The use of longitudinal data in microeconometric studies is commonly motivated by the potential to capture excess heterogeneity between units. The first major rationale for this is to obtain parameter estimates that are free from bias induced by unobserved crosssectional heterogeneity. A second reason for their employment is the desire to decompose the variance of latent components into structural and transitory contributions. The former incentive is typically related to taking a fixed-effect view on the processes that drive the outcome of interest in the sense of leaving the distribution of unobserved unit-specific factors unspecified. The error-component formulation or random-effect approach is commonly associated with stronger restrictions on the distribution of the permanent latent component.

) and Arellano and Bonhomme (2010), for example, provide ellaborate discussions on this and report empirical results that support their claims. In light of this, there has been renewed attention toward identifying the distribution of random coefficients in linear panel data models.

In this paper, I complement such a strategy by considering what can be learned about common parameters in, possibly dynamic, panel data models with nonparametricallyspecified excess heterogeneity. Here, the fixed-effect paradigm-that is, circumventing the estimation of the model's idiosyncratic components-allows for a very rich pattern of unobserved heterogeneity in a manner that leaves its distribution essentially unrestricted. The heterogenous effects may enter non-additively and can be time-varying. This leads to a framework in which the conventional incidental parameters are replaced by incidental functions, and traditional first-differencing has to make way for local firstdifferencing.
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first-differencing in panel data models with incidental functions koen jochmans * core and brown university This version: October, 20 2010 abstract I discuss the fixed-effect estimation of panel data models with time-varying excess heterogeneity across cross-sectional units. These latent components are not given a parametric form. A modification to traditional first-differencing is motivated which, asymptotically, removes the permanent unobserved heterogeneity from the differenced model. Conventional estimation techniques can then be readily applied. Distribution theory for a kernel-weighted GMM estimator under large-n and fixed-T asymptotics is developed. The estimator is put to work in a series of numerical experiments to static and dynamic models. who proposed a kernel-weighted conditional-likelihood estimator for a dynamic logit model with time-varying covariates. In fact, this connection immediately suggests that the proposed approach to dealing with incidental functions can be generalized to all existing fixed-effect estimators, such as conditional maximum-likelihood and maximum score, for example. This is easy to see, but working out the details for the general case would come at the cost of reduced transparency.

This paper has four more sections. The first of these provides details on the model of interest and the local-differencing strategy, and states the GMM estimator that will be the focus of the analysis. The next section contains large-sample theory. The last section before concluding gives results from a series of Monte Carlo exercises.

ii the model, local first differencing, and a gmm estimator Suppose we are in possession of n independent sequences of T observations on the variables (y, x, z, v). Denote the tth observation for unit i = 1, . . . , n by (y it , x it , z it , v it ) and let ℓ(a) be the dimension of the vector a. Assume that the observations on the scalar random variable y were generated through a model of the form

y it = x ′ it θ 0 + ξ it , ξ it = ϑ i (v it ) + ε it . (2.1)
Here, ε it is a zero mean random disturbance, θ 0 is the true value of the parameter vector of interest, and the unit-specific functions ϑ i : R ℓ(v) → R capture the, potentially heterogeneous, impact of the covariates v on y. These functions are assumed to be smooth in their arguments, but are otherwise unmodelled and allowed to be random across i. Remaining loyal to the fixed-effect modelling approach, they are draws from an unknown probability distribution that may depend on the realization of the covariates and, possibly, initial conditions, but not on ε. Feedback from y t to future x t is allowed for, accommodating dynamic models with predetermined regressors. More generally, x is allowed to be endogenous in the cross-sectional sense of being contemporaneously correlated with ε. When strict exogeneity is lacking, z serves as instrumental variables.

No restriction is put on the statistical relationship between v and (x, ε) over time.

The fact that ϑ i (v) may be random after conditioning on a realization of its argument distinguishes (2.1) from a panel data version of a nonparametric functional-coefficient model as considered by [START_REF] Hastie | Varying-coefficient models[END_REF]. It is also different from the random-coefficient model of [START_REF] Chamberlain | Efficiency bounds for semiparametric regression[END_REF] and [START_REF] Arellano | Identifying distributional characteristics in random coefficients panel data models[END_REF], where ϑ i (v) is a linear combination of exogenous v and unit-specific coefficients. Here, the ϑ i are unspecified incidental functions of covariates, which may be predetermined or [3] endogenous. Thus, (2.1) generalizes the standard linear fixed-effect model by allowing for a much richer pattern of unobserved unit-specific factors; notice that this benchmark model is obtained on assuming ϑ i (v) to be constant in v.

To construct an estimator of θ 0 , start by stacking observations over time to obtain

y i ≡ (y i1 , . . . , y iT ) ′ , X i ≡ (x i1 , . . . , x iT ) ′ , V i ≡ (v i1 , . . . , v iT ) ′ , ε i ≡ (ε i1 , . . . , ε iT ) ′ , and ξ i ≡ (ξ i1 , . . . , ξ iT ) ′ ; let ϑ i (V i ) ≡ (ϑ i (v i1 ), . . . , ϑ i (v iT )) ′ .
Write D for the (T -1)× T matrix that performs first-differencing on the above arrays. For example, Dy i = (∆y i2 , . . . , ∆y iT ) ′ , where ∆ ≡ 1 -L and L denotes the lag operator. Then,

y i = X i θ 0 + ξ i , ξ i = ϑ i (V i ) + ε i , (2.2) and Dy i = DX i θ 0 + Dξ i for Dξ i = Dϑ i (V i ) + Dε i . Recall that, when ϑ i (v) is constant, Dϑ i (V i ) = 0
, and an efficient GMM estimator of θ 0 that is based on data in firstdifferences minimizes the quadratic form

