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ABSTRACT

I discuss the fixed-effect estimation of panel data models with time-varying
excess heterogeneity across cross-sectional units. These latent components are
not given a parametric form. A modification to traditional first-differencing
is motivated which, asymptotically, removes the permanent unobserved het-
erogeneity from the differenced model. Conventional estimation techniques
can then be readily applied. Distribution theory for a kernel-weighted GMM
estimator under large-n and fixed-T asymptotics is developed. The estimator
is put to work in a series of numerical experiments to static and dynamic
models.
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I INTRODUCTION

The use of longitudinal data in microeconometric studies is commonly motivated by the
potential to capture excess heterogeneity between units. The first major rationale for
this is to obtain parameter estimates that are free from bias induced by unobserved cross-
sectional heterogeneity. A second reason for their employment is the desire to decompose
the variance of latent components into structural and transitory contributions. The
former incentive is typically related to taking a fixed-effect view on the processes that
drive the outcome of interest in the sense of leaving the distribution of unobserved
unit-specific factors unspecified. The error-component formulation or random-effect
approach is commonly associated with stronger restrictions on the distribution of the
permanent latent component.

So far, in the spirit of the seminal work of Mundlack (1961, 1978), the most common
specification adds unit-specific intercept terms to a model that is otherwise homogeneous
in the effect of covariates on outcomes. This captures time-constant and non-interactive
unobserved components. Nevertheless, there may be good reason to assume that the
heterogeneity among processes is wider spread. Browning, Ejrnaes, and Alvarez (2009)
and Arellano and Bonhomme (2010), for example, provide ellaborate discussions on this
and report empirical results that support their claims. In light of this, there has been
renewed attention toward identifying the distribution of random coefficients in linear
panel data models.

In this paper, I complement such a strategy by considering what can be learned about
common parameters in, possibly dynamic, panel data models with nonparametrically-
specified excess heterogeneity. Here, the fixed-effect paradigm—that is, circumventing
the estimation of the model’s idiosyncratic components—allows for a very rich pattern
of unobserved heterogeneity in a manner that leaves its distribution essentially unre-
stricted. The heterogenous effects may enter non-additively and can be time-varying.
This leads to a framework in which the conventional incidental parameters are replaced
by incidental functions, and traditional first-differencing has to make way for local first-
differencing.

The estimator I describe below relates to theory on semi- and nonparametric cross-
sectional estimation derived by Gozalo and Linton (2000) and Lewbel (2007), and to
kernel-weighted pairwise-differencing estimation as first introduced by Powell (1987).
However, observing multiple time-series realizations for the same units allows tackling
heterogeneity in a manner that pairwise-differencing cannot. In a panel data context, the

reference most closely related to what follows below is Honoré and Kyriazidou (2000),
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who proposed a kernel-weighted conditional-likelihood estimator for a dynamic logit
model with time-varying covariates. In fact, this connection immediately suggests that
the proposed approach to dealing with incidental functions can be generalized to all
existing fixed-effect estimators, such as conditional maximum-likelihood and maximum
score, for example. This is easy to see, but working out the details for the general case
would come at the cost of reduced transparency.

This paper has four more sections. The first of these provides details on the model
of interest and the local-differencing strategy, and states the GMM estimator that will
be the focus of the analysis. The next section contains large-sample theory. The last

section before concluding gives results from a series of Monte Carlo exercises.

II  THE MODEL, LOCAL FIRST DIFFERENCING, AND A GMM ESTIMATOR

Suppose we are in possession of n independent sequences of 1" observations on the
variables (y, z, z,v). Denote the tth observation for unit i = 1,...,n by (v, Tit, Zit, Vi)
and let ¢(a) be the dimension of the vector a. Assume that the observations on the
scalar random variable y were generated through a model of the form

Yir = 3,00 + it Eit = Vi(vit) + €t (2.1)

Here, ¢;; is a zero mean random disturbance, 0y is the true value of the parameter
vector of interest, and the unit-specific functions 9; : RY*) — R capture the, potentially
heterogeneous, impact of the covariates v on y. These functions are assumed to be
smooth in their arguments, but are otherwise unmodelled and allowed to be random
across i. Remaining loyal to the fixed-effect modelling approach, they are draws from
an unknown probability distribution that may depend on the realization of the covariates
and, possibly, initial conditions, but not on €. Feedback from y; to future x; is allowed
for, accommodating dynamic models with predetermined regressors. More generally,
x is allowed to be endogenous in the cross-sectional sense of being contemporaneously
correlated with e. When strict exogeneity is lacking, z serves as instrumental variables.
No restriction is put on the statistical relationship between v and (x,¢) over time.

The fact that ¥;(v) may be random after conditioning on a realization of its argument
distinguishes (2.1) from a panel data version of a nonparametric functional-coefficient
model as considered by Hastie and Tibshirani (1993). It is also different from the
random-coefficient model of Chamberlain (1992) and Arellano and Bonhomme (2010),
where 9;(v) is a linear combination of exogenous v and unit-specific coefficients. Here,
the v; are unspecified incidental functions of covariates, which may be predetermined or

3]



endogenous. Thus, (2.1) generalizes the standard linear fixed-effect model by allowing
for a much richer pattern of unobserved unit-specific factors; notice that this benchmark
model is obtained on assuming ¥;(v) to be constant in v.

To construct an estimator of 6y, start by stacking observations over time to obtain
Yi = Wirs - Yir)'s Xi = (Tar, - wir)s Vi = (v, - vir)'s €6 = (€a, - &), and & =
(&1, -, )5 let 94(V;) = (95(vi), - - -, 95(vir)). Write D for the (7T'— 1) x T' matrix that
performs first-differencing on the above arrays. For example, Dy; = (Ayia, ..., Ayir)’,
where A =1 — L and L denotes the lag operator. Then,

Y = X;00 + &, & =1(Vi) + e, (2.2)

and Dy; = DX;60y + D¢; for D§; = D¥,;(V;) + De;. Recall that, when 9;(v) is constant,
D9;(V;) = 0, and an efficient GMM estimator of 6, that is based on data in first-

differences minimizes the quadratic form
[1 zn: ZD(y: ~ X:0)] ‘a [1 zn: ZD(y: — Xib) (2.3)
n — 7 (] 7 n — 7 7 7 N

for a well-chosen weight matrix G; see Holtz-Eakin, Newey, and Rosen (1988) and
Arellano and Bond (1991). Throughout, Z; is an instrument matrix of conformable
dimension that contains z;,..., z;r. The latter can be lagged levels of predetermined
regressors, all time-series realizations of exogenous covariates, and, possibly, external
instrumental variables. Of course, simple differencing does not remove ¥;(V;) from (2.2)
more generally, and &[Z'D(y — X6p)] # 0 unless z, and Ad(v;) are uncorrelated.’
However, by smoothness of ¥;, Ay, = Azl,00 + AV;(vy) + Aey — Azl,0y + Aeyy as
Avyy — 0. Let wy(v) = d(v —v) for § : RYY) — R a multivariate version of Dirac’s
delta.” Then, the conditional moment condition & [z wo(Avy)(Ay, — Azjb)] = 0,
which is free of incidental functions, holds for t = 2,...,T. This suggest constructing
an estimator based on an empirical counterpart of these conditional moment conditions.
A fruitful way to proceed is to replace wy(Awv;) by a smoother such as a kernel weight,

and to make the appropriate changes to (2.3).

1 As interest here lies in micropanels, throughout, the maintained asymptotic scheme will be that of
large n and fixed T. Accordingly, expectations are taken with respect to the cross-sectional distribution
of the data.

2Dirac’s delta is defined as follows: if a # 0, then §(a) = 0; if @ = 0, then 6(a) = co. As a measure
it has the property that [ g(a) §(a) da = ¢(0) for a continuous function g. I prefer its use here over the
usual notation for conditional expectations because explicitly conditioning on all time-series realizations
of covariates and instruments on top of period-specific first differences would impose a heavy notational
burden.

