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i introduction

The use of longitudinal data in microeconometric studies is commonly motivated by the

potential to capture excess heterogeneity between units. The first major rationale for

this is to obtain parameter estimates that are free from bias induced by unobserved cross-

sectional heterogeneity. A second reason for their employment is the desire to decompose

the variance of latent components into structural and transitory contributions. The

former incentive is typically related to taking a fixed-effect view on the processes that

drive the outcome of interest in the sense of leaving the distribution of unobserved

unit-specific factors unspecified. The error-component formulation or random-effect

approach is commonly associated with stronger restrictions on the distribution of the

permanent latent component.

So far, in the spirit of the seminal work of Mundlack (1961, 1978), the most common

specification adds unit-specific intercept terms to a model that is otherwise homogeneous

in the effect of covariates on outcomes. This captures time-constant and non-interactive

unobserved components. Nevertheless, there may be good reason to assume that the

heterogeneity among processes is wider spread. Browning, Ejrnæs, and Alvarez (2009)

and Arellano and Bonhomme (2010), for example, provide ellaborate discussions on this

and report empirical results that support their claims. In light of this, there has been

renewed attention toward identifying the distribution of random coefficients in linear

panel data models.

In this paper, I complement such a strategy by considering what can be learned about

common parameters in, possibly dynamic, panel data models with nonparametrically-

specified excess heterogeneity. Here, the fixed-effect paradigm—that is, circumventing

the estimation of the model’s idiosyncratic components—allows for a very rich pattern

of unobserved heterogeneity in a manner that leaves its distribution essentially unre-

stricted. The heterogenous effects may enter non-additively and can be time-varying.

This leads to a framework in which the conventional incidental parameters are replaced

by incidental functions, and traditional first-differencing has to make way for local first-

differencing.

The estimator I describe below relates to theory on semi- and nonparametric cross-

sectional estimation derived by Gozalo and Linton (2000) and Lewbel (2007), and to

kernel-weighted pairwise-differencing estimation as first introduced by Powell (1987).

However, observing multiple time-series realizations for the same units allows tackling

heterogeneity in a manner that pairwise-differencing cannot. In a panel data context, the

reference most closely related to what follows below is Honoré and Kyriazidou (2000),
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who proposed a kernel-weighted conditional-likelihood estimator for a dynamic logit

model with time-varying covariates. In fact, this connection immediately suggests that

the proposed approach to dealing with incidental functions can be generalized to all

existing fixed-effect estimators, such as conditional maximum-likelihood and maximum

score, for example. This is easy to see, but working out the details for the general case

would come at the cost of reduced transparency.

This paper has four more sections. The first of these provides details on the model

of interest and the local-differencing strategy, and states the GMM estimator that will

be the focus of the analysis. The next section contains large-sample theory. The last

section before concluding gives results from a series of Monte Carlo exercises.

ii the model, local first differencing, and a gmm estimator

Suppose we are in possession of n independent sequences of T observations on the

variables (y, x, z, v). Denote the tth observation for unit i = 1, . . . , n by (yit, xit, zit, vit)

and let ℓ(a) be the dimension of the vector a. Assume that the observations on the

scalar random variable y were generated through a model of the form

yit = x′
itθ0 + ξit, ξit = ϑi(vit) + εit. (2.1)

Here, εit is a zero mean random disturbance, θ0 is the true value of the parameter

vector of interest, and the unit-specific functions ϑi : Rℓ(v) → R capture the, potentially

heterogeneous, impact of the covariates v on y. These functions are assumed to be

smooth in their arguments, but are otherwise unmodelled and allowed to be random

across i. Remaining loyal to the fixed-effect modelling approach, they are draws from

an unknown probability distribution that may depend on the realization of the covariates

and, possibly, initial conditions, but not on ε. Feedback from yt to future xt is allowed

for, accommodating dynamic models with predetermined regressors. More generally,

x is allowed to be endogenous in the cross-sectional sense of being contemporaneously

correlated with ε. When strict exogeneity is lacking, z serves as instrumental variables.

No restriction is put on the statistical relationship between v and (x, ε) over time.

The fact that ϑi(v) may be random after conditioning on a realization of its argument

distinguishes (2.1) from a panel data version of a nonparametric functional-coefficient

model as considered by Hastie and Tibshirani (1993). It is also different from the

random-coefficient model of Chamberlain (1992) and Arellano and Bonhomme (2010),

where ϑi(v) is a linear combination of exogenous v and unit-specific coefficients. Here,

the ϑi are unspecified incidental functions of covariates, which may be predetermined or
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endogenous. Thus, (2.1) generalizes the standard linear fixed-effect model by allowing

for a much richer pattern of unobserved unit-specific factors; notice that this benchmark

model is obtained on assuming ϑi(v) to be constant in v.

To construct an estimator of θ0, start by stacking observations over time to obtain

yi ≡ (yi1, . . . , yiT )′, Xi ≡ (xi1, . . . , xiT )′, Vi ≡ (vi1, . . . , viT )′, εi ≡ (εi1, . . . , εiT )′, and ξi ≡
(ξi1, . . . , ξiT )′; let ϑi(Vi) ≡ (ϑi(vi1), . . . , ϑi(viT ))′. Write D for the (T −1)×T matrix that

performs first-differencing on the above arrays. For example, Dyi = (∆yi2, . . . , ∆yiT )′,

where ∆ ≡ 1 − L and L denotes the lag operator. Then,

yi = Xiθ0 + ξi, ξi = ϑi(Vi) + εi, (2.2)

and Dyi = DXiθ0 + Dξi for Dξi = Dϑi(Vi) + Dεi. Recall that, when ϑi(v) is constant,

Dϑi(Vi) = 0, and an efficient GMM estimator of θ0 that is based on data in first-

differences minimizes the quadratic form

[ 1

n

n
∑

i=1

Z ′
iD(yi − Xiθ)

]′

G
[ 1

n

n
∑

i=1

Z ′
iD(yi − Xiθ)

]

(2.3)

for a well-chosen weight matrix G; see Holtz-Eakin, Newey, and Rosen (1988) and

Arellano and Bond (1991). Throughout, Zi is an instrument matrix of conformable

dimension that contains zi2, . . . , ziT . The latter can be lagged levels of predetermined

regressors, all time-series realizations of exogenous covariates, and, possibly, external

instrumental variables. Of course, simple differencing does not remove ϑi(Vi) from (2.2)

more generally, and E
[

Z ′D(y − Xθ0)
]

6= 0 unless zt and ∆ϑ(vt) are uncorrelated.1

However, by smoothness of ϑi, ∆yit = ∆x′
itθ0 + ∆ϑi(vit) + ∆εit → ∆x′

itθ0 + ∆εit as

∆vit → 0. Let ωv(v) ≡ δ(v − v) for δ : Rℓ(v) → R a multivariate version of Dirac’s

delta.2 Then, the conditional moment condition E
[

zt ω0(∆vt)(∆yt − ∆x′
tθ0)

]

= 0,

which is free of incidental functions, holds for t = 2, . . . , T . This suggest constructing

an estimator based on an empirical counterpart of these conditional moment conditions.

A fruitful way to proceed is to replace ω0(∆vt) by a smoother such as a kernel weight,

and to make the appropriate changes to (2.3).

1As interest here lies in micropanels, throughout, the maintained asymptotic scheme will be that of
large n and fixed T . Accordingly, expectations are taken with respect to the cross-sectional distribution
of the data.

2Dirac’s delta is defined as follows: if a 6= 0, then δ(a) = 0; if a = 0, then δ(a) = ∞. As a measure
it has the property that

∫

g(a) δ(a) da = g(0) for a continuous function g. I prefer its use here over the
usual notation for conditional expectations because explicitly conditioning on all time-series realizations
of covariates and instruments on top of period-specific first differences would impose a heavy notational
burden.
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To do so, partition the vector v as (v(c), v(d)), where v(c) and v(d) refer to the

continuously-distributed components and the discrete components of v, respectively.

Let ℓ ≡ ℓ(v(c)), let k : Rℓ → R be a kernel with associated bandwidth σn, and write

1(a) for the indicator function for the event a. A kernel weight takes the form

wit ≡
1

σℓ
n

k
(∆v

(c)
it

σn

)

1(∆v
(d)
it = 0).

Form the diagonal matrices Wi ≡ diag(wi2, . . . , wiT ) and Ωv ≡ diag(ωv(v2), . . . , ωv(vT )).

