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In a simple parametric general equilibrium model with S states of nature and K · S

¯rms | and thus potent ially incomplete markets| , rates of super majority rule ½2 [0; 1]

are computed which guarantee the existence of ½{ majority stable product ion equilibria:

within each ¯rm, no alternat ive product ion plan can rally a proport ion bigger than ½of

theshareholders, or shares(depending on thegovernance), against theequilibrium. Under

some assumpt ions of concavity on the distribut ions of agents' types, the smallest ½are

shown to obtain for announced product ion plans whose span contains the ideal securit ies

of all K mean shareholders. These rates of super majority are always smaller than Caplin

and Nalebu®(1988, 1991) bound of 1¡ 1=e ¼ 0:64. Moreover, simplemajority product ion

equilibria are shown to exist for any init ial dist ribut ion of types when K = S ¡ 1, and for

symmetric distribut ions of types as soon as K ¸ S=2.
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1 Int roduct ion

In this paper, a simple parametric general equilibrium model with S states of nature

and K · S ¯rms | and thus potent ially incomplete markets| is studied. There is only

one good, and the agents (consumers/ shareholders) are characterized by ut ility funct ions

exhibit ing some quadrat ic feature and indexed by a probability vector ¼in the (S ¡ 1){

dimensional simplex, ¢ S, that we call the type of the agent. Agents' types are supposed

to be distributed, according a cont inuous measure with density f over ¢ S, and are only

endowed with init ial shares of the K ¯rms. Since there is no consumpt ion in period zero,

¯rms are taken to be assets which allocate a certain mass of the good across states in

period one.

Rates of super majority rule ½are computed which guarantee the existence of ½{

majority stable product ion equilibria. The interpretat ion follows. Given init ially an-

nounced product ion plans, a general equilibrium is computed: agents choose their opt imal

port folio given the market prices, and equilibrium prices for shares occur that clear the

markets. This product ion equilibrium is shown to be ½{ majority stable in the natural

following sense: within each ¯rm, the product ion plans of other ¯rms remaining ¯xed, no

alternat ive product ion plan can rally a proport ion bigger than ½of the shareholders, or

shares, against the equilibrium.

These rates of super majority rule are computed (1) under various governances, both

of the `one person-one vote' and `one share-one vote' types, and (2) when the considered

shares are the init ial (pre-t rade) shares or the equilibrium (post-t rade) shares. Condit ions

aregiven under which theseratesaresmaller than Caplin and Nalebu®(1988, 1991) bound

of 64%. Moreover, it is shown that simple majority product ion equilibria exist for any

init ial dist ribut ion of types when K = S ¡ 1, and for symmetric distribut ions of types as

soon as K ¸ S=2. Thus, even with a high degree of market incompleteness, a product ion

equilibrium exists against which, within each ¯rm, no alternat ive product ion plan can

rally more than half of the shareholders, or shares.

The early mot ivat ion of this paper is to study whether collect ive choice mechanisms

among the society of shareholders | and in part icular thesimplest one: majority vot ing|

can help dē ning or qualifying theobject iveof the¯rm in a context of incompletemarkets.

The lat ter concept has received a lot of interest in the recent years [see, e.g., Citanna and

Villanacci (1997), Dierker, Dierker and Grodal (1999) and BettzÄuge and Hens (2000)].

In the present setup, the object ive of a ¯rm is not invest igated from the perspect ive

of e± ciency or maximizat ion of some shareholder's value or pro¯t funct ion [as in Drµeze
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(1974), Grossman and Hart (1979)], but from the point of view of stability with respect

to collect ive decision making among shareholders [as in Drµeze (1987, 1989), DeMarzo

(1993)], under di®erent types of governance.

The results proposed tend to show that market equilibria exist which are stable with

respect to simple and quite operat ional collect ive decision mechanisms (here: vot ing rules

with reasonable rates of super majority), even when the degree of market incompleteness

can be considered `high'. Moreover the less incomplete the markets the smaller the rate

of super majority necessary to guarantee the existence of stable general equilibria. Al-

though these intuit ive ¯ ndings are obtained in a simple setup, it is certainly valuable to

have posit ive results of robust existence of majority majority stable product ion equilibria.

Especially given the fact that the Social Choice literature is perceived as being dominated

by impossibility results and considered useless for a general theory of decision in ¯rms.

In standard general equilibrium models of product ion in a context of incomplete mar-

kets [see, e.g., Magill and Quinzii (1996), Du± e and Shafer (1988) and Geanakoplos,

Magill, Quinzii and Drµeze (1990)], the ¯ nancial structure is usually more complex than

the one presented here. And the di± culty in dē ning an object ive funct ion for a ¯rm

stems from the fact that, at equilibrium, shareholders can disagree on the present value

of the product ion plans that are not in the span of the ¯ nancial structure: to discount

future income streams, they use shadow prices that can be di®erent . These shadow prices

are endogeneous whereas in the present paper, they are basically always point ing toward

the ideal security which is exogeneously ¯xed, by assumpt ion on the ut ility funct ions.

There is nevertheless a way the present paper can shed some light on the debate on

which object ive funct ion the ¯rm should opt imize in the context of incomplete markets.

Firm should make choices that are supported by shareholders, and the most commonly

suggested behavior for the ¯rm is that it should use the average of the shareholders'

normalized present value vector, where the weights for averaging are the shares of share-

holders: a `mean' shareholder is thus dē ned for each ¯rm. If the lat ter shares are the

initial shares, it is the Grossman-Hart criterion, if they are the equilibrium shares, it is the

Drµeze criterion. The present paper gives some insights that these two criteria are likely

to give rise to majority stable product ion equilibria (see Sect ion 4). The main result of

this paper is that there exist production equilibria such that the K mean shareholders1 can

exactly span their type and generate their ideal security (the one they would demand if

markets were complete); moreover these are the most stable equilibria. It is worth not icing

1Of course, in Drµeze's case, as opposed to Grossman-Hart 's, the mean shareholder is endogeneously

determined at equilibrium.
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that the assumpt ions under which this result holds are weaker in the case of a governance

µa la Drµeze.

This result has no direct link with the above-ment ioned criteria since the announced

product ion plan of a ¯rm does not have to be the opt imal product ion plan of its mean

shareholder. But the collect ion of K product ion plans (called a mult iplan) should be

such that their span contains the ideal security of all mean shareholders; in some way

the mult iplan is opt imal for the K mean shareholders. Then the product ion equilibria

are stable for the lowest possible rates of super majority. Last ly, the present paper does

not study the quest ion of optimality or constrained opt imality of the stable equilibria

it describes, a subject lying at the core of the literature on product ion in a context of

incomplete markets. Especially, it does not pursue the study of Dierker, Dierker and

Grodal (1999) on the relat ion between majority vot ing and welfare considerat ions2.

Technically, the main results of the present paper are based on those in Caplin and

Nalebu® (1988, 1991). Indeed, the case where agents are distributed over ¢ S and there

is only one ¯rm (K = 1, and then no exchange of shares), is a sub-case of Caplin and

Nalebu® (1988, 1991). And of course we get here: ½= 1 ¡ 1=e ¼ 0:632. But although

some assumpt ions are less general than those in Caplin and Nalebu® (1988, 1991), the

setup is di®erent , and more general in at least one dimension3. It is more general to the

extent that the number of assets can be bigger than one. It is di®erent to the extent

that there is an upstream market mechanism, with equilibrium prices clearing markets

for shares. Consequent ly there is an endogeneous allocat ion of shares and therefore an

endogeneous distribution over types for governances µa la Drµeze. In the present setup, the

collect ive choice mechanism is intertwined with a general equilibrium market mechanism.

The paper is organized as follows. Sect ion 2 introduces the model and provides some

preliminary results founding the analysis. Sect ion 3 focuses on the canonical case where

agents are described through characterist ics that are uniformly distributed over ¢ S; exact

computat ions are provided illustrat ing how the less incomplete the markets the smaller

the required rates of super majority. Sect ion 4 discusses the generalizat ion of the results

obtained in theprevioussect ion: Caplin and Nalebu®(1988, 1991) general upper bound of

64% for the rate of super majority is shown to hold in case the distribut ions of character-

ist ics ful¯ll some condit ions of concavity (Proposit ion 3 and Theorem 3); simple majority

2Dierker, Dierker and Grodal (1999) show through an example that majority vot ing and welfare

considerat ions can be completely unrelated.
3Actually, Caplin and Nalebu®(1991) gives, as an illust rat ion for a possibleapplicat ion of their theory,

the example of vot ing among shareholders in a context of incomplete markets.

4



stable product ion equilibria are shown to exist under some assumpt ions of symmetry of

the distribut ions of characterist ics (Proposit ion 2) or when the degree of market incom-

pleteness is just one (Theorem 2). Appendix A proposes some comments; in part icular,

through parametric examples, these rates are shown to decrease with the homogeneity of

the shareholders' types, and to increase with the shareholders' pessimism. All technical

proofs are gathered in Appendix B and Appendix C.

2 T he model

Consider an economy with two periods, t = 0; 1 and S statesof nature in period 1, indexed

by s, s = 1; : : : ; S. There is one good, and a cont inuum of agents, each agent is indexed

by probability vector ¼= (¼s)S
s= 1 which will be interpreted as his ideal security once the

ut ility funct ionsar introduced. Theagent 's type¼is thus taken in the(S¡ 1)-dimensional

simplex:

¢ S =

(

¼= (¼1; ¼2; : : : ; ¼S) 2 RS
+ j

SX

s= 1

¼s = 1

)

:

Agents' types are assumed to be distributed over ¢ S according to a cont inuous, atomless

density funct ion f : ¢ S ¡ ! R + . Consumpt ion takes place in period one but must be

decided in period zero. Agent ¼ is characterized by a ut ility funct ion: U¼[x(¼)], where

x(¼) = [x1(¼); : : : ; xS(¼)] is agent ¼'s consumpt ion in period 1. Since there is only one

good, it will be somet imes better to give a ¯ nancial interpretat ion to x(¼) as an income

vector. Utility funct ions are of a quadrat ic/ `euclidean' type, described at the end of this

sect ion.

There are K ¯rms indexed by k, k = 1; : : : ; K . All ¯rms have the same product ion

technology, represented for the simplicity of the analysis by the span of ¢ S:

h¢ Si =

(

y = (y1; y2; : : : ; yS) 2 RS j
SX

s= 1

ys = 1

)

:

Agent ¼ is endowed with init ial shares of the K ¯rms: µ0(¼) = [µ0
k(¼)]Kk= 1. He is then

totally characterized by the vector [¼; µ0(¼)]. The funct ion µ0 : ¢ S ¡ ! R K
+ is taken

cont inuous and posit ive over ¢ S.

A ¯rm is basically an asset which allocates an init ial mass ¡ 0
k =

Z

¢ S

f (¼) µ0
k(¼) d¼

of the good across states in period 1. We do not normalize it to one to allow di®erent

¯rms to be of di®erent `sizes': the yield, in terms of consumpt ion/ income, of ¯rm k in

period 1 in case state s occurs is: ¡ 0
k ys

k . To avoid some minor technical di± cult ies, it
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is preferable not to impose sign constraints on product ion plans; this is ¯ ne within the

¯ nancial interpretat ion of the model. Although it is abusive to talk about ¯rms in such

a simple framework, and better to talk about securit ies, we st ick to this terminology and

rely on the forgiveness of the reader.

M aximizat ion program of t he agent s

Given an announced product ion plan yk by each ¯rm (hence an announced mult i-plan

Y = (yk)K
k= 1, where all yk 's are taken di®erent) and a vector of prices q = (qk)K

k= 1 for

the shares, each agent maximizes his ut ility by choosing the opt imal vector of shares4

µ(¼) = [µk(¼)]Kk= 1 and the opt imal consumpt ion plan x(¼) according to the maximizat ion

program M (¼):

max
[µ(¼);x(¼)]

U¼[x(¼)]

s. t .
KX

k= 1

qk

h
µk(¼) ¡ µ0

k(¼)
i

= 0 (1)

and x(¼) =
KX

k= 1

µk(¼) yk (2)

This is of course equivalent to ~M (¼):

max
µ(¼)

~U¼;Y [µ(¼)]

s. t .
KX

k= 1

qk

h
µk(¼) ¡ µ0

k(¼)
i

= 0

where ~U¼;Y [µ(¼)] = U¼

Ã KX

k= 1

µk(¼) yk

!

.

M ajor it y St able Product ion Equil ibr ium

Given the individual demand funct ions for shares, an equilibrium price will clear the

market for shares.