[4]



To do so, partition the vector v as (v(©, @), where v® and v@ refer to the
continuously-distributed components and the discrete components of v, respectively.
Let £ = ((v(9)), let k : R — R be a kernel with associated bandwidth o,, and write
1(a) for the indicator function for the event a. A kernel weight takes the form

_ 1Ay (@
Form the diagonal matrices W; = diag(w;s, . . ., wyr) and Q, = diag(wy(ve), . . . ,wy(v7)).

A local GMM estimator based on the moment conditions

is obtained by introducing W; in (2.3). Because the weights do not distort the linearity
of this objective function, the local estimator is available in closed form. Moreover, it is
given by

0, = [SyxGSzx]  [SyxGSz,] (2.5)

for the matrices

— 1 - / — 1 . !/
Szx =~ z_; ZWDX; and Sz, =~ Z_; Z!W;Dy;.

Thus, computing 6, from the data boils down to first assigning a weight to each first-
differenced observation and then proceeding as one would do with the conventional
GMM estimator of choice. Under the regularity conditions provided below, this approach
is asymptotically equivalent to using only first-differenced observations for which Awv;
lies in a shrinking neighborhood of zero. Observe that (2.5) reduces to a weighted
least-squares estimator on setting Z; = DX.

One attractive consequence of working with data in first differences is that it is
straightforward to deal with unbalanced panel data. Nevertheless, estimation based
on weighted versions of orthogonal deviations (Arellano and Bover, 1995) or deviations
from within-group means is also possible. To illustrate, let

(@ _
s, = ik<vit — Uis ) (0@ = o)

is

choose k to be symmetric, and collect the w7 in the symmetric 7 x T matrix W;, the
(t,s)th element of this matrix being wf,. A local GMM estimator that is based on
forward orthogonal deviations follows on replacing Sxz and Sx, above by the matrices
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n~ S0 Z/(DD)Y2PDW,X; and nt S0 ZH(DD') V2D Wiy, respectively. A weighted
within-group estimator, on the other hand, would take the form argmingn™">""  (y; —
X,0)W,D'(DD')'DW;(y; — X;0). The matrix D’(DD’)~'D may be recalled to be the
traditional within-group operator.® Distribution theory for both these estimators can
be derived in an analogous fashion as for #,,. However, simulation results suggest that
neither outperforms its first-differenced counterpart in small samples. The reason for
this is the additional noise induced by taking linear combinations of kernel-weighted

quantities.

IIT LARGE-SAMPLE BEHAVIOR OF THE GMM ESTIMATOR

Let us now consider the behavior of 6, as n grows large. For vectors a and b for

which ¢(a) = ¢(b), let ||a|| denote the Euclidean norm, let |a| = ng a, and let
b = Zﬁg(b(j))“(j) throughout. The notation ||-|| will also be used to indicate the
matrix norm.

Start by imposing the following conditions.

Assumption 1 (Regularities). The data array {y;, x;, z;, v}, is a random sample. For
t=2,...,T, &wo(Awvy)||z:Aesl|] is finite. For v in a neighborhood of zero, &[Z'Q2,DX]
has full column rank. The moment condition &[Z'QyDe| = 0 holds.

Assumption 1 states the sampling scheme and contains conventional requirements for
linear GMM estimators. Moreover, it provides a mild dominance condition on the vector
of population moments and ensures identification of 6y by imposing a rank condition
and postulating instrument validity.

The next assumption demands smoothness from the conditional moments that are
being approximated by the kernel weighting and from the conditional densities of Avt(c)
given realizations of Avt(d); refer to these densities by f; and to their respective supports

by Vt.

Assumption 2 (Smoothness). For t = 2,...,T, fi(vOvD) is bounded from above
for all v in V; and s strictly positive for v in a neighborhood of zero. In addition,
f(vONDY and Ew, (Avy) 2 A& are k-times continuously differentiable in v(© for all v
in a neighborhood of zero, where k > 2 is an integer.

30f course, the usual caveat in this interpretation applies when k is a higher-order kernel, as then
some of the weights will have to be negative.



When combined with a well-behaved kernel and bandwidth, Assumption 2 implies that
the bias induced by weighting observations by w;; disappears asymptotically. It could
be relaxed slightly, for example by requiring the bounded away from zero condition on
fi to hold only for some but not all t = 2,...,T, but this would needlessly cloud the
exposition.

What is meant exactly by a well-behaved kernel and bandwidth is the topic of the
third assumption.

Assumption 3 (Kernel weights). The kernel, k, is bounded on its support and of
kth-order. Moreover, [k(n) dnp =1, [/ k(n) dy = 0 for |j| = 1,....k — 1, and
77N [k(n)|| dn < oo for |j] in {0,k}. The bandwidth, o, is both non-negative and
o(1) as n — oo, while /nol — oo and \/noto* — 0.

The required degree of smoothness is increasing in the number of continuous components
of vy, £. It is well known that, although they generally increase finite-sample bias,
discrete covariates do not retard the speed of convergence of Nadaraya-Watson type
kernel estimator of conditional mean functions, and the same conclusion may be drawn
here.

It can be noted that an alternative to working with empirical cell probabilities for
the discrete components of Ay, would be to smooth over these variables as well. Such
an approach may well be beneficial in small samples when the support of Avt(d) is large.
Another refinement would be to work with regressor-specific bandwidths, that is, a
vector-valued o,. I abstract away from both of these possibilities for fine tuning here as
they do not affect the asymptotic behavior of 6,, nor will it be possible at this stage to
provide particular guidelines on how to get the most out of these additional degrees of
freedom.

Assumptions 1-3 are more than enough to guarantee the consistency of 6, for 6, as
n — oo. To facilitate the exposition, let F; be a matrix consisting of 7' — 1 vertically-
stacked blocks. The (¢ — 1)th such block is given by t(z,)tya,,)ft(0[0) for ¢4 a vector of
ones of length a. On letting ® denote the Schur product,

Szx B Yx = E[ZWDX]| O F, Sz 2 Yx, = E[Z'QDy] © F,

and Sz¢(0) = Szy — Szx0 LN Yze(0) =Xz, — Xzx0. Write Sze and Xz¢ for Sz¢(6y) and
Y z¢(00), respectively. The consistency result then reads as follows.

Theorem 1 (Consistency). Let Assumptions 1-3 hold. If G and T are positive-definite
matrices so that G T asn — oo and T is non-stochastic, then 0, 2 0y as n — oo.
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Proof. Recall that Sze = n=' Y0, ZIWiD&, 50 0, — 0 = [SyxGSzx] ™ [SyxGSze].
Given that G converges to a positive-definite and non-stochastic matrix, it suffices to
show that, as n — oo, (i) Szx 2 %, y; and (i) Sze 20.

To see that (i) holds, observe that standard kernel-smoothing arguments yield

1 A (o)
Hg—ﬂ?[&A:ﬁék(%)l(Av@ = 0)} H = H@‘"[wo(Avt)ztAxﬂ ft(O]O)H +0(ct)
fort = 2,...,T. As &[Szx] is obtained on stacking such terms over ¢, it follows that
|1&[Sxz] — Exz|| = O(c’). This bias goes to zero because lim, .., o', = 0, that is,

E[Szx] = lim,_o &[Szx] = Yzx. Furthermore, by a standard law of large numbers,
|1Sxz — &[Sxz||| = 0,(1). Statement (i) follows.

By the same reasoning, [[Sze — Yzl = 0p(1). Instrument validity implies that
Y z¢ = 0. The proof is complete. O

Establishing asymptotic normality of #,, around 6, requires the bias induced by
kernel weighting to go to zero at a sufficiently fast rate, and the existence of higher-
order conditional moments. For the former requirement to be satisfied, the current
assumptions suffice. The latter is dealt with now. Let f;; denote the joint density of
(Av'?, Avl?) given realizations of (Av\?, Avl™).

