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LIKELIHOOD INFERENCE IN AN AUTOREGRESSION WITH FIXED EFFECTS

GEERT DHAENE1 and KOEN JOCHMANS2⇤

1Department of Economics, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium.

2Department of Economics, Sciences Po, 28 rue des Saint-Pères, 75007 Paris, France.

We calculate the bias of the profile score for the regression coefficients in a multistratum autoregressive model with
stratum-specific intercepts. The bias is free of incidental parameters. Centering the profile score delivers an unbiased
estimating equation and, upon integration, an adjusted profile likelihood. A variety of other approaches to constructing
modified profile likelihoods are shown to yield equivalent results. However, the global maximizer of the adjusted likelihood
lies at infinity for any sample size, and the adjusted profile score has multiple zeros. We argue that the parameters are
local maximizers inside or on an ellipsoid centered at the maximum likelihood estimator.

Keywords: adjusted likelihood, autoregression, incidental parameters, local maximizer, recentered estimating equation.

1. Introduction

In the presence of nuisance parameters, inference based on the profile likelihood can be highly misleading. In

an N ⇥ T data array setting with stratum nuisance parameters, the maximum likelihood estimator is often

inconsistent as the number of strata, N , tends to infinity. This is the incidental parameter problem (Neyman

and Scott, 1948). It arises because profiling out the nuisance parameters from the likelihood introduces a bias

into the (profile) score function. One possible solution is to calculate this bias and to subtract it from the profile

score, as suggested by Neyman and Scott (1948, Section 5) and McCullagh and Tibshirani (1990). When the

bias is free of incidental parameters this yields a fully recentered score function which, in principle, paves the

way for consistent estimation under Neyman-Scott asymptotics (Godambe and Thompson, 1974). This is the

case in the classic many-normal-means example, but little is known about this possibility in other situations.

In this paper we consider a time series extension of Neyman and Scott’s (1948) classic example. The problem

is to estimate a pth order autoregressive model, possibly augmented with covariates, from data on N short

time series of length T . The model has stratum-specific intercepts (the fixed effects). The distribution of the

initial observations is left unrestricted and the p⇥ 1 vector of autoregressive parameters, ρ, may lie outside the

stationary region. The bias of the profile score is found to depend only on ρ and T . Hence, adjusting the profile

score by subtracting its bias gives a fixed T unbiased estimating equation and, upon integration, an adjusted

profile likelihood in the sense of Pace and Salvan (2006).

However, contrary to what standard maximum likelihood theory would suggest, the parameters of interest

are local maximizers of the adjusted likelihood. The global maximum is reached at infinity. This phenomenon

is not a small sample problem or an artifact of an unbounded parameter space. The adjusted likelihood has its

global maximum at infinity for any sample size, and may already be re-increasing in the stationary parameter

region and reach its maximum at the boundary. Consequently, consistent estimation is not achieved by global

maximization of the adjusted likelihood, and solving the adjusted score equation has to be supplemented by a

⇤Corresponding author. E-mail: koen.jochmans@sciences-po.org. Previous versions of this paper circulated as ‘An adjusted
profile likelihood for non-stationary panel data models with incidental parameters’ and ‘An adjusted profile likelihood for non-
stationary panel data models with fixed effects’. This version: November 13, 2012.
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solution selection rule, which we derive. The adjusted likelihood is re-increasing because the initial observations

are unrestricted. This difficulty does not arise when stationarity of the initial observations is imposed, as in

Cruddas, Reid, and Cox (1989). Further, when the data carry only little information, in a sense that we specify,

the Hessian of the adjusted likelihood is zero, implying first-order underidentification (Sargan, 1983) and non-

standard asymptotic properties of the resulting point estimates (Rotnitzky, Cox, Bottai, and Robins, 2000).

These features are not unique to our approach of modifying the profile likelihood. We show that several other

routes to constructing modified likelihoods yield the same results. When p = 1, the adjusted profile likelihood

coincides with Lancaster’s (2002) marginal posterior, which, in the absence of covariates, is a Bayesian version

of a Cox and Reid (1987) approximate conditional likelihood (see Sweeting, 1987). For general p, it is an

integrated likelihood in the sense of Kalbfleisch and Sprott (1970) and Arellano and Bonhomme (2009), as well

as a penalized likelihood as defined by Bester and Hansen (2009) (see DiCiccio, Martin, Stern, and Young, 1996

and Severini, 1998 for related approaches). The adjusted profile score equation, in turn, is a Woutersen (2002)

integrated moment equation and a locally orthogonal Cox and Reid (1987) moment equation, and solving it

is equivalent to inverting the probability limit of the least-squares estimator, as proposed by Bun and Carree

(2005).