De¯ nit ion 1 A Production Equilibrium (PE) is a vector E = (Y; q; µ(¼)) such that indi-

vidual optimization (C1), and market clearing (C2), are satis̄ ed:

(C1) Given (Y; q), for all ¼, [µ(¼)] solves the maximization program ~M (¼);

(C2) For all k,
Z

¢ S

f (¼) µk(¼) d¼=
Z

¢ S

f (¼) µ0
k(¼) d¼(= ¡ 0

k) .

4The choice has been made here not to impose short-sell constraints on the µ's. The aim is to prove

existence of majority stable product ion equilibria, and the paper is most ly going to focus on equilibria

such that µ(¼) > 0 for all ¼.
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For a ¯rm k, given a PE E, a distribut ion of vot ing weights ´ : ¢ S ¡ ! R K
+ (´ ´ µ0

or µ), and two product ion plans (yk ; zk), denote I E;´ (yk) the subset of agents ¼endowed

with a posit ive vot ing weight5 in ¯rm k (i.e., agents such that ´ k(¼) ¸ 0), and denote

I E;´ (zk ; yk) [½ I E;´ (yk)] the subset of agents ¼endowed with a posit ive vot ing weight in

¯rm k who prefer zk to yk , i.e., such that

´ k(¼) ¸ 0 and U¼[x(¼) + µk(¼)(zk ¡ yk)] ¸ U¼[x(¼)] ;

where x(¼) is dē ned through equat ions (2). Dē ne:

PE;´ (zk ; yk) =

Z

I E;´ (zk ;yk )
f (¼) d¼

Z

I E;´ (yk )
f (¼) d¼

and AE;´ (zk ; yk) =

Z

I E;´ (zk ;yk )
f (¼) ´ k(¼) d¼

Z

I E;´ (yk )
f (¼) ´ k(¼) d¼

;

respectively thefract ion of shareholders(with vot ing rights) and thefract ion of voteshares

who prefer zk to yk . Dē ne moreover

PE;´ (yk) = sup
zk 2 ¢ S

PE;´ (zk ; yk) and AE;´ (yk) = sup
zk 2 ¢ S

AE;´ (zk ; yk)

the maximal fract ions (resp. of the shareholders/ shares, with vot ing rights) against yk .

De¯ nit ion 2 For any real ½2 [0; 1], a ½{ Majority Stable Production Equilibrium under

² the `one person-one vote, pre-trade' governance (in short, a ½{ MSPEp0) is a PE E

such that for all k, PE;µ0 (yk) · ½;

² the `one person-one vote, post-trade' governance (½{ MSPEp1) is a PE E such that

for all k, PE;µ(yk) · ½;

² the `one share-one vote, pre-trade' governance (½{ MSPEa0), is a PE E such that

for all k, AE;µ0 (yk) · ½;

² the `one share-one vote, post-trade' governance (½{ MSPEa1), is a PE E such that

for all k, AE;µ(yk) · ½:

For ½= 1=2, such an equilibrium is a simple{ Majority Stable Production Equilibrium (or

s-MSPE).

5Only such agents have the right to vote in the present setup.
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Remark: The p0 and p1-governance are not dist inct as soon as everybody is posit ively

endowed with shares of all ¯rms, both init ially and at equilibrium. This will be most ly

the case in the present paper. It is clear that the most interest ing governance is the

a1-governance. Nevertheless, there is some di± culty in dē ning a ½{ Majority Stable Pro-

duct ion Equilibrium for the a1-governance since the number of post-t rade shares with

vot ing rights,
Z

I Y;µ(yk )
f (¼) µk(¼) d¼, is endogeneous and can be bigger than the init ial

allocat ion of shares, ¡ 0
k , in case part of the agents choose to be short on k's stock market6.

But we will concentrate in this paper on product ion equilibria where all agents are allo-

cated posit ive post-trade shares. For other product ion equilibria, one can consider that

the excess number of shares is allocated in a cont inuous way (i.e., according to f and µ0)

to all other shareholders, which does not introduce much distorsion in the model.

The concept of ½{ majority stable equilibrium (for K = 1) is linked to the Simpson-

Kramer min-max majority [see Simpson (1969), Kramer (1977)]. In the present paper

the concept is built to hold for K ¸ 1: min-max majorit ies for product ion equilibria are

(resp., for each governance):

½¤
p0 = inf

P E (Y;q;µ)
max

k
PY;µ0 (yk) , ½¤

p1 = inf
P E (Y;q;µ)

max
k

PY;µ(yk)

½¤
a0 = inf

P E (Y;q;µ)
max

k
PY;µ0 (yk) and ½¤

a1 = inf
P E (Y;q;µ)

max
k

PY;µ(yk)

:

A ssumpt ions on t he ut i l i t y funct ions U¼

The ut ility funct ions U¼ are dē ned on R S and assumed to sat isfy the two following sets

of assumpt ions:

² Assumpt ion (A) : U¼ is increasing, strict ly quasi concave, continuously di®erent iable

and homothet ic;

² Assumpt ion (E) : The indi®erences surfaces of U¼ cut h¢ Si through hyperspheres

centered on ¼.

Taking homothet ic ut ility funct ions will allow to focus on consumpt ions in h¢ Si (since

we'll only consider PE with7 q = 1K , see next subsection). Assumpt ion (E) (said to be

the `euclidean' assumpt ion) is more problemat ic: it is standard in Social Choice theory,

6In fact , the stock repurchase plans that some ¯rms implement might be considered as introducing

some type of endogeneity in the total numbers of shares.
7Notat ion: q = 1K stands for qk = 1; all k.
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and taken for purely technical reasons. The mot ivat ion behind this assumpt ion is the

following: when asked whether they agree with an in¯ nitesimal change8 u 2 R S in the

product ion plan of ¯rm k, indi®erent shareholders should be on a hyperplane in ¢ S. It is

nevertheless clear that such ut ility funct ions exhibit some form of quadrat ic feature, an

such features are regularly assumed in the ¯ nance literature, e.g., in the CAPM.

When there is only one ¯rm (K = 1) as in Caplin and Nalebu® (1988, 1991), it is

enough to take ut ility funct ions of the separable form:

U¼[x(¼)] =
SX

s= 1

¼s vs[xs(¼)] : (3)

In that case, the type ¼is the subject ive probability of the agent over states of nature.

The fact that the elementary ut ility funct ions are common across the populat ion secures

the needed condit ion [see Grandmont (1978)]. The reason is simple to see: when K = 1,

x(¼) = y1 is independent of ¼; and for any in¯ nitesimal change u 2 R S in the produc-

t ion plan, shareholders indi®erent to the proposed change are described by the equat ion
P

s ¼susDvs[y1] = 0 which dē nes a hyperplane. If K > 1, shareholders indi®erent to

an in¯ nitesimal change u in the product ion plan of ¯rm k are described by the equat ion
P

s ¼susDvs[¹xs(¼)] = 0, where ¹xs(¼) stands for the opt imal consumpt ion of agent ¼, and

di®ers across ¼. For instance, in the log-linear case where vs ´ ln, the lat ter equat ion

almost never dē nes a hyperplane in ¢ S. But some of the results proposed in the paper

are valid with ut ility funct ions of the form (3); this discussion is posponed to Sect ion 4.4.

A last di± culty is to avoid negat ive consumpt ions/ incomes. We basically discard this

problem: (i) in case the ut ility funct ions are of the separable form (3), by assuming that

vs sat is̄ es the Inada condit ions: lim
x¡ ! 0

Dvs(x) = + 1 ; (i i) in case the ut ility funct ions

sat isfy assumpt ion (E), by endowing the agents with an appropriate quant ity, x0(¼), of

the consumpt ion good, whatever the occuring state of nature9.

T he Paret o cr it er ion

Among all product ion equilibria, we will restrict our at tent ion to those that respect the

Pareto criterion: an eligible product ion plan for majority stability should be such that

8As already writ ten in the introduct ion, the assumpt ion of concavity of the individual ut ility funct ions

entails that the most challenging product ion plans are in¯ nitesimally close to the staus quo; see Lemma

2 in Appendix B. Therefore, a challenger is basically an in¯ nitesimal change u in the product ion plan,

with, given the technological constraints,
P

s us = 0.
9Since we will only consider mult iplans Y which spans a hyperplane having a non-empty intersect ion

with ¢ S , a uniform upper bound can be found on x0(¼), for all ¼.
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there does not exist an alternat ive product ion plan preferred by all shareholder endowed

with a vot ing right (i.e., endowed with a posit ive quantity of shares). The following

observat ion shows that , in the present framework, a necessary and su± cient condit ion is

that stock prices be all equal10.

Observat ion 1 A PE (Y; q; µ) satis̄ es the Pareto criterion if and only if q = 1K .

Proof: Consider a PE (Y; q; µ) such that q 6= 1K . Consider two ¯rms, k and j , such

that qk > qj ; then there exists an alternat ive anounced product ion plan zk unanimously

prefered to yk by agents posit ively endowed with shares of ¯rm k. Suppose, without loss

of generality, that q1 > q2. At the PE (Y; q; µ), the gradient of U¼[x(¼)] with respect to

µ(¼) is colinear to q. Given q1 > q2, this entails that for all ¼: DU¼[x(¼)] ¢(y1 ¡ y2) > 0.

Consider z1 = y1 + ²(y1 ¡ y2), we then have, for ² small enough and for all ¼, U¼[x(¼) +

µ1(¼)(z1 ¡ y1)] > U¼[x(¼)] if µ1(¼) > 0. Hence for the ìf ' part of the assert ion. The `only

if ' part is obviously true. 2

In the sequel of the paper, we'll dē ne a Pareto product ion equilibrium as a PE with unit

prices: (Y; 1K ; µ).

Denote hY i the vectorial subspace, in h¢ Si , spanned by Y. At a PE with unit prices,

the opt imal choice of an agent is | up to mult iplicat ion by a scalar, given assumpt ion

(A)| the point of tangency between hYi and the sect ions by h¢ Si of the agent 's indi®er-

ence curves. This optimal point is the orthogonal projection of ¼on hYi when assumpt ion

(E) is ful¯lled.

This last property entails the following geometric interpretat ion, µa la Caplin and Nale-

bu®, of the main argument of the paper (proven in Lemma 2 in Appendix B): trying to

¯ nda best challenger to yk , within the product ion plans of ¯rm k (the product ion plans

of other ¯rms remaining ¯xed), reduces to try and cut the support , ¢ S, of the agents'

types by an hyperplane containing hYi in such a way as to maximize the di®erence in

volume of the two result ing pieces | a volume computed using the distribut ion of vot ing

weights, as the governance speci¯es it .

10DeMarzo (1993) proves that a product ion plan which isstablewith respect to a `unanimity responsive'

collect ive decision rule should be chosen by using a normalized present value vector in the convex hull of

those of all shareholders. A `unanimity responsive' collect ive decision rule is such that it should be able

to implement an alternat ive product ion plan that Pareto dominates the incumbent . See also Proposit ion

31.3 in Magill and Quinzii (1996).
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A fundament al prel iminary result

It states that any vectorial subspace in h¢ Si can be spanned by a mult iplan Y that can

be associated with a PE with equal unit prices.

Lemma 1 Under assumption (A), any multiplan Y = (yk)K
k= 1 generates a vectorial sub-

space that can be supported by a production multiplan associated to a PE with unit prices:

there exists a production multiplan ~Y = (~yk)K
k= 1, with ~y1 = y1, such that hYi ´ h~Yi , and

( ~Y; 1K ; ~µ) is a PE. Moreover, y1 can be chosen such that ~µ(¼) > 0 for all ¼.

Proof: See Appendix A. 2

This fundamental Lemma allows to focus only on the span hYi of a mult iplan Y, and not

on the mult iplan itself. Moreover, the fact that ~µ(¼) can be taken strict ly posit ive for all ¼

secures that all shareholders have the right to vote and that the considered distribut ions

of vot ing weights are posit ive over the whole support ¢ S.

3 T he canonical case

We consider the canonical case of uniform distribut ions of init ial characterist ics in the set

of types ¢ S. Assumpt ions:

² for the p0-governance: the distribut ion f is uniform and µ0
k(¼) > 0 for all k, all ¼;

² for the p1-governance: the distribut ion f is uniform and
P

k µ0
k(¼) > 0 for all ¼;

² for the a0-governance: the distribut ion f ¢µ0
k is uniform for all k;

² for the a1-governance: the distribut ion f ¢
P

k µ0
k is uniform.

It is worth not icing that the results of the present sect ion remain valid under the assump-

t ion of separable ut ility funct ions of the type (3) (see Claim 2 in Sect ion 4.4) and that

the preceding set of assumpt ions are weaker for governances µa la Drµeze, i.e., based on

post-t rade shares, than for governances µa la Grossman-Hart .
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3.1 Exist ence of M SPE

For any ¯xed posit ive integers S and K , K · S, dē ne11

½S;K = 1 ¡

0

@

j
S¡ 1
K

k

j
S¡ 1
K

k
+ 1

1

A

bS ¡ 1
K c

: (4)

T heorem 1 Fix K and S. There always exist, in the canonical case, ½S;K { MSPE12 for

all governances of Dē nition 2. Hence ½¤ · ½S;K for all four governances.