Assumption 4 (Higher-order moments). For t,s in 2,...,T, fts(v1 ,V2)|V1 ,véd))

is bounded from above for all (vi,vs) in V; @ Vs and is stmctly positive for (vi,va)
in a neighborhoad of zero. For all such (t,s), &[zwy, (Av)AEAEwy,(Avs)zl] and
fts(v1 ,v; |V§d) Vé )) are k-times continuously differentiable in (Vgc),v2 ), and the ab-
solute moments &[w,(Auvy)||zAx|}] and &lwy(Avy)||z:Ay||] are finite. The matriz

E7'VDee’D'QVZ] is positive definite and nonsingular.

This condition will ensure that, when properly scaled, Sz¢ converges to a zero-mean
Gaussian process.

In line with previously introduced notation, let F be an Y71, £(z) x 31—, £(2) ma-
trix consisting of (7'—1)? blocks, with the (t—1, s—1)th block given by ty(.,) )p(z. J2s(0]0).
Define

T = &[Z2'UWDec'D'QZ] © Fy / k(n)%dn. (3.6)

Then, under Assumptions 1-4, \/nofSze LN (0,7). From this, the next theorem can
be derived.



Theorem 2 (Normality). Let Assumptions 1—/ hold. If G and T are positive-definite

matrices so that G 5T asn — oo and T’ is non-stochastic, then

Vnal (8, —6o) 5 N(0,7(I))
for ¥ (T) = [y TEsx] [Syx YT ,x] [ExT82x] ™ as n — oo.
Proof. Given that Syx = Yzx and G 2 T as n — oo, it remains to show that (i)
V/not&[Sze] = o(1); and (ii) \/nol (Sze — &[Sz]) <2 N(0,7). Slutzsky’s theorem will
take us the rest of the way.

Commence with (i). By a kth-order expansion of a typical block of &[Sz¢] around
AU,SC) =0,

‘ 1 [Zt ALk (Avfc)

The first right-hand side term above is zero by instrument validity. The order of magni-

)1(ad? = 0)] H — Hg[wo(mt)ztAgt} ft(O|O)H + O(o).

Jf On

tude of the remainder term follows by virtue of the higher-order kernel and the associated
smoothness conditions. Consequently, \/not&[Sz] = \/notO(ck) =
To verify (ii) we can follow Honoré and Kyriazidou (2000) in checking that the

regularity conditions of Lyapunov’s central limit theorem for double arrays hold. Write

/ / 1 Y
7’LO’£LC (Szg—g[SZg _%Zﬁ
=1

for any vector of constants ¢ for which ¢c = 1. Clearly, &[r] = 0 while &[rr'] =

TL'Ll

048 qq|c—0°d &1q]€[¢']c. The two expectations in this variance are finite. Moreover,
the second term is O(c’) = o(1) from above. For the first term, &[gq'] has typical block

Uigc’déa [ztk<Av§C)>1<A @ — 0)AGAE (A = 0)k<AU§C)>z/] .

S
n n Un

Smoothness and dominated convergence again imply that, as n — oo, such blocks

converge to

6’5’[ztwo(Avt)AetAgswo(Avs)zs]c fts(O\O)/k(n)gdn.

Thus, &[rr'] = 0/ &lqq']c = < Te. Lastly, it is easy to show that the boundedness of

the kernel and of the absolute moments in Assumption 4 imply that, for any « in (0, 1),

el

Lyapunov’s theorem may then be applied to obtain statement (ii) and to complete the

r

- e 0(\/%‘7[)& — o(1).

proof. O]



By standard optimality theory for GMM estimators (Hansen, 1982), the efficient
weighting scheme for the moment conditions is obtained on setting GG proportional to
the inverse of a consistent estimate of T. Doing so leads to the following derivative-result
to Theorem 2.

Corollary 1 (Optimally-weighted GMM). Let the conditions for Theorem 2 hold for
estimators 0 and 0%* that use a weight matrices G* and G** that satisfy G* 2T and

G* L Y as n — oo, respectively Then,
Vel (05— 00) S N(0,%), V=¥ (07Y) = ST 8]
Furthermore, ¥ (I') > ¥ in the matriz sense.

Proof. The expression for 7 follows from Theorem 2 and a small calculation. The
efficiency result is readily verified on noting that

V() —¥ =Bl - A(AA)AB

for A=T"12Y,x and B = [X,['Syx]| X, TTY?], and that [l — A(A’A)"1 A is an
idempotent matrix. O

The last ingredient needed for inference procedures on the basis of 6, to become
operational is a consistent estimate of T in (3.6), say U. Then, for any properly formed
G, and for G = U~! in particular, the consistency of a plug-in estimate for ¥ (I") follows
immediately. An estimate of ¥, for example, is the inverse of S, U~ 'Szx. In the special
case of just-identification, such as for the weighted least-squares estimator obtained on
setting Z; = DX, the matrix Sy is square and symmetric, and we obtain the familiar

‘sandwich-form” estimator S5 US, . It suffices to show that the general estimator of

T defined as . on
In N ZiW,Deie D'WiZ; (3.7)
n
i=1
for given residuals e; is consistent as n — oco. Given the efforts made so far, showing

this result poses no additional difficulty.

Theorem 3. Let Assumptions 1-4 hold, let 8 be an initial estimator to which Theorem
1 applies, and define & = y; — X,05. Then, U 5 Y asn — oo for U as defined in (3.7)

and formed with e; = ;.

Proof. The proof uses the same arguments as those used to prove Theorem 2. O
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Under conditional homoskedasticity of ;, and in the absence of serial correlation, setting
U=n"1Y",ZW,DD'W,;Z; will give rise to the optimally-weighted GMM estimator.
Alternatively, a two-step estimator would use the residuals, &, to form U as in (3.7).
More generally, an iterated GMM procedure—as discussed in Hall (2005, pp. 90) and also
elsewhere—repeats the two-step procedure until convergence. The estimate so formed is
independent of the initial choice for GG. Of course, the same comments about the effect
of the variability of G on the small-sample performance of GMM estimators apply to
the local GMM estimator introduced here. In light of this, it might be of interest to
work out a correction term analogous to the one derived by Windmeijer (2005) for linear
GMM estimators.

An alternative to an argument based on such an exercise in higher-order asymptotics
is to consider a continuously-updated (CU) GMM routine as initially introduced by
Hansen, Heaton, and Yaron (1996). Here, such an estimator takes the form

arg m@in SZ§(0)’U(6)_1525(0)

where U(f) is U for a given 6. Such a modification makes the minimization problem
nonlinear in ¢ but does not distort the limiting distribution of the point estimates, so
that both Theorem 1 and Theorem 2 continue to apply. The CU estimator is a device
originally suggested to mitigate the finite-sample bias of efficient GMM estimators that
utilize overidentifying restrictions. Although it is not known whether this estimator
has any finite moments, it is generally found to perform better in simulations in terms
of bias than the corresponding two-step estimator. However, it also tends to exhibit a
higher dispersion. Another useful feature of the CU estimator that explains its improved
centering property is its interpretation as a jackknife estimator; see Donald and Newey
(2000) for this. A final potentially benevolent effect of the CU approach is its invariance
with respect to how the moment conditions are scaled. For an illustration and discussion
of the CU estimator in the conventional panel data context, see Arellano (2003, pp. 73
and pp. 171-172).

Like in the standard setting, the efficiently-weighted local GMM minimand, when
evaluated at 0", can be used to test overidentifying restrictions. The limiting result for

the corresponding J-statistic is that
no, Sze(07) U S2¢(07) < X (m — ((x))

under Assumptions 1-4, where m denotes the number of columns of Z. The proof
is immediate from Corollary 1. The result also extends straighforwardly to the CU

estimator.
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IV. A MONTE CARLO STUDY

The performance of the local-GMM estimator was assessed through simulation exercises.
This section reports results for static models estimated through kernel-weighted least
squares and for dynamic models estimated through a local version of the first-differenced
GMM procedure as originally introduced by Holtz-Eakin, Newey, and Rosen (1988) and
Arellano and Bond (1991).