A local GMM estimator based on the moment conditions

E
[

Z ′Ω0D(y − Xθ0)
]

= E
[

Z ′Ω0Dε
]

= 0 (2.4)

is obtained by introducing Wi in (2.3). Because the weights do not distort the linearity

of this objective function, the local estimator is available in closed form. Moreover, it is

given by

θn ≡
[

S ′
ZXGSZX

]−1[
S ′

ZXGSZy

]

(2.5)

for the matrices

SZX ≡ 1

n

n
∑

i=1

Z ′
iWiDXi and SZy ≡ 1

n

n
∑

i=1

Z ′
iWiDyi.

Thus, computing θn from the data boils down to first assigning a weight to each first-

differenced observation and then proceeding as one would do with the conventional

GMM estimator of choice. Under the regularity conditions provided below, this approach

is asymptotically equivalent to using only first-differenced observations for which ∆vit

lies in a shrinking neighborhood of zero. Observe that (2.5) reduces to a weighted

least-squares estimator on setting Zi = DXi.

One attractive consequence of working with data in first differences is that it is

straightforward to deal with unbalanced panel data. Nevertheless, estimation based

on weighted versions of orthogonal deviations (Arellano and Bover, 1995) or deviations

from within-group means is also possible. To illustrate, let

ẇs
it ≡

1

σℓ
n

k
(v

(c)
it − v

(c)
is

σn

)

1(v
(d)
it = v

(d)
is ),

choose k to be symmetric, and collect the ẇs
it in the symmetric T × T matrix Ẇi, the

(t, s)th element of this matrix being ẇs
it. A local GMM estimator that is based on

forward orthogonal deviations follows on replacing SXZ and SXy above by the matrices
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n−1
∑n

i=1 Z ′
i(DD′)−1/2DẆiXi and n−1

∑n
i=1 Z ′

i(DD′)−1/2DẆiyi, respectively. A weighted

within-group estimator, on the other hand, would take the form arg minθ n−1
∑n

i=1(yi −
Xiθ)

′ẆiD
′(DD′)−1DẆi(yi − Xiθ). The matrix D′(DD′)−1D may be recalled to be the

traditional within-group operator.3 Distribution theory for both these estimators can

be derived in an analogous fashion as for θn. However, simulation results suggest that

neither outperforms its first-differenced counterpart in small samples. The reason for

this is the additional noise induced by taking linear combinations of kernel-weighted

quantities.

iii large-sample behavior of the gmm estimator

Let us now consider the behavior of θn as n grows large. For vectors a and b for

which ℓ(a) = ℓ(b), let ‖a‖ denote the Euclidean norm, let |a| ≡ ∑ℓ(a)
j=1 a(j), and let

ba ≡ ∑ℓ(a)
j=1(b

(j))a(j)
throughout. The notation ‖·‖ will also be used to indicate the

matrix norm.

Start by imposing the following conditions.

Assumption 1 (Regularities). The data array {yi, xi, zi, vi}n
i=1 is a random sample. For

t = 2, . . . , T , E [ω0(∆vt)‖zt∆εt‖] is finite. For v in a neighborhood of zero, E [Z ′ΩvDX]

has full column rank. The moment condition E [Z ′Ω0Dε] = 0 holds.

Assumption 1 states the sampling scheme and contains conventional requirements for

linear GMM estimators. Moreover, it provides a mild dominance condition on the vector

of population moments and ensures identification of θ0 by imposing a rank condition

and postulating instrument validity.

The next assumption demands smoothness from the conditional moments that are

being approximated by the kernel weighting and from the conditional densities of ∆v
(c)
t

given realizations of ∆v
(d)
t ; refer to these densities by ft and to their respective supports

by Vt.

Assumption 2 (Smoothness). For t = 2, . . . , T , ft(v
(c)|v(d)) is bounded from above

for all v in Vt and is strictly positive for v in a neighborhood of zero. In addition,

ft(v
(c)|v(d)) and E [ωv(∆vt)zt∆ξt] are k-times continuously differentiable in v(c) for all v

in a neighborhood of zero, where k ≥ 2 is an integer.

3Of course, the usual caveat in this interpretation applies when k is a higher-order kernel, as then
some of the weights will have to be negative.
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When combined with a well-behaved kernel and bandwidth, Assumption 2 implies that

the bias induced by weighting observations by wit disappears asymptotically. It could

be relaxed slightly, for example by requiring the bounded away from zero condition on

ft to hold only for some but not all t = 2, . . . , T , but this would needlessly cloud the

exposition.

What is meant exactly by a well-behaved kernel and bandwidth is the topic of the

third assumption.

Assumption 3 (Kernel weights). The kernel, k, is bounded on its support and of

kth-order. Moreover,
∫

k(η) dη = 1,
∫

ηj k(η) dη = 0 for |j| = 1, . . . , k − 1, and
∫

‖ηj‖ ‖k(η)‖ dη < ∞ for |j| in {0, k}. The bandwidth, σn, is both non-negative and

O(1) as n → ∞, while
√

nσℓ
n → ∞ and

√

nσℓ
nσ

k
n → 0.

The required degree of smoothness is increasing in the number of continuous components

of vit, ℓ. It is well known that, although they generally increase finite-sample bias,

discrete covariates do not retard the speed of convergence of Nadaraya-Watson type

kernel estimator of conditional mean functions, and the same conclusion may be drawn

here.

It can be noted that an alternative to working with empirical cell probabilities for

the discrete components of ∆vt would be to smooth over these variables as well. Such

an approach may well be beneficial in small samples when the support of ∆v
(d)
t is large.

Another refinement would be to work with regressor-specific bandwidths, that is, a

vector-valued σn. I abstract away from both of these possibilities for fine tuning here as

they do not affect the asymptotic behavior of θn, nor will it be possible at this stage to

provide particular guidelines on how to get the most out of these additional degrees of

freedom.

Assumptions 1–3 are more than enough to guarantee the consistency of θn for θ0 as

n → ∞. To facilitate the exposition, let F1 be a matrix consisting of T − 1 vertically-

stacked blocks. The (t − 1)th such block is given by ιℓ(zt)ι
′
ℓ(∆xt)

ft(0|0) for ιa a vector of

ones of length a. On letting ⊙ denote the Schur product,

SZX
p→ ΣZX ≡ E [Z ′Ω0DX] ⊙ F1, SZy

p→ ΣXy ≡ E [Z ′Ω0Dy] ⊙ F1,

and SZξ(θ) ≡ SZy −SZXθ
p→ ΣZξ(θ) ≡ ΣZy −ΣZXθ. Write SZξ and ΣZξ for SZξ(θ0) and

ΣZξ(θ0), respectively. The consistency result then reads as follows.

Theorem 1 (Consistency). Let Assumptions 1–3 hold. If G and Γ are positive-definite

matrices so that G
p→ Γ as n → ∞ and Γ is non-stochastic, then θn

p→ θ0 as n → ∞.
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Proof. Recall that SZξ = n−1
∑n

i=1 Z ′
iWiDξi, so θn − θ0 =

[

S ′
ZXGSZX

]−1[
S ′

ZXGSZξ

]

.

Given that G converges to a positive-definite and non-stochastic matrix, it suffices to

show that, as n → ∞, (i) SZX
p→ ΣZX ; and (ii) SZξ

p→ 0.

To see that (i) holds, observe that standard kernel-smoothing arguments yield

∥

∥

∥

1

σℓ
n

E

[

zt∆x′
tk

(∆v
(c)
t

σn

)

1(∆v
(d)
t = 0)

]∥

∥

∥
=

∥

∥

∥
E

[

ω0(∆vt)zt∆x′
t

]

ft(0|0)
∥

∥

∥
+ O(σℓ

n)

for t = 2, . . . , T . As E [SZX ] is obtained on stacking such terms over t, it follows that

‖E [SXZ ] − ΣXZ‖ = O(σℓ
n). This bias goes to zero because limn→∞ σℓ

n = 0, that is,

E [SZX ] ≡ limn→∞ E [SZX ] = ΣZX . Furthermore, by a standard law of large numbers,

‖SXZ − E [SXZ ]‖ = Op(1). Statement (i) follows.

By the same reasoning, ‖SZξ − ΣZξ‖ = Op(1). Instrument validity implies that

ΣZξ = 0. The proof is complete.

