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Abstract

In a simple parametric general equilibrium model with S states of natureand K - S
“rms| and thus potentially incomplete markets| , rates of super majority rule %22 [0; 1]
are computed which guarantee the existence of “4majority stable production equilibria:
within each rm, no alternative production plan can rally a proportion bigger than Yzof
the shareholders, or shares (depending on the governance), against the equilibrium. Under
some assumptions of concavity on the distributions of agents types, the smallest Yzare
shown to obtain for announced production plans whose span contains the ideal securities
of all K mean shareholders. Theserates of super majority are always smaller than Caplin
and Nalebu® (1988, 1991) bound of 1; 1=e %2 0:64. Moreover, simple majority production
equilibria are shown to exist for any initial distribution of typeswhen K = S 1, and for
symmetric distributions of types as soon as K | S=2.
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1 Introduction

In this paper, a simple parametric general equilibrium model with S states of nature
and K - S rms| and thus potentially incomplete markets is studied. Thereis only
one good, and the agents (consumers/ shareholders) are characterized by utility functions
exhibiting some quadratic feature and indexed by a probability vector %in the (S 1){
dimensional smplex, ¢ s, that we call the type of the agent. Agents types are supposed
to be distributed, according a continuous measure with density f over ¢ g, and are only
endowed with initial shares of the K rms. Since there is no consumption in period zero,
“rms are taken to be assets which allocate a certain mass of the good across states in
period one.

Rates of super majority rule Y2are computed which guarantee the existence of %4
majority stable production equilibria. The interpretation follows. Given initially an-
nounced production plans, a general equilibrium iscomputed: agents choosetheir optimal
portfolio given the market prices, and equilibrium prices for shares occur that clear the
markets. This production equilibrium is shown to be £ majority stable in the natural
following sense: within each rm, the production plans of other rmsremaining xed, no
alternative production plan can rally a proportion bigger than %20of the shareholders, or
shares, against the equilibrium.

These rates of super majority rule are computed (1) under various governances, both
of the ‘one person-one vote' and "one share-one vote' types, and (2) when the considered
shares aretheinitial (pre-trade) shares or the equilibrium (post-trade) shares. Conditions
are given under which theseratesare smaller than Caplin and Nalebu®(1988, 1991) bound
of 64%. Moreover, it is shown that simple majority production equilibria exist for any
initial distribution of typeswhen K = S 1, and for symmetric distributions of types as
soon asK , S=2. Thus, even with a high degree of market incompleteness, a production
equilibrium exists against which, within each rm, no alternative production plan can
rally more than half of the shareholders, or shares.

The early motivation of this paper is to study whether collective choice mechanisms
among the society of shareholders| and in particular the simplest one: majority voting|
can help de ring or qualifying the objective of the rmin a context of incomplete markets.
Thelatter concept has received a lot of interest in the recent years [see, e.g., Citanna and
Villanacci (1997), Dierker, Dierker and Grodal (1999) and Bettzége and Hens (2000)].
In the present setup, the objective of a rm is not investigated from the perspective
of et ciency or maximization of some shareholder's value or pro t function [as in Drpze



(1974), Grossman and Hart (1979)], but from the point of view of stability with respect
to collective decision making among shareholders [as in Drpze (1987, 1989), DeMarzo
(1993)], under di®erent types of governance.

The results proposed tend to show that market equilibria exist which are stable with
respect to smple and quite operational collective decison mechanisms (here: voting rules
with reasonable rates of super majority), even when the degree of market incompleteness
can be considered "high'. Moreover the less incomplete the markets the smaller the rate
of super majority necessary to guarantee the existence of stable general equilibria. Al-
though these intuitive ndngs are obtained in a simple setup, it is certainly valuable to
have positive results of robust existence of majority majority stable production equilibria.
Especially given thefact that the Social Choice literatureis perceived as being dominated
by impossibility results and considered useless for a general theory of decision in  rms.

In standard general equilibrium models of production in a context of incomplete mar-
kets [see, e.g., Magill and Quinzii (1996), Dut e and Shafer (1988) and Geanakoplos,
Magill, Quinzii and Drgze (1990)], the rancial structure is usually more complex than
the one presented here. And the dit culty in de ring an objective function for a rm
stems from the fact that, at equilibrium, shareholders can disagree on the present value
of the production plans that are not in the span of the rancial structure: to discount
future income streams, they use shadow pricesthat can be di®erent. T hese shadow prices
are endogeneous whereas in the present paper, they are basically always pointing toward
the ideal security which is exogeneously xed, by assumption on the utility functions.

There is nevertheless a way the present paper can shed some light on the debate on
which objective function the rm should optimize in the context of incomplete markets.
Firm should make choices that are supported by shareholders, and the most commonly
suggested behavior for the rm is that it should use the average of the shareholders
normalized present value vector, where the weights for averaging are the shares of share-
holders. a ‘mean’' shareholder is thus de red for each rm. If the latter shares are the
initial shares, it isthe Grossman-Hart criterion, if they arethe equilibrium shares, it isthe
Drpze criterion. The present paper gives some insights that these two criteria are likely
to give rise to majority stable production equilibria (see Section 4). The main result of
this paper isthat there exist production equilibria such that the K mean shareholders! can
exactly span their type and generate their ideal security (the one they would demand if
mar kets were complete); moreover these are the most stable equilibria. It isworth noticing

LOf course, in Drpze's case, as opposed to Grossman-Hart's, the mean shareholder is endogeneously
determined at equilibrium.



that the assumptions under which this result holds are weaker in the case of a governance
pla Drpze.

This result has no direct link with the above-mentioned criteria since the announced
production plan of a rm does not have to be the optimal production plan of its mean
shareholder. But the collection of K production plans (called a multiplan) should be
such that their span contains the ideal security of all mean shareholders; in some way
the multiplan is optimal for the K mean shareholders. Then the production equilibria
are stable for the lowest possible rates of super majority. Lastly, the present paper does
not study the question of optimality or constrained optimality of the stable equilibria
it describes, a subject lying at the core of the literature on production in a context of
incomplete markets. Especially, it does not pursue the study of Dierker, Dierker and
Grodal (1999) on the relation between majority voting and welfare considerations?.

Technically, the main results of the present paper are based on those in Caplin and
Nalebu® (1988, 1991). Indeed, the case where agents are distributed over ¢ s and there
isonly one rm (K = 1, and then no exchange of shares), is a sub-case of Caplin and
Nalebu® (1988, 1991). And of course we get here: Y= 1; 1=e % 0:632. But although
some assumptions are less general than those in Caplin and Nalebu® (1988, 1991), the
setup is di®erent, and more general in at least one dimension®. It is more general to the
extent that the number of assets can be bigger than one. It is di®erent to the extent
that there is an upstream market mechanism, with equilibrium prices clearing markets
for shares. Consequently there is an endogeneous allocation of shares and therefore an
endogeneous distribution over types for governances p la Drgze. In the present setup, the
collective choice mechanism is intertwined with a general equilibrium market mechanism.

The paper is organized as follows. Section 2 introduces the model and provides some
preliminary results founding the analysis. Section 3 focuses on the canonical case where
agents are described through characteristicsthat are uniformly distributed over ¢ s; exact
computations are provided illustrating how the less incomplete the markets the smaller
the required rates of super majority. Section 4 discusses the generalization of the results
obtained in the previous section: Caplin and Nalebu® (1988, 1991) general upper bound of
64% for the rate of super majority is shown to hold in case the distributions of character-
istics ful 1l some conditions of concavity (Proposition 3 and Theorem 3); simple majority

2Dierker, Dierker and Grodal (1999) show through an example that majority voting and welfare

considerations can be completely unrelated.
3Actually, Caplin and Nalebu®(1991) gives, asan illustration for a possible application of their theory,

the example of voting among shareholdersin a context of incomplete markets.



stable production equilibria are shown to exist under some assumptions of symmetry of
the distributions of characteristics (Proposition 2) or when the degree of market incom-
pleteness is just one (Theorem 2). Appendix A proposes some comments; in particular,
through parametric examples, these rates are shown to decrease with the homogeneity of
the shareholders types, and to increase with the shareholders pessmism. All technical
proofs are gathered in Appendix B and Appendix C.

2 The model

Consider an economy with two periods, t = 0; 1 and S states of naturein period 1, indexed

by probability vector %= (¥&)5., which will be interpreted as his ideal security once the
utility functionsar introduced. The agent'stype“isthustaken inthe(Si 1)-dimensional
simplex: ( )
8
Cs= Yu= (V4Y%: 0 ¥3)2RSj] ¥=1
s=1
Agents types are assumed to be distributed over ¢ 5 according to a continuous, atomless
density functionf : ¢s j! R, . Consumption takes place in period one but must be
decided in period zero. Agent Yis characterized by a utility function: U,[x(%)], where

good, it will be sometimes better to give a rancial interpretation to x(¥) as an income
vector. Utility functions are of a quadratic/ "euclidean' type, described at the end of this
section.

Agent Yiis endowed with initial shares of the K "rms:. [°(¥) = [R(X]K ;. Heis then
totally characterized by the vector [¥1°(%)]. The function |1° : ¢5 j! RX istaken
continuous and positive over ¢ s. 7

A “rm is basically an asset which allocates an initial mass j = . f () W) dva
of the good across states in period 1. We do not normalize it to one to allow di®erent
“rms to be of di®Rerent ‘sizes': the yield, in terms of consumption/income, of rm Kk in
period 1 in case state s occursis: j { y§. To avoid some minor technical di+ culties, it



is preferable not to impose sign constraints on production plans; thisis re within the
~ rancial interpretation of the model. Although it is abusive to talk about rmsin such
a ssimple framework, and better to talk about securities, we stick to this terminology and
rely on the forgiveness of the reader.

M aximization program of the agents

Given an announced production plan yx by each rm (hence an announced multi-plan
Y = (y)K ;, where all yi's are taken di®erent) and a vector of prices q = ()i, for
the shares, each agent maximizes his utility by choosing the optimal vector of shares*
UY) = [ (MIIK. ; and the optimal consumption plan x(¥) according to the maximization
program M (%):

max U L
(A X (4] AX ()]
X h 0 i
s t. & (i W =0 (1)
k=1
X
and X = Wy (2
k=1
Thisis of course equivalent to M (Y):
max Oy [M(*9]
M9
¥ h i
s t. & Wi ¥ =0
A « ! <!
where Oy [(] = Uy, (¥ yic -
k=1

M ajority Stable Production Equilibrium

Given the individual demand functions for shares, an equilibrium price will clear the
market for shares.