1 n n i=1 Z ′ i D(y i -X i θ) ′ G 1 n n i=1 Z ′ i D(y i -X i θ) (2.3)
for a well-chosen weight matrix G; see [START_REF] Holtz-Eakin | Estimating vector autoregressions with panel data[END_REF] and [START_REF] Arellano | Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations[END_REF]. Throughout, Z i is an instrument matrix of conformable dimension that contains z i2 , . . . , z iT . The latter can be lagged levels of predetermined regressors, all time-series realizations of exogenous covariates, and, possibly, external instrumental variables. Of course, simple differencing does not remove ϑ i (V i ) from (2.2) more generally, and E Z ′ D(y -Xθ 0 ) = 0 unless z t and ∆ϑ(v t ) are uncorrelated.1 However, by smoothness of

ϑ i , ∆y it = ∆x ′ it θ 0 + ∆ϑ i (v it ) + ∆ε it → ∆x ′ it θ 0 + ∆ε it as ∆v it → 0. Let ω v (v) ≡ δ(v -v) for δ : R ℓ(v) → R
a multivariate version of Dirac's delta.2 Then, the conditional moment condition E z t ω 0 (∆v t )(∆y t -∆x ′ t θ 0 ) = 0, which is free of incidental functions, holds for t = 2, . . . , T . This suggest constructing an estimator based on an empirical counterpart of these conditional moment conditions. A fruitful way to proceed is to replace ω 0 (∆v t ) by a smoother such as a kernel weight, and to make the appropriate changes to (2.3).

To do so, partition the vector v as (v (c) , v (d) ), where v (c) and v (d) refer to the continuously-distributed components and the discrete components of v, respectively. Let ℓ ≡ ℓ(v (c) ), let k : R ℓ → R be a kernel with associated bandwidth σ n , and write 1(a) for the indicator function for the event a. A kernel weight takes the form

w it ≡ 1 σ ℓ n k ∆v (c) it σ n 1(∆v (d) it = 0). Form the diagonal matrices W i ≡ diag(w i2 , . . . , w iT ) and Ω v ≡ diag(ω v (v 2 ), . . . , ω v (v T )).
A local GMM estimator based on the moment conditions

E Z ′ Ω 0 D(y -Xθ 0 ) = E Z ′ Ω 0 Dε = 0 (2.4) is obtained by introducing W i in (2.
3). Because the weights do not distort the linearity of this objective function, the local estimator is available in closed form. Moreover, it is given by

θ n ≡ S ′ ZX GS ZX -1 S ′ ZX GS Zy (2.5)
for the matrices

S ZX ≡ 1 n n i=1 Z ′ i W i DX i and S Zy ≡ 1 n n i=1 Z ′ i W i Dy i .
Thus, computing θ n from the data boils down to first assigning a weight to each firstdifferenced observation and then proceeding as one would do with the conventional GMM estimator of choice. Under the regularity conditions provided below, this approach is asymptotically equivalent to using only first-differenced observations for which ∆v it lies in a shrinking neighborhood of zero. Observe that (2.5) reduces to a weighted least-squares estimator on setting Z i = DX i .

One attractive consequence of working with data in first differences is that it is straightforward to deal with unbalanced panel data. Nevertheless, estimation based on weighted versions of orthogonal deviations [START_REF] Arellano | Another look at the instrumental variable estimation of errorcomponents models[END_REF] or deviations from within-group means is also possible. To illustrate, let

ẇs it ≡ 1 σ ℓ n k v (c) it -v (c) is σ n 1(v (d) it = v (d)
is ), choose k to be symmetric, and collect the ẇs it in the symmetric T × T matrix Ẇi , the (t, s)th element of this matrix being ẇs it . A local GMM estimator that is based on forward orthogonal deviations follows on replacing S XZ and S Xy above by the matrices

[5] n -1 n i=1 Z ′ i (DD ′ ) -1/2 D Ẇi X i and n -1 n i=1 Z ′ i (DD ′ ) -1/2 D Ẇi y i , respectively.
A weighted within-group estimator, on the other hand, would take the form arg min θ n -1 n i=1 (y i -

X i θ) ′ Ẇi D ′ (DD ′ ) -1 D Ẇi (y i -X i θ).
The matrix D ′ (DD ′ ) -1 D may be recalled to be the traditional within-group operator.3 Distribution theory for both these estimators can be derived in an analogous fashion as for θ n . However, simulation results suggest that neither outperforms its first-differenced counterpart in small samples. The reason for this is the additional noise induced by taking linear combinations of kernel-weighted quantities.

iii large-sample behavior of the gmm estimator

Let us now consider the behavior of θ n as n grows large. For vectors a and b for which ℓ(a) = ℓ(b), let a denote the Euclidean norm, let |a| ≡ ℓ(a) j=1 a (j) , and let b a ≡ ℓ(a) j=1 (b (j) ) a (j) throughout. The notation • will also be used to indicate the matrix norm.

Start by imposing the following conditions.

Assumption 1 (Regularities). The data array {y

i , x i , z i , v i } n i=1 is a random sample. For t = 2, . . . , T , E [ω 0 (∆v t ) z t ∆ε t ] is finite. For v in a neighborhood of zero, E [Z ′ Ω v DX]
has full column rank. The moment condition E [Z ′ Ω 0 Dε] = 0 holds.

Assumption 1 states the sampling scheme and contains conventional requirements for linear GMM estimators. Moreover, it provides a mild dominance condition on the vector of population moments and ensures identification of θ 0 by imposing a rank condition and postulating instrument validity.

The next assumption demands smoothness from the conditional moments that are being approximated by the kernel weighting and from the conditional densities of ∆v (c) t given realizations of ∆v (d) t ; refer to these densities by f t and to their respective supports by V t .

Assumption 2 (Smoothness). For t = 2, . . . , T , f t (v (c) |v (d) ) is bounded from above for all v in V t and is strictly positive for v in a neighborhood of zero. In addition, f t (v (c) |v (d) ) and E [ω v (∆v t )z t ∆ξ t ] are k-times continuously differentiable in v (c) for all v in a neighborhood of zero, where k ≥ 2 is an integer.

When combined with a well-behaved kernel and bandwidth, Assumption 2 implies that the bias induced by weighting observations by w it disappears asymptotically. It could be relaxed slightly, for example by requiring the bounded away from zero condition on f t to hold only for some but not all t = 2, . . . , T , but this would needlessly cloud the exposition.