Establishing asymptotic normality of θn around θ0 requires the bias induced by

kernel weighting to go to zero at a sufficiently fast rate, and the existence of higher-

order conditional moments. For the former requirement to be satisfied, the current

assumptions suffice. The latter is dealt with now. Let fts denote the joint density of

(∆v
(c)
t , ∆v

(c)
s ) given realizations of (∆v

(d)
t , ∆v

(d)
s ).

Assumption 4 (Higher-order moments). For t, s in 2, . . . , T , fts(v
(c)
1 , v

(c)
2 |v(d)

1 , v
(d)
2 )

is bounded from above for all (v1, v2) in Vt ⊗ Vs and is strictly positive for (v1, v2)

in a neighborhood of zero. For all such (t, s), E [ztωv1(∆vt)∆ξt∆ξsωv2(∆vs)z
′
s] and

fts(v
(c)
1 , v

(c)
2 |v(d)

1 , v
(d)
2 ) are k-times continuously differentiable in (v

(c)
1 , v

(c)
2 ), and the ab-

solute moments E [ωv(∆vt)‖zt∆x′
t‖3] and E [ωv(∆vt)‖zt∆yt‖3] are finite. The matrix

E [Z ′Ω0Dεε′D′Ω0Z] is positive definite and nonsingular.

This condition will ensure that, when properly scaled, SZξ converges to a zero-mean

Gaussian process.

In line with previously introduced notation, let F2 be an
∑T

t=2 ℓ(zt)×
∑T

t=2 ℓ(zt) ma-

trix consisting of (T −1)2 blocks, with the (t−1, s−1)th block given by ιℓ(zt)ι
′
ℓ(zs)

fts(0|0).

Define

Υ ≡ E
[

Z ′Ω0Dεε′D′Ω0Z
]

⊙ F2

∫

k(η)2dη. (3.6)

Then, under Assumptions 1–4,
√

nσℓ
nSZξ

d→ N (0, Υ). From this, the next theorem can

be derived.
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Theorem 2 (Normality). Let Assumptions 1–4 hold. If G and Γ are positive-definite

matrices so that G
p→ Γ as n → ∞ and Γ is non-stochastic, then

√

nσℓ
n

(

θn − θ0

) d→ N
(

0, V (Γ)
)

for V (Γ) ≡
[

Σ′
ZXΓΣZX

]−1[
Σ′

ZXΓ′ΥΓΣZX

][

Σ′
ZXΓΣZX

]−1
as n → ∞.

Proof. Given that SZX
p→ ΣZX and G

p→ Γ as n → ∞, it remains to show that (i)
√

nσℓ
nE [SZξ] = O(1); and (ii)

√

nσℓ
n

(

SZξ − E [SZξ]
) d→ N (0, Υ). Slutzsky’s theorem will

take us the rest of the way.

Commence with (i). By a kth-order expansion of a typical block of E [SZξ] around

∆v
(c)
t = 0,

∥

∥

∥

1

σℓ
n

E

[

zt∆ξtk
(∆v

(c)
t

σn

)

1(∆v
(d)
t = 0)

]∥

∥

∥
=

∥

∥

∥
E

[

ω0(∆vt)zt∆εt

]

ft(0|0)
∥

∥

∥
+ O(σk

n).

The first right-hand side term above is zero by instrument validity. The order of magni-

tude of the remainder term follows by virtue of the higher-order kernel and the associated

smoothness conditions. Consequently,
√

nσℓ
nE [SZξ] =

√

nσℓ
nO(σk

n) = O(1).

To verify (ii) we can follow Honoré and Kyriazidou (2000) in checking that the

regularity conditions of Lyapunov’s central limit theorem for double arrays hold. Write

√

nσℓ
nc

′
(

SZξ − E [SZξ]
)

=
1

√

nσℓ
n

n
∑

i=1

c′
(

qi − E [q]
)

=
1√
n

N
∑

i=1

ri

for any vector of constants c for which c′c = 1. Clearly, E [r] = 0 while E [rr′] =

σ−ℓ
n c′E [qq′]c−σ−ℓ

n c′E [q]E [q′]c. The two expectations in this variance are finite. Moreover,

the second term is O(σℓ
n) = O(1) from above. For the first term, E [qq′] has typical block

1

σℓ
n

c′E
[

ztk
(∆v

(c)
t

σn

)

1(∆v
(d)
t = 0)∆ξt∆ξs1(∆v(d)

s = 0)k
(∆v

(c)
s

σn

)

z′s

]

c.

Smoothness and dominated convergence again imply that, as n → ∞, such blocks

converge to

c′E
[

ztω0(∆vt)∆εt∆εsω0(∆vs)zs

]

c fts(0|0)

∫

k(η)2dη.

Thus, E [rr′] = σℓ
nc

′E [qq′]c = c′Υc. Lastly, it is easy to show that the boundedness of

the kernel and of the absolute moments in Assumption 4 imply that, for any α in (0, 1),

n
∑

i=1

E

[∥

∥

∥

r√
n

∥

∥

∥

2+α]

= O
( 1

√

nσℓ
n

)α

= O(1).

Lyapunov’s theorem may then be applied to obtain statement (ii) and to complete the

proof.
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By standard optimality theory for GMM estimators (Hansen, 1982), the efficient

weighting scheme for the moment conditions is obtained on setting G proportional to

the inverse of a consistent estimate of Υ. Doing so leads to the following derivative-result

to Theorem 2.

Corollary 1 (Optimally-weighted GMM). Let the conditions for Theorem 2 hold for

estimators θ∗n and θ∗∗n that use a weight matrices G∗ and G∗∗ that satisfy G∗ p→ Γ and

G∗∗ p→ Υ−1 as n → ∞, respectively Then,

√

nσℓ
n

(

θ∗∗n − θ0

) d→ N
(

0, V
)

, V ≡ V (Υ−1) =
[

Σ′
ZXΥ−1ΣZX

]−1

Furthermore, V (Γ) ≥ V in the matrix sense.

Proof. The expression for V follows from Theorem 2 and a small calculation. The

efficiency result is readily verified on noting that

V (Γ) − V = B′[I − A(A′A)−1A′]B

for A ≡ Υ−1/2ΣZX and B ≡ [Σ′
ZXΓΣZX ]−1[Σ′

ZXΓΥ1/2], and that [I −A(A′A)−1A′] is an

idempotent matrix.

The last ingredient needed for inference procedures on the basis of θn to become

operational is a consistent estimate of Υ in (3.6), say U . Then, for any properly formed

G, and for G = U−1 in particular, the consistency of a plug-in estimate for V (Γ) follows

immediately. An estimate of V , for example, is the inverse of S ′
ZXU−1SZX . In the special

case of just-identification, such as for the weighted least-squares estimator obtained on

setting Zi = DXi, the matrix SZX is square and symmetric, and we obtain the familiar

‘sandwich-form’ estimator S−1
ZXUS−1

ZX . It suffices to show that the general estimator of

Υ defined as
σℓ

n

n

n
∑

i=1

Z ′
iWiDeie

′
iD

′WiZi (3.7)

for given residuals ei is consistent as n → ∞. Given the efforts made so far, showing

this result poses no additional difficulty.

Theorem 3. Let Assumptions 1–4 hold, let θ∗n be an initial estimator to which Theorem

1 applies, and define ξ∗i ≡ yi −Xiθ
∗
n. Then, U

p→ Υ as n → ∞ for U as defined in (3.7)

and formed with ei = ξ∗i .

Proof. The proof uses the same arguments as those used to prove Theorem 2.

[10]



Under conditional homoskedasticity of εi, and in the absence of serial correlation, setting

U = n−1
∑n

i=1 Z ′
iWiDD′WiZi will give rise to the optimally-weighted GMM estimator.

Alternatively, a two-step estimator would use the residuals, ξ∗i , to form U as in (3.7).

More generally, an iterated GMM procedure—as discussed in Hall (2005, pp. 90) and also

elsewhere—repeats the two-step procedure until convergence. The estimate so formed is

independent of the initial choice for G. Of course, the same comments about the effect

of the variability of G on the small-sample performance of GMM estimators apply to

the local GMM estimator introduced here. In light of this, it might be of interest to

work out a correction term analogous to the one derived by Windmeijer (2005) for linear

GMM estimators.