De ntion 1 A Production Equilibrium (PE) is a vector E = (VY;q; W(¥4) such that indi-
vidual optimization (C;), and market clearing (C,), are satis ed:
(Cy) Given (Y;q), for all %4 [u(*3] solves the maximization program M- (%3;
(C2) Foralk, =~ T(Hu(jds= 104 M) dYa(= i %)
S S

4T he choice has been made here not to impose short-sell constraints on the y's. The aim is to prove
existence of majority stable production equilibria, and the paper is mostly going to focus on equilibria
such that w(*4 > 0O for all Y4



For a rm k, given a PE E, a distribution of voting weights " : ¢ j! RK ("~ 10O
or W), and two production plans (yg; z«), denote | g- (yx) the subset of agents Ysendowed
with a positive voting weight® in “rm k (i.e., agents such that " (%) ., 0), and denote
e (2«; k) [Y2 | e (Yk)] the subset of agents ¥2endowed with a positive voting weight in
“rm k who prefer z, to yy, i.e, such that

«(®, 0 and  Uux(M) + w(M(zci yidl, Udx(A];

where x(¥) isde red through equations (2). De re
z Z

e 1A )

and  Ag (z;Yk) = s (2 :

f(l/é d¥a f(]/;,k(l/é dva

e (Yk) e (k)

Le: (Z;Yk)

Pe: (z;Yk) =

respectively thefraction of shareholders (with voting rights) and the fraction of vote shares
who prefer z, to yx. De re moreover

Pe: (V) = sup Per (zi;y6)  and  Ag (Yk) = sup Aer (Z; k)
Zk2¢ s Zk2¢ g
the maximal fractions (resp. of the shareholders/ shares, with voting rights) against yy.

De ntion 2 For any real 22 [0; 1], a 4Majority Stable Production Equilibrium under

2 the “one person-one vote, pre-trade’ governance (in short, a 4 MSPEpO) is a PE E
such that for all k, Pewo(yk) - %

2 the "one person-one vote, post-trade’ governance (Y4 MSPEp1) is a PE E such that
for all k, Peu(yk) - %

2 the "one share-one vote, pre-trade’ governance (4MSPEa0), is a PE E such that
for all kK, Ago(yx) © Y

2 the "one share-one vote, post-trade’ governance (4MSPEal), is a PE E such that
for all k, Agu(yk) - %

For 2= 1=2, such an equilibrium is a simple{ Majority Stable Production Equilibrium (or
s-MSPE).

50nly such agents have the right to vote in the present setup.



Remark: The p0O and pl-governance are not distinct as soon as everybody is positively
endowed with shares of all rms, both initially and at equilibrium. This will be mostly
the case in the present paper. It is clear that the most interesting governance is the
al-governance. Nevertheless, thereis some diz culty in de ring a 4 Majority Stable Pro-
duction Equiliprium for the al-governance since the number of post-trade shares with
voting rights, f (¥ W (¥) d¥% is endogeneous and can be bigger than the initial

Y;u(Yk

allocation of shares, j 2, in case part of the agents choose to be short on k's stock market®.
But we will concentrate in this paper on production equilibria where all agents are allo-
cated positive post-trade shares. For other production equilibria, one can consider that
the excess number of sharesis allocated in a continuous way (i.e., according to f and °)
to all other shareholders, which does not introduce much distorsion in the model.

The concept of ¥4 majority stable equilibrium (for K = 1) is linked to the Smpson-
Kramer min-max majority [see Smpson (1969), Kramer (1977)]. In the present paper
the concept is built to hold for K , 1. min-max majorities for production equilibria are
(resp., for each governance):

18 = i m . 1/ = i m .

f0~ pe I(r\](fq;u) X Pyae (¥ ’ PL7 b I(r\](f;q;u) ax Pyu(yi)
18 = i m . B, = . :
o = Ay M Prie(vi) - and = A i MR Prau(yic)

Assumptions on the utility functions U,

The utility functions Uy, are de red on RS and assumed to satisfy the two following sets
of assumptions:

2 Assumption (A) : Uy, isincreasing, strictly quas concave, continuously di®erentiable
and homothetic;

2 Assumption (E) : The indi®erences surfaces of Uy, cut ht si through hyperspheres
centered on Y4

Taking homothetic utility functions will allow to focus on consumptionsin ht¢ si (since
we'll only consider PE with” g = 1k, see next subsection). Assumption (E) (said to be
the "euclidean' assumption) is more problematic: it is standard in Social Choice theory,

8In fact, the stock repurchase plans that some “rms implement might be considered as introducing
some type of endogeneity in the total numbers of shares.
"Notation: gq= 1k standsfor g = 1; all k.



and taken for purely technical reasons. The motivation behind this assumption is the
following: when asked whether they agree with an in™ ritesimal change® u 2 RS in the
production plan of rm k, indi®erent shareholders should be on a hyperplanein ¢ s. It is
nevertheless clear that such utility functions exhibit some form of quadratic feature, an
such features are regularly assumed in the rance literature, e.g., in the CAPM.

When there is only one rm (K = 1) asin Caplin and Nalebu® (1988, 1991), it is
enough to take utility functions of the separable form:

>
Ux(] = B Vvx(H]: 3

s=1

In that case, the type Y4is the subjective probability of the agent over states of nature.
The fact that the elementary utility functions are common across the population secures
the needed condition [see Grandmont (1978)]. The reason is simple to see: when K = 1,
X(¥) = y: isindependent of ¥ and for any in™ ritesimal change u 2 RS in the produc-
tion plan, shareholders indi®erent to the proposed change are described by the equation
P SY2uSDVe[y;] = O which de res a hyperplane. If K > 1, shareholders indi®erent to
an in ritesmal change u in the production plan of rm k are described by the equation
P SY2uSDVE[X5(Y)] = O, where X5(%) stands for the optimal consumption of agent ¥4 and
di®ers across ¥ For instance, in the log-linear case where v¥ “ In, the latter equation
almost never de res a hyperplanein ¢ 5. But some of the results proposed in the paper
are valid with utility functions of the form (3); this discussion is posponed to Section 4.4.

A last di+ culty isto avoid negative consumptions/ incomes. We basically discard this
problem: (i) in case the utility functions are of the separable form (3), by assuming that
vS satis es the Inada conditions: XIii!mODvS(x) = +1 ; (ii) in case the utility functions
satisfy assumption (E), by endowing the agents with an appropriate quantity, x°(¥), of
the consumption good, whatever the occuring state of nature®.

The Pareto criterion

Among all production equilibria, we will restrict our attention to those that respect the
Pareto criterion: an digible production plan for majority stability should be such that

8Asalready written in theintroduction, the assumption of concavity of theindividual utility functions
entails that the maost challenging production plans are in ritesimally close to the staus quo; see Lemma
2 in Appendix B. Therefore, a challenger is basically an in ritesimal change u in the production plan,

with, given the technological constraints,  u® = 0.
9Since we will only consider multiplans Y which spans a hyperplane having a non-empty intersection

with ¢ s, a uniform upper bound can be found on x°(%), for all ¥4

9



there does not exist an alternative production plan preferred by all shareholder endowed
with a voting right (i.e., endowed with a positive quantity of shares). The following
observation shows that, in the present framework, a necessary and su+ cient condition is
that stock prices be all equal®.

Observation 1 A PE (Y;q; ) satis es the Pareto criterion if and only if g= 1.

Proof: Consider a PE (Y;q;1) such that q 6 1x. Consider two rms, k and j, such
that g« > q; then there exists an alternative anounced production plan z, unanimously
prefered to yx by agents positively endowed with shares of rm k. Suppose, without loss
of generality, that ¢ > . At the PE (Y;q; W), the gradient of U,[x(¥9] with respect to
() is colinear to g. Given ¢; > @, thisentails that for all ¥4 DUy[X(*3] ¢(y1i Yy2) > O.
Consider z; = y1 + 2(y1i Y2), we then have, for 2 small enough and for all ¥ Uy[x(¥) +
(¥ (z1i Yy1)] > Ux(¥A)] if w(¥) > 0. Hence for the 'if' part of the assertion. The “only
if* part isobvioudly true. 2

In the sequel of the paper, we'll de re a Pareto production equilibrium as a PE with unit
prices: (Y; 1k ;1.

Denote hY'i the vectorial subspace, in ht si, spanned by Y. At a PE with unit prices,
the optimal choice of an agent is| up to multiplication by a scalar, given assumption
(A)| thepoint of tangency between hYi and the sections by ht si of the agent's indi®er-
ence curves. Thisoptimal point isthe orthogonal projection of ¥on hY i when assumption
(E) isful lled.

Thislast property entails the following geometric interpretation, pla Caplin and Nale-
bu®, of the main argument of the paper (proven in Lemma 2 in Appendix B): trying to
- nda best challenger to yk, within the production plans of rm k (the production plans
of other rms remaining xed), reduces to try and cut the support, ¢ s, of the agents
types by an hyperplane containing hYi in such a way as to maximize the di®erence in
volume of the two resulting pieces | a volume computed using the distribution of voting
weights, as the governance speci es it.

0DeMarzo (1993) provesthat a production plan which isstable with respect to a ‘unanimity responsive
collective decision rule should be chosen by using a normalized present value vector in the convex hull of
those of all shareholders. A “unanimity responsive' collective decision rule is such that it should be able
to implement an alternative production plan that Pareto dominates the incumbent. See also Proposition
31.3 in Magill and Quinzii (1996).

10



A fundamental preliminary result

It states that any vectorial subspace in h¢ si can be spanned by a multiplan Y that can
be associated with a PE with equal unit prices.