What is meant exactly by a well-behaved kernel and bandwidth is the topic of the third assumption.

Assumption 3 (Kernel weights). The kernel, k, is bounded on its support and of kth-order. Moreover, k(η) dη = 1, η j k(η) dη = 0 for |j| = 1, . . . , k -1, and

η j k(η) dη < ∞ for |j| in {0, k}.
The bandwidth, σ n , is both non-negative and

O(1) as n → ∞, while nσ ℓ n → ∞ and nσ ℓ n σ k n → 0.
The required degree of smoothness is increasing in the number of continuous components of v it , ℓ. It is well known that, although they generally increase finite-sample bias, discrete covariates do not retard the speed of convergence of Nadaraya-Watson type kernel estimator of conditional mean functions, and the same conclusion may be drawn here.

It can be noted that an alternative to working with empirical cell probabilities for the discrete components of ∆v t would be to smooth over these variables as well. Such an approach may well be beneficial in small samples when the support of ∆v (d) t is large. Another refinement would be to work with regressor-specific bandwidths, that is, a vector-valued σ n . I abstract away from both of these possibilities for fine tuning here as they do not affect the asymptotic behavior of θ n , nor will it be possible at this stage to provide particular guidelines on how to get the most out of these additional degrees of freedom.

Assumptions 1-3 are more than enough to guarantee the consistency of θ n for θ 0 as n → ∞. To facilitate the exposition, let F 1 be a matrix consisting of T -1 verticallystacked blocks. The (t -1)th such block is given by ι ℓ(zt) ι ′ ℓ(∆xt) f t (0|0) for ι a a vector of ones of length a. On letting ⊙ denote the Schur product,

S ZX p → Σ ZX ≡ E [Z ′ Ω 0 DX] ⊙ F 1 , S Zy p → Σ Xy ≡ E [Z ′ Ω 0 Dy] ⊙ F 1 ,
and

S Zξ (θ) ≡ S Zy -S ZX θ p → Σ Zξ (θ) ≡ Σ Zy -Σ ZX θ.
Write S Zξ and Σ Zξ for S Zξ (θ 0 ) and Σ Zξ (θ 0 ), respectively. The consistency result then reads as follows.

Theorem 1 (Consistency). Let Assumptions 1-3 hold. If G and Γ are positive-definite matrices so that

G p → Γ as n → ∞ and Γ is non-stochastic, then θ n p → θ 0 as n → ∞. [7] Proof. Recall that S Zξ = n -1 n i=1 Z ′ i W i Dξ i , so θ n -θ 0 = S ′ ZX GS ZX -1 S ′ ZX GS Zξ .
Given that G converges to a positive-definite and non-stochastic matrix, it suffices to show that, as n → ∞, (i) S ZX p → Σ ZX ; and (ii) S Zξ p → 0. To see that (i) holds, observe that standard kernel-smoothing arguments yield

1 σ ℓ n E z t ∆x ′ t k ∆v (c) t σ n 1(∆v (d) t = 0) = E ω 0 (∆v t )z t ∆x ′ t f t (0|0) + O(σ ℓ n ) for t = 2, . . . , T . As E [S ZX ] is obtained on stacking such terms over t, it follows that E [S XZ ] -Σ XZ = O(σ ℓ n ). This bias goes to zero because lim n→∞ σ ℓ n = 0, that is, E [S ZX ] ≡ lim n→∞ E [S ZX ] = Σ ZX . Furthermore, by a standard law of large numbers, S XZ -E [S XZ ] = O p (1). Statement (i) follows.
By the same reasoning, S Zξ -Σ Zξ = O p (1). Instrument validity implies that Σ Zξ = 0. The proof is complete.

Establishing asymptotic normality of θ n around θ 0 requires the bias induced by kernel weighting to go to zero at a sufficiently fast rate, and the existence of higherorder conditional moments. For the former requirement to be satisfied, the current assumptions suffice. The latter is dealt with now. Let f ts denote the joint density of (∆v

(c) t , ∆v (c)
s ) given realizations of (∆v

(d) t , ∆v (d) s ).
Assumption 4 (Higher-order moments). For t, s in 2, . . . , T , f ts (v

(c) 1 , v (c) 2 |v (d) 1 , v (d) 2 ) is bounded from above for all (v 1 , v 2 ) in V t ⊗ V s and is strictly positive for (v 1 , v 2 ) in a neighborhood of zero. For all such (t, s), E [z t ω v 1 (∆v t )∆ξ t ∆ξ s ω v 2 (∆v s )z ′ s ] and f ts (v (c) 1 , v (c) 2 |v (d) 1 , v (d) 2 ) are k-times continuously differentiable in (v (c) 1 , v (c)
2 ), and the ab-

solute moments E [ω v (∆v t ) z t ∆x ′ t 3 ] and E [ω v (∆v t ) z t ∆y t 3 ] are finite. The matrix E [Z ′ Ω 0 Dεε ′ D ′ Ω 0 Z] is positive definite and nonsingular.
This condition will ensure that, when properly scaled, S Zξ converges to a zero-mean Gaussian process.

In line with previously introduced notation, let F 2 be an T t=2 ℓ(z t ) × T t=2 ℓ(z t ) matrix consisting of (T -1) 2 blocks, with the (t-1, s-1)th block given by ι

ℓ(zt) ι ′ ℓ(zs) f ts (0|0). Define Υ ≡ E Z ′ Ω 0 Dεε ′ D ′ Ω 0 Z ⊙ F 2 k(η) 2 dη. (3.6)
Then, under Assumptions 1-4, nσ ℓ n S Zξ d → N (0, Υ). From this, the next theorem can be derived.