I use different design variations to be able to accentuate different findings in the static
and the dynamic cases. The statistics used to evaluate the estimator’s performance
are the mean- and the median bias as measures of centrality, the standard deviation
(STD) and the interquartile range (IQR) as indicators of dispersion, the root mean-
squared error (RMSE) as a criterion for estimator risk, and coverage rates of two-sided
95% confidence intervals for inference evaluation. In the tables below CI(A) refers to
coverage rates obtained through the use of plug-in estimates of the asymptotic variance.
The entries for CI(B) are bootstrap-based acceptance frequencies using the percentile
method over 39 bootstrap replications. All descriptive statistics for each design point
were obtained over 10,000 simulation runs, with all variables and incidental parameters
redrawn in each iteration.

Below, 07 refers to the one-step local-GMM estimator while 6;* denotes the two-step
version. I experimented with iterating the two-step procedure but found no significant
gain from doing so. I also ran simulation experiments with the CU estimator. While I
found it to have reasonably small bias, its standard deviation was often very high, which
is in line with results found in the cross-sectional literature. Here, I prefer to report
results on jackknifed versions of the local-GMM estimator, which is an alternative route
to constructing bias-corrected estimators. The jackknifed estimators take the usual
delete-one form

n

1< —1
o =n;,— =30, and O =noy - "% 0,
=1

n 5 n X
= =1

where 6 _; and 0} ; are the one-step and two-step estimators obtained from estimating
0y from the subpanel obtained on deleting the ith time series from the full panel. In the
conventional setting, it is known that the bias of the first-differenced GMM is O(n™!);
see Arellano (2004). It is therefore reasonable to expect that, for & chosen sufficiently
large, the bias of the local-GMM estimator has a leading term that is O(n™!). The
jackknifed estimators 0] and #1' subtract a nonparametric estimate of the leading bias

term from 6" and 07", respectively.
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[e1]

Table 1: Monte Carlo results for model (4.8)—(4.9) under independence (py = 0).

WEIGHT MEAN BIAS  MEDIAN BIAS STD IQR RMSE CI(A) CI(B)

T k on 0; o7 0% o7 ) ) ) ) S/

3 Normal  small | —.0006 —.0009 | .0004 —.0009 | .1609 .1627 | .2093 2114 | .1609 .1627 | .9099 .9058 | .9193 .9129
3 Normal  medium | —.0025 —.0026 | —.0025 —.0024 | .1006 .1008 | .1343 .1338 | .1007 .1008 | .9323 .9318 | .9299 .9279
3 Normal large —.0038  —.0039 | —.0043 —.0047 | .0962 .0964 | .1262 .1266 | .0963 .0965 | .9337 .9339 | .9326 .9304
3 Epanech. small 0021 .0014 | —.0002  .0000 | .2435 .2507 | .3106 .3178 | .2435 .2507 | .8851 .8705 | .9184 .9137
3 Epanech. medium | —.0018 —.0021 | —.0022 —.0024 | .1369 .1378 | .1790 .1797 | .1369 .1378 | .9246 .9208 | .9284 .9274
3 Epanech. large —.0029 —.0030 | —.0030 —.0034 | .0947 .0953 | .1266 .1269 | .0948 .0953 | 9373 .9342 | 9361 .9357
3 Quartic  small 0017 .0006 | —.0025 —.0013 | 2671 .2777 | .3392 .3515 | .2671 .2777 | 8754 .8557 | .9161 .9073
3 Quartic  medium | —.0013 —.0015 | —.0008 —.0006 | .1485 .1494 | .1954 .1955 | .1485 .1494 | .9185 .9149 | .9254 .9206
3 Quartic large —.0026 —.0028 | —.0024 —.0023 | .0969 .0971 | .1279 .1280 | .0969 .0971 | .9353 .9345 | .9340 .9337
3 Cosine  small 0020 .0013 | —.0007 —.0012 | .2468 2544 | .3151 .3246 | .2468 .2544 | .8831 .8675 | .9194 9121
3 Cosine  medium | —.0017 —.0020 | —.0019 —.0021 | .1386 .1394 | .1812 .1817 | .1386 .1394 | .9245 .9212 | .9282 .9263
3 Cosine  large —.0029 —.0030 | —.0025 —.0025 | .0947 .0952 | .1265 .1266 | .0948 .0952 | .9366 .9345 | .9362 .9354
6 Normal  small | —.0020 —.0019 | —.0021 —.0019 | .1050 .1054 | .1396 .1404 | .1050 .1054 | .9377 .9364 | 9342 9320
6 Normal  medium | —0013 —.0012 | .0000 —.0001 | .0670 .0671 | .0880 .0885 | .0670 .0671 | .9414 .9412 | .9372 .9365
6 Normal large —.0011 —.0012 | —.0005 —.0006 | .0704 .0706 | .0950 .0954 | .0705 .0706 | .9439 .9430 | .9390 .9389
6 Epanech. small | —.0027 —.0025 | —.0024 —.0025 | .1538 .1552 | .2028 .2028 | .1538 .1552 | .9263 .9222 | .9329 .9285
6 Epanech. medium | —.0017 —.0017 | —.0005 —.0003 | .0901 .0905 | .1185 .1189 | .0901 .0905 | .9391 .9375 | .9344 .9333
6 Epanech. large —.0012 —.0013 | .0004  .0002 | .0646 .0651 | .0861 .0865 | .0646 .0651 | .9429 9411 | .9385 .9400
6 Quartic small | —.0030 —.0028 | —.0021 —.0020 | .1672 .1689 | .2221 .2241 | .1672 .1689 | .9215 .9171 | .9309 .9245
6 Quartic  medium | —0018 —.0018 | —.0015 —.0015 | .0973 .0975 | .1288 .1290 | .0973 .0975 | .9391 .9377 | .9335 .9321
6 Quartic large —.0012 —.0012 | .0004  .0001 | .0650 .0652 | .0858 .0859 | .0650 .0652 | .9416 .9417 | .9377 .9365
6 Cosine  small | —.0028 —.0025 | —.0024 —.0025 | .1557 .I571 | .2053 .2061 | .1557 .1571 | .9256 .9212 | .9328 .9280
6 Cosine  medium | —0018 —.0017 | —.0006 —.0007 | .0912 .0915 | .1199 .1206 | .0912 .0915 | .9390 .9370 | .9342 .9326
6 Cosine large —.0012 —.0013 | .0003  .0002 | .0644 .0648 | .0857 .0864 | .0644 .0648 | .9420 .9409 | .9380 .9382
9 Normal  small 0008 .0008 | 0015  .0014 | .0837 .0838 | .1103 .1107 | .0837 .0838 | 9382 .9375 | 9325 .9321
9 Normal  medium | .0002  .0002 | .0001  .0003 | .0543 .0544 | .0736 .0736 | .0543 .0544 | .9441 .9441 | 9393 .9389
9 Normal large —.0008 —.0008 | —.0018 —.0019 | .0623 .0624 | .0831 .0832 | .0623 .0624 | .9391 .9388 | .9361 .9355
9 Epanech. small 0004 0002 | .0013  .0011 | .1223 .1230 | .1596 .1604 | .1223 .1229 | .9317 .9305 | .9329 .9329
9 Epanech. medium | .0009  .0010 | .0010  .0012 | .0717 .0719 | .0948 .0960 | .0717 .0719 | .9431 .9429 | .9393 .9396
9 Epanech. large —.0002 —.0002 | —.0006 —.0004 | .0541 .0544 | .0720 .0721 | .0541 .0544 | .9442 9410 | .9395 .9395
9  Quartic  small 0003 .0002 | .0008  .0012 | .1334 1340 | .1746 .1755 | .1334 1340 | .9273 .9245 | 9298 .9262
9 Quartic  medium | .0009  .0009 | .0014  .0016 | .0775 .0775 | .1025 .1028 | .0775 .0775 | .9403 .9402 | .9338 .9337
9 Quartic large 0000 .0000 | .0004  .0002 | .0534 .0536 | .0708 .0712 | .0534 .0536 | .9443 .9432 | .9402 .9404
9 Cosine  small 0004 0002 | .0014  .0008 | .1240 .1246 | .1614 .1626 | .1240 .1245 | 9311 .9292 | 9325 .9315
9 Cosine  medium | .0009  .0010 | .0014  .0015 | .0726 .0727 | .0961 .0967 | .0726 .0727 | .9431 .9429 | .9378 .9384
9 Cosine  large —.0002 —.0002 | —.0005 —.0005 | .0537 .0540 | .0713 .0713 | .0537 .0540 | .9442 9416 | .9387 .9394

n = 100, Oy = .5, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.