Lemma 1 Under assumption (A), any multiplan Y = (yx)K., generates a vectorial sub-
space that can be supported by a production multiplan associated to a PE with unit prices:
there exists a production multiplan ¥ = (y)f.,, with y; = y;, such that hYi = hvi, and
(Y;1k; [ isa PE. Moreover, y; can be chosen such that (i{*4) > O for all %

Proof: See Appendix A. 2

This fundamental Lemma allows to focus only on the span hY'i of a multiplan Y, and not
on the multiplan itself. Moreover, thefact that (%) can betaken strictly positive for all ¥4
secures that all shareholders have the right to vote and that the considered distributions
of voting weights are positive over the whole support ¢ s.

3 The canonical case

We consider the canonical case of uniform distributions of initial characteristicsin the set
of types ¢ 5. Assumptions:

2 for the pO-governance: the distribution f is uniform and (%) > 0 for all k, all ¥
2 for the pl-governance: the distribution f is uniform and P «O(¥) > O for all ¥4

2 for the a0-governance: the distribution f ¢ is uniform for all k;

2 for the al-governance: the distribution f ¢ « 0 is uniform.

It isworth noticing that the results of the present section remain valid under the assump-
tion of separable utility functions of the type (3) (see Claim 2 in Section 4.4) and that
the preceding set of assumptions are weaker for governances g la Drpze, i.e., based on
post-trade shares, than for governances p la Grossman-Hart.

11



3.1 Existence of MSPE

For any ~xed positiveintegers S and K, K - S, de re'!

0 j. .k 1psiic
Si1 K
Yok = 1j @—k—A : (4)

Theorem 1 Fix K and S. There always exist, in the canonical case, ¥z« { MSPE'? for
all governances of De rition 2. Hence ¥2 - %« for all four governances.

When K = 1, there are no transaction between agents and everybody keeps itsinitial
share of the rm; since the shares are uniformly distributed accross agents, then the four
governances coincide, and the above result is a particular case of Caplin and Nalebu®
(1988), which gives as a uniform upper bound: 1; 1=e % 0:632. This upper bound is
approached for the present concept of majority voting equilibrium in the case where the
number of assets (or rms) is negligible with respect to the number of states of the world.

In other casestherate of super-majority rule that guaranteesthe existence of a MSPE
is lower than this previous bound. For example, whatever the number of states of nature,
if SS3- K < S=22[resp. S=4 - K < S=3]then arate of 56% [resp. 60%]| sut ces. Another
example is the following immediate corollary.

Corollary 1 S{MSPE exist as soon as K ; S=2 for all four governances.

Thus, even with a high degree of market incompleteness, a production equilibrium
exists against which, within each rm, no alternative production plan can rally more than
half of the shareholders, or shares. The sequel of this section is a proof of Theorem 1
which goes through the design of the right' securities.

3.2 Basic construction of a MSPE

The aién islt,o construct a 4 MSPE for the lowest possible %2 For xed S and K, de re
n= }'< ,sothat S= nK + m, with 1< m - K. Wethen construct the following
partition of the set of states of natureinto K subsets (according to the natural order, the

m rst subsets contain n + 1 elements, the K | m others contain only n elements):

Sk=fkij D(n+ 1)+ 1;:::;k(n+ g for 1- k- m
Te=fm+ (kj )n+ 1;:::;m+ kng fo m+1- k- K

For any real x, we denote by bxc the largest integer smaller or equal to x, and by dxe the smallest
integer larger or equal to x.
2n fact thereis a continuum of such MSPE (see the proof).

12



De retheK production plans Y = () 1, such that:
8 . 8
< == ifs2 S < ifs2T
fork- m;ye=_ ™! ! “  fork, m+L¥= ! “

1
n . n . (5
0 otherwise - 0 otherwise

The main argument revolves around the following proposition which is a more developed
restatement of Theorem 1.

Proposition 1 Fix S and K. Thanks to Lemma 1, there exist PE (Y; 1« ;[0 that are
Y.« {MSPE for the four governances. They are such that hyi ~ hYi and for all ¥ the
optimal consumption is

X X
x(Y) = () y = (e () %
k k

where {iis de” red by®3: 8
3 ype if k- m
(¥ = 5 : (6)
vk if k, m+1
Proof: See Appendix B. 2

Example: When both f and |° are taken uniform (and normalized), and all “rms have
the same size (j { is independent of K), an example of such a PE (Y; 1k ;) is:

X
fork.m;ykzwykii ¥ ;andfork, m+ 1 w="%; (7
S Sj=m+1
8
5 ﬁlﬁk if K- m
and [&(¥) =

Vi + e Y80k, m+ 1

A geometric interpretation of Proposition 1 will be helpful to understand the proof and
the basic intuition of the construction. As written before, given that market equilibrium
prices are 1 , the optimal choice of an agent is the point of tangency between hyi and
the sections by ht¢ si of the agent's indi®erence curves. Denote §(¥) the section by h¢ si
of the indi®erence curve going through the optimal choice x(¥) (cf. Figure l.a below).

A change in the production plan ¥ (or equivalently ¥) of “rm k will then move hYi in

X
13Denote, for a subset V of the set of states of nature, ¥ = Y8,

s2V

13



such away that it still goes through all other y;'s. This change, xing the shares at their
post-trade values, projects the equilibrium consumption x(%3 inward or outward §(%3,
hence resulting in an improving or impairing change of the utility level of agent ¥ (cf.
Figure 1.b below).

Lemma 2 in Appendix B shows that ndng a best challenger to y, within the pro-
duction plans of rm k (the production plans of other rms remaining xed), amounts
to ndngthein ntesimal move of y which improves the welfare of the biggest propor-
tion of shareholders or shares. Given assumption (E), thisreducesto try and cut ¢ g by
a hyperplane (orthogonal to thisin ritesimal change) containing hYi in such a way as
to maximize the di®erence in volume of the two resulting pieces. The best in ritesimal
change (of y) is pointing toward the largest piece. Asin Caplin and Nalebu® (1988) it
is shown that, when the distribution of initial characteristics is uniform, the most chal-
lenging in" ritesmal change of the production plan y;_is to sacri ce ong state of nature

2 2

to the benet of all others', and implement a change | 2,5+ 571 -

3.3 Geometric illustration;: S=3and K = 2

Inthecase S= 3 and K = 2, and under the assumptions given in the example following Proposition 1,
with ¥; = (1=2; 1=2;0) and ¥, = (0; 0; 1), and therefore y» = ¥, and y1 = (2=3;2=3;; 1=3), one gets:
H3 1 L i ¢
(M R(A]= S+ BLR+ JA+ 8] and (i) = [+ AL

This is drawn on Figure 1.a; the indi®erence curve §(¥) corresponding to the optimal utility level for
agent Yais drawn: it is a circle around the ideal security ¥4 An illustration of the previous discussion is
now provided in this simple case and basically holds for the four governances.

Optimal cutting of the simplex: It should be clear on the drawing why (Y; 1,; [) is majority stable
for the simple-majority rule under all four governances. Indeed, consider, instead of y,, another proposal
¥5 (see Figure 1.b). The shares being ~xed, the new consumption of agent ¥will become x(%4° which
dives inward §, hence resulting in a higher utility. But for the symmetric (with respect to hYi) agent,
characterized by type ¥4 = (Y;Y4;Ya), who at equilibrium consumes the same x(¥#) = x(¥3, thisis an
impairing change. Hence at least half of the agents (theleft part of thetriangle) ndsit impairing that any
rightward change of the production plan of y» be implemented. Symmetrically, any, even in ritesimal,
leftward change of y» is going to be blocked by the agents on the right-hand side of hYi. Finally, since
both agents Yaand %% have the same share of rm 2, it is obviously the case that the simple-majority
stability property holds for the four types of governance. The same type of argument holds to prove

MThis is actually very classical in Social Choice theory and illustrated by the problem of having to
divide a pie among S individuals, whatever theinitial allocation, thereisa majority of §'S—1 to expropriate
oneindividual of his share and distribute it evenly to the others.
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¥2 = ¥2= (0;0;1)

N
*(Y) Ya
N

(1,0;0) Y1 (0;1,0)
1 ¥ Y1
Figure La Figure 1.b

that any change in the production plan yy is going to be blocked by at least half of the shareholders, in
number and volume of shares.

Moreover it is clear that there are many waysto cut ¢ 3 into two pieces of equal sizes. The two pieces
do not have to be symmetric. Actually, Lemma 1 shows that any cutting of ¢ 3 can be spanned by two
production plans (y1; y2) which will generate a PE with unit prices, hence securing that the fundamental
geometrical interpretation of Theorem 1 be valid. This ensures a continuum of ssMSPE is the present
simple case.

Y2

-

) 21,

(

N §
h k4

Y1 4

Figure 1.c Figure 1.d
M ultiplicity of the M SPE: There are a contimuun of PE that end up with the same\ cutting" of ¢ s
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with unit pricesq = 1, for both assets, and unchanged f1 (sceLemma 1): for all ®, y; = (1+ @ 1+® 1j 2@)
andy, = (3i &% @1+ 2®) will always found a PE with g= 1, and equilibrium shares f1 (Notice

= 1) For example, with ® = %, one gets %, = §1 = (1=2;1=2;0) and ¥, = (1=6;1=6;2=3), with:
) fo(] = '[¥4 + YA | 18,38 sothat R(¥) = x(¥) = X(¥) (see Figure 1.c). The drawn change
from ¢4 to 99 will be utility improving for agent ¥4 but utility impairing for agent ¥. Notice here that
all agents characterized by a type Yasuch that ¥s , 2=3 (i.e., above the dotted line [&; b]), do not have the
right to vote under governances based on post-trade shares sincetheir post-trade sharesin ¥4, are negative.
Hence the same rule as before is ful lled: any rightward (resp. leftward) change in the production plan
1 will be blocked by (at least) the left-hand (resp. right-hand) side of the triangle, whose top has been
cut-o® It isto avoid the minor and irrelevant technical di+ culty of having to compute relative volumes
in a cut-o®simplex that PE are contructed for which all shares allocated at equilibrium are positive (i.e.,
with ® > 1=3).