[8]

Theorem 2 (Normality). Let Assumptions 1-4 hold. If G and Γ are positive-definite matrices so that G p → Γ as n → ∞ and Γ is non-stochastic, then

nσ ℓ n θ n -θ 0 d → N 0, V (Γ) for V (Γ) ≡ Σ ′ ZX ΓΣ ZX -1 Σ ′ ZX Γ ′ ΥΓΣ ZX Σ ′ ZX ΓΣ ZX -1 as n → ∞. Proof. Given that S ZX p → Σ ZX and G p → Γ as n → ∞, it remains to show that (i) nσ ℓ n E [S Zξ ] = O(1); and (ii) nσ ℓ n S Zξ -E [S Zξ ] d → N (0, Υ).
Slutzsky's theorem will take us the rest of the way.

Commence with (i). By a kth-order expansion of a typical block of E [S Zξ ] around ∆v

(c) t = 0, 1 σ ℓ n E z t ∆ξ t k ∆v (c) t σ n 1(∆v (d) t = 0) = E ω 0 (∆v t )z t ∆ε t f t (0|0) + O(σ k n ).
The first right-hand side term above is zero by instrument validity. The order of magnitude of the remainder term follows by virtue of the higher-order kernel and the associated smoothness conditions. Consequently,

nσ ℓ n E [S Zξ ] = nσ ℓ n O(σ k n ) = O(1).
To verify (ii) we can follow [START_REF] Honoré | Panel data discrete choice models with lagged dependent variables[END_REF] in checking that the regularity conditions of Lyapunov's central limit theorem for double arrays hold. Write

nσ ℓ n c ′ S Zξ -E [S Zξ ] = 1 nσ ℓ n n i=1 c ′ q i -E [q] = 1 √ n N i=1 r i
for any vector of constants c for which

c ′ c = 1. Clearly, E [r] = 0 while E [rr ′ ] = σ -ℓ n c ′ E [qq ′ ]c-σ -ℓ n c ′ E [q]E [q ′ ]c.
The two expectations in this variance are finite. Moreover, the second term is O(σ

ℓ n ) = O(1) from above. For the first term, E [qq ′ ] has typical block 1 σ ℓ n c ′ E z t k ∆v (c) t σ n 1(∆v (d) t = 0)∆ξ t ∆ξ s 1(∆v (d) s = 0)k ∆v (c) s σ n z ′ s c.
Smoothness and dominated convergence again imply that, as n → ∞, such blocks converge to

c ′ E z t ω 0 (∆v t )∆ε t ∆ε s ω 0 (∆v s )z s c f ts (0|0) k(η) 2 dη. Thus, E [rr ′ ] = σ ℓ n c ′ E [qq ′ ]c = c ′ Υc.
Lastly, it is easy to show that the boundedness of the kernel and of the absolute moments in Assumption 4 imply that, for any α in (0, 1),

n i=1 E r √ n 2+α = O 1 nσ ℓ n α = O(1).
Lyapunov's theorem may then be applied to obtain statement (ii) and to complete the proof.

[9]

By standard optimality theory for GMM estimators [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF], the efficient weighting scheme for the moment conditions is obtained on setting G proportional to the inverse of a consistent estimate of Υ. Doing so leads to the following derivative-result to Theorem 2.

Corollary 1 (Optimally-weighted GMM). Let the conditions for Theorem 2 hold for estimators θ * n and θ * * n that use a weight matrices G * and G * * that satisfy G * p → Γ and G * * p → Υ -1 as n → ∞, respectively Then,

nσ ℓ n θ * * n -θ 0 d → N 0, V , V ≡ V (Υ -1 ) = Σ ′ ZX Υ -1 Σ ZX -1
Furthermore, V (Γ) ≥ V in the matrix sense.

Proof. The expression for V follows from Theorem 2 and a small calculation. The efficiency result is readily verified on noting that

V (Γ) -V = B ′ [I -A(A ′ A) -1 A ′ ]B for A ≡ Υ -1/2 Σ ZX and B ≡ [Σ ′ ZX ΓΣ ZX ] -1 [Σ ′ ZX ΓΥ 1/2 ], and that [I -A(A ′ A) -1 A ′ ] is an idempotent matrix.
The last ingredient needed for inference procedures on the basis of θ n to become operational is a consistent estimate of Υ in (3.6), say U . Then, for any properly formed G, and for G = U -1 in particular, the consistency of a plug-in estimate for V (Γ) follows immediately. An estimate of V , for example, is the inverse of S ′ ZX U -1 S ZX . In the special case of just-identification, such as for the weighted least-squares estimator obtained on setting Z i = DX i , the matrix S ZX is square and symmetric, and we obtain the familiar 'sandwich-form' estimator S -1 ZX U S -1 ZX . It suffices to show that the general estimator of Υ defined as

σ ℓ n n n i=1 Z ′ i W i De i e ′ i D ′ W i Z i (3.7)
for given residuals e i is consistent as n → ∞. Given the efforts made so far, showing this result poses no additional difficulty.

Theorem 3. Let Assumptions 1-4 hold, let θ * n be an initial estimator to which Theorem 1 applies, and define ξ * i ≡ y i -X i θ * n . Then, U p → Υ as n → ∞ for U as defined in (3.7) and formed with e i = ξ * i .

Proof. The proof uses the same arguments as those used to prove Theorem 2.

[10]

Under conditional homoskedasticity of ε i , and in the absence of serial correlation, setting

U = n -1 n i=1 Z ′ i W i DD ′ W i Z i will
give rise to the optimally-weighted GMM estimator. Alternatively, a two-step estimator would use the residuals, ξ * i , to form U as in (3.7). More generally, an iterated GMM procedure-as discussed in Hall (2005, pp. 90) and also elsewhere-repeats the two-step procedure until convergence. The estimate so formed is independent of the initial choice for G. Of course, the same comments about the effect of the variability of G on the small-sample performance of GMM estimators apply to the local GMM estimator introduced here. In light of this, it might be of interest to work out a correction term analogous to the one derived by [START_REF] Windmeijer | A finite sample correction for the variance of linear efficient two-step GMM estimators[END_REF] for linear GMM estimators.