When K = 1, there are no transact ion between agents and everybody keeps its init ial

share of the ¯rm; since the shares are uniformly distributed accross agents, then the four

governances coincide, and the above result is a part icular case of Caplin and Nalebu®

(1988), which gives as a uniform upper bound: 1 ¡ 1=e ¼ 0:632. This upper bound is

approached for the present concept of majority vot ing equilibrium in the case where the

number of assets (or ¯rms) is negligible with respect to the number of states of the world.

In other cases the rate of super-majority rule that guarantees the existence of a MSPE

is lower than this previous bound. For example, whatever the number of states of nature,

if S=3 · K < S=2 [resp. S=4 · K < S=3] then a rateof 56% [resp. 60%] su± ces. Another

example is the following immediate corollary.

Corol lary 1 S{ MSPE exist as soon as K ¸ S=2 for all four governances.

Thus, even with a high degree of market incompleteness, a product ion equilibrium

exists against which, within each ¯rm, no alternat ive product ion plan can rally more than

half of the shareholders, or shares. The sequel of this sect ion is a proof of Theorem 1

which goes through the design of the r̀ight ' securit ies.

3.2 Basic const ruct ion of a M SPE

The aim is to construct a ½{ MSPE for the lowest possible ½. For ¯xed S and K , dē ne

n =
¹ S ¡ 1

K

º
, so that S = nK + m, with 1 < m · K . We then construct the following

part it ion of the set of states of nature into K subsets (according to the natural order, the

m ¯rst subsets contain n + 1 elements, the K ¡ m others contain only n elements):

Sk = f (k ¡ 1)(n + 1) + 1; : : : ; k(n + 1)g for 1 · k · m

Tk = f m + (k ¡ 1)n + 1; : : : ; m + kng for m + 1 · k · K

11For any real x, we denote by bxc the largest integer smaller or equal to x, and by dxe the smallest

integer larger or equal to x.
12In fact there is a cont inuum of such MSPE (see the proof).
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Dē ne the K product ion plans ¹Y = (¹yk)K
k= 1, such that :

for k · m; ¹ys
k =

8
<

:

1
n+ 1 if s 2 Sk

0 otherwise
; for k ¸ m + 1; ¹ys

k =

8
<

:

1
n if s 2 Tk

0 otherwise
(5)

The main argument revolves around the following proposit ion which is a more developed

restatement of Theorem 1.

Proposit ion 1 Fix S and K . Thanks to Lemma 1, there exist PE ( ~Y; 1K ; ~µ) that are

½S;K { MSPE for the four governances. They are such that h~Yi ´ h¹Yi and for all ¼, the

optimal consumption is

~x(¼) =
X

k

~µk(¼) ~yk =
X

k

¹µk(¼) ¹yk

where ¹µ is dē ned by13:

¹µk(¼) =

8
>>><

>>>:

¼Sk if k · m

¼Tk if k ¸ m + 1

: (6)

Proof: See Appendix B. 2

Example: When both f and µ0 are taken uniform (and normalized), and all ¯rms have

the same size (¡ 0
k is independent of K ), an example of such a PE ( ~Y; 1K ; ~µ) is:

for k · m; ~yk =
(n + 1)K

S
¹yk ¡

1
S

KX

j = m+ 1

¹yj ; and for k ¸ m + 1; ~yk = ¹yk ; (7)

and ~µk(¼) =

8
>>><

>>>:

S
(n+ 1)K ¼Sk if k · m

¼Tk + 1
(n+ 1)K ¼S if k ¸ m + 1

:

A geometric interpretat ion of Proposit ion 1 will behelpful to understand theproof and

the basic intuit ion of the construct ion. As writ ten before, given that market equilibrium

prices are 1K , the opt imal choice of an agent is the point of tangency between hYi and

the sect ions by h¢ Si of the agent 's indi®erence curves. Denote ~§ (¼) the section by h¢ Si

of the indi®erence curve going through the opt imal choice ~x(¼) (cf. Figure 1.a below).

A change in the product ion plan ~yk (or equivalent ly ¹yk) of ¯rm k will then move h¹Y i in

13Denote, for a subset V of the set of states of nature, ¼V =
X

s2 V

¼s.
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such a way that it st ill goes through all other ~yj 's. This change, ¯xing the shares at their

post-t rade values, projects the equilibrium consumpt ion ~x(¼) inward or outward ~§ (¼),

hence result ing in an improving or impairing change of the ut ility level of agent ¼ (cf.

Figure 1.b below).

Lemma 2 in Appendix B shows that ¯ nding a best challenger to ~yk , within the pro-

duct ion plans of ¯rm k (the product ion plans of other ¯rms remaining ¯xed), amounts

to ¯ nding the in¯ nitesimal move of ~yk which improves the welfare of the biggest propor-

t ion of shareholders or shares. Given assumpt ion (E), this reduces to try and cut ¢ S by

a hyperplane (orthogonal to this in¯ nitesimal change) containing hYi in such a way as

to maximize the di®erence in volume of the two result ing pieces. The best in¯ nitesimal

change (of ~yk) is point ing toward the largest piece. As in Caplin and Nalebu® (1988) it

is shown that , when the distribut ion of init ial characterist ics is uniform, the most chal-

lenging in¯ nitesimal change of the product ion plan ~yk is to sacri¯ce one state of nature

to the benē t of all others14, and implement a change
³
¡ ²; ²

S¡ 1; : : : ; ²
S¡ 1

´
.

3.3 Geomet r ic i l lust rat ion: S = 3 and K = 2

In the case S = 3 and K = 2, and under the assumpt ions given in the example following Proposit ion 1,

with ¹y1 = (1=2; 1=2; 0) and ¹y2 = (0; 0; 1), and therefore ~y2 = ¹y2 and ~y1 = (2=3; 2=3; ¡ 1=3), one gets:

[~µ1(¼); ~µ2(¼)] =
µ

3
4

[¼1 + ¼2]; ¼3 +
1
4

[¼1 + ¼2]
¶

and [¹µ1(¼); ¹µ2(¼)] =
¡
[¼1 + ¼2]; ¼3¢

:

This is drawn on Figure 1.a; the indi®erence curve ~§ (¼) corresponding to the opt imal ut ility level for

agent ¼is drawn: it is a circle around the ideal security ¼. An illustrat ion of the previous discussion is

now provided in this simple case and basically holds for the four governances.

Opt imal cut t ing of t he simplex: It should be clear on the drawing why ( ~Y; 12; ~µ) is majority stable

for the simple-majority rule under all four governances. Indeed, consider, instead of ~y2, another proposal

~y0
2 (see Figure 1.b). The shares being ¯xed, the new consumpt ion of agent ¼ will become ~x(¼)0 which

dives inward ~§ , hence result ing in a higher ut ility. But for the symmetric (with respect to h¹Y i ) agent ,

characterized by type ¼¿ = (¼2; ¼1; ¼3), who at equilibrium consumes the same ~x(¼¿) = ~x(¼), this is an

impairing change. Henceat least half of theagents (the left part of the triangle) ¯ nds it impairing that any

rightward change of the product ion plan of ~y2 be implemented. Symmetrically, any, even in¯ nitesimal,

leftward change of ~y2 is going to be blocked by the agents on the right-hand side of h¹Y i . Finally, since

both agents ¼ and ¼¿ have the same share of ¯rm 2, it is obviously the case that the simple-majority

stability property holds for the four types of governance. The same type of argument holds to prove

14This is actually very classical in Social Choice theory and illustrated by the problem of having to

divide a pie among S individuals; whatever the init ial allocat ion, there is a majority of S¡ 1
S to expropriate

one individual of his share and distribute it evenly to the others.
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Figure 1.a Figure 1.b

(1; 0; 0) (0; 1; 0)

~y2 = ¹y2 = (0; 0; 1)

¹y1

²

²

~y1²

²² ¼~x(¼)

~§

²

²²

²

²

~y2

~y0
2

~x
~x0

¼²¼¿

~y1 ²

©©*

¾

that any change in the product ion plan ~y1 is going to be blocked by at least half of the shareholders, in

number and volume of shares.

Moreover it is clear that there are many ways to cut ¢ 3 into two pieces of equal sizes. The two pieces

do not have to be symmetric. Actually, Lemma 1 shows that any cut t ing of ¢ 3 can be spanned by two

product ion plans (y1; y2) which will generate a PE with unit prices, hence securing that the fundamental

geometrical interpretat ion of Theorem 1 be valid. This ensures a cont inuum of s-MSPE is the present

simple case.

Figure 1.c Figure 1.d

ŷ1

²

²

²

²² ¼~x
ŷ0

1

ŷ2

~x0

a b

²

²
²¼¿

¹§

¹y2

²

²

²

²

¹x(¼)

¼

¹y1 ±¹y1

±¹x(¼)

~y1 ²

¡
¡µ

¡¡µ

?

?

M ult ipl ici t y of t he M SPE: There are a cont imuun of PE that end up with the same \ cut t ing" of ¢ S
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with unit pricesq = 12 for both assets, and unchanged ¹µ (seeLemma 1): for all ®, y1 = ( 1
3 + ®; 1

3 + ®; 1
3 ¡ 2®)

and y2 = ( 1
3 ¡ ®; 1

3 ¡ ®; 1
3 + 2®) will always found a PE with q = 12 and equilibrium shares ¹µ. (Not ice

~® = 1
3 .) For example, with ®̂ = 1

6 , one gets ŷ1 = ¹y1 = (1=2; 1=2; 0) and ŷ2 = (1=6; 1=6; 2=3), with:

[µ̂1(¼); µ̂2(¼)] =
¡
[¼1 + ¼2] ¡ 1

2 ¼3; 3
2 ¼3

¢
so that x̂(¼) = ~x(¼) = ¹x(¼) (see Figure 1.c). The drawn change

from ŷ1 to ŷ0
1 will be ut ility improving for agent ¼, but ut ility impairing for agent ¼¿. Not ice here that

all agents characterized by a type ¼such that ¼3 ¸ 2=3 (i.e., above the dot ted line [a; b]), do not have the

right to vote under governances based on post -t radeshares since their post-t rade shares in ŷ1 arenegat ive.

Hence the same rule as before is ful¯lled: any rightward (resp. leftward) change in the product ion plan

ŷ1 will be blocked by (at least) the left -hand (resp. right-hand) side of the triangle, whose top has been

cut-o®. It is to avoid the minor and irrelevant technical di± culty of having to compute relat ive volumes

in a cut-o®simplex that PE are cont ructed for which all shares allocated at equilibrium are posit ive (i.e.,

with ® > 1=3).

A sset s wit h di®erent pr ices, t he Paret o cr it er ion: One can easily see that any proposed change

of ~y1 along the line h¹Y i will be unanimously rejected. This fact is linked to the reason why there is no

majority stable product ion equilibrium with announced product ion plans ( ¹y1; ¹y2): in fact the PE based

on this mult iplan does not sat isfy the Pareto criterion (see Observat ion 1). Indeed, the equilibrium price

vector is then such that q1 > q2: the shareholders will ¯ nd it opt imal to l̀oad' more than in the above

case their port folio with shares of ¹y2 (see Figure 1.d) to reach the opt imal consumpt ion ¹x(¼). As drawn

on Figure 1.d, the opt imal ut ility level will then generate an indi®erence surface ¹§ not tangent to h¹Y i .

Given the quasi-concavity of the ut ility funct ions, any change ±¹y1 of ¹y1 toward ~y1 will be unanimously

supported, since the consecut ive change ±¹x(¼) is always ut ility improving. This is t rue unt ill ¹y1 reaches

~y1.

4 M ore general cases

In this sect ion, more general density funct ions, f , and init ial dist ribut ions of shares,

µ0, are invest igated. To avoid minor technical di± cult ies that would make the reading

less confortable without making the problem richer, we consider only strict ly posit ive

init ial dist ribut ions of characterist ics: µ0(¼) > 0 and f (¼) > 0 for all ¼. The aim is to

generalize as much as possible the results of the previous sect ion. In a ¯rst subsect ion, we

invest igate, for unspeci¯ed f and µ0, the case of complete markets, along with the case

of incomplete markets with only one dimension of incompleteness. Then we consider the

case of symmetric distribut ions of characterist ics (subsect ion 4.2). For these two cases,

simple majority product ion equilibria are shown to exist . Finally, the case of º -concave

distribut ions of characterist ics is considered (subsect ion 4.3), an assumpt ion regarded as

imposing some measure of consensus in the society of shareholders. Caplin and Nalebu®

(1991) results are then used to provide rat ios of ½-majority stable product ion equilibria.
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4.1 T he cases K = S, K = S ¡ 1

The case K = S is trivial, since for a PE (Y; 1K ; µ) | whose existence is secured by

Lemma 1| every agent of type ¼ is able to generate its idiosyncrat ic ideal security:

[
P

k µ0
k(¼)] ¢¼. In this case, in equilibrium, all yk 's are unanimously supported against

any alternat ive product ion plan for any f and any init ial dist ribut ion of shares µ0; i.e.,

PY;µ0 (yk) = AY;µ0 (yk) = PY;µ(yk) = AY;µ(yk) = 0 for all k, as the theory of complete

markets predicts. We thus have the following observat ion.