Assets with di®erent prices, the Pareto criterion: One can easily see that any proposed change
of y» along the line hYi will be unanimously rejected. This fact is linked to the reason why there is no
majority stable production equilibrium with announced production plans (¥1;¥2): in fact the PE based
on this multiplan does not satisfy the Pareto criterion (see Observation 1). Indeed, the equilibrium price
vector is then such that g > @: the shareholders will ~ ndit optimal to ‘load' more than in the above
case their portfolio with shares of ¥, (see Figure 1.d) to reach the optimal consumption %(%). As drawn
on Figure 1.d, the optimal utility level will then generate an indi®erence surface § not tangent to hYi.
Given the quasi-concavity of the utility functions, any change +¥; of ¥; toward y1 will be unanimously
supported, since the consecutive change k(%) is always utility improving. Thisis true untill ¥; reaches

1.

4 More general cases

In this section, more general density functions, f, and initial distributions of shares,
W, are investigated. To avoid minor technical di+ culties that would make the reading
less confortable without making the problem richer, we consider only strictly positive
initial distributions of characteristics. °(¥) > 0 and f (¥) > O for all ¥4 The aim isto
generalize as much as possible the results of the previous section. Ina rst subsection, we
investigate, for unspeci ed f and °, the case of complete markets, along with the case
of incomplete markets with only one dimension of incompleteness. T hen we consider the
case of symmetric distributions of characteristics (subsection 4.2). For these two cases,
simple majority production equilibria are shown to exist. Finally, the case of °-concave
distributions of characteristics is considered (subsection 4.3), an assumption regarded as
imposing some measure of consensus in the society of shareholders. Caplin and Nalebu®
(1991) results are then used to provide ratios of Yamajority stable production equilibria.
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4.1 ThecasesK =S, K=Sj 1

The case K = S is trivial, since for a PE (Y;1x ;M) | whose existence is secured by
Lemma 1| every agent of type Yis able to generate its idiosyncratic ideal security:
[P «0(¥)] ¢¥%4 In this case, in equilibrium, all yi's are unanimously supported against
any alternative production plan for any f and any initial distribution of shares |C; i.e.,
Py.o(Yk) = Avio(Yk) = Pyu(Yk) = Avu(y) = 0 for all k, as the theory of complete
markets predicts. We thus have the following observation.

Observation 2 If K = S, for any density f and any initial distributions of shares |C,
there exist PE which are stable for any voting rule (even infra-majority voting rule'®).

Thecase K = S| 1is more ditcult and interesting. As far as the pO and pl-
governances are concerned, the argument is straighforward since the same distribution of
voting weights, f , istaken for all rms. Therefore a median-voter-like argument allowsto
go through: For a PE (Y; 1k ; 1), we know that  ndng a best challenger to the announced
production plan yx amountsto cut the support of agents typesby a hyperplane containing
hyi. But thereisauniquesuch hyperplane, i.e., hYi itself. Therefore, to prove existence of
a {MSPE, it is enough to choose hY'i such that it separates ¢ s into two pieces of equal
measure with respect to f. This is obviously always possible, and there is an in nte
number of ways to do so as soon as S > 2. Thanksto Lemma 1, we know that such a
hyperplane can be supported by a PE with unit prices and positive shares.

The argument is more complicated for governances based on shares, e.g., the a0 and
al-governances. Indeed, hYi should be chosen such that it separates ¢ s into two pieces of
equal measure simultaneously with respect to K (= S 1) distributions of voting weights.
Hence a ‘multivariate-median-voter' argument is necessary. The following proposition,
based on degree theory and using the Borsuk-Ulam theorem, is shown. 16

Theorem 2 If K = S 1, there exist SsMSPE for any f and any |°, for all four gover-
nances.

Proof: To prove existence of s{MSPEa0 one hasto choose hY'i that separates ¢ s into two
pieces of equal measure with respect to the distributions f ¢, for all k.

SAn infra-majority voting rule is a majority rule with rate %< 1=2, i.e. such that an alternative a
defeats an alternative bif a proportion bigger than 20f the population prefers a to b, henceit is possible

that two alternatives defeat each other at the same time.
161t is worth noticing that it remains valid under assumption (A) only (cf. Claim 1 in Section 4.4) on

the utility functions for the governance based on pre-trade shares.
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Consider the (S 2){unit sphere (of dimension S| 2) Ss; ». For any point A on the
sphere, denotehAl the hyperplane (of dimension S 2) in h¢ si that is orthogonal to the
vector OA and divides ¢ s into two pieces of equal measure with r&spect tothedistribution
f ¢ « . Denote PAI* the one of these two pieces toward which OA points. For any Kk,
1- k- Kj 1(=Sj 2),denote(A) the (continuous) measure of PAi* with respect to
the distribution f ¢p2. A generalization of the Borsuk-Ulam theorem?®’ states that there
exists a point Ay such that for all k, 1- k- K j 1, onehas

LR(Ao) = 13 Ao :

Therefore, given that hAji = hj Agi, hAgi divides ¢ s into two pieces of equal measure
with respect to the distributions f ¢, for all k, 1- k- K j 1. Since by construction it
also divides ¢ 5 into two pieces of equal measure with respect to f ¢P « W2, it does so with
respect to f ¢l . Hence the proof for the a0-governance.

To prove existence of S{MSPEal one has to choose a hyperplane that separates ¢ g
into two pieces of equal measure with respect to the distributions f ¢, for all k. The
argument is more complicated because the latter distributions are endogeneously de red.
Nevertheless, the argument also relies on the Borsuk-Ulam theorem applied to functions
de red through another principle. Thisis postponed to Appendix B. 2

4.2 Symmetric densities

It is possible to de re more general assumptions under which simple majority stable
production equilibria exist for all four governances | i.e.,, Corollary 1 holds true. We
de re symmetric distributions of types: for all permutations %of f 1;:::; Sg, if ¥4“denotes
the vector of probabilities. (YV;:::;v44S)), then for all ¥4 f (¥4) = f(1/4

Proposition 2 Assume that f [resp. f ¢ for all k, f ¢ « 0] is symmetric over ¢ s,
then S{MSPEpPO and pl [resp. S{MSPEa0, s{MSPEal] exist as soon as K , S=2.

Proof: Thanks to Lemma 2, this goes by proving that any hyperplane through Y (as
de red by equations (5)) cuts ¢ s into two equal parts, in terms of shareholders (" rst

17See Theorem 3.2.7 in Lloyd (1978): Let D be a bounded, open, symmetric subset of R" containing O;
lett :@ j! R™ becontinuous, and m < n; then thereis A2 @ such that * (A) = 1 (j A). Here D is
theunit ball,n = Sj 1, @ *~ Ss;2,andm=Sj 2 (A = (12(A);:::;1%, 1(A). Anillustration isthat
there exist two antipodal points on the earth with same temperature and pressure. See also Guillemin
and Pollack (1974), pages 91-93.
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assertion of the proposition) as well as in terms of shares (second assertion). SinceK |
S=2, onehas S = K + m withm - K. To any ¥ associate its symmetric through hYi:

Yo = (Y3 YA M ygmi Lagmede 3y

Generically, Ysand ¥4 are strictly on each side of hY i, and then will always counter-balance
each other in any collective decision making under ‘one person-one vote governances.
Under the assumptions of the proposition they have the same amount of shares of each
~rm, and will always counter-balance each other in any collective decision making under
‘one share-one vote' governances. 2

In fact, as easily seen from the proof, much lighter assumptions of symmetry can ensure
theresult. Indeed, theargument developed here shows some similarity with the underlying
analysis in Grandmont (1978): in that paper, existence of majority-stable equilibria (in
the case without exchange: K = 1) was shown for centrally-symmetric supports of agents
types. The present argument relies on the same principle: the smplex ¢ s is symmetric,
not with respect to a point, but with respect to K -dimensional subspaces (withK | S=2),
and the only needed assumption is that the distributions of characteristics be symmetric
with respect to one of these subspaces!'.

4.3 ©°-concave densities

A density function f is®-concave over ¢ g if for all %92 ¢ s, 8, 2 [0; 1],

FI(Li )Yt A, Qi )@+, f'T

Thisassumption isregarded asimposing some measure of consensus in the society. Notice
that for © = 1 , one gets the uniform distribution of Section 3. De re'° :

A
1
ysoy=1; oLt

Consider a PE (VY;1k;H). Asin the canonical case, ndng a best challenger to the
equilibrium production plan of a rm reduces to try and cut the support ¢ s by an

8There is the implicit feature, in Caplin and Nalebu® (1988), that the simplex is, as a support of
voters type, the geometrical shape that allows the most uneven cutting through the center of gravity
(see the principle of symmetrization of Schwartz on which they found this feature): if an upper bound
works for the simplex, it works for any other convex support. This feature might not be true anymore as
far as cutting the support through a well-chosen K -dimensional subspace is concerned.

Theratio ¥4S;°) is bounded above by 1; 1=e when©° , 0.
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hyperplane containing hY'i in such away asto maximizethe di®erencein volume of thetwo
resulting pieces. When the distribution of shareholders voting weights is exogeneously
~xed (as for the p0, pl and a0 governances), given that the support of all considered
distributions is convex, one can directly import Caplin and Nalebu® (1991) main result
on °-concave distribution of characteristics to get the following proposition.

Proposition 3 If f is°-concave, then for © | | 1=S, any PE (Y; 1k ;M) such that hYi
contains the mean shareholder's type® Y% of distribution f is a 4S;°){ MSPEpO and pl.
If f ¢ is ©-concave for all k, then for © | | 1=S, any PE (Y; 1k ;1) such that hYi
contains the K mean shareholder types (¥)i-, of the K distributions (f ¢i)K.; is a
4S; °){ MSPEaO.
In both cases, there exist a continuum of such AS;°){ MSPE.

It is clear that, for the for the "one person-one vote governances, the higher K, the
smaller the rate of super-majority Y2that is necessary to guarantee the existence of %4
majority stable production equilibria. Indeed, on top of having to cut ¢ s through its
center of gravity, one can add asmany constraintsasthereare rms, each added constraint
lowering the di®erence in size of the two pieces resulting from the cutting. We leave for
further research actual computations of the extent to which the subsequent rate %2can be
improved, i.e., by computing the true?* min-max %S;K;°). For the a0-governance, one
does not havethese K j 1 added constraints on the way to cut the smplex. It iseasy to
prove in that setup that the ratio £4S;°) cannot be improved for the a0-governance.

