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Solving Heterogeneous-Agent Models with Parameterized Cross-
Sectional Distributions* 

A new algorithm is developed to solve models with heterogeneous agents and 
aggregate uncertainty that avoids some disadvantages of the prevailing 
algorithm that strongly relies on simulation techniques and is easier to 
implement than existing algorithms. A key aspect of the algorithm is a new 
procedure that parameterizes the cross-sectional distribution, which makes it 
possible to avoid Monte Carlo integration. The paper also develops a new 
simulation procedure that not only avoids cross-sectional sampling variation 
but is also more than ten times faster than the standard procedure of 
simulating an economy with a large but finite number of agents. This 
procedure can help to improve the efficiency of the most popular algorithm in 
which simulation procedures play a key role. 
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1 Introduction

Models with heterogeneous agents and aggregate uncertainty are becoming increas-
ingly important. They not only improve the predictions of representative agent
models, they also make it possible to study the behavior of sub groups in a general
equilibrium framework. Solving such models is difficult, because the set of state
variables contains the cross-sectional distribution of agents’ hcaracteristics, which is
a time-varying infinite dimensional object in the presence of aggregate uncertainty.
The most commonly used algorithm summarizes the cross-sectional distribution

with a finite set of moments and calculates the transition law for these state variables
using a simulation procedure.1 This algorithm is relatively easy to implement, but
there are disadvantages to using simulation methods. First, it relies on Monte Carlo
integration to calculate the cross-sectional moments, which is known to be an ineffi-
cient integration procedure. Second, the observations used to find the transition law
are distributed inefficiently.2 Den Haan (1997) and Reiter (2002) develop alterna-
tive algorithms based on traditional approaches in the numerical solutions literature
that avoid these disadvantages. These algorithms are, however, quite cumbersome
to implement.
Krusell and Smith (1998) show that in their heterogeneous-agent model, differ-

ences between agents are small in the sense that the marginal propensity to save is
very similar among agents. The marginal propensity is only different for those agents
that are at or close to the borrowing constraint. There are, however, not many of
these agents and they have at most a marginal effect on prices, since their capital
holdings are low. Changes in the distribution through wealth redistributions have,
therefore, little effect. Consequently, it is possible to solve the model of Krusell and
Smith (1998) accurately using only the mean capital stock to characterize the cross-
sectional distribution. Not only is heterogeneity limited in the model of Krusell and
Smith (1998), the law of motion for capital can be accurately described by a linear
function. Although still not a trivial exercise, the model is, thus, relatively easy to
solve and the disadvantages associated with simulation procedures are unlikely to
surface. In fact, we find results that are very similar to those obtained by Krusell
and Smith (1998) by using a procedure in which simulation procedures only play a
minor role.
Being able to accurately characterize the importance of changes in the cross-

sectional distribution for agents’ decisions with a linear law of motion of the mean

1Descriptions of this algorithm can be found in Den Haan (1996), Krusell and Smith (1998),
and Rios-Rull (1997).

2See Christiano and Fisher (2000) and Judd (1998) for a detailed discussion of the disadvantages
of simulation procedures.
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is unlikely to remain true in more complex models.3 As the heterogeneous-agent
models being solved are becoming more complex, the disadvantages of simulation
procedures are likely to emerge, just like they do in other numerical problems. In
Den Haan and Marcet (1990), one of the authors of this paper proposed a simulation
procedure to solve dynamic stochastic models, but personal experience has made
clear that there are also quite a few models for which an accurate numerical solution
requires alternative techniques.4

It is, thus, important to develop alternative algorithms to solve models with
heterogeneous agents in which simulation procedures do not play a key role. Even
if the class of heterogeneous-agent models that can be solved with simultation-
based algorithms is large, then it is still important that alternative algorithms are
developed. The reason is that assessing the accuracy of a numerical solution is
hampered by the fact that the true solution is not known and there are many
aspects of the solution to evaluate. Consequently, it is not easy to find out which
models can be solved accurately with simulation procedures. Alternative solution
algorithms are an important tool to determine for which models this is the case
and to build (or reduce) confidence in the existing results in the literature that are
obtained using simulation procedures.
This paper develops an algorithm that builds on the ideas of Den Haan (1997)

and Reiter (2002), but has important efficiency advantages in terms of program-
ming burden and computational efficiency. A key feature of the algorithm is the
parameterization of the cross-sectional distribution. This makes it possible to use
quadrature instead of Monte Carlo techniques to numerically integrate and to use
projection methods to solve for the transition laws. By using reference moments the
algorithm can obtain a much more accurate shape of the cross-sectional distribution
without using additional state variables, which is an important improvement upon
Den Haan (1997). We use a class of polynomials to approximate the cross-sectional
distribution. This makes the algorithm easier to implement than the algorithm of
Reiter (2002) who uses step functions. More importantly, by using a particular
class of approximating polynomials, the problem of finding the coefficients of the
approximating function can be reduced to a convex optimization problem, for which
reliable algorithms exist. In contrast, for other approximating functions one has to
find the coefficients using a nonlinear system of equations, which is a more difficult
numerical problem with less reliable convergence properties.
We show how to use the algorithm to solve the model of Krusell and Smith

3In fact, Krueger and Kubler (2004) analyze an overlapping generations modle and argue that
models in which the cross-sectional distribution can be efficiently described by just the mean are
special cases and that in general higher-dimensional characterizations of the state are needed.

4See, for example, Christiano and Fischer (2000).
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(1997). Papers that describe solution procedures do not make bedtime reading. We
hope to increase accessibility of our paper by going through the steps of algorithm
using a well known model as an example.
The paper proposes a procedure to simulate an economy with heterogeneous

agents that avoids cross-sectional sampling variation and, thus, eliminates an im-
portant drawback of simulation procedures. The standard simulation procedures
constructs a panel of NT observations and NN agents. By parameterizing the cross-
sectional distribution and using quadrature integration, however, it is possible to
generate an accurate simulation with a continuum of agents. A key aspect of our
simulation procedure is to use a continuum instead of a finite number of agents. Note
that models with a large number of heterogeneous agents almost always assume a
continuum of agents, so that the law of large numbers ensures that idiosyncratic
risk is averaged out. In fact, the assumption of a continuum of agents plays a key
role, not only in the specification of the state variables and the definition of the
equilibrium, but also in the construction of most algorithms.5 Thus, by simulating
with a continuum instead of a finite number of agents, we stay much closer to the
actual model being solved.
Our simulation procedure not only avoids cross-sectional sampling variation, it

is also much cheaper. An important role in the reduction of computing time is using
our proposed class of approximating functions so that coefficients can be found with
a convex optimization procedure. We found that simulating an economy with 10,000
agents for 1000 periods took 13 times as long as simulating the same economy with
a continuum of agents. In our own algorithm, the simulation procedure only plays a
very minor role. This is, of course, no reason not to use a more accurate simulation
procedure. For algorithms that use a simulation procedure to calculate the transition
law, however, the improved simulation procedure will have bigger benefits. In the
last section, we discuss for what type of model the new simulation procedure is likely
to be especially beneficial.
The rest of this paper is organized as follows. The next section describes the

production economy of Krusell and Smith (1998). Section 3 briefly discusses existing
algorithms and summarizes the contributions of this paper. Section 4 describes
the algorithm in detail and Section 5 describes the simulation procedure. Section
6 discusses how to check for accuracy and reports the results. The last section
concludes.

5In particular, a crucial property being used is that conditional on realizations of the aggregate
shock and this period’s cross-sectional distribution, next period’s cross-sectional distribution is
known with certainty.
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2 The production economy

The economy is a production economy with aggregate shocks in which agents face
different employment histories and partially insure themselves through (dis)saving
in capital. For more details see Krusell and Smith (1998).

Problem for the individual agent. The economy consists of a unit mass of ex
ante identical households. Each period, agents face an idiosyncratic shock ε that
determines whether they are employed, ε = 1, or unemployed, ε = 0. An employed
agent earns a wage rate of wt. An employed agent earns an after-tax wage rate of
(1− τ t) wt and an unemployed agent receives unemployment benefits μwt. Markets
are incomplete and the only investment available is capital accumulation. The net
rate of return on this investment is equal to rt− δ, where rt is the rental rate and δ
is the depreciation rate. Agent’s i maximization problem is as follows:

max
{cit,kit+1}∞t=0

E
P∞

t=0 β
t (cit)

1−γ−1
1−γ

s.t. cit + kit+1 = rtk
i
t + (1− τ t)wtlε

i
t + μwt(1− εit) + (1− δ)kit

kit+1 ≥ 0

(1)

Here cit is the individual level of consumption, k
i
t is the agent’s beginning-of-period

capital, and l is the time endowment.