2. Adjusted profile likelihood

2.1. Model and profile likelihood

Suppose we observe a scalar variable y, the first p ≥ 1 lags of y, and a q-vector of covariates x (which may

include lags), for N strata i and T periods t. Assume that yit is generated by

yit = y>it−ρ+ x>
itβ + αi + εit, i = 1, ..., N ; t = 1, ..., T, (2.1)

where yit− = (yit−1, ..., yit−p)
> and the εit are identically distributed with mean zero and variance σ2 and are

independent across i and t and also of xi0t0 for all i0 and t0. Let y0i = (yi(1−p), ..., yi0)
>, Xi = (xi1, ..., xiT )

>,

and εi = (εi1, ..., εiT )
>. We place no restrictions on how (y0i , αi, Xi), i = 1, ..., N , are generated. The unknown

parameters are θ = (ρ>, β>)>, σ2, and α1, ..., αN . Let θ0 and σ2
0 be the true values of θ and σ2. Our interest

lies in consistently estimating θ0 under large N and fixed T asymptotics. We do not impose the stationarity

condition on ρ0, i.e., we allow any ρ0 2 R
p.

Let zit = (y>it−, x
>
it)

>, Yi− = (yi1−, ..., yiT−)
>, Zi = (Yi−, Xi), and yi = (yi1, ..., yiT )

>, so that Myi =

MZiθ+Mεi where M = IT −T−1ιι> and ι is a conformable vector of ones. We assume that N−1
PN

i=1 Z
>
i MZi

and its probability limit as N ! 1 are nonsingular. The Gaussian quasi-log-likelihood, conditional on y01 , ..., y
0
N

and normalized by the number of observations, is

− 1

2NT

NX

i=1

TX

t=1

✓
log σ2 +

1

σ2
(yit − z>itθ − αi)

2

◆
+ c,

where, here and later, c is a non-essential constant. Profiling out α1, ..., αN and σ2 gives the (normalized) profile

log-likelihood for θ,

l(θ) = −1

2
log

 
1

N

NX

i=1

(yi − Ziθ)
>M(yi − Ziθ)

!
+ c.
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The profile score, s(θ) = r✓l(θ), has elements

s⇢j
(θ) =

PN
i=1(yi − Ziθ)

>Myi,−jPN
i=1(yi − Ziθ)>M(yi − Ziθ)

, j = 1, ..., p,

sβj
(θ) =

PN
i=1(yi − Ziθ)

>Mxi,jPN
i=1(yi − Ziθ)>M(yi − Ziθ)

, j = 1, ..., q,

where yi,−j is the jth column of Yi− and xi,j is the jth column of Xi.

For the analysis below, rewrite (2.1) as

Dyi = Cy0i +Xiβ + ιαi + εi, i = 1, ..., N,

where D = D(ρ) and C = C(ρ) are the T ⇥ T and T ⇥ p matrices

D =

0
BBBBBBBBBBBBB@

1 0 · · · · · · · · · · · · 0

−ρ1
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

−ρp
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 −ρp · · · −ρ1 1

1
CCCCCCCCCCCCCA

, C =

0
BBBBBBBBBBBBBB@

ρp · · · · · · · · · ρ1

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · · · · 0 ρp
0 · · · · · · · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · · · · 0

1
CCCCCCCCCCCCCCA

.

Then ✓
y0i
yi

◆
= ξi + Fεi, ξi =

✓
y0i

D−1
(
Cy0i +Xiβ + ιαi

)
◆
, F =

✓
0

D−1

◆
, (2.2)

and yi,−j = Sj(ξi + Fεi), where Sj = (0T⇥(p−j), IT , 0T⇥j), a selection matrix.