When the distribution of shareholders voting weights is endogeneously determined
by the market mechanism from the announced multiplan Y, as for the al-governance, a
result similar to Proposition 3 is more di+ cult to obtain. One hasto prove the existence
of a PE (Y; 1k ;) such that, for all k,

1. hyi contains, for all k, the center of gravity of the "equilibrium’ distribution f Cp;
2. f ¢ °-concave for some?®.

The following multivariate mean shareholder theorem can be proposed.

Theorem 3 If the distribution f ¢P K p,? is°-concave, then for j 1=S - © . 1, there exist
£S;°){ MSPEal.

20The mean shareholder's type is the one thatAies at the center of gravity of the distribution; it is
de red as Yy = (Y§;::::Yg) with for all s: 3 = f(¥) Y3 dva

¢s
2lForo =1 ,%S;K;1) = Y%« asde red by (4).
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Proof: See Appendix B. In fact the proof shows that there are, generically with respect

tof ¢ W, upto @ If i_ 11 A di®erent subspaces hYi for which the theorem holds. 2
|

This lagt result sheds some light on the debate on which objective function the rm
should optimize in the context of incomplete markets. Firm should make choicesthat are
supported by shareholders. In the present setup, a shareholder is basically characterized
by itstype ¥ which can beidenti ed as hisideal security. For example Theorem 3 shows
existence of production equilibria which are stable for “acceptable' rates of super majority;
they are such that, for rm k, the shareholder whose type, %, is at the center of gravity
of the equilibrium distribution of shares (i.e., the above-mentioned mean shareholder)
can exactly span its type, and generate itsideal security: [P  0(Ya:k)] ¢Y4:«; he could not
do better if markets were complete. But to span his ideal security he needs, in general,
to buy all securities. (The same line of reasoning holds for the a0-governance through
Proposition 3.)

This result has no direct link with the Drgze criterion. Indeed, the announced se-
curity/ production plan, yx, of rm k does not have to be the ideal security/ production
plan, Y, of this mean shareholder (in general, the multiplan Y, with y, = ¥§, cannot
be supported as a Pareto PE). But the multiplan Y should be such that it contains the
ideal security of all mean shareholders; in some way the multiplan Y is optimal for the
K mean shareholders. Then the production equilibria are stable for the lowest possible
rates of super majority. Finally, it is also the case here that the assumptions securing the
result are weaker for the governances p la Drpze, i.e., based on post-trade shares.

4.4 Extensions
Immediate extension to a broader class of utility functions

Aseasily seen from the proof, the existence of SsMSPE (for governances based on pre-trade
shares) inthecase K = S 1 (or, trivially, K = S) are still valid under assumption (A)
and the assumption that ¥2= Argmax fUy(X) j X 2 ¢ sg. Indeed, given a PE (Y; 1k ; ),
the rst order conditions of agents maximization programs give, for all k , 2, all ¥

DU/ x(] ¢(yx i y1) = 0: (8)

Suppose K = S 1, when asked whether they agree with an in™ ritesimal changeu 2 RS
(which can be taken orthogonal to hYi, given equations (8)) in the production plan of
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“rm k, a shareholder Yis indi®erent if and only if ¥:2 hYi. And the proof of Theorem 2
goes through.

The assumption that ¥4= Argmax fUy(X) j X 2 ¢ sg can in fact be released. Given
a utility function U,, one can construct the mapping from ¢ s into itself which, to each
type ¥4 associates its most prefered production plan y°(¥9 = Argmax fUy(x) j X 2 ¢ s0.
The proof of Theorem 2 remains valid under replacement of f by f £y°. Therefore the
following claim.

Claim 1 Theorem 2 remains valid under assumption (A).

In addition, we can, for symmetric distributions of characteristics (and in particular
for the canonical case), extend the result of the paper to the broader class of separable
utility functions of the form (3).

Claim 2 Proposition 2 and Theorem 1 remain valid under assumption (A) if in addition
the utility functions are taken to be of the separable form (3) and, for Theorem 1, under
replacement of f by?? f +y°.

Proof: For Proposition 2, given the symmetry of the distribution of characteristics and
identity of the utility functions, Ysand %% will always counter-balance each other in any
collective decision making under both governances when departing from the PE (Y; 1« ; )
such that hvi ~ hYi, where Y is de red through equations (5). For Theorem 1, see
Appendix C. 2

4.5 Concluding Comments

In fact, it should be possibleto extend the analysisto the broader set of assumptions dealt
with in Caplin and Nalebu® (1991): production plansareto be taken in an n-dimensional
Euclidian space Y, preferences vary accross society and are characterized by a vector
Y42 C¥% RS 1 an (S 1)-dimensional index of types. The preferences of an agent of type
Yaover the set of allocations x 2 Y (x isalinear combination of the proposed production
multiplan) are represented by a continuoudly di®erentiable utility function U(%4x). The
distribution of types accross society is represented by a probability measure with density

22For instance, consider utility functions of the separable form (3) with vS(x) = x* with0< 1 < 1.

Uy, satisfy assumption (A) and for all ¥4 y*(¥) = [(¥®)¥i =" (&)L "], (notice that * j! O
allows to get the log-linear case). Take then, for the distribution of types over ¢ s, the density f (Y =
[ (@FHET T ()47, in which case f +y” is uniform.
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f de red over the set of types C. Preferences should satisfy assumptions (A) and (E),
or any other which would secure that the types indi®rent to any in ritesmal change
in the production plan ly on a hyperplane in the space of utility parameters. Moreover
the support C of the agents types should be convex and the distribution f should be
©-concave over C.

Even though it is probably within reach to extend the results of Section 4 to this more
general setup, and prove that Caplin and Nalebu®'s bound “£S;°) holds for production
equilibria, it is certainly much more dix cult to compute (asin the canonical case) by how
much 4S; K ;°) can be improved depending on the number of rms K. It is probably
also dix cult to extend the results of Section 4.3 to the case of separable utility functions
of the form (3).
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Appendix A : Comments

A family of increasingly homogeneous distributions

In this section we reproduce the preceding analysis for a family?® of distributions of agents/ shares on
¢ s which exhibit an increasing degree of homogeneity. Homogeneity means that agents beliefs are more
concentrated around a particular value of “awhich istaken hereto be the equiprobable belief at the center
of ¢ 5. For increasing integers c, de re

¥oemet

de(¥) = (cSi 1)!5:1(Ci ik

Figure 2 illustrate the shape of these densities on ¢ ».

c=10

(1,0) (0, 1)

Figure 2

These density functions are clearly log-concave, and therefore they fall into Caplin and Nalebu®
(1991) class of conditions guaranteeing an upper bound of 1j 1=e for the super-majority rules neccessary
to ensure stability of the PE.

The same assumptions on the distributions of characteristics are made than in the canonical case,
except that the uniform distribution is replced by the distribution de red by the density d;. This section
shows that the needed rates of super majority are smaller ththe bigger ¢, an intuitive result indeed, but

to which exact measure are given. De rg, for all S, K and c:
A ! _
o Ten 51 nci 1+ | o T

n+1 =0 j n+1

1/‘é\;K = 1i

¥. 1
withn= "Sit'

23Crpsand Tvede (1998) gives an urn-based model of how these distributions are generated and provides
an interpretation in terms of beliefs' formation in the society.
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Proposition 4 Fix S, K and c. Then there exist %4, { MSPE for all four governances.

For instance, for c = 2and n = 2 (resp. n = 3, n = 4), a 54%-majority rule (resp. , a 55.6, a
56.4%-majority rule) is enough to ensure existence of a MSPE. Moreover Corollary 1 remains valid.

Corollary 2 For any ntec, and K , S=2, sMSPE exist for all four governances.

Corollary 3 Fixc. Then for all S, K, there exist “2{ MSPE for all four governances with:

A !

Xid
¥5=1j o e °:

i=o I’

These rates are smaller than ¥4 = 1§ 1=e ¥4 0:632:

Yo Y4 0:594 Yy Y4 0:566 Yao Ya 0:530
Ya Y4 0:577 Yao Va 0:542 Yoo Y4 0:519

and moreover ¥4 coverges toward 1=2 when c tends toward in" rity. E.g., whatever the degree of market
incompleteness, and even when K = 1, a 60%-majority rule (resp. 52%-majority rule) is enough to ensure
existence of a MSPE for both governances, when ¢ = 2 (resp. ¢ = 50). All proofs are given in Appendix
C.

Robustness to pessimism

We now consider, for t 2 R, the utility functions:

(x) "XS P stﬂt#lzt 9
Uyt (X) = i o= : 9
s=1 &

They all admit Yaas their most prefered alternative in ¢ s (Ya= Argmax fUy:(x) ;x 2 ¢sg). For
ti! O, they de re uptoaconstant, thelog-linear utility functions of the type (3) with for all s, v* " In
(log-linear utility functions of this type de reiin ¢ s, for a xed ¥ a family of concave indi®erence
curves, ‘centered' on Y| indeed, Y= Argmax f le
the boundary of ¢ g for utility levels tending toward | 1 (see Figure 3.a)). For negative decreasing

Y% logx® ;x 2 ¢sg| and “converging' toward

values of t, they represent the preferences of an agent always having the prior %on the realization of the
states of nature, but who becomes more and more “pessimistic', hence de ring a family of indi®erence
surfaces “centered’ on ¥%but which are more and more triangular (in the case S = 3, see Figure 3.b). And
fort=j 1, Uy becomes: | %XS%

Uy 1 (X) = min v ; (10)
whose indi®erence surfaces in ¢ 5 are simplices of dimension S i 1 (represented in the case S = 3 on
Figure 3.c). Thislast case holds for agents which are completely pessimistic: they only care for lowest
consumption in period 1 (relative to the probability of realization of the state of nature).

Assumethat agents are characterized by the utility functions Uy, 1 . Assume moreover that they are
symmetrically distributed over ¢ s and allocated symmetric initial shares of the rms. Suppose rally
that for all k, the total quantity of shares distributed is constant accross rms: j 0 = i 0 isindependent

of k. Then we have the following proposition.
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Figure 3.a Figure 3.b Figure 3.c

Proposition 5 The min-max majority, for all governances, is

Proof: See Appendix C. 2

We can draw two remarks from this last result.