Firm problem. Markets are competitive and the production technology of the
firm is characterized by a Cobb-Douglas production function. Consequently, firm
heterogeneity is not an issue. Let Kt and Lt stand for per capita capital and the
employment rate, respectively. Per capita output is given by

Yt = atK
α
t (lLt)

1−α (2)

and prices by

wt = (1− α) at(
Kt

lLt

)α (3)

rt = αat(
Kt

lLt

)α−1 (4)

Aggregate productivity, at, is an exogenous stochastic process that can take on two
values, 1−∆a and 1 +∆a.
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Government The only role of the government is to tax employed agents and to
redistribute funds to the unemployed. We assume that the government’s budget is
balanced each period. This implies that the tax rate is equal to

τ t =
μut

lLt

. (5)

where ut = 1− Lt denotes the unemployment rate in period t.

Exogenous driving processes. There are two stochastic driving processes. The
first is aggregate productivity and the second is the employment status. Both are
assumed to be first-order Markov processes. We let πaa0εε0 stand for the probability
that at+1 = a0 and εit+1 = ε0 when at = a0 and εit = ε0. These transition probabilities
are chosen such that the unemployment rate can take on only two values. That is,
ut = ub when at = ab and ut = ug when at = ag with ub > ug.

Equilibrium. Krusell and Smith (1998) consider a recursive equilibria in which
the policy functions of the agent depend on his employment status, εi, his beginning-
of-period capital holdings, ki, aggregate productivity, a, and the cross-sectional
distribution of capital holdings. An equilibrium consists of the following

• Individual policy functions that solve the agent’s maximization problem.

• A wage and a rental rate that are determined by 3 and 4, respectively.

• A transition law for the cross-sectional distribution of capital, that is consistent
with the investment policy function.

3 Relation to existing algorithms

In this paper we give a brief overview of existing algorithms and then the contribu-
tions of this paper.

3.1 Existing algorithms

A standard aspect of numerical algorithms that solve models with heterogeneous
agents is to summarize the infinite-dimensional cross-sectional distribution of agents’
characteristics by a finite set of moments, m. The transition law is then a mapping
that generates next period’s moment, m0, given the values of the moments in the
current period, m, and the realization of the aggregate shock. Den Haan (1996),
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Krusell and Smith (1998), and Rios-Rull (1997) propose to calculate this transition
law as follows. First, construct a time series for the cross-sectional moments by
simulating an economy with a large but finite number of agents. Second, regress
the simulated moments on the set of state variables. The first disadvantage of the
simulation procedure is that moments are calculated using Monte Carlo integration,
which is known to be an inefficient numerical integration procedure.6 The second
disadvantage is that the observations are clustered around the mean, since they are
taken from a simulated series. An efficient projection procedure, however, requires
the explanatory variables to be spread out, for example, by using Chebyshev nodes.7

Den Haan (1997) parameterizes the cross-sectional distribution with a flexible
functional form, P (k; ρ), which makes it possible to use quadrature techniques to
do the numerical integration. In addition, his algorithm uses Chebyshev nodes to
construct a grid of explanatory variables for the projection step. The coefficients
of the approximating density, ρ, are pinned down by the set of moments used,
m. The disadvantage of Den Haan (1997) is that the shape of the distribution
is completely pinned down by the moments used as state variables and the class
of flexible functional forms used. Consequently, a large number of state variables
may be needed, not to predict changes in the key moments that matter for agents’
behavior, but just to get the shape of the cross-sectional distribution right. Another
drawback of Den Haan (1997) is that an inefficient procedure is used to find the
coefficients of the approximating density. Reiter (2002) improves upon the algorithm
of Den Haan (1997) in an ingenious way by letting the shape of the distribution
depend not only on the moments used as state variables, m, but also on a set of
reference moments that are obtained by a simulation procedure.
Promising recent alternatives to the standard algorithm have been developed in

Preston and Roca (2006) and Reiter (2006). Reiter (2006) first solves a model with-
out aggregate uncertainty using standard projection procedures. Next, by replacing
the endogenous variables in the equations of the model with the parameterized nu-
merical solution, he obtains a difference equation in the numerical coefficients. Then
he uses perturbation techniques to solve for the sensitivity of the numerical solu-
tion to aggregate shocks. This is quite a different approach then the procedure
used here, which is good because the more variety among available approaches the
better. Preston and Roca (2006) use a "pure" perturbation method to solve the
model.8 Perturbation methods are likely to work well when the distribution needs

6See Judd (1998).
7Note that in the classic regression problem the standard errors, σ2(X 0X)−1, are also lower

when the x-values are more spread out.
8Since perturbation methods cannot deal well with the kind of inequality constraint used here,

they replace the inequality constraint with a penalty function, which also accomplishes that agents
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to be characterized by many statistics, because dealing with many arguments is the
strength of perturbation methods.

3.2 The contributions of this paper

The main contributions of this paper are the following.

Calculating the transition law of the cross-sectional distribution. The
disadvantage of Reiter (2002) is that the particular implementation of the idea of
reference moments is very cumbersome.9 As in Den Haan (1997) and Reiter (2002),
this paper develops a procedure to calculate this transition law without relying on
simulation procedures to calculate moments and to carry out the projection step.
As in Reiter (2002), it uses reference moments, but the modifications introduced
make the procedure much more straightforward to implement.

Calculating the approximating density for given moments. This algorithm
links a set of moments with a parameterized density. Consequently, an important
part of the algorithm is the mapping between the set of moments and the coefficients
of the density. One possibility would be to use an equation solver that chooses the
set of coefficients so that the moments of the parameterized density are equal to the
specified moments. This turns out to be a relatively expensive procedure. By using
a specific class of approximating functions, it is possible to transform this problem
into a convex optimization problem, for which much more reliable algorithms exist.
This procedure is likely to be useful outside the literature of numerical solution

techniques, since characterizing a cross-sectional distribution with a CDF from a
class of flexible functional forms is a common problem in econometrics.

do not have negative capital holdings and try to stay away from low capital stocks.
9Reiter (2002) constructs a reference density G(m), which relates the shape of the distribution

to the set of moments that serve as state variables. It is a weighted average of distributions from a
simulated economy, where distributions with moments closer to m get more weight. Step functions
are used to construct a reference distribution, which has the advantage of being very flexible but
has the disadvantage of using a lot of parameters. One problem of the approach in Reiter (2002)
is that the moments of the reference density may not be equal to m. This means that one first has
to apply operations to ensure that one obtains a new reference function eG(m) for which this is not
the case. But even if m contains only first and second moments, then this problem entails more
than a linear transformation, since eG(m) has to be a step function that conforms to the specified
grid and cannot violate the constraints on the support of the distribution, such as the constraint
that k ≥ 0.
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Simulating a panel without cross-sectional sampling variation. This pa-
per develops a procedure to simulate an economy without cross-sectional sampling
variation. Standard procedure is to simulate data using a finite number of agents
and a finite number of time periods, which means that the outcome depends on
the particular random draw used. Sampling variation disappears at a slow rate and
could be especially problematic if the number of a particular type of agent is small
relative to the total number of agents.
Existing models with a large number of heterogeneous agents typically assume

that there is a continuum of agents.10 This implies that conditional on the realization
of the aggregate shock there is no cross-sectional sampling variation, a property that
plays a key role in the definition of the set of state variables and the definition of
the equilibrium. The simulation procedure developed in this paper sticks to the
assumption of the model and uses a continuum of agents. By parameterizing the
cross-sectional distribution one can use quadrature techniques to obtain a time series
for any moment or characteristic of the cross-sectional distribution.

Accuracy tests. It is never trivial to check the accuracy of a numerical solution
for dynamic stochastic models, since the true solution is not known. Checking for
accuracy is made especially difficult, because there are many aspects to the solution
of this type of model. In this paper, we discuss several tests to evaluate the accuracy
of the solution for a model with heterogeneous agents.