An alternative to an argument based on such an exercise in higher-order asymptotics

is to consider a continuously-updated (CU) GMM routine as initially introduced by

Hansen, Heaton, and Yaron (1996). Here, such an estimator takes the form

arg min
θ

SZξ(θ)
′U(θ)−1SZξ(θ)

where U(θ) is U for a given θ. Such a modification makes the minimization problem

nonlinear in θ but does not distort the limiting distribution of the point estimates, so

that both Theorem 1 and Theorem 2 continue to apply. The CU estimator is a device

originally suggested to mitigate the finite-sample bias of efficient GMM estimators that

utilize overidentifying restrictions. Although it is not known whether this estimator

has any finite moments, it is generally found to perform better in simulations in terms

of bias than the corresponding two-step estimator. However, it also tends to exhibit a

higher dispersion. Another useful feature of the CU estimator that explains its improved

centering property is its interpretation as a jackknife estimator; see Donald and Newey

(2000) for this. A final potentially benevolent effect of the CU approach is its invariance

with respect to how the moment conditions are scaled. For an illustration and discussion

of the CU estimator in the conventional panel data context, see Arellano (2003, pp. 73

and pp. 171–172).

Like in the standard setting, the efficiently-weighted local GMM minimand, when

evaluated at θ∗∗n , can be used to test overidentifying restrictions. The limiting result for

the corresponding J-statistic is that

nσℓ
n SZξ(θ

∗∗
n )′U−1SZξ(θ

∗∗
n )

d→ χ2(m − ℓ(x))

under Assumptions 1–4, where m denotes the number of columns of Z. The proof

is immediate from Corollary 1. The result also extends straighforwardly to the CU

estimator.
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iv a monte carlo study

The performance of the local-GMM estimator was assessed through simulation exercises.

This section reports results for static models estimated through kernel-weighted least

squares and for dynamic models estimated through a local version of the first-differenced

GMM procedure as originally introduced by Holtz-Eakin, Newey, and Rosen (1988) and

Arellano and Bond (1991).

I use different design variations to be able to accentuate different findings in the static

and the dynamic cases. The statistics used to evaluate the estimator’s performance

are the mean- and the median bias as measures of centrality, the standard deviation

(STD) and the interquartile range (IQR) as indicators of dispersion, the root mean-

squared error (RMSE) as a criterion for estimator risk, and coverage rates of two-sided

95% confidence intervals for inference evaluation. In the tables below CI(A) refers to

coverage rates obtained through the use of plug-in estimates of the asymptotic variance.

The entries for CI(B) are bootstrap-based acceptance frequencies using the percentile

method over 39 bootstrap replications. All descriptive statistics for each design point

were obtained over 10, 000 simulation runs, with all variables and incidental parameters

redrawn in each iteration.

Below, θ∗n refers to the one-step local-GMM estimator while θ∗∗n denotes the two-step

version. I experimented with iterating the two-step procedure but found no significant

gain from doing so. I also ran simulation experiments with the CU estimator. While I

found it to have reasonably small bias, its standard deviation was often very high, which

is in line with results found in the cross-sectional literature. Here, I prefer to report

results on jackknifed versions of the local-GMM estimator, which is an alternative route

to constructing bias-corrected estimators. The jackknifed estimators take the usual

delete-one form

θ†n ≡ nθ∗n − n − 1

n

n
∑

i=1

θ∗n,−i and θ††n ≡ nθ∗∗n − n − 1

n

n
∑

i=1

θ∗∗n,−i

where θ∗n,−i and θ∗∗n,−i are the one-step and two-step estimators obtained from estimating

θ0 from the subpanel obtained on deleting the ith time series from the full panel. In the

conventional setting, it is known that the bias of the first-differenced GMM is O(n−1);

see Arellano (2004). It is therefore reasonable to expect that, for k chosen sufficiently

large, the bias of the local-GMM estimator has a leading term that is O(n−1). The

jackknifed estimators θ†n and θ††n subtract a nonparametric estimate of the leading bias

term from θ∗n and θ∗∗n , respectively.

[12]



Table 1: Monte Carlo results for model (4.8)–(4.9) under independence (ρ0 = 0).
WEIGHT MEAN BIAS MEDIAN BIAS STD IQR RMSE CI(A) CI(B)

T k σn θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

3 Normal small −.0006 −.0009 .0004 −.0009 .1609 .1627 .2093 .2114 .1609 .1627 .9099 .9058 .9193 .9129
3 Normal medium −.0025 −.0026 −.0025 −.0024 .1006 .1008 .1343 .1338 .1007 .1008 .9323 .9318 .9299 .9279
3 Normal large −.0038 −.0039 −.0043 −.0047 .0962 .0964 .1262 .1266 .0963 .0965 .9337 .9339 .9326 .9304
3 Epanech. small .0021 .0014 −.0002 .0000 .2435 .2507 .3106 .3178 .2435 .2507 .8851 .8705 .9184 .9137
3 Epanech. medium −.0018 −.0021 −.0022 −.0024 .1369 .1378 .1790 .1797 .1369 .1378 .9246 .9208 .9284 .9274
3 Epanech. large −.0029 −.0030 −.0030 −.0034 .0947 .0953 .1266 .1269 .0948 .0953 .9373 .9342 .9361 .9357
3 Quartic small .0017 .0006 −.0025 −.0013 .2671 .2777 .3392 .3515 .2671 .2777 .8754 .8557 .9161 .9073
3 Quartic medium −.0013 −.0015 −.0008 −.0006 .1485 .1494 .1954 .1955 .1485 .1494 .9185 .9149 .9254 .9206
3 Quartic large −.0026 −.0028 −.0024 −.0023 .0969 .0971 .1279 .1280 .0969 .0971 .9353 .9345 .9340 .9337
3 Cosine small .0020 .0013 −.0007 −.0012 .2468 .2544 .3151 .3246 .2468 .2544 .8831 .8675 .9194 .9121
3 Cosine medium −.0017 −.0020 −.0019 −.0021 .1386 .1394 .1812 .1817 .1386 .1394 .9245 .9212 .9282 .9263
3 Cosine large −.0029 −.0030 −.0025 −.0025 .0947 .0952 .1265 .1266 .0948 .0952 .9366 .9345 .9362 .9354
6 Normal small −.0020 −.0019 −.0021 −.0019 .1050 .1054 .1396 .1404 .1050 .1054 .9377 .9364 .9342 .9320
6 Normal medium −.0013 −.0012 .0000 −.0001 .0670 .0671 .0880 .0885 .0670 .0671 .9414 .9412 .9372 .9365
6 Normal large −.0011 −.0012 −.0005 −.0006 .0704 .0706 .0950 .0954 .0705 .0706 .9439 .9430 .9390 .9389
6 Epanech. small −.0027 −.0025 −.0024 −.0025 .1538 .1552 .2028 .2028 .1538 .1552 .9263 .9222 .9329 .9285
6 Epanech. medium −.0017 −.0017 −.0005 −.0003 .0901 .0905 .1185 .1189 .0901 .0905 .9391 .9375 .9344 .9333
6 Epanech. large −.0012 −.0013 .0004 .0002 .0646 .0651 .0861 .0865 .0646 .0651 .9429 .9411 .9385 .9400
6 Quartic small −.0030 −.0028 −.0021 −.0020 .1672 .1689 .2221 .2241 .1672 .1689 .9215 .9171 .9309 .9245
6 Quartic medium −.0018 −.0018 −.0015 −.0015 .0973 .0975 .1288 .1290 .0973 .0975 .9391 .9377 .9335 .9321
6 Quartic large −.0012 −.0012 .0004 .0001 .0650 .0652 .0858 .0859 .0650 .0652 .9416 .9417 .9377 .9365
6 Cosine small −.0028 −.0025 −.0024 −.0025 .1557 .1571 .2053 .2061 .1557 .1571 .9256 .9212 .9328 .9280
6 Cosine medium −.0018 −.0017 −.0006 −.0007 .0912 .0915 .1199 .1206 .0912 .0915 .9390 .9370 .9342 .9326
6 Cosine large −.0012 −.0013 .0003 .0002 .0644 .0648 .0857 .0864 .0644 .0648 .9420 .9409 .9380 .9382
9 Normal small .0008 .0008 .0015 .0014 .0837 .0838 .1103 .1107 .0837 .0838 .9382 .9375 .9325 .9321
9 Normal medium .0002 .0002 .0001 .0003 .0543 .0544 .0736 .0736 .0543 .0544 .9441 .9441 .9393 .9389
9 Normal large −.0008 −.0008 −.0018 −.0019 .0623 .0624 .0831 .0832 .0623 .0624 .9391 .9388 .9361 .9355
9 Epanech. small .0004 .0002 .0013 .0011 .1223 .1230 .1596 .1604 .1223 .1229 .9317 .9305 .9329 .9329
9 Epanech. medium .0009 .0010 .0010 .0012 .0717 .0719 .0948 .0960 .0717 .0719 .9431 .9429 .9393 .9396
9 Epanech. large −.0002 −.0002 −.0006 −.0004 .0541 .0544 .0720 .0721 .0541 .0544 .9442 .9410 .9395 .9395
9 Quartic small .0003 .0002 .0008 .0012 .1334 .1340 .1746 .1755 .1334 .1340 .9273 .9245 .9298 .9262
9 Quartic medium .0009 .0009 .0014 .0016 .0775 .0775 .1025 .1028 .0775 .0775 .9403 .9402 .9338 .9337
9 Quartic large .0000 .0000 .0004 .0002 .0534 .0536 .0708 .0712 .0534 .0536 .9443 .9432 .9402 .9404
9 Cosine small .0004 .0002 .0014 .0008 .1240 .1246 .1614 .1626 .1240 .1245 .9311 .9292 .9325 .9315
9 Cosine medium .0009 .0010 .0014 .0015 .0726 .0727 .0961 .0967 .0726 .0727 .9431 .9429 .9378 .9384
9 Cosine large −.0002 −.0002 −.0005 −.0005 .0537 .0540 .0713 .0713 .0537 .0540 .9442 .9416 .9387 .9394

