36



x0 x0+π
∗(x0)

1

M ′[x0+π
∗(x0)+ ỹ]

x0+θ
∗
2 (x0) x0+θ

∗
1 (x0)

f1

f2

Figure 4: π∗′(x0)< 0

x0 x0+π
∗(x0)

1

M ′[x0+π
∗(x0)+ ỹ]

x0+θ
∗
2 (x0)x0+θ

∗
1 (x0)

f1

f2

Figure 5: π∗′(x0)> 0
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of equation (3.3) about the determinants of the strength of the precautionary saving motive under

Kreps-Porteus preferences is clearly confirmed by such an exercise. The fly in the ointment is the

one neglected effect: like the rate of change of risk aversion, changes in the level of risk aversion

can affect M ′ and so move the (x0 +π
∗(x0), M ′(x0 +π

∗(x0) + ỹ)) point vertically as well as hori-

zontally. This vertical movement can be either up or down in response to an increase in the level of

risk aversion. The subtleties of section 4.2.2 stem from this complication.

Appendix D Proof of Proposition 5

By Lemma 1, together with the assumption of a decreasing marginal utility of saving, it is enough

to show that U ′(M2)M
′
2 > U ′(M1)M

′
1. Write w̃ = x +θ1+ ỹ . Take the derivative of both sides of the

identity

v(Mi(w̃))≡ E v(w̃)

with respect to the addition of nonstochastic constants to get

v′(Mi(w̃))M
′
i
(w̃) = E v′(w̃).

Also define Ni(w̃) by

v′(Ni(w̃)) = E v′(w̃),

so that

M ′
i
(w̃) =

v′
i
(Ni(w̃))

v′
i
(Mi(w̃))

.

Suppressing the arguments for Mi , M ′
i

and Ni , we find that
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U ′(M2)M
′
2

U ′(M1)M
′
1

=

U ′(M2)

�

v′2(N2)

v′2(M2)

�

U ′(M1)

�

v′1(N1)

v′1(M1)

�

=







�

U ′(M2)

v′1(M2)

�

�

U ′(M1)

v′1(M1)

�













�

v′2(N2)

v′1(N2)

�

�

v′2(M2)

v′1(M2)

�







¨

v′1(N2)

v′1(N1)

«

≥ 1.

First,

�

U ′(M2)

v′1(M2)

�

�

U ′(M1)

v′1(M1)

� ≥ 1

because resistance to intertemporal substitution greater than risk aversion means that ln(U ′) de-

clines more quickly than ln(v′1), making U ′

v′1
a decreasing function, while v2 being more risk averse

than v1 guarantees that M2(w̃)≤ M1(w̃). Second,

�

v′2(N2)

v′1(N2)

�

�

v′2(M2)

v′1(M2)

� ≥ 1

because v2 being more risk averse than v1 makes
v′2
v′1

a decreasing function, and the decreasing

absolute risk aversion of v2 guarantees that N2(w̃)≤ M2(w̃). Third,

v′1(N2)

v′1(N1)
≥ 1

because v2 being more prudent than v1 guarantees that N2(w̃)≤ N1(w̃).

Appendix E Proof of Proposition 6

Using a slightly different rearrangement than in Appendix D,
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U ′(M2)M
′
2

U ′(M1)M
′
1

=

U ′(M2)

�

E v′2(w̃)

v′2(M2)

�

U ′(M1)

�

E v′1(w̃)

v′1(M1)

�

=

¨

M2U ′(M2)

M1U ′(M1)

«







�

E w̃v′1(w̃)

E v′1(w̃)

�

�

E w̃v′2(w̃)

E v′2(w̃)

�













�

E w̃v′2(w̃)

M2 v′2(M2)

�

�

E w̃v′1(w̃)

M1 v′1(M1)

�







≥ 1.

Having the resistance to intertemporal substitution greater than one (or equivalently, the elasticity

of intertemporal substitution less than one) implies that xU ′(x) is a decreasing function. Combined

with v2 being more risk averse than v1, so that M2 ≤ M1, this guarantees that

M2U ′(M2)

M1U ′(M1)
≥ 1.

Next, v2 being more risk averse than v1 implies that the function

j(w) =
v′1(w)

EW v′1(W̃ )
−

v′2(w)

EW v′2(W̃ )

is single-crossing upwards. Let w0 be the crossing point. Then, when W̃ has a distribution that is

identical to, but independent from w̃, E j(w̃) = 0 and so

Ew w̃

�

v′1(w̃)

EW v′1(W̃ )
−

v′2(w̃)

EW v′2(W̃ )

�

= Ew(w̃ − w0)

�

v′1(w̃)

EW v′1(W̃ )
−

v′2(w̃)

EW v′2(W̃ )

�

≥ 0.