Observat ion 2 I f K = S, for any density f and any initial distributions of shares µ0,

there exist PE which are stable for any voting rule (even infra-majority voting rule15).

The case K = S ¡ 1 is more di± cult and interest ing. As far as the p0 and p1-

governances are concerned, the argument is straighforward since the same distribut ion of

vot ing weights, f , is taken for all ¯rms. Therefore a median-voter-like argument allows to

go through: For a PE (Y; 1K ; µ), we know that ¯ nding a best challenger to the announced

product ion plan yk amounts to cut thesupport of agents' typesby a hyperplanecontaining

hYi . But thereisa uniquesuch hyperplane, i.e., hYi itself. Therefore, to proveexistenceof

a s{ MSPE, it is enough to choose hYi such that it separates ¢ S into two pieces of equal

measure with respect to f . This is obviously always possible, and there is an in¯ nite

number of ways to do so as soon as S > 2. Thanks to Lemma 1, we know that such a

hyperplane can be supported by a PE with unit prices and posit ive shares.

The argument is more complicated for governances based on shares, e.g., the a0 and

a1-governances. Indeed, hYi should be chosen such that it separates ¢ S into two pieces of

equal measure simultaneously with respect to K (= S ¡ 1) distribut ions of vot ing weights.

Hence a `mult ivariate-median-voter' argument is necessary. The following proposit ion,

based on degree theory and using the Borsuk-Ulam theorem, is shown. 16

T heorem 2 I f K = S ¡ 1, there exist s-MSPE for any f and any µ0, for all four gover-

nances.

Proof: To prove existence of s{ MSPEa0 one has to choose hYi that separates ¢ S into two

pieces of equal measure with respect to the distribut ions f ¢µ0
k , for all k.

15An infra-majority vot ing rule is a majority rule with rate ½< 1=2, i.e. such that an alternat ive a

defeats an alternat ive b if a proport ion bigger than ½of the populat ion prefers a to b; hence it is possible

that two alternat ives defeat each other at the same t ime.
16It is worth not icing that it remains valid under assumpt ion (A) only (cf. Claim 1 in Sect ion 4.4) on

the ut ility funct ions for the governance based on pre-t rade shares.
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Consider the (S ¡ 2){ unit sphere (of dimension S ¡ 2) SS¡ 2. For any point Á on the

sphere, denote hÁi the hyperplane (of dimension S ¡ 2) in h¢ Si that is orthogonal to the

vector
¡ !
0Á and divides ¢ S into two pieces of equal measurewith respect to the distribut ion

f ¢
P

k µ0
k . Denote hÁi + the one of these two pieces toward which

¡ !
0Á points. For any k,

1 · k · K ¡ 1 (= S ¡ 2), denote ¹ 0
k(Á) the (cont inuous) measure of hÁi + with respect to

the distribut ion f ¢µ0
k . A generalizat ion of the Borsuk-Ulam theorem17 states that there

exists a point Á0 such that for all k, 1 · k · K ¡ 1, one has:

¹ 0
k(Á0) = ¹ 0

k(¡ Á0) :

Therefore, given that hÁ0i = h¡ Á0i , hÁ0i divides ¢ S into two pieces of equal measure

with respect to the distribut ions f ¢µ0
k , for all k, 1 · k · K ¡ 1. Since by construct ion it

also divides ¢ S into two pieces of equal measure with respect to f ¢
P

k µ0
k , it does so with

respect to f ¢µ0
K . Hence the proof for the a0-governance.

To prove existence of s{ MSPEa1 one has to choose a hyperplane that separates ¢ S

into two pieces of equal measure with respect to the distribut ions f ¢µk , for all k. The

argument is more complicated because the lat ter distribut ions are endogeneously dē ned.

Nevertheless, the argument also relies on the Borsuk-Ulam theorem applied to funct ions

dē ned through another principle. This is postponed to Appendix B. 2

4.2 Symmet r ic densit ies

It is possible to dē ne more general assumpt ions under which simple majority stable

product ion equilibria exist for all four governances | i.e., Corollary 1 holds true. We

dē ne symmetric distribut ions of types: for all permutat ions ¾of f 1; : : : ; Sg, if ¼¾ denotes

the vector of probabilit ies: (¼¾(1) ; : : : ; ¼¾(S)), then for all ¼, f (¼¾) = f (¼).

Proposit ion 2 Assume that f [resp. f ¢µ0
k for all k, f ¢

P
k µ0

k ] is symmetric over ¢ S,

then s{ MSPEp0 and p1 [resp. s{ MSPEa0, s{ MSPEa1] exist as soon as K ¸ S=2.

Proof: Thanks to Lemma 2, this goes by proving that any hyperplane through ¹Y (as

dē ned by equat ions (5)) cuts ¢ S into two equal parts, in terms of shareholders (¯rst

17See Theorem 3.2.7 in Lloyd (1978): Let D be a bounded, open, symmetric subset of R n containing 0;

let ¹ : @D ¡ ! R m be cont inuous, and m < n; then there is Á 2 @D such that ¹ (Á) = ¹ (¡ Á). Here D is

the unit ball, n = S¡ 1, @D ´ SS¡ 2, and m = S¡ 2: ¹ (Á) = (¹ 0
1(Á); : : : ; ¹ 0

K ¡ 1(Á)). An illustrat ion is that

there exist two ant ipodal points on the earth with same temperature and pressure. See also Guillemin

and Pollack (1974), pages 91-93.
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assert ion of the proposit ion) as well as in terms of shares (second assert ion). Since K ¸

S=2, one has S = K + m with m · K . To any ¼, associate its symmetric through h¹Y i :

¼¿ = (¼2; ¼1; : : : ; ¼2m ; ¼2m¡ 1; ¼2m+ 1; : : : ; ¼S) :

Generically, ¼and ¼¿ arestrict ly on each sideof h¹Yi , and then will alwayscounter-balance

each other in any collect ive decision making under `one person-one vote' governances.

Under the assumpt ions of the proposit ion they have the same amount of shares of each

¯rm, and will always counter-balance each other in any collect ive decision making under

`one share-one vote' governances. 2

In fact , as easily seen from the proof, much lighter assumpt ions of symmetry can ensure

theresult . Indeed, theargument developed hereshowssomesimilarity with theunderlying

analysis in Grandmont (1978): in that paper, existence of majority-stable equilibria (in

the case without exchange: K = 1) was shown for centrally-symmetric supports of agents'

types. The present argument relies on the same principle: the simplex ¢ S is symmetric,

not with respect to a point , but with respect to K -dimensional subspaces (with K ¸ S=2),

and the only needed assumpt ion is that the distribut ions of characterist ics be symmetric

with respect to one of these subspaces18.

4.3 º -concave densit ies

A density funct ion f is º -concave over ¢ S if for all ¼; ¼0 2 ¢ S, 8¸ 2 [0; 1],

f [(1 ¡ ¸ )¼+ ¸ ¼0] ¸ [(1 ¡ ¸ )f (¼)º + ¸ f (¼0)º ]1=º :

This assumpt ion is regarded as imposing somemeasureof consensus in thesociety. Not ice

that for º = 1 , one gets the uniform distribut ion of Sect ion 3. Dē ne19 :

½(S; º ) = 1 ¡

Ã
S ¡ 1 + 1=º

S + 1=º

! S+ 1=º

:

Consider a PE (Y; 1K ; µ). As in the canonical case, ¯ nding a best challenger to the

equilibrium product ion plan of a ¯rm reduces to try and cut the support ¢ S by an

18There is the implicit feature, in Caplin and Nalebu® (1988), that the simplex is, as a support of

voters' type, the geometrical shape that allows the most uneven cut t ing through the center of gravity

(see the principle of symmetrizat ion of Schwartz on which they found this feature): if an upper bound

works for the simplex, it works for any other convex support . This feature might not be t rue anymore as

far as cut t ing the support through a well-chosen K -dimensional subspace is concerned.
19The rat io ½(S; º ) is bounded above by 1 ¡ 1=e when º ¸ 0.
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hyperplanecontaining hYi in such a way asto maximizethedi®erencein volumeof thetwo

result ing pieces. When the distribut ion of shareholders' vot ing weights is exogeneously

¯xed (as for the p0, p1 and a0 governances), given that the support of all considered

distribut ions is convex, one can direct ly import Caplin and Nalebu® (1991) main result

on º -concave distribut ion of characterist ics to get the following proposit ion.

Proposit ion 3 I f f is º -concave, then for º ¸ ¡ 1=S, any PE (Y; 1K ; µ) such that hYi

contains the mean shareholder's type20 ¼g of distribution f is a ½(S; º ){ MSPEp0 and p1.

I f f ¢µk
0 is º -concave for all k, then for º ¸ ¡ 1=S, any PE (Y; 1K ; µ) such that hYi

contains the K mean shareholder types (¼k
g)K

k= 1 of the K distributions (f ¢µk
0)K

k= 1 is a

½(S; º ){ MSPEa0.

In both cases, there exist a continuum of such ½(S; º ){ MSPE.

It is clear that, for the for the `one person-one vote' governances, the higher K , the

smaller the rate of super-majority ½that is necessary to guarantee the existence of ½{

majority stable product ion equilibria. Indeed, on top of having to cut ¢ S through its

center of gravity, onecan add asmany constraintsasthereare¯rms, each added constraint

lowering the di®erence in size of the two pieces result ing from the cutt ing. We leave for

further research actual computat ions of the extent to which the subsequent rate ½can be

improved, i.e., by comput ing the true21 min-max ½(S; K ; º ). For the a0-governance, one

does not have these K ¡ 1 added constraints on the way to cut the simplex. It is easy to

prove in that setup that the rat io ½(S; º ) cannot be improved for the a0-governance.

When the distribut ion of shareholders' vot ing weights is endogeneously determined

by the market mechanism from the announced mult iplan Y, as for the a1-governance, a

result similar to Proposit ion 3 is more di± cult to obtain. One has to prove the existence

of a PE (Y; 1K ; µ) such that , for all k,

1. hYi contains, for all k, the center of gravity of the `equilibrium' distribut ion f ¢µk ;

2. f ¢µk º -concave for some º .

The following mult ivariate mean shareholder theorem can be proposed.

T heorem 3 I f the distribution f ¢
P

k µ0
k is º -concave, then for ¡ 1=S · º · 1, there exist

½(S; º ){ MSPEa1.

20The mean shareholder's type is the one that lies at the center of gravity of the dist ribut ion; it is

dē ned as: ¼g = (¼1
g ; : : : ; ¼S

g ) with for all s: ¼s
g =

Z

¢ S

f (¼) ¼s d¼.

21For º = 1 , ½(S; K ; 1 ) = ½S;K as dē ned by (4).
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Proof: See Appendix B. In fact the proof shows that there are, generically with respect

to f ¢
P

k µ0
k , up to

0

@
S ¡ 1

K ¡ 1

1

A di®erent subspaces hYi for which the theorem holds. 2

This last result sheds some light on the debate on which object ive funct ion the ¯rm

should opt imize in the context of incomplete markets. Firm should make choices that are

supported by shareholders. In the present setup, a shareholder is basically characterized

by its type ¼, which can be ident i¯ed as his ideal security. For example Theorem 3 shows

existenceof product ion equilibria which arestable for `acceptable' rates of super majority;

they are such that , for ¯rm k, the shareholder whose type, ¼g;k , is at the center of gravity

of the equilibrium distribut ion of shares (i.e., the above-ment ioned mean shareholder)

can exact ly span its type, and generate its ideal security: [
P

` µ0
` (¼g;k)] ¢¼g;k ; he could not

do better if markets were complete. But to span his ideal security he needs, in general,

to buy all securit ies. (The same line of reasoning holds for the a0-governance through

Proposit ion 3.)

This result has no direct link with the Drµeze criterion. Indeed, the announced se-

curity/ production plan, yk , of ¯rm k does not have to be the ideal security/ product ion

plan, ¼g;k , of this mean shareholder (in general, the mult iplan Y, with yk = ¼0
g;k cannot

be supported as a Pareto PE). But the mult iplan Y should be such that it contains the

ideal security of all mean shareholders; in some way the mult iplan Y is opt imal for the

K mean shareholders. Then the product ion equilibria are stable for the lowest possible

rates of super majority. Finally, it is also the case here that the assumpt ions securing the

result are weaker for the governances µa la Drµeze, i.e., based on post-t rade shares.