1. Thisentailsthat in Caplin and Nalebu® (1988, 1991) case where K = 1, the min-max majority is
és1 = §15—1 Hence for a big number of states of the world, only rates close to unaninity secure
that the center of gravity of the support of agents types is majority stable. Greenberg (1979)
proves that for decision problemsin RSi * with K = 1 and individual with convex preferences, the
min-max is bounded above by §'S—1 For those pessimistic preferences, Greenberg (1979)'s bound

of 3L is then reached.

2. The bene t, in terms of majority stability, of having access to many assets in this case is much
bigger than in the case of separable preferences. if n '= ¥%i<—l' isnot too big, ¢s.k keepstractable
values (e.g., 67% if n = 3), whereasit is close to unaninity when K issmall. In particular, for any
" nite S;K, it is still the case that S{MSPE exist as soon as K , S=2 for all governances.

Appendix B : Proofs of Sections 2, 3 and 4

Proof of Lemma 1: Consider a production multiplan Y = (yx)K.,, generating a (K i 1)-dimensional
subspace hYi. De re, for agent ¥ the normalized optimal portfolio (%) which solves the following

program:

max Ovev [(¥]

hE2) X(

s. t. (=1
k=1

P
The resulting normalized optimal consumption (%) = E:l B (¥) Yk is then the point where the
X O
flk Y1Yk.
=2

k=

il
indi®erence surface of agent %4in ¢ s istangent to hyi. One then has (dropping %j: )'/19( =
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De rethe multiplan ¥ = (w)K.; such that v = y; and,
Z n #

X
_ ) K® k) dv
fork. 2 yip= @& yiye with ®&= ——2z : : (11)
f (¥ Yy dv
. A o
De re moreover, for k, 2,
Z
"% # f () R(¥) d% X X
K= KM b and mE= KM KH:
k f) W ) ds k k.2
¢S k
One then obtains, for all k:
Z Z

. F () () dva= () R dvs;

S

h ik
and moreover (Y9 = &(Y) -1 obviously solves the program:

1
max O, ()]
X X
s t. (¥ = (%)
k=1 k=1

Therefore (Y; 1k ; [(¥A]v2¢ o) isaPE. 2

Proof of Proposition 1: The proof goes through three steps. The "rst step computes the optimal
consumption x(%), and, for the sake of illustration, provesthat (Y; 1« ;@) asde red by (7) isa PE under
the assumptions of the example following Proposition 1. The second and third steps prove that any PE
(Y;1k ;P such that hyi = hYi is a Y.k {MSPE for all governances: the second step is the construction
of the best way to challenge a PE within each “rm; thethird step isthe computation of the corresponding
ratios %k .

Step 1: Suppose the K ~rms announce the production multi-plan ¥ = (y)K.,. Consider the market

prices to be 1x . Then the maximization program of a agent ¥4 M (¥, is equivalent to ~ ndng the

portfolio (i(*j which maximizes the utility function: O, [[(*)] subject_to the constraint |, (%) = 1.

Given assumption (E), and the identity x(*4 = & w = X(4 = f]k(l/z) Yk, it isde red by the

orthogonal projection, X(¥) = | (¥)¥«, of Yaon hYi. Hence [x(¥Y) i YA¢[y1i Y«]= Ofor al k, 2
We have?*: %5 = fi=(n + 1) if s2 S and X5 = fi=n if s 2 Ty. Therefore, for all k , 2:

8
X s e e sy = < o= v+ (b v it k-m
s(k AL %0 = 00) : ﬁk:VIk+n:1(ﬁli v8) if k, m+1

P
These equations, along with the condition =, fi = 1, straightforwardly imply: fi = ¥ when k - m
and fx = Y7« whenk , m+ 1.

24In heavy computations, when no confusion can be feared, X and {1 will stand for (%) and {i(¥).
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z
We then have to check that 1k is an equilibrium price. We should have f(Y) (¥ dva= 0 =
¢s

Ki’ for all k. For k - m, a standard application of Fubini's theorem?® gives:

z zZ, , .
A (Li ySiniz2 n+1

. | 1/°k d1/,= . | 1/, 2 7 dy, = .
(Si ! /P dva= (S 1)! ) /4n! SN2 dva s

S
hence the above equilibrium equation is ful lled. Through an identical line of computation, the reader
can check that the equilibrium eguations for k , m+ 1 isful lled.

Step 2: Up to now, we have proved that E = (Y; 1k ;) is a PE. We have to prove that it is Yamajority
stable for the lowest possible %2 The rst needed lemma here is a replication of Caplin and Nalebu®
(1988) Proposition 2.

Lemma 2 For all k, Pe._(y«) (resp. Ag.-(¥x)) is the largest fraction of shareholders with positive share
(resp. the largest fraction of positive shares) on either side of any hyperplane through Y.

Proof: Fix zx, then from the strict concavity of the agents preferences, zc(,) = , v + (1i , )z will
get a larger fraction than z, of shareholders and shares against y«. Indeed, since x + Wz (,) i W] =
XH (L0 )X+ Wzk i oyl thenfor , 8 0;1, UX + W(z(,) i ye)]> U]+ (17 ,)UX+ Wzc i w)l;
hence Ux + W(z« i w)], Ulx] entails Ux + u(z«(,) i w)], UIX].

Therefore, in looking for Pe._(yx) or Ag.-(¥x) we can focus on alternative production plan z arbi-
trarily close to yx. We know that at a PE, the optimal portfolio is such that the indi®erence surface
of each agent is tangent to hY'i at the equilibrium consumption. Therefore in the limit, shareholders
whose welfare is improved by thein ritesimal move from y are separated from those whose welfare is
impaired by a hyperplane (thanks to assumption (E)) containing hy'i with normal, given equations (8),
the orthogonal projection of zx i y« on the orthogonal of hY'i. Hence zc can be restricted to converge
toward wy orthogonally to hy'i and in the limit, shareholders are separated by an hyperplane containing
hyi with normal zc i w.

The general equation of an hyperplane containing hvi is (the intersection with ¢ s of):

8 X
X X 5 8k - m; ® = n+1
® Y3 = 1; with . SR Sk ; (12)
k=1 s2S(Tk) 2 8k, m+ 1 ®& = n
s2Tk

that one denotes hBi, where ® = (€°)S. ;. One can easily check that the normal vector, in ¢ s, of ®i is

A second lemma is needed.

Lemma 3 For all k, among all hyperplanes through Y, the ones that divide ¢ s into two pieces with
most unequal volumes (whatever the governance) are those de red by eguation (12) with for for some

k-m@&=""Lirs2s, andforals2(SnS)[ T, ® = 1.
25T he volume computed throughout the paper are those of the projection of ¢ s on the last variable,
1
i.e, of theset of vector , 2 RS1 Y such that % 1.
s=1
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Proof: Let usprovethelemmain the most dit cult case, i.e, for the al-governance, the other cases are a
straightforward simpli~ cation of the following proof. De re the projection from the (S 1){ dimensional
simplex onto the (K j 1){dimensional simplex:

P . ¢S i! ¢K
(Y8; 110 98) v (YR e Y YK

Fix a vector of shares (ﬂlk)l'f:1 (and thus (&)K. ;) in ¢ . The set of agents having exactly those
sharesarein Pi 1[(fi)]. We are now reduced to the problem of dividing Pi 1[(fi)] as unevenly as possible
by an hyperplane going through its center point. But Pi 1[({i)] is a cartesian product of simplices of
dimension either n (for k - m) or nj 1 (for k , m+ 1), with equation: o, 1) %% = f. This
very structure will make the former task simple: it is sux cient to divide one of the base-simplex (e.g.,
k) as unevenly as possible (measure-wise) and consider the cartesian product of the big portion with all
other smplices. From Caplin and Nalebu® (1988) we know that a base-smplex have to be divided by
an hyperplane parallel to one face: among all hyperplanes of the form = o, (7,) ® 2= 1wehaveto
choose one such that ®& = ”;1 for all but one s in S (or = ﬁ for all but one s in Tk); the portion
between this hyperplane and the chosen face is the biggest possible.

It can™ rally be easily checked that thisamountsto proposean in™ ritesimal change of the production
plan y« which sacri” ces one state of nature to the bene t of all others and implement for example the
change: j 2 .; i == . The same cutting occurs if the in” ritesimal change of the payo®s of the
11172:0;::1;0 (orthogonal to hYi) is proposed. 2

Step 3: Let usthen compute the proportion of shareholders on the smallest side of the hyperplanede red
by equation (12) with, according to Lemma 3 (let us do it for “rm 1 without loss of generality): ® = 0,
®F = %1 for s2 S;nland ® = 1for s2 (SnS;) [ T. We thus compute the relative volume, in ¢ g, of
the volume de red by the equation:

N+ 1 sty ggsnsort . g (13)
n

The proportion, in ¢ g, of this last volume is (apply Fubini's theorem), denoting u = ¥#"! and

V= YASNS)IT . |

dv du;

A
Z e uni 1 Z 1 n:_lu Vsi nj 2

u=o (NP DY y=p (Si nj 2!

(Si !

b1,

which is equal to n%l . Thislast ratiois1j Y.x. It isa minimal ratio of shareholders that
will oppose to any change of production plan within each “rm k, since at the equilibrium, everybody is
allocated positive shares of the rms so that everybody gets the right to vote.

This proves the Proposition for the p0O, pl and a0-governances.

For the al-governance, the argument developped in Lemma 3 still holds to characterize the best way
to challenge the status quo within a “rm. Therefore, for k - m, one has to compute (for “rm 1, the
same result will hold for other “rms) the measure of the volume de red by inequality (13), weighted by

Y91 = 1§ v (ignoring the constant term ﬁ which will disappear in the normalization). It is
A I
z AT uni 1 ZA 1i n:_lu ySini 2 .