n = 100, θ0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.
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Static models. The first model considered has scalar x and v influencing the outcome

variable through

yit = xitθ0 + ϑi(vit) + εit, ϑi(vit) = γ
(1)
i + γ

(2)
i vit − γ

(3)
i v2

it. (4.8)

Here, γ
(1)
i ∼ N (0, 1) are traditional fixed effects while γ

(2)
i ∼ N (0, 2) and γ

(3)
i ∼

N (0, .75) appear in an interactive fashion. The form of ϑi allows for both concave

and convex response functions. The dynamics of the covariates x and v were set to be

xit = −.3γ
(1)
i + .5xit−1 + β

(1)
i vit + N (0, 1) and vit = .3γ

(1)
i + β

(2)
i vit−1 + ζit, (4.9)

respectively. In (4.9), β
(1)
i ∼ N (0, 1) and β

(2)
i ∼ U [.20, .99], so that both strongly-

and weakly-persistent data sequences occur. Because differencing is executed over time

the within-group variation in ϑi is much more important for the performance of the

weighting than is the between-group variation. The start-up values for the covariate

time series were generated as xi0 ∼ −.3γ
(1)
i + N (0, 1) and vi0 ∼ .3γ

(1)
i + N (0, 1). The

disturbances are bivariate-normal variates, each with unit variance and a correlation

coefficient ρ0 which was 0 in the first design and .4 in the second. The latter case leads

to x, v, and ε being contemporaneously correlated, making x endogenous in the cross-

sectional sense. Observe also that x and v are dependent, so that a naive fixed-effect

estimator will be inconsistent for θ0.

Tables 1 and 2 contain the results for the kernel-weighted first-differenced least-

squares estimator for ρ0 = 0 and ρ0 = .4, respectively. Because, here, there are no

overidentifying restrictions, both θ∗n and θ∗∗n , and θ†n and θ††n coincide. Throughout,

θ0 was fixed at .5.4 The dimensions of the panels generated were n = 100 and T ∈
{3, 6, 9}. Results are reported for the standard-normal kernel (Normal), the second-

order Epanechnikov kernel (Epanechnikov), the quartic kernel (Quartic), and the cosine

kernel (Cosine). Three different bandwidth choices are reported on; 5n−3/4 (small),

15n−3/4 (medium), and 45n−3/4 (large).

Overal, Table 1 reports good performance of θ∗n. Both the mean- and the median

bias are virtually zero throughout. The jackknifed estimator has a bias of the same

magnitude. Not surprisingly, θ†n is more volatile. The difference in the STD and IQR

is, however, very small. As a consequence, the RMSE of both estimators is identical to

their STD up to the first few decimal digits. Both CI(A) and CI(B) report solid coverage

rates, with neither dominating the other.5 The actual size is generally somewhat larger

4Experiments with different values for θ0 gave qualitatively similar results.
5Here, CI(A) was obtained by means of the heteroskedasticity-robust variance-covariance estimator,

as displayed in the text.
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than the nominal size of .05, which is in line with the usual behavior found in Monte

Carlo work elsewhere. The impact of the choice of the kernel and the bandwidth is

strongest on the measures of spread. But no design constellation uniformly dominates

another.

When turning to the design with contemporaneous dependence between x and ε in

Table 2 the overal picture changes little. Both estimators continue to have an empirical

distribution that is roughly correctly centered; their variance changes little, too. Thus,

confidence intervals still provide approximately correct coverage rates. No consistent

pattern emerges when comparing the numbers across the tables.

Dynamic models. This subsection deals with the following variation on (4.8)–(4.9).

yit = yit−1θ0 + ϑi(vit) + εit, ϑi(vit) = γ
(1)
i + γ

(2)
i vit − γ

(3)
i v2

it, (4.10)

with

vit = .3γ
(1)
i + β

(2)
i

(

ρ0vit−1 + (1 − ρ0) U [−1, 1]
)

+ ζit (4.11)

for ρ0 ∈ {0, 1} and i.i.d. errors (εit, ζit) ∼ N (0, I). The processes were generated with a

burn in of 500 time periods, using

vi(−501) ∼ .3γ
(1)
i + N (0, 1) and yi(−501) ∼ −.3γ

(1)
i + ϑi(vi(−501)) + N (0, 1)

as startup values. The local-GMM estimator of θ0 à la Arellano and Bond (1991) uses

all lagged levels of yit−1 as instruments for ∆yit−1 in the equations in first differences.

Like with the conventional estimator, the small-sample bias of θ∗n and θ∗∗n will be

a function of the number of moments used as well as the instrument strength. The

former relates directly to the size of the panel (see, e.g., Alvarez and Arellano, 2003),

the latter is partly driven by the closeness of the autoregressive parameter θ0 to unity,

with the instruments becoming irrelevant when θ0 = 1. In addition, coverage intervals

based on the two-step estimator that are set up by means of analytical standard errors

would be expected to be too small, leading to nominal rejection frequencies that are

too high compared to a chosen significance level. Table 7 below contains the average of

the estimated standard errors of both θ∗n and θ∗∗n by means of the analytical formulae

and the bootstrap, together with the empirical standard deviation for a selection of the

Monte Carlo experiments that follow. It can be observed that, for both estimators, the

plug-in estimates are too low on average. The bootstrap-based standard errors are much

more in line with the variability of the estimators as actually observed over the Monte

Carlo runs. For this reason, I focus on the coverage rates of the confidence intervals

based on resampling below.

[15]



Table 2: Monte Carlo results for model (4.8)–(4.9) under dependence (ρ0 = .4).
WEIGHT MEAN BIAS MEDIAN BIAS STD IQR RMSE CI(A) CI(B)