Static models. The first model considered has scalar  and v influencing the outcome

variable through

Yit = Tyl + 191‘(%1) + €4, 791'(1%) =AM + ’Y‘(Q)Uit - %‘(3)%'2# (4-8)

Here, 7" ~ A(0,1) are traditional fixed effects while v ~ A(0,2) and ¥ ~

N(0,.75) appear in an interactive fashion. The form of ¢; allows for both concave

and convex response functions. The dynamics of the covariates z and v were set to be
i = =30 + Swiy + B v + N(0,1)  and vy = 39" + 8P vt + G, (4.9)

respectively. In (4.9), 57;(1) ~ N(0,1) and 51‘(2) ~ U[.20,.99], so that both strongly-
and weakly-persistent data sequences occur. Because differencing is executed over time
the within-group variation in ¥J; is much more important for the performance of the
weighting than is the between-group variation. The start-up values for the covariate
time series were generated as x;p ~ —.3%-(1) + N(0,1) and vy ~ .3%(1) + N(0,1). The
disturbances are bivariate-normal variates, each with unit variance and a correlation
coefficient py which was 0 in the first design and .4 in the second. The latter case leads
to x,v, and € being contemporaneously correlated, making x endogenous in the cross-
sectional sense. Observe also that x and v are dependent, so that a naive fixed-effect
estimator will be inconsistent for 6.

Tables 1 and 2 contain the results for the kernel-weighted first-differenced least-
squares estimator for pg = 0 and py = .4, respectively. Because, here, there are no

overidentifying restrictions, both 6% and 6**, and 6! and 6 coincide. Throughout,

0y was fixed at .5." The dimensions of the panels generated were n = 100 and T €
{3,6,9}. Results are reported for the standard-normal kernel (Normal), the second-
order Epanechnikov kernel (Epanechnikov), the quartic kernel (Quartic), and the cosine
kernel (Cosine). Three different bandwidth choices are reported on; 5n~3/* (small),
15n~%/4 (medium), and 45n~%/* (large).

Overal, Table 1 reports good performance of ¢7. Both the mean- and the median
bias are virtually zero throughout. The jackknifed estimator has a bias of the same
magnitude. Not surprisingly, 61 is more volatile. The difference in the STD and IQR
is, however, very small. As a consequence, the RMSE of both estimators is identical to
their STD up to the first few decimal digits. Both CI(A) and CI(B) report solid coverage

rates, with neither dominating the other.” The actual size is generally somewhat larger

4Experiments with different values for 6, gave qualitatively similar results.
®Here, CI(A) was obtained by means of the heteroskedasticity-robust variance-covariance estimator,
as displayed in the text.
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than the nominal size of .05, which is in line with the usual behavior found in Monte
Carlo work elsewhere. The impact of the choice of the kernel and the bandwidth is
strongest on the measures of spread. But no design constellation uniformly dominates
another.

When turning to the design with contemporaneous dependence between z and ¢ in
Table 2 the overal picture changes little. Both estimators continue to have an empirical
distribution that is roughly correctly centered; their variance changes little, too. Thus,
confidence intervals still provide approximately correct coverage rates. No consistent

pattern emerges when comparing the numbers across the tables.

Dynamic models. This subsection deals with the following variation on (4.8)—(4.9).
Yir = Yit—160 + Vi(vie) + i, Vilvie) = i(l) + %‘(Q)Uz‘t - ”Yi(g)vgta (4.10)
with
vie =37 + 82 (povir—1 + (1 = po) U[-1,1]) + Gt (4.11)
for pg € {0,1} and i.i.d. errors (g4, Git) ~ N (0, ). The processes were generated with a
burn in of 500 time periods, using

Vi(—501) ™~ .3%(1) +N(0, 1) and Yi(—501) ~ —.3’71-(1) + ﬁi(vi(,g,m)) +N(0, 1)

as startup values. The local-GMM estimator of 6y a la Arellano and Bond (1991) uses
all lagged levels of y;;_1 as instruments for Ay;;_; in the equations in first differences.

Like with the conventional estimator, the small-sample bias of 8 and 6'* will be
a function of the number of moments used as well as the instrument strength. The
former relates directly to the size of the panel (see, e.g., Alvarez and Arellano, 2003),
the latter is partly driven by the closeness of the autoregressive parameter 6, to unity,
with the instruments becoming irrelevant when 6y = 1. In addition, coverage intervals
based on the two-step estimator that are set up by means of analytical standard errors
would be expected to be too small, leading to nominal rejection frequencies that are
too high compared to a chosen significance level. Table 7 below contains the average of
the estimated standard errors of both 8 and 6** by means of the analytical formulae
and the bootstrap, together with the empirical standard deviation for a selection of the
Monte Carlo experiments that follow. It can be observed that, for both estimators, the
plug-in estimates are too low on average. The bootstrap-based standard errors are much
more in line with the variability of the estimators as actually observed over the Monte
Carlo runs. For this reason, I focus on the coverage rates of the confidence intervals
based on resampling below.
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Table 2: Monte Carlo results for model (4.8)—(4.9) under dependence (py = .4).

WEIGHT MEAN BIAS  MEDIAN BIAS STD IQR RMSE CI(A) CI(B)