An alternative to an argument based on such an exercise in higher-order asymptotics is to consider a continuously-updated (CU) GMM routine as initially introduced by [START_REF] Hansen | finite-sample properties of some alternative GMM estimators[END_REF]. Here, such an estimator takes the form

arg min θ S Zξ (θ) ′ U (θ) -1 S Zξ (θ)
where U (θ) is U for a given θ. Such a modification makes the minimization problem nonlinear in θ but does not distort the limiting distribution of the point estimates, so that both Theorem 1 and Theorem 2 continue to apply. The CU estimator is a device originally suggested to mitigate the finite-sample bias of efficient GMM estimators that utilize overidentifying restrictions. Although it is not known whether this estimator has any finite moments, it is generally found to perform better in simulations in terms of bias than the corresponding two-step estimator. However, it also tends to exhibit a higher dispersion. Another useful feature of the CU estimator that explains its improved centering property is its interpretation as a jackknife estimator; see [START_REF] Donald | A jackknife interpretation of the continuous updating estimator[END_REF] for this. A final potentially benevolent effect of the CU approach is its invariance with respect to how the moment conditions are scaled. For an illustration and discussion of the CU estimator in the conventional panel data context, see Arellano (2003, pp. 73 and pp. 171-172).

Like in the standard setting, the efficiently-weighted local GMM minimand, when evaluated at θ * * n , can be used to test overidentifying restrictions. The limiting result for the corresponding J-statistic is that

nσ ℓ n S Zξ (θ * * n ) ′ U -1 S Zξ (θ * * n ) d → χ 2 (m -ℓ(x))
under Assumptions 1-4, where m denotes the number of columns of Z. The proof is immediate from Corollary 1. The result also extends straighforwardly to the CU estimator.

[11]

iv a monte carlo study

The performance of the local-GMM estimator was assessed through simulation exercises. This section reports results for static models estimated through kernel-weighted least squares and for dynamic models estimated through a local version of the first-differenced GMM procedure as originally introduced by Holtz-Eakin, Newey, and Rosen (1988) and [START_REF] Arellano | Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations[END_REF]. I use different design variations to be able to accentuate different findings in the static and the dynamic cases. The statistics used to evaluate the estimator's performance are the mean-and the median bias as measures of centrality, the standard deviation (STD) and the interquartile range (IQR) as indicators of dispersion, the root meansquared error (RMSE) as a criterion for estimator risk, and coverage rates of two-sided 95% confidence intervals for inference evaluation. In the tables below CI(A) refers to coverage rates obtained through the use of plug-in estimates of the asymptotic variance. The entries for CI(B) are bootstrap-based acceptance frequencies using the percentile method over 39 bootstrap replications. All descriptive statistics for each design point were obtained over 10, 000 simulation runs, with all variables and incidental parameters redrawn in each iteration.

Below, θ * n refers to the one-step local-GMM estimator while θ * * n denotes the two-step version. I experimented with iterating the two-step procedure but found no significant gain from doing so. I also ran simulation experiments with the CU estimator. While I found it to have reasonably small bias, its standard deviation was often very high, which is in line with results found in the cross-sectional literature. Here, I prefer to report results on jackknifed versions of the local-GMM estimator, which is an alternative route to constructing bias-corrected estimators. The jackknifed estimators take the usual delete-one form

θ † n ≡ nθ * n - n -1 n n i=1 θ * n,-i and θ † † n ≡ nθ * * n - n -1 n n i=1 θ * * n,-i
where θ * n,-i and θ * * n,-i are the one-step and two-step estimators obtained from estimating θ 0 from the subpanel obtained on deleting the ith time series from the full panel. In the conventional setting, it is known that the bias of the first-differenced GMM is O(n -1 ); see [START_REF] Arellano | Modelling optimal instrumental variables for dynamic panel data models[END_REF]. It is therefore reasonable to expect that, for k chosen sufficiently large, the bias of the local-GMM estimator has a leading term that is O(n -1 ). The jackknifed estimators θ † n and θ † † n subtract a nonparametric estimate of the leading bias term from θ * n and θ * * n , respectively.
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y it = x it θ 0 + ϑ i (v it ) + ε it , ϑ i (v it ) = γ (1) i + γ (2) i v it -γ (3) i v 2 it . (4.8)
Here, γ

(1) i

∼ N (0, 1) are traditional fixed effects while γ

(2) i ∼ N (0, 2) and γ

(3) i ∼ N (0, .75) appear in an interactive fashion. The form of ϑ i allows for both concave and convex response functions. The dynamics of the covariates x and v were set to be

x it = -.3γ (1) i + .5x it-1 + β (1) i v it + N (0, 1) and v it = .3γ (1) i + β (2) i v it-1 + ζ it , (4.9)
respectively. In (4.9), β

(1) i ∼ N (0, 1) and β

(2) i ∼ U[.20, .99], so that both stronglyand weakly-persistent data sequences occur. Because differencing is executed over time the within-group variation in ϑ i is much more important for the performance of the weighting than is the between-group variation. The start-up values for the covariate time series were generated as x i0 ∼ -.3γ

(1) i + N (0, 1) and v i0 ∼ .3γ

(1) i + N (0, 1). The disturbances are bivariate-normal variates, each with unit variance and a correlation coefficient ρ 0 which was 0 in the first design and .4 in the second. The latter case leads to x, v, and ε being contemporaneously correlated, making x endogenous in the crosssectional sense. Observe also that x and v are dependent, so that a naive fixed-effect estimator will be inconsistent for θ 0 .

Tables 1 and2 contain the results for the kernel-weighted first-differenced leastsquares estimator for ρ 0 = 0 and ρ 0 = .4, respectively. Because, here, there are no overidentifying restrictions, both θ * n and θ * * n , and θ † n and θ † † n coincide. Throughout, θ 0 was fixed at .5. 4 The dimensions of the panels generated were n = 100 and T ∈ {3, 6, 9}. Results are reported for the standard-normal kernel (Normal), the secondorder Epanechnikov kernel (Epanechnikov), the quartic kernel (Quartic), and the cosine kernel (Cosine). Three different bandwidth choices are reported on; 5n -3/4 (small), 15n -3/4 (medium), and 45n -3/4 (large).