T k σn θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

θ∗
n

θ†
n

3 Normal small −.0003 −.0006 −.0010 −.0009 .1532 .1554 .2046 .2079 .1532 .1554 .9184 .9107 .9243 .9192
3 Normal medium −.0011 −.0012 −.0002 −.0004 .1000 .1003 .1338 .1339 .1000 .1003 .9350 .9330 .9296 .9294
3 Normal large −.0036 −.0038 −.0039 −.0040 .1060 .1063 .1400 .1400 .1061 .1064 .9351 .9350 .9327 .9324
3 Epanech. small .0018 .0012 .0000 .0006 .2302 .2387 .2919 .2967 .2302 .2387 .8897 .8757 .9213 .9162
3 Epanech. medium −.0002 −.0004 −.0004 .0000 .1328 .1341 .1769 .1795 .1328 .1341 .9294 .9256 .9320 .9290
3 Epanech. large −.0023 −.0025 −.0026 −.0028 .0984 .0993 .1308 .1310 .0985 .0994 .9312 .9293 .9319 .9321
3 Quartic small .0015 .0007 −.0007 .0001 .2532 .2658 .3188 .3319 .2532 .2657 .8784 .8603 .9206 .9103
3 Quartic medium −.0004 −.0007 −.0012 −.0015 .1428 .1441 .1893 .1919 .1428 .1440 .9256 .9195 .9273 .9241
3 Quartic large −.0016 −.0018 −.0008 −.0008 .0982 .0985 .1313 .1316 .0982 .0985 .9338 .9321 .9311 .9299
3 Cosine small .0017 .0012 .0002 .0006 .2335 .2423 .2954 .3014 .2334 .2423 .8889 .8728 .9206 .9133
3 Cosine medium −.0002 −.0004 −.0003 −.0007 .1342 .1354 .1786 .1825 .1342 .1354 .9290 .9241 .9305 .9280
3 Cosine large −.0022 −.0023 −.0025 −.0029 .0980 .0987 .1309 .1309 .0980 .0987 .9307 .9298 .9317 .9315
6 Normal small .0010 .0009 .0010 .0010 .1010 .1014 .1340 .1347 .1010 .1014 .9308 .9293 .9302 .9283
6 Normal medium −.0007 −.0007 −.0004 −.0005 .0664 .0665 .0899 .0899 .0664 .0665 .9406 .9401 .9365 .9351
6 Normal large −.0014 −.0015 −.0008 −.0011 .0799 .0800 .1100 .1102 .0799 .0801 .9427 .9423 .9395 .9390
6 Epanech. small .0007 .0005 .0033 .0023 .1475 .1489 .2000 .1997 .1475 .1489 .9198 .9153 .9258 .9237
6 Epanech. medium .0007 .0007 −.0001 .0005 .0871 .0877 .1159 .1169 .0871 .0877 .9333 .9321 .9316 .9318
6 Epanech. large −.0012 −.0012 −.0007 −.0007 .0675 .0682 .0900 .0910 .0675 .0682 .9413 .9381 .9370 .9354
6 Quartic small .0001 −.0003 .0018 .0023 .1614 .1633 .2136 .2160 .1614 .1633 .9132 .9083 .9224 .9167
6 Quartic medium .0009 .0009 .0006 .0006 .0938 .0941 .1249 .1252 .0938 .0941 .9318 .9311 .9311 .9297
6 Quartic large −.0010 −.0010 −.0005 −.0006 .0660 .0662 .0883 .0885 .0660 .0662 .9403 .9385 .9384 .9377
6 Cosine small .0006 .0003 .0023 .0018 .1496 .1510 .2017 .2026 .1496 .1510 .9185 .9145 .9247 .9215
6 Cosine medium .0007 .0007 .0002 .0000 .0881 .0885 .1171 .1177 .0881 .0885 .9336 .9326 .9318 .9309
6 Cosine large −.0011 −.0011 −.0009 −.0007 .0669 .0675 .0893 .0906 .0669 .0675 .9419 .9390 .9367 .9363
9 Normal small .0012 .0012 .0010 .0012 .0803 .0804 .1074 .1083 .0803 .0804 .9356 .9351 .9305 .9305
9 Normal medium .0010 .0010 .0017 .0017 .0541 .0541 .0724 .0725 .0541 .0541 .9411 .9412 .9363 .9361
9 Normal large −.0005 −.0006 −.0007 −.0006 .0715 .0716 .0955 .0956 .0715 .0716 .9394 .9393 .9357 .9362
9 Epanech. small .0009 .0009 .0006 .0000 .1158 .1166 .1547 .1560 .1158 .1166 .9302 .9290 .9325 .9309
9 Epanech. medium .0013 .0013 .0018 .0014 .0693 .0696 .0936 .0938 .0693 .0696 .9393 .9388 .9345 .9362
9 Epanech. large .0006 .0005 .0007 .0004 .0568 .0572 .0764 .0769 .0568 .0572 .9443 .9431 .9397 .9399
9 Quartic small .0005 .0004 −.0001 −.0001 .1259 .1268 .1679 .1690 .1259 .1268 .9264 .9245 .9313 .9271
9 Quartic medium .0012 .0012 .0015 .0014 .0746 .0747 .1001 .1005 .0746 .0747 .9371 .9366 .9333 .9336
9 Quartic large .0008 .0008 .0010 .0010 .0544 .0546 .0731 .0730 .0544 .0546 .9419 .9416 .9380 .9378
9 Cosine small .0008 .0008 .0001 −.0001 .1173 .1181 .1573 .1579 .1173 .1180 .9304 .9279 .9320 .9300
9 Cosine medium .0013 .0013 .0014 .0014 .0701 .0703 .0947 .0952 .0701 .0703 .9389 .9386 .9350 .9357
9 Cosine large .0006 .0006 .0006 .0004 .0561 .0564 .0755 .0763 .0561 .0564 .9453 .9425 .9397 .9390

n = 100, θ0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.
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Table 3: Monte Carlo results for model (4.10)–(4.11); ρ0 = 0, T = 3.
WEIGHT MEAN BIAS MEDIAN BIAS

k σn θ∗
n

θ†
n

θ∗∗
n

θ††
n

θ∗
n

θ†
n

θ∗∗
n

θ††
n

Normal small −.0269 .0138 −.0244 .0171 −.0418 −.0109 −.0377 −.0084
Normal medium −.0395 .0127 −.0292 .0270 −.0531 −.0131 −.0456 −.0087
Normal large −.0486 .0116 −.0351 .0244 −.0648 −.0167 −.0546 −.0128
Epanech. small −.0454 .0207 −.0449 .0143 −.0646 −.0306 −.0649 −.0317
Epanech. medium −.0298 .0158 −.0238 .0239 −.0423 −.0080 −.0347 −.0036
Epanech. large −.0469 .0119 −.0341 .0233 −.0628 −.0155 −.0529 −.0130
Quartic small −.0540 .0130 −.0535 .0138 −.0736 −.0382 −.0759 −.0377
Quartic medium −.0268 .0144 −.0231 .0174 −.0402 −.0071 −.0327 −.0049
Quartic large −.0442 .0123 −.0324 .0208 −.0603 −.0140 −.0486 −.0094

WEIGHT STD IQR
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .2430 .3425 .2472 .4094 .2786 .2824 .2924 .3199
Normal medium .2702 .3367 .2727 .5898 .3137 .3421 .3179 .3526
Normal large .2915 .3629 .2928 .4589 .3390 .3646 .3379 .3876
Epanech. small .2998 .5632 .3069 .5004 .3329 .3728 .3535 .4158
Epanech. medium .2519 .3360 .2540 .4593 .2913 .3095 .2931 .3231
Epanech. large .2878 .3580 .2897 .4567 .3356 .3604 .3344 .3788
Quartic small .3274 .8390 .3382 .7210 .3550 .4042 .3729 .4498
Quartic medium .2435 .3068 .2462 .3443 .2816 .2984 .2896 .3181
Quartic large .2815 .3504 .2847 .4589 .3274 .3546 .3288 .3715

WEIGHT RMSE CI(B)
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .2445 .3428 .2484 .4098 .9332 .9354 .9506 .9524
Normal medium .2730 .3369 .2742 .5904 .9250 .9344 .9470 .9564
Normal large .2955 .3631 .2949 .4595 .9244 .9304 .9446 .9516
Epanech. small .3032 .5635 .3101 .5006 .9326 .9328 .9510 .9540
Epanech. medium .2536 .3364 .2551 .4599 .9320 .9366 .9496 .9554
Epanech. large .2916 .3582 .2917 .4572 .9250 .9308 .9452 .9516
Quartic small .3318 .8391 .3424 .7211 .9280 .9298 .9440 .9522
Quartic medium .2449 .3071 .2473 .3447 .9352 .9390 .9498 .9554
Quartic large .2849 .3506 .2865 .4593 .9260 .9318 .9468 .9524

n = 100, θ0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.

An important difference between the least-squares estimator as considered in the

previous subsection and the GMM estimator for the dynamic model is that it uses levels

as instruments rather than differences. While this is also the case when ϑi does not

depend on v, there might be additional finite-sample effects when v is autocorrelated.

To see this, recall that local differencing removes ∆ϑi(vit) from the moment conditions

only asymptotically. For any finite n, therefore, lagged dependent variables will correlate

with wit∆ξit. To assess the importance of this serial correlation, I manipulate ρ0 from

zero to unity. When ρ0 = 0, v is independent over time while, when ρ0 = 1, it is
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first-order autocorrelated with some sequences being nearly integrated of order one.

The kernel and bandwidth choices from before were maintained, and n was equally

kept at 100. To save on space, I report results only for a subset of the design variations.

Additional results are available as supplementary material.