This implies that

�

E w̃v′1(w̃)

E v′1(w̃)

�

�

E w̃v′2(w̃)

E v′2(w̃)

� ≥ 1.

Finally, defining the functions gi(·) by

x v′
i
(x)≡ gi(vi(x)), (E.1)

the constant or decreasing relative risk aversion of v2 implies that g2 is convex, while the constant
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or increasing relative risk aversion of v1 implies that g1 is concave. To show this, differentiate (E.1)

and divide by v′
i

to get

1−

�

−
x v′′

i
(x)

v′
i
(x)

�

= g ′
i
(vi(x)). (E.2)

Thus, g ′1 is decreasing (making g1 concave) because relative risk aversion
−x v′′1 (x)

v′1(x)
is increasing and

g ′2 is increasing (making g2 convex) because
−x v′′2 (x)

v′2(x)
is decreasing.

The convexity of g2 implies

E w̃v′2(w̃) = E g2(v2(w̃))≥ g2(E v2(w̃)) = g2(v2(M2(w̃))) = M2(w̃)v
′(M2(w̃)).

The concavity of g1 implies

E w̃v′1(w̃) = E g1(v1(w̃))≤ g1(E v1(w̃)) = g1(v1(M1(w̃))) = M1(w̃)v
′(M1(w̃)).

As a result,

�

E w̃v′2(w̃)

M2 v′2(M2)

�

�

E w̃v′1(w̃)

M1 v′1(M1)

� ≥ 1,

completing the proof.

Appendix F Proof of Proposition 7

Substituting in for M ′ as in the previous appendix, and for the particular functional form used in

Proposition 7, we have

U ′(M(w̃))M ′(w̃) = U ′(M(w̃))
E v′(w̃)

v′(M(w̃))

= [M(w̃;γ)]γ−ρE w̃−γ.

We need to show that the derivative of this expression with respect to γ can be negative. Fortunately,

M(w̃;γ) is continuously differentiable with respect to γ, even across the γ = 1 boundary. Consider

the two-point risk equal to ε < 1 with probability p and ζ > 1 with probability 1− p. When γ 6= 1,
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calculate

∂

∂ γ
ln[M(w̃;γ)γ−ρE w̃−γ] =

∂

∂ γ

�γ−ρ

1− γ
ln(pε1−γ + (1− p)ζ1−γ) (F.1)

+ ln(pε−γ + (1− p)ζ−γ)
�

=
1−ρ

(1− γ)2
ln(pε1−γ + (1− p)ζ1−γ)

+

�

γ−ρ

1− γ

�
�

− ln(ε)pε1−γ − ln(ζ)(1− p)ζ1−γ

pε1−γ + (1− p)ζ1−γ

�

+
[− ln(ε)pε−γ − ln(ζ)(1− p)ζ−γ]

pε−γ + (1− p)ζ−γ
.

For given ε, choose p and ζ so that

pε1−γ = q

and

(1− p)ζ1−γ = 1− q.

That is,

p = qεγ−1 (F.2)

and

ζ =

�

1− q

1− qεγ−1

� 1
1−γ

. (F.3)

When γ < 1, Equation (F.2) requires ε to be in (q1/(1−γ), 1) to keep p in (0,1). When γ > 1, Equation

(F.2) allows ε to be anywhere in (0,1). As γ→ 1, (F.2) and (F.3) limit into p = q and ζ= ε−q/(1−q).

For all values of γ, the choice in (F.2) and (F.3) makes M(w̃;γ) = 1. When γ 6= 1, it allows (F.1)

to be written in terms of ε as follows:
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∂ ln[M(w̃;γ)γ−ρE w̃−γ]

∂ γ
=

�

γ−ρ

1− γ

�

[−q ln(ε)− (1− q) ln(ζ)]

+
[−q ln(ε)ε−1 − (1− q) ln(ζ)ζ−1]

qε−1 + (1− q)ζ−1

(F.4)

Case 1: γ > 1. Choose q ∈
�

γ−1
γ−ρ

, 1
�

. This is possible because ρ < 1 < γ in this case. Consider

the limit as ε→ 0, with p given by (F.2) and ζ given by (F.3). With γ > 1,

lim
ε→0
ζ= (1− q)

1
1−γ ,

and

lim
ε→0

∂ ln[M(w̃;γ)γ−ρE w̃−γ]

∂ γ
= lim
ε→0

�

q
γ−ρ

γ− 1
− 1

�

ln(ε)− (1− q) ln(1− q)
γ−ρ

(γ− 1)2
= −∞.

Therefore, there are values of ε small enough that the derivative of the marginal utility of saving

with respect to γ is negative, which in turn implies a precautionary premium that decreases with γ

over some range.