4.4 Ext ensions

I mmediat e ext ension t o a broader class of ut i l i t y funct ions

Aseasily seen from theproof, theexistenceof s-MSPE (for governancesbased on pre-trade

shares) in the case K = S ¡ 1 (or, t rivially, K = S) are st ill valid under assumpt ion (A)

and the assumpt ion that ¼= Argmax f U¼(x) j x 2 ¢ Sg. Indeed, given a PE (Y; 1K ; µ),

the ¯rst order condit ions of agents' maximizat ion programs give, for all k ¸ 2, all ¼:

DU¼[x(¼)] ¢(yk ¡ y1) = 0 : (8)

Suppose K = S ¡ 1, when asked whether they agree with an in¯ nitesimal change u 2 R S

(which can be taken orthogonal to h¹Yi , given equat ions (8)) in the product ion plan of
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¯rm k, a shareholder ¼is indi®erent if and only if ¼2 h¹Yi . And the proof of Theorem 2

goes through.

The assumpt ion that ¼= Argmax f U¼(x) j x 2 ¢ Sg can in fact be released. Given

a ut ility funct ion U¼, one can construct the mapping from ¢ S into itself which, to each

type ¼, associates its most prefered production plan y¤(¼) = Argmax f U¼(x) j x 2 ¢ Sg.

The proof of Theorem 2 remains valid under replacement of f by f ± y¤. Therefore the

following claim.

Claim 1 Theorem 2 remains valid under assumption (A).

In addit ion, we can, for symmetric distribut ions of characterist ics (and in part icular

for the canonical case), extend the result of the paper to the broader class of separable

ut ility funct ions of the form (3).

Claim 2 Proposition 2 and Theorem 1 remain valid under assumption (A) if in addition

the uti li ty functions are taken to be of the separable form (3) and, for Theorem 1, under

replacement of f by22 f ± y¤.

Proof: For Proposit ion 2, given the symmetry of the distribut ion of characterist ics and

ident ity of the utility funct ions, ¼and ¼¿ will always counter-balance each other in any

collect ivedecision making under both governances when depart ing from thePE ( ~Y; 1K ; ~µ)

such that h~Yi ´ h¹Y i , where ¹Y is dē ned through equat ions (5). For Theorem 1, see

Appendix C. 2

4.5 Concluding Comment s

In fact , it should bepossible to extend theanalysis to thebroader set of assumptionsdealt

with in Caplin and Nalebu®(1991): product ion plans are to be taken in an n-dimensional

Euclidian space Y, preferences vary accross society and are characterized by a vector

¼2 C½ R S¡ 1, an (S¡ 1)-dimensional index of types. The preferences of an agent of type

¼over the set of allocat ions x 2 Y (x is a linear combinat ion of the proposed product ion

mult iplan) are represented by a cont inuously di®erent iable ut ility funct ion U(¼; x). The

distribut ion of types accross society is represented by a probability measure with density

22For instance, consider ut ility funct ions of the separable form (3) with vs(x) = x ¹ with 0 < ¹ < 1.

U¼ sat isfy assumpt ion (A) and for all ¼, y¤(¼) = [(¼s)1=1¡ ¹ =
P

s(¼s)1=1¡ ¹ ]Ss= 1 (not ice that ¹ ¡ ! 0

allows to get the log-linear case). Take then, for the distribut ion of types over ¢ S , the density f (¼) =

[
P

s(¼s)1=1¡ ¹ ]1¡ ¹ P
s(¼s)1¡ ¹ , in which case f ± y¤ is uniform.
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f dē ned over the set of types C. Preferences should sat isfy assumpt ions (A) and (E),

or any other which would secure that the types indi®erent to any in¯ nitesimal change

in the product ion plan ly on a hyperplane in the space of ut ility parameters. Moreover

the support C of the agents' types should be convex and the distribut ion f should be

º -concave over C.

Even though it is probably within reach to extend the results of Sect ion 4 to this more

general setup, and prove that Caplin and Nalebu®'s bound ½(S; º ) holds for product ion

equilibria, it is certainly much more di± cult to compute (as in the canonical case) by how

much ½(S; K ; º ) can be improved depending on the number of ¯rms K . It is probably

also di± cult to extend the results of Sect ion 4.3 to the case of separable ut ility funct ions

of the form (3).
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A ppendix A : Comment s

A family of increasingly homogeneous dist r ibut ions

In this sect ion we reproduce the preceding analysis for a family23 of dist ribut ions of agents/ shares on

¢ S which exhibit an increasing degree of homogeneity. Homogeneity means that agents' beliefs are more

concent rated around a part icular value of ¼which is taken here to be the equiprobable belief at the center

of ¢ S . For increasing integers c, dē ne

dc(¼) = (cS ¡ 1)!
SY

s= 1

(¼s)c¡ 1

(c ¡ 1)!
:

Figure 2 illust rate the shape of these densit ies on ¢ 2.

Figure 2

(1; 0) (0; 1)
² ²

c = 1

c = 2

c = 10

These density funct ions are clearly log-concave, and therefore they fall into Caplin and Nalebu®

(1991) class of condit ions guaranteeing an upper bound of 1¡ 1=e for the super-majority rules neccessary

to ensure stability of the PE.

The same assumpt ions on the distribut ions of characterist ics are made than in the canonical case,

except that the uniform distribut ion is replced by the distribut ion dē ned by the density dc. This sect ion

shows that the needed rates of super majority are smaller ththe bigger c, an intuit ive result indeed, but

to which exact measure are given. Dē ne, for all S, K and c:

½c
S;K = 1 ¡

µ
n

n + 1

¶ cn c¡ 1X

j = 0

Ã
nc ¡ 1 + j

j

! µ
1

n + 1

¶ j

;

with n =
¥S¡ 1

K

¦
.

23Crµesand Tvede(1998) givesan urn-based model of how thesedistribut ionsaregenerated and provides

an interpretat ion in terms of beliefs' format ion in the society.
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Pr oposit ion 4 Fix S, K and c. Then there exist ½c
S;K { MSPE for al l four governances.

For instance, for c = 2 and n = 2 (resp. n = 3, n = 4), a 54%-majority rule (resp. , a 55.6, a

56.4%-majority rule) is enough to ensure existence of a MSPE. Moreover Corollary 1 remains valid.

Corol lar y 2 For any ¯ nite c, and K ¸ S=2, s-MSPE exist for al l four governances.

Corollar y 3 Fix c. Then for al l S, K , there exist ½c{ MSPE for al l four governances with:

½c = 1 ¡

Ã
c¡ 1X

i = 0

ci

i !

!

e¡ c :

These rates are smaller than ½1 = 1 ¡ 1=e ¼ 0:632:

½2 ¼ 0:594 ½4 ¼ 0:566 ½20 ¼ 0:530

½3 ¼ 0:577 ½10 ¼ 0:542 ½50 ¼ 0:519

and moreover ½c coverges toward 1=2 when c tends toward in¯ nity. E.g., whatever the degree of market

incompleteness, and even when K = 1, a 60%-majority rule (resp. 52%-majority rule) is enough to ensure

existence of a MSPE for both governances, when c = 2 (resp. c = 50). All proofs are given in Appendix

C.

Robust ness t o pessimism

We now consider, for t 2 R , the ut ility funct ions:

U¼;t (x) =

"
SX

s= 1

¼s
µ

xs

¼s

¶ t
#1=t

: (9)

They all admit ¼ as their most prefered alternat ive in ¢ S (¼ = Argmax f U¼;t (x) ; x 2 ¢ Sg). For

t ¡ ! 0, they dē ne, up to a constant , the log-linear ut ility funct ions of the type (3) with for all s, vs ´ ln

(log-linear ut ility funct ions of this type dē ne in ¢ S , for a ¯xed ¼, a family of concave indi®erence

curves, `centered' on ¼ | indeed, ¼= Argmax f
P S

s= 1 ¼s logxs ; x 2 ¢ Sg| and `converging' toward

the boundary of ¢ S for ut ility levels tending toward ¡ 1 (see Figure 3.a)). For negat ive decreasing

values of t, they represent the preferences of an agent always having the prior ¼on the realizat ion of the

states of nature, but who becomes more and more `pessimist ic', hence dē ning a family of indi®erence

surfaces `centered' on ¼but which are more and more triangular (in the case S = 3, see Figure 3.b). And

for t = ¡ 1 , U¼;t becomes:

U¼;¡ 1 (x) = min
s

½
xs

¼s

¾
; (10)

whose indi®erence surfaces in ¢ S are simplices of dimension S ¡ 1 (represented in the case S = 3 on

Figure 3.c). This last case holds for agents which are completely pessimist ic: they only care for lowest

consumpt ion in period 1 (relat ive to the probability of realizat ion of the state of nature).

Assume that agents are characterized by the ut ility funct ions U¼;¡ 1 . Assume moreover that they are

symmetrically dist ributed over ¢ S and allocated symmetric init ial shares of the ¯rms. Suppose ¯ nally

that for all k, the total quant ity of shares dist ributed is constant accross ¯rms: ¡ 0
k = ¡ 0 is independent

of k. Then we have the following proposit ion.
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Figure 3.a Figure 3.b Figure 3.c

² ² ²

Pr oposit ion 5 The min-max majority, for all governances, is

¿S;K =

¥
S¡ 1

K

¦

¥S¡ 1
K

¦
+ 1

:

Proof: See Appendix C. 2

We can draw two remarks from this last result .

1. This entails that in Caplin and Nalebu® (1988, 1991) case where K = 1, the min-max majority is

¿S;1 = S¡ 1
S . Hence for a big number of states of the world, only rates close to unaninity secure

that the center of gravity of the support of agents' types is majority stable. Greenberg (1979)

proves that for decision problems in R S¡ 1 with K = 1 and individual with convex preferences, the

min-max is bounded above by S¡ 1
S . For those pessimist ic preferences, Greenberg (1979)'s bound

of S¡ 1
S is then reached.

2. The benē t , in terms of majority stability, of having access to many assets in this case is much

bigger than in the case of separable preferences: if n
¡
=

¥
S¡ 1

K

¦ ¢
is not too big, ¿S;K keeps tractable

values (e.g., 67% if n = 3), whereas it is close to unaninity when K is small. In part icular, for any

¯ nite S; K , it is st ill the case that s{ MSPE exist as soon as K ¸ S=2 for all governances.

A ppendix B : Proofs of Sect ions 2, 3 and 4

Pr oof of Lemma 1: Consider a product ion mult iplan Y = (yk )K
k= 1, generat ing a (K ¡ 1)-dimensional

subspace hY i . Dē ne, for agent ¼, the normalized opt imal port folio ¹µ(¼) which solves the following

program:
max
¹µ(¼)

~U¼;Y [¹µ(¼)]

s. t .
KX

k= 1

¹µk (¼) = 1

The result ing normalized opt imal consumpt ion ¹x(¼) =
P K

k= 1
¹µk (¼) yk is then the point where the

indi®erence surface of agent ¼in ¢ S is tangent to hY i . One then has (dropping ¼):
¡ !
y1 ¹x =

KX

k= 2

¹µk
¡ !

y1yk .
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Dē ne the mult iplan ~Y = (~yk )K
k= 1 such that ~y1 = y1 and,

for k ¸ 2;
¡ !

y1 ~yk = ®k
¡ !

y1yk with ®k =

Z

¢ S

f (¼)

"
X

k

µ0
k (¼)

#
¹µk (¼) d¼

Z

¢ S

f (¼) µ0
k (¼) d¼

: (11)

Dē ne moreover, for k ¸ 2,

~µk (¼) =

"
X

k

µ0
k (¼)

#
Z

¢ S

f (¼) µ0
k (¼) d¼

Z

¢ S

f (¼)

"
X

k

µ0
k (¼)

#
¹µk (¼) d¼

¹µk (¼) and ~µ1(¼) =
X

k

µ0
k (¼) ¡

X

k ¸ 2

~µk (¼) :

One then obtains, for all k:
Z

¢ S

f (¼) ~µk (¼) d¼=
Z

¢ S

f (¼) µ0
k (¼) d¼;

and moreover ~µ(¼) =
h
~µk (¼)

i K

k= 1
obviously solves the program:

max
µ(¼)

~U¼; ~Y [µ(¼)]

s. t .
KX

k= 1

µk (¼) =
KX

k= 1

µ0
k (¼)

Therefore ( ~Y; 1K ; [~µ(¼)]¼2 ¢ S ) is a PE. 2

Pr oof of Proposi t ion 1: The proof goes through three steps. The ¯rst step computes the opt imal

consumpt ion ~x(¼), and, for the sake of illustrat ion, proves that ( ~Y ; 1K ; ~µ) as dē ned by (7) is a PE under

the assumpt ions of the example following Proposit ion 1. The second and third steps prove that any PE

( ~Y; 1K ; ~µ) such that h~Y i ´ h¹Y i is a ½S;K { MSPE for all governances: the second step is the construct ion

of the best way to challenge a PE within each ¯rm; the third step is the computat ion of the corresponding

rat ios ½S;K .