T k on 0; o7 0% o7 ) ) ) ) S/

3 Normal  small | —.0003 —.0006 | —.0010 —.0009 | .1532 .1554 | .2046 2079 | .1532 .1554 | .9184 9107 | .9243 9192
3 Normal  medium | —.0011 —.0012 | —.0002 —.0004 | .1000 .1003 | .1338 .1339 | .1000 .1003 | .9350 .9330 | .9296 .9294
3 Normal large —.0036  —.0038 | —.0039 —.0040 | .1060 .1063 | .1400 .1400 | .1061 .1064 | .9351 .9350 | .9327 .9324
3 Epanech. small 0018  .0012 | .0000  .0006 | .2302 .2387 | .2919 .2067 | .2302 .2387 | .8897 .8757 | .9213 .9162
3 Epanech. medium | —.0002 —.0004 | —.0004  .0000 | .1328 .1341 | .1769 .1795 | .1328 .1341 | .9294 .9256 | .9320 .9290
3 Epanech. large —.0023 —.0025 | —.0026 —.0028 | .0984 .0993 | .1308 .1310 | .0985 .0994 | .9312 .9293 | .9319 .9321
3 Quartic  small 0015 .0007 | —.0007  .0001 | 2532 .2658 | .3188 .3319 | .2532 .2657 | .8784 .8603 | .9206 .9103
3 Quartic  medium | —.0004 —.0007 | —.0012 —.0015 | .1428 .1441 | .1893 .1919 | .1428 .1440 | .9256 .9195 | .9273 .9241
3 Quartic large —.0016 —.0018 | —.0008 —.0008 | .0982 .0985 | .1313 .1316 | .0982 .0985 | .9338 .9321 | .9311 .9299
3 Cosine  small 0017 0012 | .0002  .0006 | .2335 .2423 | 2954 .3014 | 2334 2423 | 8889 .8728 | .9206 .9133
3 Cosine  medium | —.0002 —.0004 | —.0003 —.0007 | .1342 .1354 | .1786 .1825 | .1342 .1354 | .9290 .9241 | .9305 .9280
3 Cosine  large —.0022 —.0023 | —.0025 —.0029 | .0980 .0987 | .1309 .1309 | .0980 .0987 | .9307 .9298 | .9317 .9315
6 Normal  small 0010 0009 | 0010  .0010 | .1010 .1014 | .1340 .1347 | .1010 .1014 | 9308 .9293 | .9302 .9283
6 Normal  medium | —0007 —.0007 | —.0004 —.0005 | .0664 .0665 | .0899 .0899 | .0664 .0665 | .9406 .9401 | 9365 .9351
6 Normal large —.0014 —.0015 | —.0008 —.0011 | .0799 .0800 | .1100 .1102 | .0799 .0801 | .9427 .9423 | .9395 .9390
6 Epanech. small 0007 .0005 | .0033  .0023 | .1475 .1489 | .2000 .1997 | .1475 .1489 | 9198 .9153 | .9258 .9237
6 Epanech. medium | .0007  .0007 | —.0001  .0005 | .0871 .0877 | .1159 .1169 | .0871 .0877 | .9333 .9321 | .9316 .9318
6 Epanech. large —.0012  —.0012 | —.0007 —.0007 | .0675 .0682 | .0900 .0910 | .0675 .0682 | .9413 .9381 | .9370 .9354
6 Quartic  small 0001 —.0003 | .0018  .0023 | .1614 .1633 | 2136 .2160 | .1614 .1633 | .9132 .9083 | .9224 9167
6 Quartic  medium | .0009  .0009 | .0006  .0006 | .0938 .0941 | .1249 .1252 | .0938 .0941 | 9318 .9311 | .9311 .9297
6 Quartic large —.0010  —.0010 | —.0005 —.0006 | .0660 .0662 | .0883 .0885 | .0660 .0662 | .9403 .9385 | .9384 .9377
6 Cosine  small 0006  .0003 | .0023  .0018 | .1496 .1510 | .2017 .2026 | .1496 .1510 | .9185 .9145 | .9247 9215
6 Cosine  medium | .0007  .0007 | .0002  .0000 | .0881 .0885 | .1171 .1177 | .0881 .0885 | .9336 .9326 | .9318 .9309
6 Cosine large —.0011  —.0011 | —.0009 —.0007 | .0669 .0675 | .0893 .0906 | .0669 .0675 | .9419 .9390 | .9367 .9363
9 Normal  small 0012 0012 | .0010  .0012 | .0803 .0804 | .1074 .1083 | .0803 .0804 | .9356 .9351 | .9305 .9305
9 Normal  medium | .0010  .0010 | .0017  .0017 | .0541 .0541 | .0724 .0725 | .0541 .0541 | .9411 .9412 | .9363 .9361
9 Normal large —.0005 —.0006 | —.0007 —.0006 | .0715 .0716 | .0955 .0956 | .0715 .0716 | .9394 .9393 | .9357 .9362
9 Epanech. small 0009 .0009 | .0006  .0000 | .1158 .1166 | .1547 .1560 | .1158 .1166 | .9302 .9290 | .9325 .9309
9 Epanech. medium | .0013  .0013 | .0018  .0014 | .0693 .0696 | .0936 .0938 | .0693 .0696 | .9393 .9388 | .9345 .9362
9 Epanech. large 0006 .0005 | .0007  .0004 | .0568 .0572 | .0764 .0769 | .0568 .0572 | .9443 9431 | .9397 .9399
9  Quartic  small 0005 .0004 | —.0001 —.0001 | .1259 .1268 | .1679 .1690 | .1259 .1268 | .9264 .9245 | 9313 .9271
9 Quartic  medium | .0012  .0012 | .0015  .0014 | .0746 .0747 | .1001 .1005 | .0746 .0747 | .9371 .9366 | .9333 .9336
9 Quartic large 0008 .0008 | .0010  .0010 | .0544 .0546 | .0731 .0730 | .0544 .0546 | .9419 .9416 | .9380 .9378
9 Cosine  small 0008 0008 | .0001 —.0001 | .1173 1181 | .1573 .1579 | .1173 .1180 | .9304 .9279 | .9320 .9300
9 Cosine  medium | .0013  .0013 | .0014  .0014 | .0701 .0703 | .0947 .0952 | .0701 .0703 | .9389 .9386 | .9350 .9357
9 Cosine  large 0006 .0006 | .0006  .0004 | .0561 .0564 | .0755 .0763 | .0561 .0564 | .9453 9425 | 9397 .9390

n = 100, Oy = .5, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.



Table 3: Monte Carlo results for model (4.10)—(4.11); po =0, T' = 3.

WEIGHT MEAN BIAS MEDIAN BIAS
k on 0; o1 0y o1 0y o1 0r* i
Normal small —.0269 .0138 —.0244 .0171 | —.0418 —.0109 —.0377 —.0084
Normal medium | —.0395 .0127 —.0292 .0270 | —.0531 —.0131 —.0456 —.0087
Normal large —.0486 .0116 —.0351 .0244 | —.0648 —.0167 —.0546 —.0128
Epanech. small —.0454 .0207 —.0449 .0143 | —.0646 —.0306 —.0649 —.0317
Epanech. medium | —.0298 .0158 —.0238 .0239 | —.0423 —.0080 —.0347 —.0036
Epanech. large —.0469 .0119 —-.0341 .0233 | —.0628 —.0155 —.0529 —.0130
Quartic small —.0540 .0130 —.0535 .0138 | —.0736 —.0382 —.0759 —.0377
Quartic medium | —.0268 .0144 —.0231 .0174 | —.0402 —.0071 —.0327 —.0049
Quartic large —.0442 .0123 —.0324 .0208 | —.0603 —.0140 —.0486 —.0094

WEIGHT STD IQR
k Tn 0, 0r, o O 0, 03, 0, o1
Normal small 2430 .3425 2472 4094 .2786 .2824 .2924 .3199
Normal medium 2702 .3367 2727 .5898 3137 .3421 3179 .3526
Normal large 2915 .3629 2928 4589 .3390 .3646 .3379 .3876
Epanech. small 2998 5632 .3069  .5004 .3329 3728 .3535 4158
Epanech. medium 2519 .3360 .2540  .4593 .2913 .3095 .2931 .3231
Epanech. large 2878  .3580 2897 4567 .3356 .3604 .3344 .3788
Quartic small 3274 .8390 3382 .7210 .3550 .4042 .3729 .4498
Quartic medium 2435 .3068 2462 .3443 .2816 .2984 .2896 3181
Quartic large 2815 .3504 2847 4589 3274 .3546 .3288 3715

WEIGHT RMSE CI(B)
k on 0 o1 0r* i 0 o1 0r* il
Normal small 2445 3428 .2484  .4098 .9332 9354 .9506 9524
Normal medium 2730 .3369 2742 5904 .9250 .9344 .9470 .9564
Normal large .2955  .3631 2949  .4595 .9244 .9304 .9446 9516
Epanech. small 3032 .5635 3101 .5006 .9326 9328 .9510 .9540
Epanech. medium 2536 .3364 .2551  .4599 9320 .9366 .9496 .9554
Epanech. large 2916 .3582 2917 4572 .9250 .9308 .9452 9516
Quartic small 3318 .8391 3424 7211 .9280 .9298 .9440 .9522
Quartic medium 2449 3071 2473 3447 9352 .9390 .9498 9554
Quartic large .2849  .3506 2865  .4593 .9260 9318 .9468 .9524

n = 100, 8y = .5, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.

An important difference between the least-squares estimator as considered in the
previous subsection and the GMM estimator for the dynamic model is that it uses levels
as instruments rather than differences. While this is also the case when v; does not
depend on v, there might be additional finite-sample effects when v is autocorrelated.
To see this, recall that local differencing removes A¥;(v;) from the moment conditions
only asymptotically. For any finite n, therefore, lagged dependent variables will correlate
with w; A&;;. To assess the importance of this serial correlation, I manipulate pg from
zero to unity. When py = 0, v is independent over time while, when py = 1, it is
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first-order autocorrelated with some sequences being nearly integrated of order one.

The kernel and bandwidth choices from before were maintained, and n was equally
kept at 100. To save on space, I report results only for a subset of the design variations.
Additional results are available as supplementary material.

Table 4: Monte Carlo results for model (4.10)—(4.11); po =1, T' = 3.