Overal, Table 1 reports good performance of θ * n . Both the mean-and the median bias are virtually zero throughout. The jackknifed estimator has a bias of the same magnitude. Not surprisingly, θ † n is more volatile. The difference in the STD and IQR is, however, very small. As a consequence, the RMSE of both estimators is identical to their STD up to the first few decimal digits. Both CI(A) and CI(B) report solid coverage rates, with neither dominating the other. 5 The actual size is generally somewhat larger than the nominal size of .05, which is in line with the usual behavior found in Monte Carlo work elsewhere. The impact of the choice of the kernel and the bandwidth is strongest on the measures of spread. But no design constellation uniformly dominates another.

When turning to the design with contemporaneous dependence between x and ε in Table 2 the overal picture changes little. Both estimators continue to have an empirical distribution that is roughly correctly centered; their variance changes little, too. Thus, confidence intervals still provide approximately correct coverage rates. No consistent pattern emerges when comparing the numbers across the tables.

Dynamic models. This subsection deals with the following variation on (4.8)-(4.9).

y it = y it-1 θ 0 + ϑ i (v it ) + ε it , ϑ i (v it ) = γ (1) i + γ (2) i v it -γ (3) i v 2 it , (4.10) 
with v it = .3γ

(1)

i + β (2) i ρ 0 v it-1 + (1 -ρ 0 ) U[-1, 1] + ζ it (4.11)
for ρ 0 ∈ {0, 1} and i.i.d. errors (ε it , ζ it ) ∼ N (0, I). The processes were generated with a burn in of 500 time periods, using

v i(-501) ∼ .3γ (1) 
i + N (0, 1) and y i(-501) ∼ -.3γ

i + ϑ i (v i(-501) ) + N (0, 1) as startup values. The local-GMM estimator of θ 0 à la [START_REF] Arellano | Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations[END_REF] uses all lagged levels of y it-1 as instruments for ∆y it-1 in the equations in first differences.

Like with the conventional estimator, the small-sample bias of θ * n and θ * * n will be a function of the number of moments used as well as the instrument strength. The former relates directly to the size of the panel (see, e.g., [START_REF] Alvarez | The time series and cross-section asymptotics of dynamic panel data estimators[END_REF], the latter is partly driven by the closeness of the autoregressive parameter θ 0 to unity, with the instruments becoming irrelevant when θ 0 = 1. In addition, coverage intervals based on the two-step estimator that are set up by means of analytical standard errors would be expected to be too small, leading to nominal rejection frequencies that are too high compared to a chosen significance level. Table 7 below contains the average of the estimated standard errors of both θ * n and θ * * n by means of the analytical formulae and the bootstrap, together with the empirical standard deviation for a selection of the Monte Carlo experiments that follow. It can be observed that, for both estimators, the plug-in estimates are too low on average. The bootstrap-based standard errors are much more in line with the variability of the estimators as actually observed over the Monte Carlo runs. For this reason, I focus on the coverage rates of the confidence intervals based on resampling below. .9524 n = 100, θ 0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

An important difference between the least-squares estimator as considered in the previous subsection and the GMM estimator for the dynamic model is that it uses levels as instruments rather than differences. While this is also the case when ϑ i does not depend on v, there might be additional finite-sample effects when v is autocorrelated. To see this, recall that local differencing removes ∆ϑ i (v it ) from the moment conditions only asymptotically. For any finite n, therefore, lagged dependent variables will correlate with w it ∆ξ it . To assess the importance of this serial correlation, I manipulate ρ 0 from zero to unity. When ρ 0 = 0, v is independent over time while, when ρ 0 = 1, it is [17] first-order autocorrelated with some sequences being nearly integrated of order one.

The kernel and bandwidth choices from before were maintained, and n was equally kept at 100. To save on space, I report results only for a subset of the design variations. Additional results are available as supplementary material. Table 3 gives the usual descriptive statistics for the case where T = 3, θ 0 = .5, and ρ 0 = 0. Both the one-and two-step estimator have a reasonably small bias. The choice of k and σ n seems particlarly important here. The jackknifed estimators give an improvement in terms of centrality, but at a cost of a higher STD and RMSE. When n [18] is larger, however, this discrepancy vanishes. The IQR of θ † n and θ † † n are, however, not much larger than those of θ * n and θ * * n and also the coverage rates are comparable. When ρ 0 is set to unity, the estimators' performance change. All estimators now have both a larger bias and a higher variability. Although the bias never skyrockets, the jackknife estimators do not outperform θ * n and θ * * n in terms of any of the statistics reported, although they start doing so for larger n. Moreover, they are more biased than the original estimators, and their standard deviation is large. Nevertheless, the IQR remains relatively small and the coverage rates are close to .95. Tables 5 and6 show what happens when T is increased to 6. Of course, the STD and IQR shrink, and considerably so. For ρ 0 = 0, the bias of all estimators increases while, for ρ 0 = 1, the opposite happens. The coverage rates worsen slightly across both design variations. This effect is less pronounced for θ † n and θ † † n than it is for θ * n and θ * * n . The last table in this subsection makes the comparison between the average estimated standard errors of θ * n and θ * * n and their empirical standard deviation.

[20] 

v conclusion

This paper has used the notion of local differencing to construct an estimator for fixedeffect panel data models with nonparametric unobserved heterogeneity. In line with the traditional estimators, the fixed-effect 'ignorance' towards the models' unit-specific latent components that underlies first-differencing the data allows for the unobserved heterogeneity to take on very general forms. The resulting local GMM estimator was shown to be consistent and asymptotically normal. It complements the recent results on identification of random coefficients in linear panel data models with exogenous covariates. With some work, the approach can be extended to a more general class of nonlinear panel data models.