Step 1: Suppose the K ¯rms announce the product ion mult i-plan ~Y = (~yk )K
k= 1. Consider the market

prices to be 1K . Then the maximizat ion program of a agent ¼, M (¼), is equivalent to ¯ nding the

port folio ~µ(¼) which maximizes the ut ility funct ion: ~U¼; ~Y [~µ(¼)] subject to the const raint
P

k
~µ(¼) = 1.

Given assumpt ion (E), and the ident ity ~x(¼) =
P

k
~µk (¼) ~yk = ¹x(¼) =

P
k

¹µk (¼) ¹yk , it is dē ned by the

orthogonal project ion, ¹x(¼) =
P

k
¹µ(¼)¹yk , of ¼on h¹Y i . Hence [¹x(¼) ¡ ¼] ¢[¹y1 ¡ ¹yk ] = 0 for all k ¸ 2.

We have24: ¹xs = ¹µk =(n + 1) if s 2 Sk and ¹xs = ¹µk =n if s 2 Tk . Therefore, for all k ¸ 2:

X

s

( ¹xs ¡ ¼s)( ¹ys
1 ¡ ¹ys

k ) = 0 ( )

8
<

:

¹µk = ¼Sk + ( ¹µ1 ¡ ¼S1 ) if k · m
¹µk = ¼Tk +

n
n + 1

( ¹µ1 ¡ ¼S1 ) if k ¸ m + 1
:

These equat ions, along with the condit ion
P

k
¹µk = 1, straight forwardly imply: ¹µk = ¼Sk when k · m

and ¹µk = ¼Tk when k ¸ m + 1.

24In heavy computat ions, when no confusion can be feared, ¹x and ¹µ will stand for ¹x(¼) and ¹µ(¼).

28



We then have to check that 1K is an equilibrium price. We should have
Z

¢ S

f (¼) ~µk (¼) d¼= ¡ 0
k =

1
K

, for all k. For k · m, a standard applicat ion of Fubini's theorem25 gives:

(S ¡ 1)!
Z

¢ S

¼Sk d¼= (S ¡ 1)!
Z 1

0
¼

¼n

n!
(1 ¡ ¼)S¡ n ¡ 2

(S ¡ n ¡ 2)!
d¼ =

n + 1
S

;

hence the above equilibrium equat ion is ful¯lled. Through an ident ical line of computat ion, the reader

can check that the equilibrium equat ions for k ¸ m + 1 is ful¯lled.

Step 2: Up to now, we have proved that ~E = ( ~Y; 1K ; ~µ) is a PE. We have to prove that it is ½-majority

stable for the lowest possible ½. The ¯rst needed lemma here is a replicat ion of Caplin and Nalebu®

(1988) Proposit ion 2.

Lemma 2 For all k, P~E; ~́(~yk ) (resp. A ~E; ~́(~yk )) is the largest fraction of shareholders with positive share

(resp. the largest fraction of positive shares) on either side of any hyperplane through ~Y.

Proof: Fix zk , then from the strict concavity of the agents' preferences, zk (¸ ) = ¸ ~yk + (1 ¡ ¸ )zk will

get a larger fract ion than zk of shareholders and shares against ~yk . Indeed, since x + µ[zk (¸ ) ¡ ~yk ] =

¸ x + (1 ¡ ¸ )[x + µ(zk ¡ ~yk )] then for ¸ 6= 0; 1, U[x + µ(zk (¸ ) ¡ yk )] > ¸ U[x] + (1 ¡ ¸ )U[x + µ(zk ¡ ~yk )];

hence U[x + µ(zk ¡ ~yk )] ¸ U[x] entails U[x + µ(zk (¸ ) ¡ ~yk )] ¸ U[x].

Therefore, in looking for P~E; ~́(~yk ) or A ~E; ~́(~yk ) we can focus on alternat ive product ion plan zk arbi-

t rarily close to ~yk . We know that at a PE, the opt imal port folio is such that the indi®erence surface

of each agent is tangent to h~Yi at the equilibrium consumpt ion. Therefore in the limit , shareholders

whose welfare is improved by the in¯ nitesimal move from ~yk are separated from those whose welfare is

impaired by a hyperplane (thanks to assumpt ion (E)) containing h~Yi with normal, given equat ions (8),

the orthogonal project ion of zk ¡ ~yk on the orthogonal of h~Y i . Hence zk can be restricted to converge

toward ~yk orthogonally to h~Yi and in the limit , shareholders are separated by an hyperplane containing

h~Y i with normal zk ¡ ~yk .

The general equat ion of an hyperplane containing h~Y i is (the intersect ion with ¢ S of):

KX

k= 1

X

s2 Sk (Tk )

®s ¼s = 1 ; with

8
>><

>>:

8k · m;
X

s2 Sk

®s = n + 1

8k ¸ m + 1;
X

s2 Tk

®s = n
; (12)

that one denotes h®i , where ® = (®s)S
s= 1. One can easily check that the normal vector, in ¢ S , of h®i is

®¡ 1S . 2

A second lemma is needed.

Lemma 3 For all k, among all hyperplanes through ~Y, the ones that divide ¢ S into two pieces with

most unequal volumes (whatever the governance) are those dē ned by equation (12) with for for some

k · m, ®s =
n + 1

n
for s 2 Sk , and for all s 2 (SnSk ) [ T, ®s = 1.

25The volume computed throughout the paper are those of the project ion of ¢ S on the last variable,

i.e., of the set of vector ¸ 2 R S¡ 1
+ such that

S¡ 1X

s= 1

¸ s · 1.
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Proof: Let us prove the lemma in the most di± cult case, i.e., for the a1-governance, the other cases are a

straight forward simpli¯cat ion of the following proof. Dē ne the project ion from the (S ¡ 1){ dimensional

simplex onto the (K ¡ 1){ dimensional simplex:

P : ¢ S ¡ ! ¢ K

(¼s; : : : ; ¼S ) ¡ ! (¼S1 ; : : : ; ¼Sm ; ¼Tm + 1 ; : : : ; ¼TK )

Fix a vector of shares ( ¹µk )K
k= 1 (and thus (~µk )K

k= 1) in ¢ K . The set of agents having exact ly those

shares are in P ¡ 1[( ¹µk )]. We are now reduced to the problem of dividing P ¡ 1[( ¹µk )] as unevenly as possible

by an hyperplane going through its center point . But P ¡ 1[( ¹µk )] is a cartesian product of simplices of

dimension either n (for k · m) or n ¡ 1 (for k ¸ m + 1), with equat ion:
P

s2 Sk (Tk ) ¼s = ¹µk . This

very structure will make the former task simple: it is su± cient to divide one of the base-simplex (e.g.,

k) as unevenly as possible (measure-wise) and consider the cartesian product of the big port ion with all

other simplices. From Caplin and Nalebu® (1988) we know that a base-simplex have to be divided by

an hyperplane parallel to one face: among all hyperplanes of the form
P

s2 Sk (Tk ) ®s ¼s = 1 we have to

choose one such that ®s
k = n+ 1

n for all but one s in Sk (or = n
n ¡ 1 for all but one s in Tk ); the port ion

between this hyperplane and the chosen face is the biggest possible.

It can ¯ nally be easily checked that this amounts to propose an in¯ nitesimal change of the product ion

plan ~yk which sacri¯ces one state of nature to the benē t of all others and implement for example the

change:
³

¡ ²; ²
S¡ 1 ; : : : ; ²

S¡ 1

´
. The same cut t ing occurs if the in¯ nitesimal change of the payo®s of the

states in S1 only:
¡
¡ ²; ²

n ; : : : ; ²
n ; 0; : : : ; 0

¢
(orthogonal to h¹Y i ) is proposed. 2

Step 3: Let us then compute the proport ion of shareholders on the smallest side of the hyperplane dē ned

by equat ion (12) with, according to Lemma 3 (let us do it for ¯rm 1 without loss of generality): ®1 = 0,

®s = n+ 1
n for s 2 S1n1 and ®s = 1 for s 2 (SnS1) [ T . We thus compute the relat ive volume, in ¢ S , of

the volume dē ned by the equat ion:

n + 1
n

¼S1 n1 + ¼(SnS1 )[ T · 1 : (13)

The proport ion, in ¢ S , of this last volume is (apply Fubini's theorem), denot ing u = ¼S1 n1 and

v = ¼(SnS1 ) [ T :

(S ¡ 1)!
Z n

n + 1

u= 0

un ¡ 1

(n ¡ 1)!

ÃZ 1¡ n + 1
n u

v= 0

vS¡ n ¡ 2

(S ¡ n ¡ 2)!
dv

!

du ;

which is equal to
µ

n
n + 1

¶ n

. This last rat io is 1 ¡ ½S;K . It is a minimal rat io of shareholders that

will oppose to any change of product ion plan within each ¯rm k, since at the equilibrium, everybody is

allocated posit ive shares of the ¯rms so that everybody gets the right to vote.

This proves the Proposit ion for the p0, p1 and a0-governances.

For the a1-governance, the argument developped in Lemma 3 st ill holds to characterize the best way

to challenge the status quo within a ¯rm. Therefore, for k · m, one has to compute (for ¯rm 1, the

same result will hold for other ¯rms) the measure of the volume dē ned by inequality (13), weighted by

¼S1 = 1 ¡ v (ignoring the constant term S
(n+ 1)K which will disappear in the normalizat ion). It is

(S ¡ 1)!
Z n

n + 1

u= 0

un ¡ 1

(n ¡ 1)!

ÃZ 1¡ n + 1
n u

v= 0

vS¡ n ¡ 2

(S ¡ n ¡ 2)!
(1 ¡ v) dv

!

du ;
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which is, after standard computat ions, equal to
n + 1

S

µ
n

n + 1

¶ n

: (The same result holds true if one

weights by ¼Sk instead of ¼S1 .) This has to be normalized by the volume of ¢ S weighted by ¼S1 = u0,

which gives Z 1

u 0= 0
u0(u

0)n

n!
(1 ¡ u0)S¡ n ¡ 2

(S ¡ n ¡ 2)!
du0 =

n + 1
S

:

Therefore the relat ive volume we are looking for is the same as in the one person-one vote governance.

For all k ¸ m + 1, the volume dē ned by inequality (13), weighted by ¼Tk is equal to
n
S

µ
n

n + 1

¶ n

:

Therefore, if one takes the density ~µk = ¼Tk + 1
(n+ 1)K ¼S one gets

1
S

³
n +

m
K

´ µ
n

n + 1

¶ n

: This has to

be normalized by the volume of ¢ S weighted by the same density, which is
1
S

³
n +

m
K

´
: 2

Pr oof of T heorem 2: For the existence of s{ MSPEa1, we consider the same family of hyperplanes

hÁi Á2 SS ¡ 2 as the one dē ned for the a0-governance. For each Á, ¯x a orthonormed basis (èÁ)S¡ 2
` = 1 which

moves cont inuously with Á. Therefore è¡ Á = ¡ èÁ, for all Á, all `. Denote CÁ the subset of hÁi of opt imal

consumpt ions xÁ(¼) for all types ¼ (for a given mult iplan YÁ cont inuously depending on Á such that

[YÁ; 1K ; µÁ] be a PE sat isfying the Pareto criterion, and of course hYÁi = hÁi ). One has for xÁ 2 CÁ,

xÁ =
P

` x`
ÁèÁ.

For xÁ 2 CÁ, let f £ 0+
Á (xÁ) [resp. f £ 0¡

Á (xÁ)] denotethedensity obtained from f ¢
P

k µ0
k by aggregat ing

all types ¼2 hÁi + [resp. ¼2 hÁi ¡ ] such that xÁ(¼) = xÁ. One has for all k, 1 · k · K ¡ 1,
Z

hÁi ¤
f (¼)µk (¼)d¼=

Z

CÁ

f £ 0¤
Á (xÁ)~µk ;Á(xÁ)dxÁ ; (14)

for ¤ = + or ¡ , and where ~µk ;Á(xÁ) = µk (¼)=
P

` µ0
` (¼) for all ¼such that xÁ(¼) = xÁ.