Table 4: Monte Carlo results for model (4.10)–(4.11); ρ0 = 1, T = 3.
WEIGHT MEAN BIAS MEDIAN BIAS

k σn θ∗
n

θ†
n

θ∗∗
n

θ††
n

θ∗
n

θ†
n

θ∗∗
n

θ††
n

Normal small .0158 .0769 .0104 .0638 .0012 .0406 .0019 .0359
Normal medium .0563 .1500 .0519 .1634 .0382 .0991 .0385 .0925
Normal large .0604 .1774 .0545 .2262 .0430 .1069 .0372 .1015
Epanech. small −.0429 .0567 −.0474 .0191 −.0660 −.0211 −.0622 −.0208
Epanech. medium .0409 .1152 .0341 .0887 .0262 .0737 .0297 .0771
Epanech. large .0601 .1711 .0550 .2466 .0419 .1059 .0376 .0989
Quartic small −.0526 .0711 −.0547 .0570 −.0748 −.0312 −.0721 −.0330
Quartic medium .0287 .0994 .0223 .0772 .0149 .0564 .0144 .0584
Quartic large .0592 .1632 .0548 .2105 .0409 .1026 .0364 .0972

WEIGHT STD IQR
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .3178 .7237 .3294 1.0133 .3191 .3472 .3254 .3806
Normal medium .3921 1.2205 .4015 1.7770 .3674 .4143 .3614 .4494
Normal large .4331 1.0987 .4475 2.5873 .4008 .4526 .3903 .4816
Epanech. small .3578 1.3454 .3903 2.0493 .3571 .4037 .3686 .4507
Epanech. medium .3396 .7551 .3578 1.2447 .3449 .3779 .3309 .4035
Epanech. large .4251 1.0993 .4340 3.7695 .3960 .4467 .3855 .4750
Quartic small .3814 2.5693 .4034 2.5677 .3720 .4307 .3900 .4859
Quartic medium .3190 .6842 .3356 1.0863 .3305 .3622 .3234 .3843
Quartic large .4127 1.1089 .4221 2.5327 .3884 .4375 .3791 .4613

WEIGHT RMSE CI(B)
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .3182 .7277 .3295 1.0152 .9512 .9648 .9516 .9654
Normal medium .3961 1.2296 .4049 1.7844 .9482 .9580 .9522 .9688
Normal large .4373 1.1128 .4508 2.5970 .9452 .9588 .9572 .9694
Epanech. small .3603 1.3465 .3931 2.0493 .9326 .9560 .9360 .9584
Epanech. medium .3421 .7638 .3594 1.2478 .9494 .9616 .9506 .9660
Epanech. large .4293 1.1125 .4374 3.7774 .9462 .9588 .9566 .9696
Quartic small .3850 2.5701 .4070 2.5682 .9310 .9514 .9358 .9604
Quartic medium .3203 .6914 .3363 1.0890 .9490 .9616 .9504 .9664
Quartic large .4169 1.1208 .4256 2.5413 .9460 .9580 .9544 .9692

n = 100, θ0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.

Table 3 gives the usual descriptive statistics for the case where T = 3, θ0 = .5,

and ρ0 = 0. Both the one- and two-step estimator have a reasonably small bias. The

choice of k and σn seems particlarly important here. The jackknifed estimators give an

improvement in terms of centrality, but at a cost of a higher STD and RMSE. When n

[18]



is larger, however, this discrepancy vanishes. The IQR of θ†n and θ††n are, however, not

much larger than those of θ∗n and θ∗∗n and also the coverage rates are comparable.

When ρ0 is set to unity, the estimators’ performance change. All estimators now

have both a larger bias and a higher variability. Although the bias never skyrockets,

the jackknife estimators do not outperform θ∗n and θ∗∗n in terms of any of the statistics

reported, although they start doing so for larger n. Moreover, they are more biased

than the original estimators, and their standard deviation is large. Nevertheless, the

IQR remains relatively small and the coverage rates are close to .95.

Table 5: Monte Carlo results for model (4.10)–(4.11); ρ0 = 0, T = 6.
WEIGHT MEAN BIAS MEDIAN BIAS

k σn θ∗
n

θ†
n

θ∗∗
n

θ††
n

θ∗
n

θ†
n

θ∗∗
n

θ††
n

Normal small −.0558 −.0036 −.0560 −.0031 −.0548 −.0052 −.0541 −.0066
Normal medium −.0469 −.0041 −.0436 −.0033 −.0461 −.0033 −.0426 −.0034
Normal large −.0520 −.0062 −.0466 −.0040 −.0512 −.0070 −.0454 −.0040
Epanech. small −.1025 −.0136 −.1035 −.0139 −.1030 −.0202 −.1039 −.0235
Epanech. medium −.0469 −.0029 −.0460 −.0028 −.0473 −.0040 −.0462 −.0056
Epanech. large −.0509 −.0058 −.0459 −.0039 −.0505 −.0062 −.0444 −.0046
Quartic small −.1192 −.0184 −.1187 −.0165 −.1210 −.0279 −.1203 −.0291
Quartic medium −.0496 −.0028 −.0494 −.0025 −.0505 −.0053 −.0483 −.0035
Quartic large −.0493 −.0051 −.0449 −.0037 −.0485 −.0050 −.0439 −.0045

WEIGHT STD IQR
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .0999 .1168 .1092 .1395 .1323 .1541 .1435 .1812
Normal medium .0953 .1059 .1021 .1267 .1265 .1400 .1377 .1620
Normal large .1008 .1126 .1060 .1329 .1333 .1479 .1409 .1748
Epanech. small .1261 .1646 .1398 .1989 .1650 .2033 .1801 .2508
Epanech. medium .0955 .1085 .1033 .1304 .1254 .1399 .1364 .1690
Epanech. large .0997 .1111 .1052 .1315 .1321 .1467 .1406 .1722
Quartic small .1356 .1827 .1502 .2232 .1750 .2276 .1963 .2868
Quartic medium .0968 .1111 .1052 .1329 .1282 .1473 .1398 .1729
Quartic large .0979 .1089 .1040 .1295 .1310 .1450 .1389 .1687

WEIGHT RMSE CI(B)
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .1144 .1169 .1228 .1395 .8790 .9322 .8880 .9270
Normal medium .1062 .1059 .1110 .1268 .8990 .9322 .9126 .9308
Normal large .1134 .1128 .1157 .1329 .8962 .9280 .9102 .9290
Epanech. small .1625 .1652 .1739 .1994 .8272 .9178 .8450 .9216
Epanech. medium .1064 .1085 .1130 .1304 .8946 .9308 .9058 .9248
Epanech. large .1119 .1113 .1148 .1315 .8978 .9290 .9104 .9276
Quartic small .1805 .1836 .1914 .2238 .8036 .9126 .8246 .9168
Quartic medium .1087 .1112 .1162 .1329 .8856 .9318 .8974 .9244
Quartic large .1096 .1090 .1132 .1295 .8968 .9316 .9114 .9290

n = 100, θ0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.
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Tables 5 and 6 show what happens when T is increased to 6. Of course, the STD

and IQR shrink, and considerably so. For ρ0 = 0, the bias of all estimators increases

while, for ρ0 = 1, the opposite happens. The coverage rates worsen slightly across both

design variations. This effect is less pronounced for θ†n and θ††n than it is for θ∗n and θ∗∗n .