4 The algorithm

In this section, we discuss the different steps of the algorithm. In Section 4.1, we
start with a discussion of the state variables used, followed by an overview of the
algorithm in Section 4.2. The remaining sections describe the steps of the algorithm.

4.1 State variables and transition laws

Krusell and Smith (1998) consider a recursive equilibrium in which the policy func-
tions of the agent depend on his employment status, εi, his beginning-of-period
capital holdings, ki, aggregate productivity, a, and the cross-sectional distribution
of capital holdings.11 Let

←−
fw(k) be the cross-sectional distribution of beginning-of-

10Krueger and Kubler (2004) develop and solve an OLG model with a relatively large but finite
number of agents and show how Smolyak’s algorithm can be used to solve models with 20 to 30
agents.
11Miao (2006) shows the existence of a recursive equilibrium, but also uses expected payoffs as

state variables. It is not clear whether a recursive equilibrium exists when the smaller set of state
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period capital holdings for agents with employment status w ∈ {e, u} and k ≥ 0.
The arrow pointing left indicates that the cross-sectional distribution refers to the
distribution at the beginning of the period (but after all shocks are observed). Sim-
ilarly,

−→
fw(k) refers to the distribution at the end of the period. The following two

steps determine the transition law that links the current-period distribution,
←−
fw(k),

with next period’s distribution,
←−
fw0(k).

• The end-of-period distribution is determined by a, ←−f e, ←−fu, and the individual
investment function. That is,

−→
f e =

−→
Υe(a,

←−
f e,
←−
fu) and

−→
fu =

−→
Υu(a,

←−
f e,
←−
fu).

• Next period’s beginning-of-period distribution,
←−
fw0(k), is determined by the

end-of-period distribution and the employment-status flows that correspond
with the values of a and a0. Thus,

←−
f e 0 =

←−
Υe(a, a0,

−→
f e,
−→
fu) and

←−
fu0 =

←−
Υu(a, a0,

−→
f e,
−→
fu).←−

Υe(·) and←−Υu(·) are simple functions that are determined directly by the tran-
sition probabilities.12

An alternative to using the cross-sectional distribution of employment and capital
holdings is to use all past realizations of the aggregate shocks.13 For the model
considered here, we found that a large number of lags is needed. Nevertheless, if one
doesn’t have a complete description of the cross-sectional distribution, it still may
be worthwhile to add some lagged values of a.14 In our algorithm we, therefore, add
the lagged value of a as a state variable. But there is another reason, which will
become evident in the remainder of this section.
To deal with the infinite dimension of the cross-sectional distribution, we follow

Den Haan (1996, 1997), Krusell and Smith (1997), and Rios-Rull (1997) and describe
the cross-sectional distribution with a finite set of moments. The remainder of this
section discusses in detail which moments we use.
In this model, agents face a borrowing constraint, k ≥ 0. We, therefore, include

the fraction of agents of each type that start the period with zero capital holdings,←−−
me,c and

←−−
mu,c. Employed agents never choose a zero capital stock. This means that

the density
−→
f e does not have mass at zero. In contrast,

←−
f e0 does have mass at zero,

variables is used. For a numerical solution this is less important in the sense that approximation
typically entails not using all information.
12Details are given in A.1.
13This is the approach used in Veracierto (2002). He solves a model with irreversible investment

in which the cross-sectional distribution matters because the investment decision is of the (S,s)
variety. Instead of keeping track of the cross-sectional distribution, he keeps track of a history of
lower and upper threshold levels.
14The numerical cost is fairly low, since a can take on only two values.
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because some of the agents that are employed in the current period were unemployed
in the last period and chose a zero capital stock. Both

←−−
me,c and

←−−
mu,c can be easily

calculated from
−−→
mu,c
−1 and the employment-status flows corresponding to the values

of a and a0. Thus, instead of using
h
a,
←−−
me,c,

←−−
mu,c

i
we also can use

h
a, a−1,

−−→
mu,c
−1

i
. We

prefer to use
h
a, a−1,

−−→
mu,c
−1

i
, because a−1 can take on only two values and is, thus,

computationally an inexpensive state variable. Moreover, as explained above a−1
could have predictive value that goes beyond the ability to determine

←−−
me,c and

←−−
mu,c.

In addition, the algorithm uses centralized moments of the distributions of strictly-
positive capital holdings . The set of moments that are used as state variables are
stored in the following vector

m =
h−−→
mu,c
−1,
←−−
me,1, · · · ,

←−−−
me,NM ,

←−−
mu,1, · · · ,

←−−−−
mu,NM

i
,

where
←−−
mw,j is the jth-order centralized moment for workers with employment status

w and strictly-positive capital holdings. The dimension of the vector is N∗
M =

2NM + 1.
The aggregate state is thus given by s = [a, a−1,m]. Since we only use a

limited set of moments as state variables, the transition law only needs to spec-
ify how this limited set of moments evolve over time. Thus, instead of calculat-

ing
−→
Υe(·) and −→Υu(·), we now calculate [

−−→
mu,c,

−−→
mu,1, · · · ,

−−−−→
mu,NM ] =

−→
Γun(s;ψ

Γu

n ) and

[
−−→
me,c,

−−→
me,1, · · · ,

−−−→
me,NM ] =

−→
Γen(s;ψ

Γe
n ), where

−→
Γwn (s) is an nth-order polynomial with

coefficients ψΓw

n . To simplify the notation we will typically write
−→
Γw(s), but one

should keep in mind that this is an approximating function with coefficients that
are determined by the algorithm. In the implementation of the algorithm, we set–as
in Krusell and Smith (1998)–NM equal to 1.

4.2 Overview

An important part of this algorithm is to avoid Monte Carlo integration by approx-
imating the densities

←−
f e and

←−
fu with a flexible functional forms. To determine this

functional form, we use the moments that are used as state variables, m, as well
as some additional information that we will refer to as "reference moments". The
reference moments are higher-order moments that are helpful in getting the shape
of the distribution right.
The algorithm uses the following iterative procedure to solve the model.

• Given transition laws, −→Γe(s) and −→Γu(s), solve for c(ε, k, s) and k0(ε, k, s). This
is discussed in Section 4.3.
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• Use the solutions for the individual policy functions, c(ε, k, s) and k0(ε, k, s)
to obtain information about the "reference moments". This is discussed in
Section 4.4.

• Given solutions for the individual policy functions, c(ε, k, s) and k0(ε, k, s),
solve for

−→
Γe(s) and

−→
Γu(s). This is discussed in Section 4.6. This requires

setting up a grid of the aggregate state variables [a, a−1,m] and a procedure to
link the values of the moments m and the reference moments with an explicit
cross-sectional density. This procedure is discussed in Section 4.5.

• Iterate until the transitions laws used to solve for the individual policy func-
tions are close to the transition laws implied by the individual policy functions.

4.3 Procedure to solve for individual policy functions

The procedure to solve for individual policy functions relies on standard projection
methods, except that we modify the standard procedure to deal with the inequality
constraint on capital. In this section, we describe how to solve for the individual
policy rules taking the aggregate policy rules

−→
Γe(s) and

−→
Γu(s) as given. The first-

order conditions of the agent are given by15

c(ε, k, s)−γ = E [βc(ε0, k0, s0)−γ (1 + r(s0))] for k0 > 0,
c(ε, k, s)−γ ≥ E [βc(ε0, k0, s0)−γ (1 + r(s0))] for k0 = 0, and

(6)

c+ k0 = r(s)k + w(s)lε+ (1− δ)k, (7)

In this system w(s) and r(s) only depend on a and the aggregate capital stock
and can be solved directly from Equations 3 and 4. The conditional expectation in
Equation 6 is a function of the individual and aggregate state variables. To solve
the individual problem we approximate this conditional expectation with a flexible
functional form. That is,

E
£
βc(ε0, k0, s0)−γ (1 + r(s0))

¤
≈ Ψn(k, ε, s;ψ

E
n ), (8)

where Ψn(·) is an nth-order polynomial and ψE
n its coefficients. Let k(ε, s) be the

capital stock such that
k0 = 0 if k ≤ k(ε, s). (9)

Then ∂k0/∂k = 0 for k < k(ε, s). This implies that E[βc(ε0, k0, s0)−γ (1 + r(s0))] as a
function of k is flat for k < k and nondifferentiable at k = k. When k < k(ε, s) one

15We have suppressed the i superscript for notational convenience.