Several questions and extensions of potential interest immediately suggest themselves. A pertinent question from an applied point of view is how to best choose the smoothing parameters. Ideally, a data-driven selection method should be found that determines the bandwidth in an optimal manner. Indeed, the Monte Carlo results suggest the smoothing used to be of substantial importance in small sample. A larger study of the sensitivity of the local GMM estimator to the form of the incidental functions and the stochastic behavior of their arguments would also be desirable. Related to this comment, it appears of interest to categorize all the information content in the data in terms of nonlinear moment conditions under additional assumptions such as homoskedasticity. Such an exercise in the spirit of [START_REF] Ahn | Efficient estimation of models for dynamic panel data[END_REF] would allow for efficiency gains and, arguably, improved finite-sample performance. Given the increased attention to cross-sectional dependence in the panel data literature-see [START_REF] Sarafidis | Cross-sectional dependence in panel data analysis[END_REF] for an up-to-date review-it might be worthwhile investigating the potential for local first-differencing in the presence of factor structures in the disturbance processes. It seems reasonable to expect that the GMM estimators for such problems can be modified in a manner that is analogues to what was discussed here.

A final remark related to incorporating unit-specific non-stationary effects, such as time trends or time dummies. These are important empirical phenomena. Clearly, local first-differencing would break down under such a scenario as these variables, when transformed, are bounded away from zero. This is no different than in the binarychoice setting of [START_REF] Honoré | Panel data discrete choice models with lagged dependent variables[END_REF]. An interesting extension to the model considered here, therefore, would be to construct a hybrid version that combines local differencing with a parametric random-coefficient specification such as the ones studied in [START_REF] Chamberlain | Efficiency bounds for semiparametric regression[END_REF] and [START_REF] Arellano | Identifying distributional characteristics in random coefficients panel data models[END_REF].
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Table 1 :

 1 Monte Carlo results for model (4.8)-(4.9) under independence (ρ 0 = 0). The first model considered has scalar x and v influencing the outcome variable through

		WEIGHT	MEAN BIAS	MEDIAN BIAS	STD	IQR	RMSE	CI(A)	CI(B)
	T k	σ n	θ					

*

Static models.

Table 2 :

 2 Monte Carlo results for model (4.8)-(4.9) under dependence (ρ 0 = .4).

		WEIGHT	MEAN BIAS	MEDIAN BIAS	STD	IQR	RMSE	CI(A)	CI(B)
	T k	σ n	θ *					

Table 4 :

 4 Monte Carlo results for model (4.10)-(4.11); ρ 0 = 1, T = 3.

	WEIGHT		MEAN BIAS			MEDIAN BIAS	
	k	σ n	θ * n	θ † n	θ * * n	θ † † n	θ * n	θ † n	θ * * n	θ † † n
	Normal	small	.0158	.0769	.0104	.0638	.0012	.0406	.0019	.0359
	Normal	medium	.0563	.1500	.0519	.1634	.0382	.0991	.0385	.0925
	Normal	large	.0604	.1774	.0545	.2262	.0430	.1069	.0372	.1015
	Epanech. small Epanech. medium	-.0429 .0409	.0567 -.0474 .1152 .0341	.0191 -.0660 -.0211 -.0622 -.0208 .0887 .0262 .0737 .0297 .0771
	Epanech. large	.0601	.1711	.0550	.2466	.0419	.1059	.0376	.0989
	Quartic Quartic	small medium	-.0526 .0287	.0711 -.0547 .0994 .0223	.0570 -.0748 -.0312 -.0721 -.0330 .0772 .0149 .0564 .0144 .0584
	Quartic	large	.0592	.1632	.0548	.2105	.0409	.1026	.0364	.0972
	WEIGHT		STD				IQR		
	k	σ n	θ * n	θ † n	θ * * n	θ † † n	θ * n	θ † n	θ * * n	θ † † n
	Normal	small	.3178	.7237	.3294 1.0133	.3191	.3472	.3254	.3806
	Normal	medium	.3921 1.2205	.4015 1.7770	.3674	.4143	.3614	.4494
	Normal	large	.4331 1.0987	.4475 2.5873	.4008	.4526	.3903	.4816
	Epanech. small	.3578 1.3454	.3903 2.0493	.3571	.4037	.3686	.4507
	Epanech. medium	.3396	.7551	.3578 1.2447	.3449	.3779	.3309	.4035
	Epanech. large	.4251 1.0993	.4340 3.7695	.3960	.4467	.3855	.4750
	Quartic	small	.3814 2.5693	.4034 2.5677	.3720	.4307	.3900	.4859
	Quartic	medium	.3190	.6842	.3356 1.0863	.3305	.3622	.3234	.3843
	Quartic	large	.4127 1.1089	.4221 2.5327	.3884	.4375	.3791	.4613
	WEIGHT		RMSE			CI(B)		
	k	σ n	θ *							

Table 5 :

 5 Monte Carlo results for model (4.10)-(4.11); ρ 0 = 0, T = 6.

	WEIGHT		MEAN BIAS			MEDIAN BIAS	
	k	σ n	θ * n	θ † n	θ * * n	θ † † n	θ * n	θ † n	θ * * n	θ † † n
	Normal Normal Normal Epanech. small small medium -.0469 -.0041 -.0436 -.0033 -.0461 -.0033 -.0426 -.0034 -.0558 -.0036 -.0560 -.0031 -.0548 -.0052 -.0541 -.0066 large -.0520 -.0062 -.0466 -.0040 -.0512 -.0070 -.0454 -.0040 -.1025 -.0136 -.1035 -.0139 -.1030 -.0202 -.1039 -.0235 Epanech. medium -.0469 -.0029 -.0460 -.0028 -.0473 -.0040 -.0462 -.0056 Epanech. large -.0509 -.0058 -.0459 -.0039 -.0505 -.0062 -.0444 -.0046 Quartic small -.1192 -.0184 -.1187 -.0165 -.1210 -.0279 -.1203 -.0291 Quartic medium -.0496 -.0028 -.0494 -.0025 -.0505 -.0053 -.0483 -.0035 Quartic large -.0493 -.0051 -.0449 -.0037 -.0485 -.0050 -.0439 -.0045 WEIGHT STD IQR
	k	σ n	θ * n	θ † n	θ * * n	θ † † n	θ * n	θ † n	θ * * n	θ † † n
	Normal	small	.0999	.1168	.1092	.1395	.1323	.1541	.1435	.1812
	Normal	medium	.0953	.1059	.1021	.1267	.1265	.1400	.1377	.1620
	Normal	large	.1008	.1126	.1060	.1329	.1333	.1479	.1409	.1748
	Epanech. small	.1261	.1646	.1398	.1989	.1650	.2033	.1801	.2508
	Epanech. medium	.0955	.1085	.1033	.1304	.1254	.1399	.1364	.1690
	Epanech. large	.0997	.1111	.1052	.1315	.1321	.1467	.1406	.1722
	Quartic	small	.1356	.1827	.1502	.2232	.1750	.2276	.1963	.2868
	Quartic	medium	.0968	.1111	.1052	.1329	.1282	.1473	.1398	.1729
	Quartic	large	.0979	.1089	.1040	.1295	.1310	.1450	.1389	.1687
	WEIGHT		RMSE			CI(B)		
	k	σ n	θ *							