(Si ! (1j v)dv du;

u=o (NP DY y=p (Si ni 2!
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RPN

S n+1
weights by ¥#« instead of ¥#1.) This has to be normalized by the volume of ¢ s weighted by ¥+ = u°,

which gives z,

which is, after standard computations, equal to n

: (The same result holds true if one

o(UO)n (1j u9sini2 dul= "* 1
uo=0 n! (S] nij 2)‘ S
Therefore the relative volume we are looking for is the same as in the one person-one vote governange.

For all k, m+ 1, the volume de red by inequality (13), weighted by ¥J« is equal to g nz 1
3 © M n
Therefore, if one takes the density i = ¥J« + n+1)K Y% one getsé n+ % nz 1 This has to
3
be normalized by the volume of ¢ s weighted by the same density, which isé n+ % D2

Proof of Theorem 2: For the existence of S{MSPEal, we consider the same family of hyperplanes
hAI 42 ss, » asthe one de red for the a0-governance. For each A, “x a orthonormed basis (e;g)iif which
moves continuously with A. Thereforee, 4 = i 4, for all A, all *. Denote C4 the subset of PAi of optimal
consumptions xA(¥) for all types ¥ (for a given multiplan Y4 continuously depending on A such that
[Ya; 1\8 wi] be a PE satisfying the Pareto criterion, and of course hyai = hAi). One has for x4 2 Ca,
XA =« Xz p
For X4 2 Ca, let f £3% (xa) [resp. f £3' (x4)] denotethedensity obtained fromf ¢ |, W by aggregating
all types %42 PAI* [resp. Y42 bAii ] such that x4(¥) = x4. Onehasfor al k, 1- k- K j 1,
Z Z
’ f (I (V)dva= . f£R(xa)Aa(xa)dxa ; (14)
fora= + or j , and where [k.a(xa) = uk(lﬁa—P WO (¥ for all Yasuch that XA(¥) = Xa.
Consider the S| 2 mappings (* )% 1 on Sg; 2 de red by
Z
DA = xafER i FER I(x) dxa (19)
Ca
They all satisfy the symmetry property: * (j A) = j * (A). Indeed, given that e s = i €, for all A
X; A= ®j xa for some ™ xed ®4, from which we get, trhough an obvious change of coordinates:

Z Z
L A= (@i X £ i FEYI@a i xa)li dxal= (@i XQ)[FEX i FER 1(xa)dxa
Ca Ca
Z
because obviously f £%%(x; 4) = f£R (xa). And weknow that for all A, &[f£3" i fER ](xa)dxa =
Ca

0 since MAi divides ¢ 5 into two piec&s of equal measure with respect to the distribution f ¢£°.
Given that mappings (* )3 2y 2 satisfy the above described symmetry property, we get, by an indirect
corollary of the Borsuk-Ulam theorem, that they possess a common zero. Denote it Ay. Hence for all °

1. - Sj 2 onehas
Z Z

X FER (XA) OXA, = Xa FER (XA,) dX4, :
C(Ao) C(Ao)

Lastly, one observes (as shown in the proof of Theorem 3) that for all k, 1- k- K i 1, k(X4,) is
an at ne function of x4,. Therefore, from equation (14), we get theresult: Ay de res a PE [Ya,; 1k ; ba,]
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that divides ¢ j S into two pieces of equal measure with respect to the distributions f ¢p.4,, for all k,
1- k- Kj L andforf ¢ | a4, hencealsofor f Cuk.4,. 2

Proof of Theorem 3: The proof goes through three steps. The rst step to prove that the relevant
PE (Y; 1k ;£) should generate a subspace hYi that contains the center of gravity, ¥4 = (1/5)§:1, of the
distribution f ¢, O (denoted f £° in the sequel). The second step to show that among all multiplans
Y such that hYi contains ¥, there exists one that contains the center of gravity, ¥«, of the distribution
f ¢, for all k. Thethird step shows that the density f ¢ is ©-concave for all k.

Step 1: Thefollowing statement isproved here: Consider a PE (Y; 1k ; £) such that, for all k, hYi contains
Y4:x, then it contains %4.

Indeed, by de rnition: 1 Z
8s; Y§x = o V2T () w(¥) d¥s;
Ik s
Moo Tk X
and one can easily check that % isthe barycenter of (Y.« )K= ; with weights f—'(‘, , with j = iR
I k=1 k=1

i.e, Yy = iioX( i 0 Ygx. Therefore, a relevant multiplan Y is such that ¥ 2 hYi.
k=1

Step 2: We show now that among all multiplans Y such that hYi contains %, there exist at least one
that contains Y., for all k. This will go through two steps. The rst step to prove that there exists
S 1independent stable directionsin h¢ si; the de rition of a stable direction v follows: consider the
distribution x ¢f £° over ¢ s where x(¥) is the abscissa of the orthogonal projection of T/4on the direction
of v, denote ¥ (v) the center of gravity of this distribution, v is stable if the vector Vgi/g(v) is colinear to
v. The second step shows that any subspace containing K j 1 of these independent stable directions can
be spanned by a K -multiplan Y such that hYi contains %, for all k.

Step 2.1: Stable directions. De re, for all state of naturet, the vector u(t) 2 h¢ si, with u'(t) = j 1 and
us(t) = 1S 1) for s 6 t. The orthogonal projection of ¢ s on the direction de red by u(t) is only
function of %4, i.e, all %2 ¢ s with same t-th coordinate project on the same point on any line spanned
by u(t). Denote Y(t) = [1@(0]5?:1 the center of gravity of the distribution %f £°(%); by de  rition:

z

_1
iOI/él Cs

One immediatly gets the following property:

8s; Y4(t) = Y8 Y4 £ £9(Y) dva:

Y4 Ya(t) = Y4, i.e. ; Yy isthe barycenter of the family [¥ ()., with weights (), (16)
t=1

§Q 1
The independent family of vectors [u(t)]tS:i 11 spans ht gsi. Consider a vector v = vt u(t), and
t=1
denote hvi the direction it spansin ht si. We have the following property:
1 1
8(%4YA); if  vivh=  v'%4 then ¥% ¥4 project orthogonally on the same point on hvi :  (17)
t=1 t=1
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X

| 1 | | |
Indeed, one then has: Y#2¢v = V' u(t) ¢¥44, with u(t) ¢va4= ; 3 1(1/55‘ i ¥4); therefore V48 ¢v =
t=1 I
s X!
i —— V(A %)=0
Si 1l _
t=1
1
Consider the linear function x(¥9 = v'¥4. Property (17) states that the orthogonal projection
t=1

of ¥aon hvi is only a function of x(%). Denote Y(v) the center of gravity of the distribution x ¢f £9;

standard computations give: 1
w=" e %
1/@ V) =
t<s s<S V51/§

i!
We are now looking for the vectors v such that ¥4%(v) is colineay, to v. From the Iast#gquation we get
S

Y(1):

il X
that Vgll/g(V) is colinear (for a v in general position) to the vector V(BN i %)
t<S s=1
il

Denotea®™ = %4 (¥4(t)i ¥3). Then l/gll/g(V) iscolinear tov, if and only if there exists, 8 0 such that
for all s, X
asvt= | uS(t)v':

t<$S t<S

denoting A, resp. U, the (S 1){square matrix (a%)3i2, resp. (us(t))3i;, denoting w be the vector
with coordinates (vi):i ! in the original basis, the following property holds:

il
1/g11/g(v) is colinear to v if and only if Aw is colinear to Uw : (18)

One has to look for the eigenvectors (and eigenvalues) of the product matrix: (j U)' *A, and prove that
they are all real and that (j U)i A is diagonalizable. The two matrices A and j U have the following
properties:

P
2 é is real symmetric (therefore Hermitian) and for all s, ,_ga > 0. (Indeed, by property (16)
i s @' = 0and obviously a*® > 0, a* < Ofor s& t.) In fact, it is a variance-covariance matrix.

2 i U isreal symmetric; itsinverseis:

Si 1B 1

(iU) ' = =5

1 01
which is obviously a positive de rite Hermitian matrix.
And one knows that the product of a positive de rite matrix and a Hermitian matrix is a diagonalizable

matrix, all of whose eigenvalues are real (see, e.g., Horn and Johnson (1985), Theorem page 465).

As a remark, one can easily check that if the distribution f ¢ | W2 is uniform, A = | mu

therefore all directions are stable: whatever the subspace going through ¥, it contains % for all k.
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Step 2.2 Fix K - S. Pick K j 1 of the preceding stable directions: V = (v;){1,!, with for all j:
§Q 1

v = vjt u(t), and denote hvi the subspace they span in h¢ si. Property (17) generalizes:
t=1
& 1 1
8(¥%4Y8); if §j vih=  v/¥& then ¥4 project orthogonally on the same point in H(V) : (19)
t=1 t=1
X1
Consider forall j < Kj 1, %;(¥) = vjtl/};. Property (19) states that the orthogonal projection of %on
t=1

hvi is only a function of [x; (*3]f';". Denote ¥(j) the center of gravity of the distribution x; (3f £°(*).
Take a PE (Y; 1k 'HE) such thaﬁT hyi © hVi. A direct consequence of Property (19) is that for all k,

1. k- K, (¥ = % will be an &t ne function of [x; (]
5 1
=@+ g x®):

i=1

Standard computations give:

VA
1
Ygk = T, Yafu () T £°(4) d%
S
- _ .
= —X®(_—1/Q+PXI — L () ;
® + ki °j j=1 &+ ki °j

j i

P
where°; = vi%4. Therefore % isin Vi~ hYi which ends this step.