11



does not need the approximation Ψn(·), since k0 = 0 and one can solve consumption
from the budget constraint. To calculate the approximation for the conditional
expectation, we only use grid points at which k0 > k(ε, s). This means that the
grid is no longer fixed within the algorithm and we loose some of the optimality
properties of using Chebyshev grid points, but we found that with this procedure
we can obtain more accurate solutions.
Besides this modification, our procedure to solve for the individual policy rules

is a standard application of projection methods as discussed in Judd (1992). In
particular, we use the following procedure.

• Construct a grid for the values of individual and aggregate state variables.

• Use ψ as the initial value for ψE
n . Given the value ψ, it is straightforward to

solve for c(ε, k, s) and k0(ε, k, s) from the first-order condition and the budget
constraint.

• At each grid point calculate k0,

• For all possible realizations of a0 and ε0 calculate βc(ε0, k0, s0)−γ (1 + r(s0)).
This requires calculatingm0 but this is easy since

−→
Γe and

−→
Γu are given.16 Next,

calculate E[βc(ε0, k0, s0)−γ (1 + r(s0))] by weighting the possibly outcomes with
the probabilities.

• Perform a projection to obtain a new estimate for ψE
n , bψ.

• Use a weighted average of bψ and ψ as a new initial value for ψE
n .

• Iterate until the coefficients have converged.

As pointed out by Reiter (2006), one doesn’t need the law of motion for m0 to
solve the individual problem. Using the parameterized cross-sectional distribution,
one could in principle use quadrature methods to directly calculate the values of
m0 when needed. By doing this one could in each iteration not only update the
individual policy rules but also the law of motion for the aggregate state variables.
This is likely to speed up the algorithm if it is on course towards the fixed point,
but the simultaneous updating might make the algorithm less stable.

16For details see A.1.
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4.4 Procedure to generate reference moments

The reference moments are used to ensure that the functional form of the cross-
sectional distribution is appropriate without using too many moments explicitly as
state variables. Note that an extra state variable increases the dimension of the grid
and the set of arguments of each function, whereas an extra reference moment does
not. Given the complexity of the system one has to rely on simulations to obtain
information about the shape of the distribution. Thus, we also use a simulation
procedure to obtain reference moments, but we propose a new simulation procedure
that substantially reduces the amount of sampling variation. This new simulation
procedure is discussed in Section 5.
The simulation generates a time series with for each observation a set of ob-

servations
←−−
mw,j

t for w ∈ {e, u} and j ∈ {NM + 1, · · · , NM}. The simplest way to
proceed would be to use the sample averages as the reference moments, but we let
the reference moments depend on a.17

4.5 Procedure to find cross-sectional distribution

At each grid point, we know the value of a and a−1 as well as the values of
←−−
mw,j

for w ∈ {e, u} and j ∈ {c, 1, · · · , NM}. We also have a set of higher-order reference
moments

←−−
mw,j, w ∈ {e, u} and j ∈ {NM + 1, · · · , NM}. Let P (k; ρw) be the expo-

nential of an N th
M
-order polynomial with coefficients ρw. One way to solve for ρw is

17Without complicating the algorithm, one could let the higher-order moments depend on all
the elements of the aggregate state variables, s, that is

←−−−
mw,j = Φwn (s), (10)

where Φwn is an n
th -order flexible functional form. One can obtain the coefficients of Φwn by a simple

regression and at each aggregate grid point it is trivial to use Φwn to determine the set of reference
moments. We have not done so, because Young (2005) points out that higher-order moments do
not exhibit a clear relationship on average to lower-order moments.
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to solve the following system of NM + 1 equations and unknowns.

∞Z
0

h
k −
←−−
mw,1

i
P (k; ρw)dk = 0

∞Z
0

h
(k −

←−−
mw,1)2 −

←−−
mw,2

i
P (k; ρw)dk = 0

· · ·
∞Z
0

h
(k −

←−−
mw,1)n2 −

←−−−−
mw,NM

i
P (k; ρw)dk = 0

∞Z
0

P (k; ρw)dk = 1

(11)

It is not clear what for practical applications the convergence properties towards
the solution are. In our experience, it is feasible to solve this system but also quite
costly. By adopting a different class of approximating polynomials one can reduce
this problem to a convex optimization problem for which algorithms with reliable
convergence properties exist.
In particular, we parameterize the density with the following N th

M
-order polyno-

mial:
P (k, ρw) =

ρw0 exp

⎛⎜⎜⎜⎜⎜⎝
ρw1

h
k −
←−−
mw,1

i
+

ρw2

∙³
k −
←−−
mw,1

´2
−
←−−
mw,2

¸
+ · · ·+

ρwNM

∙³
k −
←−−
mw,1

´NM −
←−−−−
mw,NM

¸
⎞⎟⎟⎟⎟⎟⎠ .

(12)

When the density is written in this particular way, the coefficients, except for
ρw0 , can be found with the following minimization routine:

min
ρw1 ,ρ

w
2 ,··· ,ρwN

M

∞Z
0

P (k, ρw)dk. (13)

The first-order conditions correspond exactly to the first NM equations in (11). ρw0
does not appear in these equations, but ρw0 is determined by the condition that the
density integrates to one.
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The (i, j) element of the matrix of second-order derivatives (times ρw0 ) is given
by

∞Z
0

∙³
k −
←−−
mw,1

´i
−
←−−
mw,i

¸ ∙³
k −
←−−
mw,1

´j
−
←−−
mw,j

¸
P (k, ρw)dk (14)

Thus, the Hessian is a covariance matrix and, thus, positive semi-definite. Con-
sequently, the solution found is a minimum. The fact that this is a convex opti-
mization problem means that one can rely on algorithms with reliable convergence
properties. Finding the coefficients of the approximating density by solving the op-
timization problem 13, turned out to be an order of magnitude faster than finding
the coefficients by solving the system of equations given in 11.18

4.6 Procedure to solve for aggregate laws of motion

The procedure is characterized by the following steps.

• We construct a grid with values for a, a−1,
−−→
mu,c
−1, and

←−−
mw,j for w ∈ {e, u} and

j ∈ {1, · · · , NM}. Here
−−→
mu,c
−1 is the fraction of unemployed agents that chose

k0 = 0 last period and
←−−
mw,j is the jth moment of the distribution of strictly-

positive capital holdings for agents with employment status w. Given values
for a, a−1, and

−−→
mu,c
−1, we can calculate

←−−
me,c and

←−−
mu,c. The grid values for this

period’s and last period’s aggregate state are the two possible realizations and
we use Chebyshev nodes to locate the grid points for the other state variables.
These are the "x-values".

• Using quadrature methods, we calculate end-of-period moments,
−−→
mw,j for

j ∈ {c, 1, · · · , NM}, at each grid point. These are the "y-values". The pa-
rameterization of the cross-sectional distribution discussed in the last section
makes it possible to use Simpson quadrature to calculate end-of-period mo-
ments.

• Using the y-values and the x-values, we perform a projection step to find the
coefficients of the approximating function,

−→
Γen(s;ψ

Γe
n ) and

−→
Γun(s;ψ

Γu
n ).