WEIGHT MEAN BIAS MEDIAN BIAS
k On 0 o1 0r* il 0 o1 0r* o1t
Normal small .0158  .0769 .0104  .0638 .0012 .0406 .0019 .0359
Normal medium .0563  .1500 .05619  .1634 .0382 .0991 .0385 .0925
Normal large .0604 1774 .0545  .2262 .0430 .1069 .0372 1015
Epanech. small —.0429  .0567 —.0474  .0191 | —.0660 —.0211 —.0622 —.0208
Epanech. medium .0409 1152 .0341  .0887 .0262 .0737 .0297 0771
Epanech. large .0601  .1711 .05650  .2466 .0419 .1059 .0376 .0989
Quartic small —.0526  .0711 —.0547  .0570 | —.0748 —.0312 —.0721 —.0330
Quartic medium .0287  .0994 0223 .0772 .0149 .0564 .0144 .0584
Quartic large .0592  .1632 .0548  .2105 .0409 .1026 .0364 .0972

WEIGHT STD IQR
k on 0 o1 0> i 0 or 0> o1t
Normal small 3178 7237 3294 1.0133 3191 .3472 .3254 .3806
Normal medium 23921 1.2205 4015 1.7770 .3674 4143 .3614 .4494
Normal large 4331 1.0987 4475 2.5873 .4008 .4526 .3903 .4816
Epanech. small 3578 1.3454 3903  2.0493 3571 4037 .3686 .4507
Epanech. medium 3396 7551 3578 1.2447 .3449 3779 .3309 .4035
Epanech. large 4251 1.0993 4340  3.7695 .3960 .4467 .3855 4750
Quartic small 3814 2.5693 4034 2.5677 3720 .4307 .3900 .4859
Quartic medium 3190 .6842 .3356  1.0863 .3305 .3622 .3234 .3843
Quartic large 4127 1.1089 4221 2.5327 .3884 4375 3791 4613

WEIGHT RMSE CI(B)
k On 0 o1 0r* i 0 o7 0 i
Normal small 3182 7277 3295 1.0152 9512 .9648 9516 9654
Normal medium 3961 1.2296 4049  1.7844 .9482 .9580 .9522 9688
Normal large 4373 1.1128 4508  2.5970 9452 19588 9572 .9694
Epanech. small .3603  1.3465 3931 2.0493 .9326 .9560 .9360 .9584
Epanech. medium 3421 7638 3594 1.2478 .9494 .9616 .9506 .9660
Epanech. large 4293 1.1125 4374 3.7774 .9462 .9588 .9566 .9696
Quartic small .3850 2.5701 4070 2.5682 9310 .9514 .9358 .9604
Quartic medium 3203 .6914 .3363  1.0890 .9490 .9616 .9504 9664
Quartic large 4169 1.1208 4256 2.5413 .9460 .9580 .9544 .9692

n = 100, 8y = .5, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.

Table 3 gives the usual descriptive statistics for the case where T' = 3, 6y = .5,
and pg = 0. Both the one- and two-step estimator have a reasonably small bias. The
choice of k and o,, seems particlarly important here. The jackknifed estimators give an
improvement in terms of centrality, but at a cost of a higher STD and RMSE. When n
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is larger, however, this discrepancy vanishes. The IQR of 87 and 6IT are, however, not
much larger than those of ) and 6'* and also the coverage rates are comparable.
When pg is set to unity, the estimators’ performance change. All estimators now
have both a larger bias and a higher variability. Although the bias never skyrockets,
the jackknife estimators do not outperform 6* and 6" in terms of any of the statistics
reported, although they start doing so for larger n. Moreover, they are more biased
than the original estimators, and their standard deviation is large. Nevertheless, the

IQR remains relatively small and the coverage rates are close to .95.

Table 5: Monte Carlo results for model (4.10)—(4.11); po = 0, T' = 6.

WEIGHT MEAN BIAS MEDIAN BIAS
k On 0 o7 0rx i 0 o1 0r* i
Normal small —.0558 —.0036 —.0560 —.0031 | —.0548 —.0052 —.0541 —.0066
Normal medium | —.0469 —.0041 —.0436 —.0033 | —.0461 —.0033 —.0426 —.0034
Normal large —.0520 —.0062 —.0466 —.0040 | —.0512 —.0070 —.0454 —.0040
Epanech. small —-.1025 —-.0136 —-.1035 —.0139 | —.1030 —-.0202 —-.1039 —.0235
Epanech. medium | —.0469 —.0029 —.0460 —.0028 | —.0473 —.0040 —.0462 —.0056
Epanech. large —.0509 —.0058 —.0459 —.0039 | —.0505 —.0062 —.0444 —.0046
Quartic small —.1192 —-.0184 —.1187 —.0165 | —.1210 —.0279 —.1203 —.0291
Quartic medium | —.0496 —.0028 —.0494 —.0025 | —.0505 —.0053 —.0483 —.0035
Quartic large —.0493 —.0051 —.0449 —.0037 | —.0485 —.0050 —.0439 —.0045

WEIGHT STD IQR
k On 0 o7 0r* il 0 o1 0r* i
Normal small .0999 1168 .1092 1395 1323 1541 1435 1812
Normal medium .0953 .1059 1021 1267 .1265 .1400 1377 .1620
Normal large .1008 1126 .1060 1329 .1333 .1479 .1409 1748
Epanech. small 1261 .1646 1398 .1989 .1650 .2033 1801 .2508
Epanech. medium .0955 .1085 .1033 1304 1254 .1399 .1364 .1690
Epanech. large .0997 111 .1052 1315 1321 1467 .1406 1722
Quartic small .1356 1827 .1502 2232 1750 .2276 1963 .2868
Quartic medium .0968 1111 .1052 1329 1282 1473 1398 1729
Quartic large .0979 .1089 .1040 1295 1310 .1450 .1389 .1687

WEIGHT RMSE CI(B)
k On 9:1 G’TL 92* HILT 9: Hjb 9:* QLT
Normal small 1144 .1169 1228 1395 .8790 9322 .8880 .9270
Normal medium .1062 .1059 1110 .1268 .8990 9322 9126 .9308
Normal large 1134 1128 1157 1329 .8962 .9280 9102 .9290
Epanech. small 1625 .1652 1739 .1994 .8272 9178 .8450 .9216
Epanech. medium .1064 .1085 .1130 .1304 .8946 .9308 9058 .9248
Epanech. large 1119 1113 .1148 1315 .8978 .9290 9104 .9276
Quartic small .1805 .1836 .1914 .2238 .8036 9126 .8246 .9168
Quartic medium .1087 1112 1162 1329 .8856 9318 .8974 .9244
Quartic large .1096 .1090 1132 1295 .8968 .9316 9114 .9290

n = 100, 6y = .5, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.
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Tables 5 and 6 show what happens when 7' is increased to 6. Of course, the STD
and IQR shrink, and considerably so. For p, = 0, the bias of all estimators increases
while, for py = 1, the opposite happens. The coverage rates worsen slightly across both
design variations. This effect is less pronounced for 61 and 6T than it is for 6% and 6%*.

Table 6: Monte Carlo results for model (4.10)—(4.11); po = 1, T = 6.