Table 6: Monte Carlo results for model (4.10)–(4.11); ρ0 = 1, T = 6.
WEIGHT MEAN BIAS MEDIAN BIAS

k σn θ∗
n

θ†
n

θ∗∗
n

θ††
n

θ∗
n

θ†
n

θ∗∗
n

θ††
n

Normal small −.0138 .0474 −.0212 .0376 −.0167 .0398 −.0197 .0331
Normal medium .0454 .1075 .0324 .0860 .0451 .1025 .0327 .0825
Normal large .0516 .1218 .0376 .0965 .0523 .1158 .0375 .0902
Epanech. small −.0897 −.0022 −.0933 −.0058 −.0922 −.0107 −.0930 −.0144
Epanech. medium .0230 .0810 .0113 .0641 .0206 .0738 .0114 .0603
Epanech. large .0510 .1197 .0372 .0949 .0514 .1137 .0373 .0890
Quartic small −.1078 −.0137 −.1099 −.0148 −.1093 −.0221 −.1115 −.0276
Quartic medium .0055 .0638 −.0043 .0502 .0032 .0568 −.0053 .0460
Quartic large .0496 .1158 .0360 .0921 .0497 .1102 .0368 .0871

WEIGHT STD IQR
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .1161 .1484 .1211 .1719 .1510 .1821 .1547 .2072
Normal medium .1195 .1488 .1160 .1624 .1548 .1835 .1536 .2019
Normal large .1269 .1603 .1215 .1724 .1654 .1967 .1605 .2167
Epanech. small .1357 .1906 .1487 .2325 .1788 .2328 .1948 .2800
Epanech. medium .1180 .1485 .1170 .1652 .1527 .1832 .1531 .2016
Epanech. large .1255 .1580 .1204 .1704 .1630 .1941 .1591 .2116
Quartic small .1416 .2037 .1562 .2495 .1842 .2458 .2029 .3024
Quartic medium .1167 .1475 .1184 .1670 .1524 .1833 .1531 .2014
Quartic large .1233 .1545 .1187 .1672 .1609 .1903 .1562 .2094

WEIGHT RMSE CI(B)
k σn θ∗

n
θ†

n
θ∗∗

n
θ††

n
θ∗

n
θ†

n
θ∗∗

n
θ††

n

Normal small .1169 .1558 .1230 .1760 .9190 .9122 .9250 .9202
Normal medium .1279 .1836 .1205 .1838 .8982 .8384 .9252 .8858
Normal large .1370 .2013 .1272 .1976 .8924 .8194 .9214 .8822
Epanech. small .1627 .1906 .1755 .2325 .8474 .9140 .8616 .9258
Epanech. medium .1202 .1691 .1175 .1772 .9202 .8818 .9320 .9102
Epanech. large .1355 .1982 .1260 .1950 .8930 .8206 .9224 .8834
Quartic small .1780 .2041 .1909 .2499 .8228 .9080 .8384 .9214
Quartic medium .1168 .1607 .1185 .1744 .9212 .9002 .9318 .9176
Quartic large .1329 .1931 .1240 .1908 .8936 .8234 .9240 .8848

n = 100, θ0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.

The last table in this subsection makes the comparison between the average estimated

standard errors of θ∗n and θ∗∗n and their empirical standard deviation.
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Table 7: A comparison between the estimated standard errors and the empirical standard deviation
ρ0 = 0 ρ0 = 1

DESIGN SE (analytic) SE (bootstrap) STD SE (analytic) SE (bootstrap) STD
T k σn θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n

3 Normal small .1798 .2185 .2493 .2632 .2430 .2472 .2086 .2632 .3067 .3301 .3178 .3294
3 Normal medium .1670 .2359 .2698 .2831 .2702 .2727 .2020 .3081 .3598 .3840 .3921 .4015
3 Normal large .1703 .2513 .2888 .3021 .2915 .2928 .2094 .3353 .3849 .4094 .4331 .4475
3 Epanech. small .2384 .2631 .3116 .3345 .2998 .3069 .2731 .3012 .3463 .3728 .3578 .3903
3 Epanech. medium .1672 .2231 .2546 .2669 .2519 .2540 .1969 .2822 .3317 .3554 .3396 .3578
3 Epanech. large .1696 .2486 .2853 .2984 .2878 .2897 .2077 .3301 .3808 .4047 .4251 .4340
3 Quartic small .2622 .2810 .3325 .3564 .3274 .3382 .3000 .3183 .3606 .3902 .3814 .4034
3 Quartic medium .1711 .2185 .2498 .2633 .2435 .2462 .1993 .2684 .3162 .3393 .3190 .3356
3 Quartic large .1685 .2440 .2796 .2930 .2815 .2847 .2053 .3218 .3734 .3965 .4127 .4221
T k σn θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n

6 Normal small .0962 .0805 .0964 .1060 .0999 .1092 .1026 .0826 .1068 .1154 .1161 .1211
6 Normal medium .0783 .0741 .0922 .0987 .0953 .1021 .0827 .0779 .1083 .1119 .1195 .1160
6 Normal large .0781 .0765 .0963 .1023 .1008 .1060 .0826 .0810 .1141 .1169 .1269 .1215
6 Epanech. small .1330 .0999 .1224 .1367 .1261 .1398 .1407 .0985 .1265 .1410 .1357 .1487
6 Epanech. medium .0826 .0753 .0924 .0998 .0955 .1033 .0876 .0793 .1071 .1121 .1180 .1170
6 Epanech. large .0780 .0760 .0956 .1016 .0997 .1052 .0825 .0804 .1130 .1160 .1255 .1204
6 Quartic small .1445 .1043 .1294 .1444 .1356 .1502 .1521 .1018 .1316 .1467 .1416 .1562
6 Quartic medium .0880 .0773 .0935 .1019 .0968 .1052 .0936 .0805 .1063 .1129 .1167 .1184
6 Quartic large .0779 .0752 .0943 .1005 .0979 .1040 .0824 .0794 .1113 .1144 .1233 .1187
T k σn θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n
θ∗

n
θ∗∗

n

9 Normal small .0818 .0516 .0757 .0808 .0793 .0891 .0881 .0524 .0837 .0881 .0911 .0971
9 Normal medium .0640 .0452 .0696 .0732 .0735 .0804 .0681 .0461 .0794 .0819 .0921 .0922
9 Normal large .0633 .0459 .0719 .0752 .0763 .0823 .0672 .0469 .0826 .0848 .0962 .0956
9 Epanech. small .1125 .0622 .0955 .1020 .0995 .1115 .1200 .0610 .0989 .1052 .1045 .1166
9 Epanech. medium .0690 .0472 .0713 .0754 .0756 .0830 .0739 .0488 .0816 .0845 .0933 .0944
9 Epanech. large .0633 .0458 .0714 .0748 .0757 .0819 .0672 .0467 .0819 .0842 .0954 .0949
9 Quartic small .1213 .0635 .0999 .1062 .1049 .1162 .1288 .0617 .1018 .1080 .1084 .1201
9 Quartic medium .0743 .0491 .0729 .0775 .0769 .0854 .0799 .0505 .0824 .0859 .0921 .0951
9 Quartic large .0634 .0455 .0707 .0741 .0748 .0812 .0673 .0464 .0809 .0833 .0941 .0938

n = 100, θ0 = .5, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

[21]



v conclusion

This paper has used the notion of local differencing to construct an estimator for fixed-

effect panel data models with nonparametric unobserved heterogeneity. In line with

the traditional estimators, the fixed-effect ‘ignorance’ towards the models’ unit-specific

latent components that underlies first-differencing the data allows for the unobserved

heterogeneity to take on very general forms. The resulting local GMM estimator was

shown to be consistent and asymptotically normal. It complements the recent results

on identification of random coefficients in linear panel data models with exogenous

covariates. With some work, the approach can be extended to a more general class of

nonlinear panel data models.

Several questions and extensions of potential interest immediately suggest them-

selves. A pertinent question from an applied point of view is how to best choose the

smoothing parameters. Ideally, a data-driven selection method should be found that de-

termines the bandwidth in an optimal manner. Indeed, the Monte Carlo results suggest

the smoothing used to be of substantial importance in small sample. A larger study of

the sensitivity of the local GMM estimator to the form of the incidental functions and

the stochastic behavior of their arguments would also be desirable. Related to this com-

ment, it appears of interest to categorize all the information content in the data in terms

of nonlinear moment conditions under additional assumptions such as homoskedastic-

ity. Such an exercise in the spirit of Ahn and Schmidt (1995) would allow for efficiency

gains and, arguably, improved finite-sample performance. Given the increased attention

to cross-sectional dependence in the panel data literature—see Sarafidis and Wansbeek

(2010) for an up-to-date review—it might be worthwhile investigating the potential for

local first-differencing in the presence of factor structures in the disturbance processes. It

seems reasonable to expect that the GMM estimators for such problems can be modified

in a manner that is analogues to what was discussed here.

A final remark related to incorporating unit-specific non-stationary effects, such as

time trends or time dummies. These are important empirical phenomena. Clearly,

local first-differencing would break down under such a scenario as these variables, when

transformed, are bounded away from zero. This is no different than in the binary-

choice setting of Honoré and Kyriazidou (2000). An interesting extension to the model

considered here, therefore, would be to construct a hybrid version that combines local

differencing with a parametric random-coefficient specification such as the ones studied

in Chamberlain (1992) and Arellano and Bonhomme (2010).
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