Case 2: γ < 1. In this case, choose q = .5 and consider the limit as ε→ 2−1/(1−γ) from above.

Then ζ→∞ and

lim
ε→(2−1/(1−γ))

+

∂ ln[M(w̃;γ)γ−ρE w̃−γ]

∂ γ
= lim
ε→(2−1/(1−γ))

+

(2− γ−ρ) ln(2)

2(1− γ)2
−
(γ−ρ) ln(ζ)

2(1− γ)
=−∞.

Again, this implies that for values of ε close enough above 2−1/(1−γ), the precautionary premium is

decreasing in γ.

Case 3: γ= 1. To deal with this case, let the two-point risk be ε with probability .5 and ζ= ε−1

with probability .5. Then the derivative of the logarithm of the marginal utility of saving is

43



∂

∂ γ
ln[M(w̃;γ)γ−ρE w̃−γ] = ln(M(w̃,γ)) (F.5)

+(γ−ρ)

¨

ln(.5ε1−γ + .5εγ−1)

(1− γ)2

+
ln(ε)[εγ−1 − ε1−γ]

(1− γ)[εγ−1 + ε1−γ]

«

+ ln(ε)
εγ − ε−γ

εγ + ε−γ

The logarithmic derivative of the marginal utility of saving with respect to γ has a well-defined limit

as γ→ 1 from either side of 1. Using the fact that limγ→1 M(w̃,γ) = 1 and a messy application of

L’Hopital’s rule, the limit as γ→ 1 of the expression on the right-hand-side of (F.5) is

− ln(ε)

�

1− ε2

1+ ε2

�

− .5(1−ρ)[ln(ε)]2

Clearly, for small enough ε, the marginal utility of saving—and therefore the precautionary

premium—is decreasing in γ on both sides of γ= 1.

Appendix G Proof of Proposition 9

For each utility function Ui , define

hi(λ) =−

�

U ′′
i
(U ′−1

i
(λU ′

i
(M(w̃))))

λ2U ′
i
(M(w̃))

�

.

Using the fact that U ′
i
(Q i) = U ′

i
(M)M ′, observe that the counterpart of equation (4.17) for each

utility function can be rewritten, after multiplying through by U ′
i
(M(w̃)), as

hi(M
′)Q′

i
= hi(1)−

M ′′

[M ′]2
,

or

hi(M
′)(Q′

i
− 1) =−

M ′′

[M ′]2
− [hi(M

′)− hi(1)]. (G.1)
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The fact that Ui is increasing and concave guarantees that hi is positive. Therefore, condition (a) in

Proposition 9, Q′1 ≥ 1, is equivalent to the right-hand-side of (G.1) being positive, or

h1(M
′)− h1(1)≤−

M ′′

[M ′]2
.

We need to find conditions under which this inequality implies that

h2(M
′)− h2(1)≤ −

M ′′

[M ′]2
(G.2)

as well.

One approach is to try to establish that h′2(λ)≤ 0 and that M ′′ ≤ 0, so that

h2(M
′)− h2(1)≤ 0≤ −

M ′′

[M ′]2
.

This is exactly what Proposition 8 does. The other approach—the essence of Proposition 9—is to

establish that h′2(λ)≤ h′1(λ) for λ ≥ 1, so that, given M ′ ≥ 1 (a consequence of decreasing absolute

risk aversion),

h2(M
′)− h2(1)≤ h1(M

′)− h1(1)≤−
M ′′

[M ′]2
. (G.3)

Straightforward differentiation yields

h′
i
(λ) =

1

λ2

¨

2
U ′′

i
(U ′−1

i
(λU ′

i
(M)))

λU ′
i
(M)

−
U ′′′

i
(U ′−1

i
(λU ′

i
(M)))

U ′′
i
(U ′−1

i
(λU ′

i
(M(w̃))))

«

.

Defining

qi(λ) = U ′−1
i
(λU ′

i
(M)),

one can write

Q i = qi(M
′)

and
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h′
i
(λ) =

1

λ2

¨

2
U ′′

i
(qi(λ))

U ′
i
(qi(λ))

−
U ′′′

i
(qi(λ))

U ′′
i
(qi(λ))

«

. (G.4)

If − U ′′

[U ′]2
is increasing, as assumed in Proposition 8, then h′(λ)≤ 0.

The assumption that −
U ′′2 (x)

U ′2(x)
≥−

U ′′1 (x)

U ′1(x)
(condition (c) in Proposition 9) implies that

U ′2(x)

U ′2(M)
≥

U ′1(x)

U ′1(M)
.

for any x ≤ M . Therefore, for any λ≥ 1,

q2(λ) = U ′−1
2 (λU ′2(M))≥ U ′−1

1 (λU ′1(M)) = q1(λ).