18We use the BGFS-method as implemented by Peter Spellucci. The upperbound of the Simpson
quadrature procedure is equal to 99.
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5 Simulating a panel with a non-random cross-
section

An important contribution of this paper is to develop a simulation procedure that
eliminates the amount of cross-sectional sampling variation in the simulation of a
panel. In the algorithm proposed here simulations play a relatively minor role and
are only used to get information on the shape of the cross-sectional distribution. But
this simulation procedure could be an important improvement for those algorithms
that do rely on simulations to determine the law of motion of the aggregate state
variables, such as, the algorithm used in Krusell and Smith (1998). This section
discusses the new procedure. Accuracy tests for this procedure are proposed in the
next section.
The idea of the simulation procedure proposed is to stay close to the idea that

there is a continuum of agents in the model. This implies that–conditional on the
realization of the aggregate shock–there is no cross-sectional sampling variation
with our simulation procedure, just as there is none in the true solution. The
standard procedure in the literature uses a large but finite number of agents, NN .
Typically a value of 10,000 is used. For the standard calibration this means that
the number of (un)employed agents is equal to 9,600 (400) and 9,000 (1,000) in
the boom and recession, respectively. Not surprisingly, given the small number of
unemployed agents, the sampling variation to determine the moments of the capital
holdings of the unemployed is enormous. In this model, the typical capital stock of an
unemployed agent is small and it does not matter very much that these moments are
estimated inaccurately. In models in which the minority is quantitatively important,
however, inaccurate calculation of their average moments is likely to affect aggregate
moments. For example, when the minority consists of entrepreneurs, then this
sampling variability could turn out to be fatal for the accuracy of the algorithm.
If one is interested in a particular subset of the economy then accurate estimation
of their moments is important independent of their importance in either number or
wealth levels.
The procedure works as follows

• Use a random number generator to draw a time series for the aggregate produc-
tivity shock, {at}NT

t=0. Although the procedures eliminates the cross-sectional
sampling variation, there is still sampling variation due to the stochastic nature
of the aggregate productivity shock.

• In period 1, the procedure starts with the following information. First, the
fractions of employed and unemployed agents with zero capital stock at the
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beginning of the period,
←−−
me,c
1 , and

←−−
mu,c
1 . Second, NM centralized moments

of the distribution of strictly positive beginning-of-period capital holdings for

the unemployed and the employed,
←−−
mw,j
1 for w ∈ {e, u} and j ∈ {1, · · · , NM}.

Since this procedure is relatively cheap and not part of a complex fixed-point
calculation one can set NM fairly high. We set NM = NM = 6, but these
parameters do not have to be equal to each other.

• The moments
←−−
mw,j
1 for w ∈ {e, u} and j ∈ {1, · · · , NM} determine the densities

of positive capital holdings for the employed and unemployed, P (k; ρe1) and
P (k; ρu1). That is, using the procedure discussed in Section 4.5, we find the
coefficients of the densities in period 1, ρe1 and ρu1 , so that the moments of
P (k; ρe1) and P (k; ρu1) correspond to the specified moments.

• Use P (k; ρe1), P (k; ρu1),
←−−
me,c
1 , and

←−−
mu,c
1 , i.e., the distribution of beginning-of-

period capital holdings together with the individual policy rules to calculate

the end-of-period moments,
−−→
mw,j
1 for w ∈ {e, u} and j ∈ {c, 1, · · · , NM}, and−−→

mu,c
1 . We use Simpson quadrature to do the integration.

• Use the values of the productivity shocks in period 1 and 2, i.e., a1 and a2,
together with the end-of-period moments for period 1 to calculate beginning-

of-period moments for period 2,
←−−
mw,j
2 and

←−−
mw,c
2 for w ∈ {e, u} and j ∈

{c, 1, · · · , NM}. Recall that this simply takes care of the effects of changes
in the employment status on the cross-sectional distribution. Details are given
in Appendix A.1.

• Use the procedure discussed in 4.5 to find the values for ρe2 and ρu2 .

• Repeat the procedure for the next period until t = NT .

To ensure that the sample used to obtain information about the cross-sectional
distribution has reached (or is at least close to) its ergodic distribution one should
disregard an initial set of observations. For the particular model we study in this
paper, we found that if the initial distribution is not close to the ergodic set, then
one has to disregard a large number of initial observations, since it can take quite a
while before the economy has reached the ergodic distribution. After some experi-
mentation, one has a good idea about a reasonable initial distribution and then this
is less of a problem.
For some policy functions, it may be the case that some higher-order moments of

the cross-sectional distribution do not exist or that higher-order moments are on an
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explosive path. In our numerical procedure we integrate over a finite range of capital
holdings so this problem cannot occur. To make sure that the numerical procedure
doesn’t hide diverging properties of the true model it is important to check whether
the results are robust to changing the upper bound of capital stock.

6 Results and accuracy

In this section, we discuss the accuracy of the aggregate policy function and the
parameterized cross-sectional distribution. We also discuss the accuracy of our sim-
ulation approach. Tests to check the accuracy of the individual policy function are
standard and these are discussed in A.3. Parameter settings of the numerical proce-
dure, such as the order of the polynomial and the number of grid points, are given
in A.2.

6.1 Parameter values

In the benchmark specification, parameter values are taken from Krusell and Smith
(1998) and are reported in Tables 1 and 2. The discount rate, coefficient of relative
risk aversion, share of capital in GDP, and the depreciation rate take on standard
values. Unemployed people are assumed to earn a fixed fraction of 15% of the
wage of the employed.19 The value of ∆a is equal to 0.01 so that productivity
in a boom, 1+∆a, is two percent above the value of productivity in a recession,
1-∆a. Business cycles are symmetric and the expected duration of staying in the
same regime is eight quarters. The unemployment rate in a boom, ug, is equal to
4% and the unemployment rate in a recession, ub, is equal to 10%. The average
unemployment duration is 2.5 quarters conditional on staying in a recession and
equal to 1.5 quarters conditional on staying in a boom. These features correspond
with the transition probabilities reported in Table 2.

Table 1: Benchmark calibration
Parameters β γ α δ μ ∆a

Values 0.99 1 0.36 0.025 0.15 0.01

19This is the only change relative to Krusell and Smith (1998) who set μ = 0. This has little
effect on the properties of the model but avoids the possibility of agents having zero consumption.
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Table 2: Transition probabilities
s,ε / s0, ε0 1-∆a, 0 1-∆a, 1 1+∆a, 0 1+∆a, 1
1-∆a, 0 0.525 0.35 0.03125 0.09375
1-∆a, 1 0.038889 0.836111 0.002083 0.122917
1+∆a, 0 0.09375 0.03125 0.291667 0.583333
1+∆a, 1 0.009155 0.115885 0.024306 0.850694

6.2 Aggregate policy function

In this section, we address the accuracy of the aggregate policy function. In Section
6.2.1, we establish the accuracy of the functional form taking the parameterization
of the cross-sectional distribution as given. In Section 6.2.2, we establish whether
more moments are needed as state variables. In Section 6.2.3, we describe a more
demanding accuracy test by taking a multi-period perspective.

6.2.1 Accuracy of functional form of aggregate policy function

The aggregate policy functions,
−→
Γen(a, a−1,m;ψ

Γe

n ) and
−→
Γun(a, a−1,m;ψ

Γu

n ) capture
the law of motion of the end-of-period values of the three moments that are used
as state variables. The approximation uses a Tensor product polynomial with at
most first-order terms for a and a−1, since a can take on only two values, and up to
second-order terms for the elements of m.
Accuracy is evaluated using a grid of the aggregate state variables on which the

three variables with continuous support can take on a fine range of values. In par-
ticular, {

←−−
me,1} = {35, 35.2, ..., 42.4}, {

←−−
mu,1} = {33.5, 33.7, ..., 41.5}, and {

−−→
mu,c
−1} =

{0, 0.05%, ..., 0.2%}. At each grid point, we use the values of m and the reference
moments to obtain the corresponding density exactly as they are calculated in the
algorithm. Whether this parameterization of the cross-sectional distribution is ac-
curate will be discussed below. Using the parameterized density and the individual
policy function, we calculate

−−→
mu,c,

−−→
me,1, and

−−→
mu,1. These explicitly calculated values

are compared with those generated by the approximations
−→
Γe(s) and

−→
Γu(s).

Table 3 reports for each of the three statistics the average and maximum absolute
% error across this fine set of grid points.20 The errors for the first-order moment
of the capital stock of the employed are small. The maximum error is 0.012%
and the average error is 0.0059%. The moments for the unemployed are somewhat
bigger, but still relatively small. In particular, the maximum error for the first-order

20Since
−−→
mu,c is a small number and already a percentage, we express the error for

−−→
mu,c in terms

of percentage points difference an not as a percentage.
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moment is equal to 0.92% and the average error is equal to 0.24%. This maximum
is attained when the value of

←−−
me,1 takes on the highest and

←−−
mu,1 the lowest grid

value, which is an unlikely if not impossible combination to occur. The average
and maximum error for

−−→
mu,c are 0.2 and 0.84 percentage points (pp), respectively.21

There are two reasons why these two numbers are not problematic. First, given that
both the actual and the approximation predict very low fractions of agents at the
constraint, these errors are of no importance and it wouldn’t make sense to spend
computing time on improving the part of

−→
Γu(s) that determines

−−→
mu,c. Second, in

Section 6.2.3, we show using a simulation that the economy doesn’t get close to
points in the state space where such large errors are observed. In fact, using a
simulation of 1,000 periods we find an average error of 0.0076 percentage points and
a maximum error of 0.071 percentage points.