Consider the S ¡ 2 mappings (¹ ` )S¡ 2
` = 1 on SS¡ 2 dē ned by

¹ ` (Á) =
Z

CÁ

x`
Á[f £ 0+

Á ¡ f £ 0¡
Á ](xÁ) dxÁ : (15)

They all sat isfy the symmetry property: ¹ ` (¡ Á) = ¡ ¹ ` (Á). Indeed, given that è¡ Á = ¡ èÁ, for all Á

x ¡ Á = ®¡ xÁ for some ¯xed ®Á, from which we get , t rhough an obvious change of coordinates:

¹ ` (¡ Á) =
Z

CÁ

(®`
Á ¡ x `

Á)[f £ 0+
¡ Á ¡ f £ 0¡

¡ Á](®Á ¡ xÁ)[¡ dxÁ] =
Z

CÁ

(®`
Á ¡ x`

Á)[f £ 0+
Á ¡ f £ 0¡

Á ](xÁ)dxÁ

because obviously f £ 0+
¡ Á(x¡ Á) = f £ 0¡

Á (xÁ). And we know that for all Á,
Z

CÁ

®`
Á[f £ 0+

Á ¡ f £ 0¡
Á ](xÁ)dxÁ =

0 since hÁi divides ¢ S into two pieces of equal measure with respect to the dist ribut ion f ¢£ 0.

Given that mappings (¹ ` )S¡ 2
`= 1 sat isfy the above described symmetry property, we get, by an indirect

corollary of the Borsuk-Ulam theorem, that they possess a common zero. Denote it Á0. Hence for all `,

1 · ` · S ¡ 2, one has:
Z

C (Á0 )
x`

Á0
f £ 0+

Á0
(xÁ0 ) dxÁ0 =

Z

C (Á0 )
x`

Á0
f £ 0¡

Á0
(xÁ0 ) dxÁ0 :

Last ly, one observes (as shown in the proof of Theorem 3) that for all k, 1 · k · K ¡ 1, ~µk (xÁ0 ) is

an a± ne funct ion of xÁ0 . Therefore, from equat ion (14), we get the result : Á0 dē nes a PE [YÁ0 ; 1K ; µÁ0 ]
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that divides ¢ ¡ S into two pieces of equal measure with respect to the distribut ions f ¢µk ;Á0 , for all k,

1 · k · K ¡ 1, and for f ¢
P

k µk ;Á0 , hence also for f ¢µK ;Á0 . 2

Pr oof of T heor em 3: The proof goes through three steps. The ¯rst step to prove that the relevant

PE (Y; 1K ; £ ) should generate a subspace hY i that contains the center of gravity, ¼g = (¼s
g)S

s= 1, of the

distribut ion f ¢
P

k µ0
k (denoted f £ 0 in the sequel). The second step to show that among all mult iplans

Y such that hY i contains ¼g, there exists one that contains the center of gravity, ¼g;k , of the distribut ion

f ¢µk , for all k. The third step shows that the density f ¢µk is º -concave for all k.

Step 1: The following statement is proved here: Consider a PE (Y; 1K ; £ ) such that , for all k, hY i contains

¼g;k , then it contains ¼g.

Indeed, by dē nit ion:

8s; ¼s
g;k =

1
¡ 0

k

Z

¢ S

¼s f (¼) µk (¼) d¼;

and one can easily check that ¼g is the barycenter of (¼g;k )K
k= 1 with weights

µ
¡ 0

k

¡ 0

¶ K

k= 1
, with ¡ 0 =

KX

k= 1

¡ 0
k ,

i.e., ¼g =
1
¡ 0

KX

k= 1

¡ 0
k ¼g;k . Therefore, a relevant mult iplan Y is such that ¼g 2 hY i .

Step 2: We show now that among all mult iplans Y such that hY i contains ¼g, there exist at least one

that contains ¼g;k , for all k. This will go through two steps. The ¯rst step to prove that there exists

S ¡ 1 independent stable direct ions in h¢ S i ; the dē nit ion of a stable direct ion v follows: consider the

distribut ion x ¢f £ 0 over ¢ S where x(¼) is the abscissa of the orthogonal project ion of ¼on the direct ion

of v, denote ¼g(v) the center of gravity of this dist ribut ion, v is stable if the vector
¡ !

¼g¼g(v) is colinear to

v. The second step shows that any subspace containing K ¡ 1 of these independent stable direct ions can

be spanned by a K -mult iplan Y such that hYi contains ¼g;k , for all k.

Step 2.1: Stable direct ions. Dē ne, for all state of nature t, the vector u(t) 2 h¢ S i , with ut (t) = ¡ 1 and

us(t) = 1=(S ¡ 1) for s 6= t. The orthogonal project ion of ¢ S on the direct ion dē ned by u(t) is only

funct ion of ¼t , i.e., all ¼2 ¢ S with same t-th coordinate project on the same point on any line spanned

by u(t). Denote ¼g(t) = [¼s
g(t)]Ss= 1 the center of gravity of the distribut ion ¼t f £ 0(¼); by dē nit ion:

8s; ¼s
g(t) =

1
¡ 0¼t

g

Z

¢ S

¼s ¼t f £ 0(¼) d¼:

One immediat ly gets the following property:

SX

t = 1

¼t
g ¼g(t) = ¼g; i.e. ; ¼g is the barycenter of the family [¼g(t)]St = 1 with weights (¼t

g)S
t = 1 : (16)

The independent family of vectors [u(t)]S¡ 1
t = 1 spans h¢ S i . Consider a vector v =

S¡ 1X

t = 1

vt u(t), and

denote hvi the direct ion it spans in h¢ S i . We have the following property:

8(¼; ¼0); if
S¡ 1X

t = 1

vt ¼t =
S¡ 1X

t = 1

vt ¼0t then ¼; ¼0 project orthogonally on the same point on hvi : (17)
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Indeed, one then has:
!

¼¼0 ¢v =
S¡ 1X

t = 1

vt u(t) ¢
!

¼¼0, with u(t) ¢
!

¼¼0= ¡
S

S ¡ 1
(¼0t ¡ ¼t ); therefore

!
¼¼0 ¢v =

¡
S

S ¡ 1

S¡ 1X

t = 1

vt (¼0t ¡ ¼t ) = 0.

Consider the linear funct ion x(¼) =
S¡ 1X

t = 1

vt ¼t . Property (17) states that the orthogonal project ion

of ¼ on hvi is only a funct ion of x(¼). Denote ¼g(v) the center of gravity of the distribut ion x ¢f £ 0;

standard computat ions give:

¼g(v) =
X

t < S

µ
vt ¼t

gP
s< S vs¼s

g

¶
¼g(t):

We are now looking for the vectors v such that
¡ !

¼g¼g(v) is colinear to v. From the last equat ion we get

that
¡ !

¼g¼g(v) is colinear (for a v in general posit ion) to the vector

"
X

t < S

vt ¼t
g(¼s

g(t) ¡ ¼s
g)

#S

s= 1

.

Denote ast = ¼t
g(¼s

g(t) ¡ ¼s
g). Then

¡ !
¼g¼g(v) is colinear to v, if and only if there exists ¸ 6= 0 such that

for all s,
X

t < S

ast vt = ¸
X

t < S

us(t)vt :

Obviously, if the lat ter equat ion is sat is̄ ed for s = 1; : : : ; S ¡ 1, it is also sat is̄ ed for s = S. Therefore,

denot ing A, resp. U, the (S ¡ 1){ square matrix (ast )S¡ 1
s;t = 1, resp. (us(t))S¡ 1

s;t = 1, denot ing w be the vector

with coordinates (vt )S¡ 1
t = 1 in the original basis, the following property holds:

¡ !
¼g¼g(v) is colinear to v if and only if Aw is colinear to Uw : (18)

One has to look for the eigenvectors (and eigenvalues) of the product matrix: (¡ U)¡ 1A, and prove that

they are all real and that (¡ U)¡ 1A is diagonalizable. The two matrices A and ¡ U have the following

propert ies:

² A is real symmetric (therefore Hermit ian) and for all s,
P

t < S ast > 0. (Indeed, by property (16)
P

t · S ast = 0 and obviously ass > 0, ast < 0 for s 6= t.) In fact , it is a variance-covariance matrix.

² ¡ U is real symmetric; its inverse is:

(¡ U)¡ 1 =
S ¡ 1

S

0

B
B
B
B
B
@

2 1 : : : 1

1
. . .

. . .
...

...
. . .

. . . 1

1 : : : 1 2

1

C
C
C
C
C
A

;

which is obviously a posit ive dē nite Hermit ian matrix.

And one knows that the product of a posit ive dē nite matrix and a Hermit ian matrix is a diagonalizable

matrix, all of whose eigenvalues are real (see, e.g., Horn and Johnson (1985), Theorem page 465).

As a remark, one can easily check that if the distribut ion f ¢
P

k µ0
k is uniform, A = ¡

S ¡ 1
S2(S + 1)

U

therefore all direct ions are stable: whatever the subspace going through ¼g, it contains ¼g;k for all k.
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Step 2.2: Fix K · S. Pick K ¡ 1 of the preceding stable direct ions: V = (vj )K ¡ 1
k= 1 , with for all j :

vj =
S¡ 1X

t = 1

vt
j u(t), and denote hV i the subspace they span in h¢ S i . Property (17) generalizes:

8(¼; ¼0); if 8j
S¡ 1X

t = 1

vt
j ¼t =

S¡ 1X

t = 1

vt
j ¼0t then ¼; ¼0 project orthogonally on the same point in H(V) : (19)

Consider for all j < K ¡ 1, x j (¼) =
S¡ 1X

t = 1

vt
j ¼t . Property (19) states that the orthogonal project ion of ¼on

hV i is only a funct ion of [x j (¼)]K ¡ 1
j = 1 . Denote ¼g(j ) the center of gravity of the dist ribut ion x j (¼)f £ 0(¼).

Take a PE (Y; 1K ; £ ) such that hY i ´ hV i . A direct consequence of Property (19) is that for all k,

1 · k · K , ¹µk (¼)
µ

=
µk (¼)

P
` µ0

` (¼)

¶
will be an a± ne funct ion of [x j (¼)]K ¡ 1

j = 1 :

¹µk (¼) = ®k +
K ¡ 1X

j = 1

¯k j x j (¼) :

Standard computat ions give:

¼g;k =
1

¡ 0
k

Z

¢ S

¼¹µk (¼) f £ 0(¼) d¼

=
®k

®k +
X

j

¯k j ° j

¼g +
K ¡ 1X

j = 1

¯k j ° j

®k +
X

j

¯k j ° j

¼g(j ) ;

where ° j =
P

t vt
j ¼t

g. Therefore ¼g;j is in hV i ´ hY i which ends this step.

Step 3: The third step is to show that the density f ¢µk is º -concave for all k. This comes immediately

from the fact that f (¼) ¢µk (¼) = f £ 0(¼) ¹µk (¼) where, as seen before, ¹µk (¼) is an a± ne funct ion of ¼,

hence is º -concave for º · 1. 2

Pr oof of Claim 2: For the sake of lightness of the notat ion we consider m = K . Suppose the K ¯rms

announce a product ion mult i-plan Y = (yk )K
k= 1, such that hY i = h¹Y i (as dē ned by (5)), and such that

(Y; 1K ; µ) is a PE (allowed by Lemma 1). The ident ity x(¼) =
P

k µk (¼) yk = ¹x(¼) =
P

k
¹µk (¼) ¹yk allows

to focus on ( ¹Y; ¹µ).

The ut ility levels of agent ¼on feasible consumpt ions is:
P

k ¼Sk vSk [¹µk =(n+ 1)] with vSk ´
P

s2 Sk
vs.

This yields the opt imal port folio ( ¹µk )k as a funct ion of (¼Sk )K
k= 1: ( ¹µk )k = V[(¼Sk )k ], where V is one-

to-one. Indeed, for all j , the ¯rst order condit ions of the maximizat ion program give ¼j DvSj ( ¹µj ) =

constant ; hence, since DvSj ( ¹µj ) > 0, V [(¼Sk )k ] = V[(¼
0Sk )k ] =) (¼Sk )k = (¼

0Sk )k ). As examples, for

the log-linear case vs = ln for all s, V is the ident ity: V [(¼Sk )k ] = (¼Sk )k . If vs(x) = x¹ with 0 < ¹ < 1,

V [(¼Sk )k ] = [(¼Sk )1=1¡ ¹ =
P

k (¼Sk )1=1¡ ¹ ]k .