If 2
U ′′2 (x)

U ′2(x)
−

U ′′′2 (x)

U ′′2 (x)
is decreasing (condition (e) in Proposition 9) then

h′2(λ) =
1

λ2

¨

2
U ′′2 (q2(λ))

U ′2(q2(λ))
−

U ′′′2 (q2(λ))

U ′′2 (q2(λ))

«

≤
1

λ2

¨

2
U ′′2 (q1(λ))

U ′2(q1(λ)
−

U ′′′2 (q1(λ))

U ′′2 (q1(λ))

«

≤
1

λ2

¨

2
U ′′1 (q1(λ))

U ′1(q1(λ)
−

U ′′′1 (q1(λ))

U ′′1 (q1(λ))

«

= h′1(λ).

Alternatively, if 2
U ′′1 (x)

U ′1(x)
−

U ′′′1 (x)

U ′′1 (x)
is decreasing (condition (e) in Proposition 9) then

h′2(λ) =
1

λ2

¨

2
U ′′2 (q2(λ))

U ′2(q2(λ)
−

U ′′′2 (q2(λ))

U ′′2 (q2(λ))

«

≤
1

λ2

¨

2
U ′′1 (q2(λ))

U ′1(q2(λ)
−

U ′′′1 (q2(λ))

U ′′1 (q2(λ))

«

≤
1

λ2

¨

2
U ′′1 (q1(λ))

U ′1(q1(λ)
−

U ′′′1 (q1(λ))

U ′′1 (q1(λ))

«

= h′1(λ).

Both cases use condition (d) in Proposition 9: the assumption that 2
U ′′2 (x)

U ′2(x)
−

U ′′′2 (x)

U ′′2 (x)
≤ 2

U ′′1 (x)

U ′1(x)
−

U ′′′1 (x)

U ′′1 (x)
.
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Appendix H Proof of Proposition 11

Substituting U(x) = x1−ρ

1−ρ
into the identity U ′(Q) = U ′(M)M ′ and solving for Q,

Q = M[M ′]−1/ρ.

Differentiating with respect to addition of a nonstochastic constant,

Q′(w̃) =

�

1−
M(w̃)M ′′(w̃)

ρ[M ′(w̃)]2

�

[M ′(w̃)]1−(1/ρ). (H.1)

Using equation (A.1), we have

M ′ =
E v′(w̃)

v′(M)
= MγE w̃−γ. (H.2)

Differentiating (A.2) and combining the resulting equation with (A.2) itself yields

M M ′′

[M ′]2
= M v′(M)

�

E v′′(w̃)

[E v′(w̃)]2
−

v′′(M)

[v′(M)]2

�

(H.3)

= γ− γM1−γ E w̃−γ−1

[E w̃−γ]2
.

Substituting into (H.1), we find that

Q′(w̃) = M
γ−

γ

ρ [E w̃−γ]1−ρ
−1

�

1−
γ

ρ

�

+
γ

ρ
M

1− γ
ρ [E w̃−γ−1][E w̃−γ]−1−ρ−1

. (H.4)

As in the proof of Proposition 7 in Appendix F, we focus on two-point risks equal to ε < 1 with

probability p and ζ > 1 with probability 1− p that satisfy M(w̃) = 1. Combining this choice with

(H.4) yields

Q′ =
γ

ρ
[pε−γ−1 + (1− p)ζ−γ−1][pε−γ + (1− p)ζ−γ]−1−ρ−1

(H.5)

−
(γ−ρ)

ρ
[pε−γ + (1− p)ζ−γ]1−ρ

−1
.

In this case, however, let

p = εγ+α−1
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where α ∈ (max{0,1− γ}, 1−ρ). Note that the condition ρ < max{1,γ} is exactly what is needed

to guarantee that this set is nonempty. To redeem the pledge that M(w̃) = 1, ζ must be given by

ζ =

�

1− εα

1− εγ+α−1

�
1

1−γ

,

which limits into

ζ = ε−
εα

1−εα

when γ→ 1.

Having α ∈ (max{0,1− γ}, 1−ρ)guarantees that, as ε→ 0+,

p = εγ+α−1→ 0,

pε1−γ = εα→ 0,

ζ→ 1,

and, consequently, that

Q′→ 0.

Since [1 + θ ∗
′

(x)]Q′ = 1, this implies not only that θ ∗ can be increasing, but also the stronger

result that θ ∗
′

(x) can be made as large a positive number as desired. Intuitively, the relatively high

elasticity of intertemporal substitution yields a strong Drèze-Modigliani substitution effect and the

consumer can “afford” more of the extra precautionary saving beyond risk aversion (and for these

parameters, even beyond prudence) as the consumer moves up from a desperately impoverished

situation.
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