Table 3: Accuracy of functional form of aggregate policy function
Moment approximation error

average maximum
−−→
me,1 5.9e-3% 1.2e-2%
−−→
mu,1 2.4e-1% 9.2e-1%
−−→
mu,c 2.0e-1pp 8.4e-1pp

6.2.2 Number of moments as state variables

The algorithm uses
−−→
mu,c
−1,
←−−
me,1, and

←−−
mu,1 as state variables and in this section we

analyze whether additional moments should be used as state variables. That is,
conditional on staying within the class of cross-sectional distributions pinned down
by the reference moments does it make a difference if additional moments are used as
state variables. In particular, we check whether changes in the second-order moment
matter for the key set of moments the agents predict, i.e.,

−−→
mu,c
−1,
←−−
me,1, and

←−−
mu,1. To

do this we calculate at each of the aggregate grid points
−−→
mu,c,

−−→
me,1, and

−−→
mu,1 in

two different ways. First, when
←−−
me,2 and

←−−
mu,2 take on its reference values, i.e., the

average observed in the simulated series (conditional on the value of a). Second,

when
←−−
me,2 and

←−−
mu,2 take on the maximum values observed in the simulation, but

the values of
←−−
me,j, and

←−−
mu,j for j > 2 are still equal to the reference moments.

21This maximum difference for
−−→
mu,c is also attained at the unlikely combination of a very high

value for
←−−
me,1 and very low value for

←−−
mu,1. At this grid point, the value from our approximation

is equal to 0.152% and the recalculated value is 0.996%.
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Table 4 reports for each of the three statistics the average and maximum absolute
% change across the grid points when the variance increases.

Table 4: Effect of increase in variance under reference distribution

Moment
average
change

maximum
change

−−→
me,1 5.2e-3% 1.1e-1%
−−→
mu,1 1.9e-1% 6.4e-1%
−−→
mu,c 1.6e-1pp 5.8e-1pp

The effect of the increase in the variance on
−−→
me,1 and

−−→
mu,1 is small, especially

considering that the increase in the variance is enormous. Again, the largest changes
occur at unlikely grid points and the changes for

−−→
mu,c are larger. Of course, it is not

surprising that an increase in the variance has an effect on the fraction of agents
choosing a zero capital stock, since the increase in the variance increases the fraction
of agents close to zero. Given the lack of importance of agents at the constraint, it
doesn’t make sense to add the second-order moment as a state variable.

6.2.3 Multi-period perspective

A word of caution is warranted in drawing conclusions about accuracy from the type
of one-period tests performed in the last two sections. The reason is that small errors
can accumulate over time if they do not average out. To investigate this issue we
compare values for

−−→
me,1,

−−→
mu,1, and

−−→
mu,c generated by two different procedures. First,

we generate these statistics with our simulation procedure that explicitly integrates
over the choices made by the agents in the economy. This procedure does not use our
approximations

−→
Γe(a, a−1,m) and

−→
Γu(a, a−1,m). Second, we generate these statistics

using only our approximations
−→
Γe(a, a−1,m) and

−→
Γu(a, a−1,m). It is important to

point out that this second procedure only uses
−→
Γe(a, a−1,m) and

−→
Γu(a, a−1,m), and

involves nothing more than basic algebra. That is, the output of our aggregate law
of motion will be used as the input in the next period.22 This comparison, thus, is
truly a multi-period accuracy test.
The results for

−−→
me,1,

−−→
mu,1, and

−−→
mu,c are plotted in Figures 1, 2, and 3 respec-

tively. The graphs make clear that our approximate aggregate laws of motion do a
magnificent job of tracking the movements of

−−→
me,1 and

−−→
mu,1. In fact, one cannot

even distinguish the moments generated by
−→
Γe(s) and

−→
Γu(s) from the corresponding

22After adjusting, of course, for the employment-status flows.
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Figure 1:
−−→
me,1 generated using the approximation

−→
Γe(s) or the simulation on a

continuum of agents

moments generated by explicit integration over the individual policy rules. Some
differences between the two procedures are visible for

−−→
mu,c, but our approximate

aggregate laws of motion track the changes in
−−→
mu,c well. As mentioned above, in

a sample of 1,000 observations the average and maximum absolute difference are
0.0076 and 0.071 percentage points, respectively.

6.3 The parameterized cross-sectional distribution

Parameterization of the cross-sectional distribution with a flexible functional form
serves two objectives in our algorithm. First, it enables the algorithm to calculate
the aggregate laws of motion,

−→
Γe(s) and

−→
Γu(s), with standard projection techniques,

since with a parameterized density (i) next period’s moments can be calculated on a
prespecified grid and (ii) next period’s moments can be calculated with quadrature
instead of the less accurate Monte Carlo techniques. Second, it makes it possi-
ble to simulate the economy without cross-sectional variation, which improves the
procedure to find the reference moments.
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Figure 2:
−−→
mu,1 generated using the approximation

−→
Γu(s) or the simulation on a

continuum of agents
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Figure 3:
−−→
mu,c generated using the approximation

−−→
Γu,c(s) or the simulation on a

continuum of agents
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An accurate representation of the cross-sectional distribution may not be neces-
sary for an accurate solution of the model. What is needed for an accurate solution
of the model are accurate aggregate laws of motion,

−→
Γe(s) and

−→
Γu(s), since the agent

is only interested in predicting future prices and to determine these one does not
need the complete distribution, just the set of statistics that determine prices, that
is,
−−→
mu,c
−1,
←−−
me,1, and

←−−
mu,1.

In this section, we take on the more demanding test to check whether the cross-
sectional parametrization, P (k; ρe) and P (k; ρu), are accurate. This is a more de-
manding test for the following reasons. First, it requires that all NM moments
used to pin down the distribution are accurately calculated instead of just the NM

moments that are used as state variables. More importantly, because the shape of
the cross-sectional distribution is endogenous and time-varying, the functional form
used must be flexible enough to capture the unknown and changing shapes.
To check the accuracy of our simulation procedure and, thus, the accuracy of

our parameterized densities, we do the following. We start in Section 6.3.1 with a
comparison between the simulated time path of moments generated by our parame-
terized densities, with those generated by a standard simulation using NN agents.
The alternative simulation is, of course, subject to sampling variation, but the ad-
vantage of the standard simulation procedure is that there is no functional restriction
on the cross-sectional distribution at all.
A second accuracy test consists of checking whether the results settle down if

NM increases. This is done in Section 6.3.2. The last accuracy test checks whether
moments of order higher than NM are calculated precisely.

6.3.1 Comparison between simulation procedures

In this section, we compare the moments generated by our new simulation approach
with those generated by the standard simulation procedure. The same individual
policy function is used under the two approaches. Note that both approaches are
subject to sampling variation of the aggregate shock, a. That seems unavoidable.
We plot time paths of generated moments when the value of a alternates between
1 − ∆a and 1 + ∆a for long periods of time so that the behavior of the economy
during a transition between regimes becomes clear. A set of initial observations is
discarded so that effects of the initial distribution are no longer present.23

Figure 4 reports the evolution of the end-of-period first moment of the employed−−→
me,1. Note that the group of the employed is at least 9,000. Although the sampling
variation is still visible in the graph, it is clear that it is small relative to the observed

23Details about the simulation procedure are given in Table 9.
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Figure 4:
−−→
me,1 generated using a finite and a continuum of agents

changes in the calculated moment.
Figures 5 and 6 show the evolution of the-end-of period first-order moment of

the unemployed
−−→
mu,1 and the fraction of unemployed agents at the borrowing con-

strained,
−−→
mu,c. The number of observations in this group is much smaller and the

sampling variation is substantial. Sampling variation is especially severe for the
fraction of agents at the constraint. In this economy, the number of agents at the
constraint is small, however, and the unemployed do not own much capital. Any
inaccuracy due to the high sampling variation is, thus, likely to be inconsequen-
tial for the properties of any aggregate series. But this is unlikely to carry over to
models in which a minority are more influential like, for example, in models with
entrepreneurs. Moreover, if one is explicitly interested in the behavior of the group
of unemployed then Monte Carlo simulations provide very noisy answers.24

A good way to document the higher accuracy of the new simulation procedure
is to look at the transition from the bad to the good regime. The new simulation
procedure clearly shows a sharp increase in the fraction of agents at the constraint
when the economy enters the good regime. In contrast, for the standard simulation
procedure this increase is not always present and there are many other spikes. The

24With only two types of agents one could oversample the underrepresented type. It is not clear
to us how one could do this when income has continuous support.
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true solution of the model should exhibit such a spike. In this economy, employed
agents become unemployed every period. When the economy moves from the high-
unemployment to the low-unemployment regime, then the flow out of employment
into unemployment drops sharply. This means that after the regime change, an
unemployed agent is much less likely to have been employed in the recent past.
Consequently, after a change to the low-unemployment regime, a larger fraction of
unemployment agents will have a zero capital stock.