WEIGHT MEAN BIAS MEDIAN BIAS
K o ) S - A ) W )
Normal small —.0138 .0474  —.0212 .0376 | —.0167 .0398 —.0197 .0331
Normal medium .0454 1075 .0324 .0860 .0451 .1025 .0327 .0825
Normal large .0516 1218 .0376 .0965 .0523 .1158 .0375 .0902
Epanech. small —.0897 —.0022 —-.0933 —.0058 | —.0922 —.0107 —.0930 —.0144
Epanech. medium .0230 .0810 .0113 .0641 .0206 .0738 .0114 .0603
Epanech. large .0510 1197 .0372 .0949 .0514 1137 .0373 .0890
Quartic small —.1078 —.0137 —.1099 —.0148 | —.1093 —.0221 —.1115 —.0276
Quartic medium .0055 .0638 —.0043 .0502 .0032 .0568 —.0053 .0460
Quartic large .0496 1158 .0360 .0921 .0497 1102 .0368 .0871

WEIGHT STD IQR
k On 0 o7 0r* i 0 o1 0r* i
Normal small 1161 1484 1211 1719 1510 1821 1547 2072
Normal medium 1195 .1488 1160 1624 .1548 1835 .1536 .2019
Normal large 1269 .1603 1215 1724 .1654 .1967 .1605 .2167
Epanech. small 1357 .1906 1487 .2325 1788 .2328 .1948 .2800
Epanech. medium .1180 .1485 1170 .1652 1527 1832 .1531 .2016
Epanech. large 1255 1580 .1204 1704 1630 1941 1591 2116
Quartic small 1416 .2037 .1562 .2495 1842 .2458 .2029 .3024
Quartic medium 1167 1475 1184 1670 .1524 1833 1531 .2014
Quartic large 1233 1545 1187 1672 .1609 .1903 1562 .2094

WEIGHT RMSE CI(B)
k on 0 o1 0 o1 0 o1 0r* o1t
Normal small 1169 .1558 1230 1760 .9190 9122 .9250 .9202
Normal medium 1279 .1836 1205 .1838 .8982 .8384 .9252 .8858
Normal large 1370 2013 1272 1976 .8924 .8194 9214 .8822
Epanech. small 1627 .1906 1755 .2325 .8474 .9140 .8616 .9258
Epanech. medium 1202 1691 1175 1772 .9202 .8818 9320 9102
Epanech. large .1355 1982 .1260 .1950 .8930 .8206 .9224 .8834
Quartic small 1780 .2041 .1909 .2499 .8228 .9080 .8384 9214
Quartic medium .1168 .1607 1185 1744 9212 .9002 9318 9176
Quartic large 1329 1931 1240 .1908 .8936 .8234 .9240 .8848

n = 100, 6y = .5, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their
respective standard deviation.

The last table in this subsection makes the comparison between the average estimated
standard errors of 67 and 6 and their empirical standard deviation.
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Table 7: A comparison between the estimated standard errors and the empirical standard deviation

po =0

po=1

DESIGN SE (analytic) SE (bootstrap) STD SE (analytic) SE (bootstrap) STD

T &k on L e 6o 6 6 6 6 e o

3 Normal small 1798 2185 2493 2632 2430 .2472 | 2086 .2632 .3067 3301 3178 .3294
3 Normal medium | .1670 .2359 .2698 22831 2702 .2727 | 2020 .3081 .3598 3840  .3921 4015
3 Normal large 1703 2513 2888 3021 2915 .2928 | 2094 .3353 .3849 4094 4331 4475
3 Epanech. small 2384 .2631 .3116 3345 2998 .3069 | 2731 .3012  .3463 3728 3578 .3903
3 Epanech. medium | .1672 2231 .2546 2669 2519  .2540 | .1969 .2822 .3317 .3564 3396  .3578
3 Epanech. large .1696  .2486  .2853 2984 2878  .2897 | .2077 .3301 .3808 4047 4251 .4340
3 Quartic small 2622 .2810 .3325 3564 3274 .3382 | .3000 .3183 .3606 3902 3814 .4034
3 Quartic medium | .1711 .2185 .2498 2633 2435 .2462 | 1993 .2684 .3162 3393 3190  .3356
3 Quartic large 1685 .2440 2796 2930 2815  .2847 | 2053 .3218 3734 3965 4127 4221
T k On 0 0 0% 0 0 0 0 0r* 0 0r* 0 0r*

6 Normal small .0962  .0805 .0964 1060 .0999  .1092 | 1026 .0826 .1068 1154 1161 1211
6 Normal medium | .0783 .0741 .0922 .0987 .0953 .1021 | .0827 .0779 .1083 1119 1195 .1160
6 Normal large .0781 .0765 .0963 1023 1008  .1060 | .0826 .0810 .1141 1169 1269 1215
6 Epanech. small 1330 .0999 1224 1367 1261 .1398 | .1407 .0985 .1265 1410 1357 .1487
6 Epanech. medium | .0826 .0753 .0924 0998 .0955 .1033 | .0876 .0793 .1071 1121 1180 .1170
6 Epanech. large .0780 .0760 .0956 1016 .0997  .1052 | .0825 .0804 .1130 1160 1255 1204
6 Quartic small 1445 1043 1294 1444 1356 .1502 | .1521 .1018 .1316 1467 1416 .1562
6 Quartic medium | .0880 .0773 .0935 1019 .0968 1052 | .0936 .0805 .1063 1129 1167 1184
6 Quartic large 0779 .0752  .0943 1005 .0979  .1040 | .0824 .0794 .1113 1144 1233 1187
T k on L T e o 6 6 & 6 o

9 Normal small .0818 .0516 .0757 .0808 .0793 .0891 | .0881 .0524 .0837 .0881 .0911 .0971
9 Normal medium | .0640 .0452 .0696 0732 0735 .0804 | .0681 .0461 .0794 .0819 .0921 .0922
9 Normal large .0633 .0459 .0719 0752 0763 .0823 | .0672 .0469 .0826 0848 .0962 .0956
9 Epanech. small 1125 .0622  .0955 1020 .0995 1115 | .1200 .0610 .0989 1052 1045 .1166
9 Epanech. medium | .0690 .0472 .0713 0754 0756 .0830 | .0739 .0488 .0816 .0845 .0933 .0944
9 Epanech. large .0633 .0458 .0714 .0748 .0757 .0819 | .0672 .0467 .0819 .0842 .0954 .0949
9 Quartic small 1213 .0635  .0999 1062 1049 .1162 | .1288 .0617 .1018 1080  .1084 .1201
9 Quartic medium | .0743 .0491 .0729 0775 0769 .0854 | .0799 .0505 .0824 .0859 .0921 .0951
9 Quartic large .0634 .0455 .0707 0741 0748 .0812 | .0673 .0464 .0809 0833 .0941 .0938

n = 100, 6y = .5, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.



V. CONCLUSION

This paper has used the notion of local differencing to construct an estimator for fixed-
effect panel data models with nonparametric unobserved heterogeneity. In line with
the traditional estimators, the fixed-effect ‘ignorance’ towards the models’ unit-specific
latent components that underlies first-differencing the data allows for the unobserved
heterogeneity to take on very general forms. The resulting local GMM estimator was
shown to be consistent and asymptotically normal. It complements the recent results
on identification of random coefficients in linear panel data models with exogenous
covariates. With some work, the approach can be extended to a more general class of
nonlinear panel data models.

Several questions and extensions of potential interest immediately suggest them-
selves. A pertinent question from an applied point of view is how to best choose the
smoothing parameters. Ideally, a data-driven selection method should be found that de-
termines the bandwidth in an optimal manner. Indeed, the Monte Carlo results suggest
the smoothing used to be of substantial importance in small sample. A larger study of
the sensitivity of the local GMM estimator to the form of the incidental functions and
the stochastic behavior of their arguments would also be desirable. Related to this com-
ment, it appears of interest to categorize all the information content in the data in terms
of nonlinear moment conditions under additional assumptions such as homoskedastic-
ity. Such an exercise in the spirit of Ahn and Schmidt (1995) would allow for efficiency
gains and, arguably, improved finite-sample performance. Given the increased attention
to cross-sectional dependence in the panel data literature—see Sarafidis and Wansbeek
(2010) for an up-to-date review—it might be worthwhile investigating the potential for
local first-differencing in the presence of factor structures in the disturbance processes. It
seems reasonable to expect that the GMM estimators for such problems can be modified
in a manner that is analogues to what was discussed here.

A final remark related to incorporating unit-specific non-stationary effects, such as
time trends or time dummies. These are important empirical phenomena. Clearly,
local first-differencing would break down under such a scenario as these variables, when
transformed, are bounded away from zero. This is no different than in the binary-
choice setting of Honoré and Kyriazidou (2000). An interesting extension to the model
considered here, therefore, would be to construct a hybrid version that combines local
differencing with a parametric random-coefficient specification such as the ones studied
in Chamberlain (1992) and Arellano and Bonhomme (2010).
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