Step 3: The third step is to show that the density f ¢ is ©-concave for all k. This comes immediately
from the fact that f () ¢ (Y9 = f£°(1/4)h<(1/3 where, as seen before, h((lﬁa is an at ne function of %
hence is°-concave for © - 1. 2

Proof of Claim 2: For the sake of lightness of the notation we consider m = K. Suppose the K " rms
announce a production multi-plan Y = (yx)X. ;, such that thP: hYi (as de red by (5)), and such that
(Y; 1k ;1) isa PE (allowed by Lemma 1). Theidentity x(*3 = (" ¥k = X(*9 = i () ¥ allows
to focus on (Y . 5 5

The utility levels of agent Yson feasible consumptionsis: = | Y8 vS«[fi=(n+ 1)] with vS« s25 Vo
This yields the optimal portfolio (fi)x as a function of (¥#<)K_;: (fk)k = V[(¥#*)k], where V is one-
to-one. Indeed, for all j, the “rst order conditions of the maximization program give % DvSi (ﬂ}) =
constant; hence, since DvSi (f§) > 0, V[(¥# )] = V(¥ )k] =) (¥)k = (¥%5)k). As examples, for
the log-linear case v® = In for all s, V istheidentity: V[(*%%)k] = (¥ )k. 1f v3(x) = X" with0< t < 1,
VIR = ()0 =T (01

Fix a vector of shares (fi)K., in ¢ « . Then all agentswith typein Pi 1[Vi 1(fi)] (where P isde red
in Lemma 3) have the same portfolio, hence the same optimal consumption under the assumtion of the
canonical case. Moreover Pi 1[Vi 1(fy)] is, as stated in Lemma 3, a cartesign product of simplices of
dimension n. Consider the cutting proposed in Lemma 3, through a change j 2 ':::'% in the
production plan of a rm. We know it does not divide the parameter space ¢ s through a hyperplane.
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But it doesdivide Pi 1[Vi 1({i)] though a hyperplane, as unevenly as possible with respect to the uniform
distribution of most prefered alternative f +y”, and the biggest piece gets the same proportion of the
(n=n+ 1)" of the volume of this base simplex. Thedistribution f £y® being uniform, thislast ratio holds
for thewhole set ¢ s.

One can rally check (for Proposition 2) that any proposed change (that can be taken orthogonal
to hYi), will always put Yaand ¥4 (who always select the same portfolio and optimal consumption) in
di®erent positions: if it impairs the welfare of one, it improves the welfare of the other. 2

Appendix C : Proofs of Appendix A

Proof of Proposition 4: The rst step of the proof of Proposition 1 sill goes through. The only
di®erence isin the equilibrium equation for prices which should be computed for fhe new density d. in

the case of the example based on the multiplan Y de red by equations (7). It is (¥ f (Y9 dva=
Z ¢s

(cSi 1! . Ki d.(¥3 d¥ for all k. For k - m, one gets:

S

z Z, 18(n+1)j 1 . 1nc(Si nj 1)j 1
Vo) = Vet (i = 0D (D,
¢ [cn+ 1) 1! [c(Si nj 1) 1] cS S
Z
and of course d.(¥) d¥a= 1; hence the result.

Onehas nkoSto check that it isstable for the %4, -majority rule under the p0, p1 and a0-governances.
For that, given that Lemma 2 and 3 are still valid, we compute, asin Step 3 in the proof of Proposition
1, therelative volume, in ¢ s endowed with the density d, of the set de red by inequality (13) which is,
denotingu = ¥#1" and v = ¥4SnSUIT:

A +
ZA nzl ucni 1 Z 1 nn_lu Vc(si ni 1)j 1 (11 uij V)Ci 1

u=o (eni DI - [c(Sinj D 1 (ci D!

dv du;

(cSi 1!

which is equal, after standard integration by parts, to 1j %&.y .

As far as the al-governance is concerned, one has to compute the volume of the set de red by
inequality (13), endowed with the density d., and moreover weighted by ¥#* (the same result would hold
for any other “rm). Thisis

A
Z mT o yoni l Z g nrly ye(Si ni )i 1 (1j uj v)©i?

u=0 (Cni I oo [((Sinj D 1 (ci !

(1j v)dv du;

(cSi 1!

which (we cut this double integral into two pieces by distributing with respect to 1 v) is equal to

. . 1 1
(1i Ya)+ C(S'—Cg')(li V)= (1] 1/%;K)n; . On the other hand, the volume of ¢ 5 endowed

+

1. Hencetheresult. 2

with the density d; and moreover weighted by ¥ is

Proof of Corollary 2: This goes either by noticing that, for n = 1, for all c,
A ! _
" _”gﬂ" M7 i 1+ H}ﬂj__.
b7sk= 2 i 2 2
j=0

or by reproducing straightforwardly the proof of Proposition 2 given in Section 4. 2
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Proof of Corollary 3: This goes by noticing that
% j= J
A ! 1=0
Xla _
creases toward T e ¢, when n tends toward in nty. 2
i=o0
Proof of Proposition 5: It goesthrough threesteps. The rst step isthe construction of a PE (¥; 1k ; )
based on the multiplan (Y); the second step proves that this PE is a és:k {MSPE; the third step proves

that ¢s.x isthe min-max majority.

Step 1: Suppose the K “rms announce the production multiplan ¥ (®) = [9x (®)IK. ;, for ®2 R:

for k- m; %(® = (®+ 1) ¥ i

¥ ;andfor k, m+ 1; % = ¥ : (20)

j=m+1

Kim

Hence, as in the proof of Proposition 1, for s 2 Si, one has:
N H 1

if s2Te; k, m+ 1, then jzlpq?j:% M i Ki®mus

if s2SgGk- m; then j:lH?j:fii
Let ¥(k) = SZSkrn(<'él)>r< Tk)l/i, the utility function (10), with ¥&k) = S/;k)l)l/(k) :: t 2+ L
be rewritten: ZH o q _Apki K]®mp5! 3

O WAL= mn® g5 g

First order conditions at the maximum entailsthat all arguments of O, are equal: there exists areal c(¥)
such that,

k, m+1

1

k-m ik = ®+11/?(k)0(1/4 (21)
0 1
L = 1 ® X 1A 1
k. m+1 i = @4k + K m ®+1j:1/?(j)AC(/z) (22)

We are looking for a value of ® such that, at the equilibrium, ¢ = 1, all k. As argued in the canonical

case, since we consider hometheticI:Dpreferences, thereisno loss of generality in considering gistributions of
initial shares such that for all ¥4 I|<<=1 (%) = 1 (together with the price normalization E=1q< = K).

Hence, if = 1k, one gets: 1

c(h=p———: (23
k=1 7(K)
The question then is whethgr there existsavaluezof ®such that for all k, 1- k- K,
F(4) () d= (¥ () dv:
¢ S ¢ S
For k - m, thislast equation can be rewritten:
1 f (Y3 p ARy ’ f (Y W(Y) dv = 1. (24)
®+1 Cs szll/}g(j) ¢s K’
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z
this last equality being a direct consequence of the fact that f () W) dvu = i, independent of
¢

k, and that for all ¥4 P E:l (¥ = L Thisde res obviousy avsélue®for the parameter ® (which does
not depend on k, because of the symmetry of the m " rst assets). And then one can easily check that
(24) entails equilibrium on the markets for sharesof rmsk, k, m+ 1

What remains to be checked isthat ® , 0 so that, at equilibrium, everybody is allocated positive
shares of all "rms. One obviously has, for all k - m:

20 o MK
L) L)

therefore Z Z
ts ]:1/9(1) ts jzll/‘(J)
and since 7 7
YAK) Y(1)
1= f() P d¥a |2 K f () Pr——— d¥%;
k=1 ¢s 1:11/‘(1) bysymmetry Cs 1:11/‘(1)
the result obtains. Fix ® = ®in the sequel.
Finally, one gets the following observation, with for all k, fi = P%
= J
i
Observation 3 One has:
X X
b= f= 1; (25)
k=1 k=1
and: " "
= e (26)
k=1 k=1

Step 2: We have proved (for ® = ®) that (¥;1x ;{l) is a PE. We have to prove that it is ¢s.x -majority
stable. As for the canonical case, from the concavity of the agents preferences, for a  xed z, then
z(,)= .9+ (1i ,)z« will get alarger or equal fraction than z, of shareholders and shares against Y.
Therefore, in looking for PQ;ﬁ(yk) or AQ;ﬁ(yk), we can focus on alternative production plan z arbitrarily
close to yx. Given Observation 3, it is quivalent to take any z¢ arbitrarily close to yx

Takezi = Yi + 2 with2, = (28)S.,, 5,25 = 0. Suppose?l < O: z reduces the payo®of ¥ in the
“rst state of the world. Necessarily, for all agentssuch that ¥{1) = ¥4, the utility level decreases. Indeed,

at the PE, the utility level of such an agent is and Uy, 1 [X+ fic 2] is by de rition of the min

q
[CREZE
(njlﬁ %21 Take a state of nature s such that s2 S; (or T;); then all shareholders %
such that ¥{j) = ¥# will strictly oppose to any change 2y such that 2} < O.

Therefore, in order to ™ nd a best challenger against the status quo ¥ within “rm k, one has to
decrease the payo®s in the smallest number of states of the world, hence only one: Fix & such that $2 S
(w.l.0.g.) and consider 2§ > Ofor all s6 &, and 2} < 0. Thechange?, imapirs the welfare of shareholders
Yusuch that %) = ¥#, but on the other hand, for 2 sux ciently small, it improves the welfare of all other
agents. Indeed, consider an agent ¥asuch that ¥{f) 6 ¥4. Then in statess 6 &, its consumption increases

inferior to
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by s 22+ and in state & its consumption decreases by s 2% But since ¥{f) > ¥&, for 2, small enough,

one has:
ﬂ]k 1 + h( 2% > h( 1 ﬂ]k 28 .

B+l v KT ugyn+ll w) K

where & is such that %}) = ¥&. Hence, even after the change 2, the minimum consumption still does

not occur for &, but for another state s in which the consumption increases.

Therefore the most challenging way to threaten the status quo is to decrease the payo® of ¥ for
only one state of the world and improving its payo®in all others. In this case the shareholders opposing
the change are such that ¥(}) = ¥4. Given the symmetry of the density f, their proportion is obviously
S ifs. m(n+ 1) (e, 32 S for some} - m), and ﬂlré ifs, mih+1)+1(.e, 52T for some
} . m+ 1). Hence P?;uO(yk) = Pv;ﬁ(yk) = 17 withn = §|i<—1'. Finally, given the symmetry, at the
considered symmetric PE, of the shares, one immediately gets A¢. o (%x) = AQ;ﬁ(yk) = 0

n+1°

Step 3: We have proven that there exists a ¢s.x -MSPE for all governances. Finally we have to prove
that ¢s.x is the min-max.This easy proof is left to the reader: take a non-symmetric Y and “attack' it
the usual way from the central part of ¢ 5. 2
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