6.3.2 Increasing NM

In this paper, we use NM moments to characterize the cross-sectional distribution
andNM of these are state variables. In Section 6.2.2, we analyzed whether additional
moments are necessary as state variable. Here we address the question whether
increasing NM makes a difference.
To check the importance of NM , we simulate an economy using different values

of NM to parameterize the cross section. We check when the results settle down.
The idea of the test is made clear in Figures 7 and 8 that plot the second and
sixth-order moment of the distribution for the unemployed for different values of
NM . The figures make clear that NM has to be sufficiently high. When we increase
NM from 2 to 4 then the generated moments change enormously. A further increase
from 4 to 5 still causes some changes, but when we increase NM from 5 to 6 then
the changes are very minor.

Table 5 reports the results for all moments. It corroborates the results from the
figures. Using a value of NM equal to 2 is clearly way too low to generate an accurate
set of moments. An increase in NM from 5 to 6, however, only causes minor changes

in the generated moments. For example, the average change for
←−−
me,2 is only 0.25%

and the average change for
←−−
mu,2 is equally small. The average (maximum) change

for
←−−
me,6 and

←−−
mu,6 are equal to 2.33 (3.67) and 2.35 (3.72), respectively. These are,

thus, somewhat, higher, but as made clear in the graph, these errors are low relative
to the observed variation in the moments.

6.3.3 The shape of the distribution

There are two aspects to our approximation of the cross-sectional distribution. First,
the class of functions used and second the value of NM . The coefficients are chosen
so that the first NM moments are correct. But higher-order moments are implied by
the values of the first NM moments and the class of functions chosen. For example,
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Table 5: The effect of increasing NM

Moment % change relative to NM = 6
average maximum

NM = 2 NM = 4 NM = 5 NM = 2 NM = 4 NM = 5
←−−
me,2 32.9% 2.5% 0.25% 35.9% 2.8% 0.54%
←−−
me,3 90.2% 12.5% 1.5% 95.1% 14.5% 2.4%
←−−
me,4 60.2% 6.5% 1.4% 63.6% 7.9% 2.2%
←−−
me,5 90.6% 9.7% 2.4% 95.0% 14/-% 3.5%
←−−
me,6 78.0% 7.1% 2.3% 80.9% 12.1% 3.7%
←−−
mu,2 32.2% 2.4% 0.25% 36.0% 2.8% 0.55%
←−−
mu,3 91.9% 12.6% 1.5% 95.5% 14.6% 2.4%
←−−
mu,4 60.3% 6.6% 1.4% 63.6% 7.9% 2.2%
←−−
mu,5 92.0% 9.2% 2.4% 95.4% 13.1% 3.5%
←−−
mu,6 78.0% 6.7% 2.4% 80.8% 11.2% 3.7%

when one uses a normal distribution, then one can get any mean and variance, but
skewness and kurtosis are pinned down.
So for any finite value ofNM , the class of approximating polynomials used impose

certain restrictions on the function form. Here we check those restrictions along a
simulated time path by comparing the jth-order moments for j > NM implied by the
parameterized cross-section with those calculated by integration of the individual’s
policy function.
In particular, we do the following. Draw a long time series for the aggregate

productivity shock, a. Let ρe1 and ρw1 be the parameters of the cross-sectional dis-

tribution in the first period and let
←−−
me,c
1 and

←−−
mu,c
1 be the fraction of employed and

unemployed agents with zero capital holdings at the beginning of the period. With
this information, we calculate the end-of-period values of the first NM moments.25

−−→
mw,1
1 =

∞Z
0

k(εw,k, s) P (k; ρw1 )dk, w ∈ {e, u}. (15)

25By indicating in bold the variable that we are integrating over, we make clear that we are
integrating over the argument of the policy function not the outcome of the policy function.
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−−→
mw,j
1 =

∞Z
0

∙
k(εw,k, s)−

−−→
mw,1
1

¸j
P (k; ρw1 )dk, 1 < j ≤ NM , w ∈ {e, u}. (16)

In exactly the same way, we calculate higher-order moments. That is,

−−→
mw,j
1 =

∞Z
0

∙
k(εw,k, s)−

−−→
mw,1
1

¸j
P (k; ρw1 )dk, j > NM , w ∈ {e, u}. (17)

Now we check whether these higher-order moments (j > NM) are similar to the mo-
ments implied by the parameterized cross-sectional distribution. To do this, we use
the firstNM end-of-period moments to calculate the coefficients of the corresponding
approximating density,

−→
ρe1 and

−→
ρu1 . Next, we calculate higher-order moments implied

by this parameterized cross-sectional density. That is,

−→
=j
1 =

∞Z
0

∙
k −
−−→
mw,1
1

¸j
P (k;

−→
ρw1 )dk, j > NM , w ∈ {e, u}. (18)

If the shape of the cross-sectional distribution is not too restrictive, then the implied
higher-order moments correspond to the explicitly calculated higher-order moments.
We perform this exercise using values for NM equal to 2 and 6 and then calculate

the average and maximum error observed along the simulation of 2,000 observations
with the error term defined as follows:26¯̄̄←−−=w,n −←−−mw,n

¯̄̄
←−−
mw,n

.

Tables 6 and 7 report the errors for NM = 2 and NM = 6, respectively. When
NM is equal to 2, then observed error terms are large for the odd-numbered mo-
ments. That is, the shape of the distribution implied by our class of approximating
functions doesn’t capture the correct shape of the distribution when a second-order
approximation is used. The results are much better when NM is equal to 6. Now we
observe much smaller errors. The largest errors are for the 10-th order moment of
the capital stock of the unemployed. For this moment, the maximum error is 1.3%,
which is not excessively high.
26Note that the accuracy measure is actually defined for beginning-of-period moments, but this

is simply a transformation of end-of-period values taking into consideration the change in the
employment status.
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Table 6: Implied and actual higher-order moments; NM = 2
NM= 2 Employed Unemployed
Error (%) Average Max Average Max
←−−−
=w,3−

←−−−
mw,3

←−−−
mw,3

5.6% 9.1% 7.0% 15.3%
←−−−
=w,4−

←−−−
mw,4

←−−−
mw,4

2.8E-1% 3.2E-1% 2.1E-1% 6.4E-1%
←−−−
=w,5−

←−−−
mw,5

←−−−
mw,5

4.7% 7.5% 5.6% 11.7%
←−−−
=w,6−

←−−−
mw,6

←−−−
mw,6

5.7E-1% 7.5E-1% 9.3E-1% 2.6%
←−−−
=w,7−

←−−−
mw,7

←−−−
mw,7

3.7% 6.1% 5.3% 10.3%
←−−−
=w,8−

←−−−
mw,8

←−−−
mw,8

6.5E-1 1.2% 2.3% 5.7%
←−−−
=w,9−

←−−−
mw,9

←−−−
mw,9

2.9% 5.0% 5.6% 10.3%
←−−−
=w,10−

←−−−−
mw,10

←−−−−
mw,10

5.6E-1% 1.7% 4.0% 9.2%

7 Concluding comments

In this paper, we have developed a new algorithm to solve models with heterogeneous
agents and aggregate uncertainty. Given the rising interest in such models, it is
important to have an alternative to the algorithm that is currently predominantly
used, especially since it relies on simulation procedures that–given what we know
from other numerical problems–are likely to be unsuitable for some models. We
have shown how to implement the algorithm for the model developed in Krusell and
Smith (1998). This is a relatively simple model and not surprisingly the properties
of the model calculated with our solution procedure are very similar to the ones
obtained with an algorithm based on a Monte Carlo simulation procedure. We leave
it for future research to see whether the same is true for more complex models.
We also plan to investigate the importance of replacing the standard Monte