Fix a vector of shares ( ¹µk )K
k= 1 in ¢ K . Then all agents with type in P ¡ 1[V ¡ 1( ¹µk )] (where P is dē ned

in Lemma 3) have the same port folio, hence the same opt imal consumpt ion under the assumtion of the

canonical case. Moreover P ¡ 1[V ¡ 1( ¹µk )] is, as stated in Lemma 3, a cartesian product of simplices of

dimension n. Consider the cut t ing proposed in Lemma 3, through a change
³

¡ ²; ²
S¡ 1 ; : : : ; ²

S¡ 1

´
in the

product ion plan of a ¯rm. We know it does not divide the parameter space ¢ S through a hyperplane.
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But it does divide P ¡ 1[V ¡ 1( ¹µk )] though a hyperplane, as unevenly as possiblewith respect to the uniform

distribut ion of most prefered alternat ive f ± y¤, and the biggest piece gets the same proport ion of the

(n=n + 1)n of the volume of this base simplex. The distribut ion f ±y¤ being uniform, this last rat io holds

for the whole set ¢ S .

One can ¯ nally check (for Proposit ion 2) that any proposed change (that can be taken orthogonal

to h¹Y i ), will always put ¼ and ¼¿ (who always select the same port folio and opt imal consumpt ion) in

di®erent posit ions: if it impairs the welfare of one, it improves the welfare of the other. 2

A ppendix C : Proofs of A ppendix A

Pr oof of Proposit ion 4: The ¯rst step of the proof of Proposit ion 1 st ill goes through. The only

di®erence is in the equilibrium equat ion for prices which should be computed for the new density dc in

the case of the example based on the mult iplan ~Y dē ned by equat ions (7). It is
Z

¢ S

µk (¼) f (¼) d¼=

(cS ¡ 1)!
Z

¢ S

1
K

dc(¼) d¼, for all k. For k · m, one gets:

Z

¢ S

¼Sk dc(¼) d¼=
Z 1

0
¼

¼c(n+ 1)¡ 1

[c(n + 1) ¡ 1]!
(1 ¡ ¼)c(S¡ n ¡ 1)¡ 1

[c(S ¡ n ¡ 1) ¡ 1]!
d¼ =

c(n + 1)
cS

=
(n + 1)

S
;

and of course
Z

¢ S

dc(¼) d¼= 1 ; hence the result .

One has now to check that it is stable for the ½c
S;K -majority rule under thep0, p1 and a0-governances.

For that , given that Lemma 2 and 3 are st ill valid, we compute, as in Step 3 in the proof of Proposit ion

1, the relat ive volume, in ¢ S endowed with the density dc, of the set dē ned by inequality (13) which is,

denot ing u = ¼S1 n1 and v = ¼(SnS1 ) [ T :

(cS ¡ 1)!
Z n

n + 1

u= 0

ucn ¡ 1

(cn ¡ 1)!

ÃZ 1¡ n + 1
n u

v= 0

vc(S¡ n ¡ 1)¡ 1

[c(S ¡ n ¡ 1) ¡ 1]!
(1 ¡ u ¡ v)c¡ 1

(c ¡ 1)!
dv

!

du ;

which is equal, after standard integrat ion by parts, to 1 ¡ ½c
S;K .

As far as the a1-governance is concerned, one has to compute the volume of the set dē ned by

inequality (13), endowed with the density dc, and moreover weighted by ¼S1 (the same result would hold

for any other ¯rm). This is

(cS ¡ 1)!
Z n

n + 1

u= 0

ucn ¡ 1

(cn ¡ 1)!

ÃZ 1¡ n + 1
n u

v= 0

vc(S¡ n ¡ 1)¡ 1

[c(S ¡ n ¡ 1) ¡ 1]!
(1 ¡ u ¡ v)c¡ 1

(c ¡ 1)!
(1 ¡ v) dv

!

du ;

which (we cut this double integral into two pieces by distribut ing with respect to 1 ¡ v) is equal to

(1 ¡ ½c
S;K ) +

c(S ¡ n ¡ 1)
cS

(1 ¡ ½c
S;K ) = (1 ¡ ½c

S;K )
n + 1

S
. On the other hand, the volume of ¢ S endowed

with the density dc and moreover weighted by ¼S1 is
n + 1

S
. Hence the result . 2

Pr oof of Cor ol lary 2: This goes either by not icing that , for n = 1, for all c,

1 ¡ ½c
S;K =

µ
1
2

¶ c c¡ 1X

j = 0

Ã
c ¡ 1 + j

j

! µ
1
2

¶ j

=
1
2

;

or by reproducing st raight forwardly the proof of Proposit ion 2 given in Sect ion 4. 2
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Pr oof of Corol lary 3: This goes by not icing that
µ

n
n + 1

¶ cn c¡ 1X

j = 0

Ã
nc ¡ 1 + j

j

! µ
1

n + 1

¶ j

; de-

creases toward

Ã
c¡ 1X

i = 0

ci

i !

!

e¡ c, when n tends toward in¯ nity. 2

Pr oof of Pr oposit ion 5: It goes through threesteps. The¯rst step is theconstruct ion of a PE (Ŷ ; 1K ; µ̂)

based on the mult iplan ( ¹Y ); the second step proves that this PE is a ¿S;K { MSPE; the third step proves

that ¿S;K is the min-max majority.

Step 1: Suppose the K ¯rms announce the product ion mult iplan Ŷ (®) = [ŷk (®)]Kk= 1, for ® 2 R:

for k · m; ŷk (®) = (®+ 1) ¹yk ¡
®

K ¡ m

KX

j = m + 1

¹yj ; and for k ¸ m + 1; ŷk = ¹yk : (20)

Hence, as in the proof of Proposit ion 1, for s 2 Sk , one has:

if s 2 Tk ; k ¸ m + 1; then
KX

j = 1

µj ŷs
j =

1
n

µ
µk ¡

®
K ¡ m

µS
¶

if s 2 Sk ; k · m; then
KX

j = 1

µj ŷs
j =

®+ 1
n + 1

µk

Let ¼(k) = max
s2 Sk (or Tk )

¼s, the ut ility funct ion (10), with ¼0(k) =

(
(n + 1)¼(k) if k · m

n¼(k) if k ¸ m + 1
, can

be rewrit ten:

Û¼;¡ 1 [µ(¼)] = min
k

2

4
µ

®µk

¼0(k)

¶

k · m
;

Ã
µk ¡ ®

K ¡ m µS

¼0(k)

!

k¸ m + 1

3

5 :

First order condit ions at the maximum entails that all arguments of Û¼ are equal: there exists a real c(¼)

such that ,

k · m µ̂k =
1

®+ 1
¼0(k) c(¼) (21)

k ¸ m + 1 µ̂k =

0

@¼0(k) +
1

K ¡ m
®

®+ 1

mX

j = 1

¼0(j )

1

A c(¼) (22)

We are looking for a value of ® such that , at the equilibrium, qk = 1, all k. As argued in the canonical

case, since we consider homethet ic preferences, there is no loss of generality in considering distribut ions of

init ial shares such that for all ¼,
P K

k= 1 µ0
k (¼) = 1 (together with the price normalizat ion

P K
k= 1 qk = K ).

Hence, if q = 1K , one gets:

c(¼) =
1

P K
k= 1 ¼0(k)

: (23)

The quest ion then is whether there exists a value of ® such that for all k, 1 · k · K ,
Z

¢ S

f (¼) µ̂k (¼) d¼=
Z

¢ S

f (¼) µ0
k (¼) d¼:

For k · m, this last equat ion can be rewrit ten:

1
®+ 1

Z

¢ S

f (¼)
¼0(k)

P K
j = 1 ¼0(j )

d¼=
Z

¢ S

f (¼) µ0
k (¼) d¼ =

1
K

; (24)
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this last equality being a direct consequence of the fact that
Z

¢ S

f (¼) µ0
k (¼) d¼ = ¡ 0

k , independent of

k, and that for all ¼,
P K

k= 1 µ0
k (¼) = 1. This dē nes obviously a value ®̂ for the parameter ® (which does

not depend on k, because of the symmetry of the m ¯rst assets). And then one can easily check that

(24) entails equilibrium on the markets for shares of ¯rms k, k ¸ m + 1.

What remains to be checked is that ® ¸ 0 so that , at equilibrium, everybody is allocated posit ive

shares of all ¯rms. One obviously has, for all k · m:

¼0(k)
P K

j = 1 ¼0(j )
¸

¼(k)
P K

j = 1 ¼(j )
;

therefore

®̂ = K
Z

¢ S

f (¼)
¼0(1)

P K
j = 1 ¼0(j )

d¼ ¡ 1 ¸ K
Z

¢ S

f (¼)
¼(1)

P K
j = 1 ¼(j )

d¼ ¡ 1

and since

1 =
KX

k= 1

Z

¢ S

f (¼)
¼(k)

P K
j = 1 ¼(j )

d¼ =| {z}
by symmetry

K
Z

¢ S

f (¼)
¼(1)

P K
j = 1 ¼(j )

d¼;

the result obtains. Fix ® = ®̂ in the sequel.

Finally, one gets the following observat ion, with for all k, ¹µk =
¼0(k)

P K
j = 1 ¼0(j )

.

Obser vat ion 3 One has:
KX

k= 1

µ̂k =
KX

k= 1

¹µk = 1 ; (25)

and:
KX

k= 1

µ̂k ŷk =
KX

k= 1

¹µk ¹yk : (26)

Step 2: We have proved (for ® = ®̂) that (Ŷ ; 1K ; µ̂) is a PE. We have to prove that it is ¿S;K -majority

stable. As for the canonical case, from the concavity of the agents preferences, for a ¯xed zk , then

zk (¸ ) = ¸ ŷk + (1 ¡ ¸ )zk will get a larger or equal fract ion than zk of shareholders and shares against ŷk .

Therefore, in looking for PŶ ;µ̂(ŷk ) or A Ŷ ;µ̂(ŷk ), we can focus on alternat ive product ion plan zk arbit rarily

close to ŷk . Given Observat ion 3, it is equivalent to take any zk arbit rarily close to ¹yk

Take zk = ¹yk + ²k with ²k = (²s
k )S

s= 1,
P S

s= 1 ²s
k = 0. Suppose ²1

k < 0: zk reduces the payo®of ¹yk in the

¯rst state of the world. Necessarily, for all agents such that ¼(1) = ¼1, the ut ility level decreases. Indeed,

at the PE, the ut ility level of such an agent is
¹µ1

(n + 1)¼1 , and U¼;¡ 1 [¹x + ¹µk ²k ] is by dē nit ion of the min

inferior to
¹µ1

(n + 1)¼1 +
¹µk

¼1 ²1
k . Take a state of nature s such that s 2 Sj (or Tj ); then all shareholders ¼

such that ¼(j ) = ¼s will st rict ly oppose to any change ²k such that ²s
k < 0.

Therefore, in order to ¯ nd a best challenger against the status quo ¹yk within ¯rm k, one has to

decrease the payo®s in the smallest number of states of the world, hence only one: Fix ¹s such that ¹s 2 S¹j

(w.l.o.g.) and consider ²s
k > 0 for all s 6= ¹s, and ² ¹s

k < 0 . Thechange ²k imapirs the welfare of shareholders

¼such that ¼(¹j ) = ¼¹s, but on the other hand, for ²k su± cient ly small, it improves the welfare of all other

agents. Indeed, consider an agent ¼such that ¼(¹j ) 6= ¼¹s. Then in states s 6= ¹s, its consumpt ion increases
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by
¹µk

¼s ²s
k ; and in state ¹s its consumpt ion decreases by

¹µk

¼¹s ² ¹s
k . But since ¼(¹j ) > ¼¹s, for ²k small enough,

one has:
¹µk

¼¹s

1
n + 1

+
¹µk

¼¹s ² ¹s
k >

¹µk

¼(j )
1

n + 1
+

¹µk

¼(j )
² ŝ

k ;

where ŝ is such that ¼(¹j ) = ¼̂s. Hence, even after the change ²k , the minimum consumpt ion st ill does

not occur for ¹s, but for another state s in which the consumpt ion increases.

Therefore the most challenging way to threaten the status quo is to decrease the payo® of ¹yk for

only one state of the world and improving its payo® in all others. In this case the shareholders opposing

the change are such that ¼(¹j ) = ¼¹s. Given the symmetry of the density f , their proport ion is obviously
n

n+ 1 if ¹s · m(n + 1) (i.e., ¹s 2 S¹j for some ¹j · m), and n ¡ 1
n if ¹s ¸ m(n + 1) + 1 (i.e., ¹s 2 T¹j for some

¹j ¸ m + 1). Hence PŶ ;µ0 (ŷk ) = PŶ ;µ̂(ŷk ) = n
n+ 1 with n =

¥
S¡ 1

K

¦
. Finally, given the symmetry, at the

considered symmetric PE, of the shares, one immediately gets A Ŷ ;µ0 (ŷk ) = A Ŷ ;µ̂(ŷk ) = n
n+ 1 .

Step 3: We have proven that there exists a ¿S;K -MSPE for all governances. Finally we have to prove

that ¿S;K is the min-max.This easy proof is left to the reader: take a non-symmetric Y and `at tack' it

the usual way from the central part of ¢ S . 2
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