Table 6 :

 6 Monte Carlo results for model (4.10)-(4.11); ρ 0 = 1, T = 6.

	WEIGHT		MEAN BIAS			MEDIAN BIAS	
	k	σ n	θ * n	θ † n	θ * * n	θ † † n	θ * n	θ † n	θ * * n	θ † † n
	Normal Normal	small medium	-.0138 .0454	.0474 -.0212 .1075 .0324	.0376 -.0167 .0860 .0451	.0398 -.0197 .1025 .0327	.0331 .0825
	Normal	large	.0516	.1218	.0376	.0965	.0523	.1158	.0375	.0902
	Epanech. small Epanech. medium	-.0897 -.0022 -.0933 -.0058 -.0922 -.0107 -.0930 -.0144 .0230 .0810 .0113 .0641 .0206 .0738 .0114 .0603
	Epanech. large	.0510	.1197	.0372	.0949	.0514	.1137	.0373	.0890
	Quartic Quartic Quartic	small medium large	-.1078 -.0137 -.1099 -.0148 -.1093 -.0221 -.1115 -.0276 .0055 .0638 -.0043 .0502 .0032 .0460 .0568 -.0053 .0496 .1158 .0360 .0921 .0497 .1102 .0368 .0871
	WEIGHT		STD				IQR		
	k	σ n	θ *							

Table 7 :

 7 A comparison between the estimated standard errors and the empirical standard deviation

	ρ 0 = 0	ρ 0 = 1

As interest here lies in micropanels, throughout, the maintained asymptotic scheme will be that of large n and fixed T . Accordingly, expectations are taken with respect to the cross-sectional distribution of the data.

Dirac's delta is defined as follows: if a = 0, then δ(a) = 0; if a = 0, then δ(a) = ∞. As a measure it has the property that g(a) δ(a) da = g(0) for a continuous function g. I prefer its use here over the usual notation for conditional expectations because explicitly conditioning on all time-series realizations of covariates and instruments on top of period-specific first differences would impose a heavy notational burden.[4]

Of course, the usual caveat in this interpretation applies when k is a higher-order kernel, as then some of the weights will have to be negative.

Experiments with different values for θ 0 gave qualitatively similar results.

Here, CI(A) was obtained by means of the heteroskedasticity-robust variance-covariance estimator, as displayed in the text.[14] 

small .1161 .1484 .1211 .1719 .1510 .1821 .1547 .2072 Normal medium .1195 .1488 .1160 .1624 .1548 .1835 .1536 .2019 Normal large .1269 .1603 .1215 .1724 .1654 .1967 .1605 .2167 Epanech. small .1357 .1906 .1487 .2325 .1788 .2328 .1948 .2800 Epanech. medium .1180 .1485 .1170 .1652 .1527 .1832 .1531 .2016 Epanech. large .1255 .1580 .1204 .1704 .1630 .1941 .1591 .2116 Quartic small .1416 .2037 .1562 .2495 .1842 .2458 .2029 .3024 Quartic medium .1167 .1475 .1184 .1670 .1524 .1833 .1531 .2014 Quartic large .1233 .1545 .1187 .1672 .1609 .1903 .1562 .2094 WEIGHT RMSE CI(B)

small -.0006 -.0009

.0004 -. 0009 .1609 .1627 .2093 .2114 .1609 .1627 .9099 .9058 .9193 .9129 3 Normal medium -.0025 -.0026 -.0025 -. 0024 .1006 .1008 .1343 .1338 .1007 .1008 .9323 .9318 .9299 .9279 3 Normal large -.0038 -.0039 -.0043 -.0047 .0962 . 0964 .12620964 . .1266 .0963 .0965 .9337 .9339 .9326 .9304 3 Epanech. small .0963 .0965 .9337 .9339 .9326 .9304 3 Epanech. small .0021 .0014 -.0002 .0000 . 2435.2507.3106 .3178 .2435.2507.8851 .8705 .9184 .9137 3 Epanech. medium -.0018 -.0021 -.0022 -.0024 .1369.1378.1790.1797.1369.1378 .9246 .9208 .9284 .9246 .9208 .9284 .1798.2185.2493.2632.2430.2472.2086.2632.3067 .3301 .3178 .3294 3 Normal medium .1670.2359.2698.2831.2702.2727.2020.3081 .3598 .3840 .3921 .4015 3 Normal large .1703.2513.2888.3021 .2915.2928.2094.3353 .3849 .4094 .4331 .4475 3 Epanech. small .2384.2631.3116 .3345 .2998.3069 .2731.3012 .3463 .3728 .3578 .3903 3 Epanech. medium .1672.2231.2546.2669.2519.2540.1969.2822.3317 .3554 .3396 .3578 3 Epanech. large .1696.2486.2853.2984.2878.2897.2077.3301 .3808 .4047 .4251 .4340 3 Quartic small .2622.2810.3325 .3564 .3274 .3382 .3000 .3183 .3606 .3902 .3814 .4034 3 Quartic medium .1711.2185.2498.2633.2435.2462[START_REF] Hastie | Varying-coefficient models[END_REF].2684.3162 .3393 .3190 .3356 3 Quartic large .1685.2440.2796.2930.2815.2847.2053 .3218 .3734 .3965 .4127 .4221