Carlo simulation procedure with our simulation procedure in algorithms that use
a simulation procedure to calculate aggregate laws of motion. This improvement
might turn out to be key in models in which a large fraction of aggregate wealth is
held by a small group of the population such as entrepreneurs.
But even if standard Monte Carlo simulation procedures generate accurate ag-

gregate laws of motion, they clearly do not describe well the behavior of agents that
are few in number. If one wants to use a model with heterogeneous agents to study
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Table 7: Implied and actual higher-order moments; NM = 6
NM= 6 Employed Unemployed
Error (%) Average Max Average Max
←−−−
=w,7−

←−−−
mw,7

←−−−
mw,7

2.8E-2% 7.3E-1% 1.0E-1% 2.2E-1%
←−−−
=w,8−

←−−−
mw,8

←−−−
mw,8

4.3E-2% 1.0E-1% 1.8E-1% 4.3E-1%
←−−−
=w,9−

←−−−
mw,9

←−−−
mw,9

9.3E-2% 2.3E-1% 3.8E-1% 8.8E-1%
←−−−
=w,10−

←−−−−
mw,10

←−−−−
mw,10

1.3E-1% 3.1E-1% 5.6E-1% 1.3%

the behavior of sub groups, then our more accurate solution should be considered.

A Appendix

A.1 Details on Transition equations

This appendix describes how the change in employment status that occurs at the
beginning of each period affects the moments of the cross-sectional distribution. Al-
though, we use centralized moments as state variables, we actually do not use cen-
tralized moments here. It is easier to first do the transformation for non-centralized
moments and then calculate the centralized moments.

From beginning to end-of-period. Let ga,w be the mass of agents with employ-
ment status w when the economy is in regime a. At the beginning of the period we
have to following groups of agents:

1. Unemployed with k = 0, whose mass is equal to
←−−
mu,cga,u

2. Unemployed with k > 0, whose mass is equal to
³
1−←−−mu,c

´
ga,u

3. Employed with k = 0, whose mass is equal to
←−−
me,cga,e

4. Employed with k > 0, whose mass is equal to
³
1−←−−me,c

´
ga,e

Agents in group #1 choose k0 = 0, while agents in group #2 either set k0 = 0
or k0 > 0. Let the fraction of agents that set k0 = 0 be equal to ζk

0=0
u,k>0. Thus, the

fraction of unemployed agents that set k0 = 0, is equal to
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−−→
mu,c =

←−−
mu,c + ζk

0=0
u,k>0(1−

←−−
mu,c).

The ith moment of the capital stock chosen by agents in group #2 is equal to

μk
0≥0,i
u,k>0 = ζk

0=0
u,k>0 × 0i + (1− ζk

0=0
u,k>0)×

−−→
mu,i.

Thus,

−−→
mu,i =

μk
0≥0,i
u,k>0

(1− ζk
0=0
u,k>0)

where μk
0≥0,i
u,k>0 =

R +∞
0

k(0, k, s)iP (k, ρu)dk.
−−→
me,c = 0, since employed agents never choose a zero capital stock. To calculate−−→

me,i, we need the (mean of the) capital stock chosen by those in group #3, i.e.,

μk
0>0,i
e,k=0 = k(1, 0, s)i,

and the mean of the capital stock chosen by those in group 4, i.e.,

μk
0>0,i
e,k>0 =

Z +∞

0

k(e, k, s)iP (k, ρe)dk.

Weighting the two means gives

−−→
me,i =

←−−
me,cμk

0>0,i
e,k=0 + (1−

←−−
me,c)μk

0>0,i
e,k>0

←−−
me,c + (1−←−−me,c)

From end-of-period to beginning of next period. At the end of the current
period, we have to following groups of agents:

1. Unemployed with k0 = 0, whose mass is equal to
−−→
mu,cga,u

2. Unemployed with k0 > 0, whose mass is equal to (1−−−→mu,c)ga,u

3. Employed with k0 > 0, whose mass is equal to ga,e

gww0,aa0 stands the mass of agents with employment status w that have employ-
ment status w0 in the next period period, conditional on the values of a and a0. For
all combinations of a and a0 we have,
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guu,aa0 + geu,aa0 + gue,aa0 + gee,aa0 = 1.

The number of agents with k0 = 0 as a fraction of all agents that are unemployed
in the following period is equal to

←−−
mu,c0 =

guu,aa0

guu,aa0 + geu,aa0

−−→
mu,c.

and the fraction of all employed agents at the constraint is equal to

←−−
me,c0 =

gue,aa0

gue,aa0 + gee,aa0

−−→
mu,c

Next period’s ith-order moments of the distributions with strictly-positive capital
holdings are equal to

←−−
mu,i0 =

guu,aa0(1−
−−→
mu,c)

−−→
mu,i + geu,aa0

−−→
me,i

guu,aa0(1−
−−→
mu,c) + geu,aa0

and
←−−
me,i0 =

gue,aa0(1−
−−→
mu,c)

−−→
mu,i + gee,aa0

−−→
me,i

gue,aa0(1−
−−→
mu,c) + gee,aa0

A.2 Parameters of numerical procedure

Tables 8 and 9 report the parameter settings used in implementing the numerical
procedure.

Table 8: Construction of the grid

State variables k, ε, a−1, a,
−−→
mu,c
−1,
←−−
me,1,

←−−
mu,1

Number of grid points
Mk = 50,M−−−→

mu,c
−1
= 5, M←−−

me,1 = 5,M←−−−
mu,1 = 5

Mε =Ma =Ma−1 = 2

range of values

k : [0, 99]
M−−−→

mu,c
−1
: [0, 0.002]

M←−−
me,1 : [35, 42.4]

M←−−−
mu,1 : [33.5, 41.5]

location of points Chebyshev nodes
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Table 9: Simulation procedure

Number of agents
Non-random cross-section: ∞
Monte-Carlo: 10,000 agents

Number of periods 2,000 (first 1,000 discarded)
Initial distribution Stationary distribution in the bad state

A.3 Accuracy individual policy function

In this section, we discuss the accuracy of the numerical solution for the individual
policy function, taking as given the transition laws for the cross-sectional distribu-
tion. We check the accuracy of our policy function using a grid of capital holdings
that is much more dense than the one used to obtain the numerical solution and the
grid points for the aggregate state variables. In particular, we use k={0, 0.1, 0.2,
· · · , 99}. At each grid point, we first calculate the consumption level implied by the
numerical approximation, i.e., capp, and next period’s capital.
Next, we calculate the conditional expectation, not by using the approximation,

but by explicit (numerical) integration of βc0−γ(r0 + 1 − δ) over the possible real-
izations of a0 and ε0. The numerical approximation for the policy function is used
to evaluate next period’s consumption values for the different realizations of the
idiosyncratic and aggregate random variable. Let c be the current-period value of
consumption implied by the explicitly calculated conditional expectation on that
grid point. Accuracy is measured using |c − capp|/capp. We calculate the average
and the maximum across these approximation errors. Table 10 reports the average
across aggregate grid points and the maximum. Even the maximum errors are small
for most grid points. The average of the maximum errors for the unemployed is
equal to 0.67%. For the employed errors are substantially smaller.

Table 10: Euler equation error
Unemployed Employed

average maximum average maximum
0.17% 5.9% 0.15% 1.1%

The maximum percentage error for the unemployed is equal to 5.9%. Such a max-
imum error is high, but it occurs when consumption takes on a low value, namely
0.690 based on our approximation and 0.651 based on the explicitly calculated con-
ditional expectation. These values are low relative to the average consumption value
of the unemployed, which is equal to 2.77.
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