2.2. Bias of the profile score

The profile score is asymptotically biased, i.e., plimN!1s(θ0) 6= 0. Hence, the maximum likelihood estimator,

solving s(θ) = 0, is inconsistent. (Throughout, probability limits and expectations are taken conditionally,

given (y0i , αi, Xi), i = 1, ..., N .) The profile score bias is a polynomial in ρ0. For k = (k1, ..., kp)
> 2 N

p, let

ρk =
Qp

j=1 ρ
kj

j . Also, let τ = (1, ..., p)>,

ϕt =
X

⌧>k=t

(ι>k)!

k1! · · · kp!
ρk, t = 1, . . . , T − 1, (2.3)

and set ϕ0 = 0.

Lemma 1. The asymptotic bias of the profile score is plimN!1s(θ0) = b(ρ0), where b(ρ) = (b1(ρ), . . . , bp+q(ρ))
>

and
bj(ρ) = −PT−j−1

t=0
T−j−t
T (T−1)ϕt, j = 1, . . . , p,

bj(ρ) = 0, j = p+ 1, . . . , p+ q.

In addition, if εit ⇠ N (0, σ2
0), then E[s(θ0)] = b(ρ0).
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The bias of the profile score, b(ρ0), depends only on ρ0 and T . It is independent of the initial observations, the

fixed effects, and the covariates. This is in sharp contrast with the bias of the maximum likelihood estimator,

which was first derived by Nickell (1981) for the first order autoregressive model under the assumption of

stationarity of the initial observations. This bias depends on the initial observations, the fixed effects, and the

covariate values. Note, also, that the Nickell bias concerns a probability limit as N ! 1 whereas here, when

the errors are normal, E[s(θ0)] = b(ρ0) is a finite sample result holding for fixed N and T and may therefore be

of independent interest in a time series setting.

2.3. Centered profile score and adjusted profile likelihood

By construction, the centered (or adjusted) profile score,

sa(θ) = s(θ)− b(ρ),

is asymptotically unbiased, i.e., plimN!1sa(θ0) = 0. Hence, sa(θ) = 0 is a bias-adjusted estimating equation.

The question arises whether there is a corresponding adjustment to the profile likelihood. The differential

equation r✓a(ρ) = b(ρ) has a solution indeed.

Lemma 2. Up to an arbitrary constant of integration, the solution to r✓a(ρ) = b(ρ) is given by

a(ρ) =
X

S2S

aS(ρ), aS(ρ) = −
T−1X

t=|S|

T − t

T (T − 1)

X

k2KS :⌧>k=t

(ι>k − 1)!

k1! · · · kp!
ρkS

S ,

where S is the collection of the non-empty subsets of {1, ..., p}; |S| is the sum of the elements of S; KS = {k 2
N

p|kj > 0 if and only if j 2 S}; and ρS = (ρj)j2S and kS = (kj)j2S are subvectors of ρ and k determined by S.

It follows that sa(θ) = 0 is an estimating equation associated with the function

la(θ) = l(θ)− a(ρ),

which we call an adjusted profile log-likelihood. Every subvector ρS of ρ contributes to la(θ) an adjustment

term, −aS(ρ), which takes the form of a multivariate polynomial in ρj , j 2 S, with positive coefficients that

are independent of p.

3. Connections with the literature

Lancaster (2002) studied the first-order autoregressive model, with and without covariates, from a Bayesian

perspective. With p = 1, we have ϕt = ρt and

b1(ρ) = −
T−1X

t=1

T − t

T (T − 1)
ρt−1, a(ρ) = −

T−1X

t=1

T − t

T (T − 1)t
ρt.

With independent uniform priors on the reparameterized effects ηi = αie
−(T−1)a(⇢) and on θ and log σ2, Lan-

caster’s posterior for ϑ = (θ>,σ2)> is

f(ϑ|data) / σ−N(T−1)−2 exp
(
−N(T − 1)a(ρ)−Q2(θ)σ−2/2

)
,
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where Q2(θ) =
PN

i=1(yi − Ziθ)
>M(yi − Ziθ) / e−2l(✓). Integrating over σ2 gives

f(θ|data) / e−N(T−1)a(⇢)(Q2(θ))−N(T−1)/2

and, hence,

f(θ|data) / eN(T−1)la(✓). (3.1)

Thus, the posterior and the adjusted likelihood are equivalent. More generally, for any p and q, independent

uniform priors on η1, ..., ηN , θ, log σ2, with ηi = αie
−(T−1)a(⇢) and a(ρ) as in Lemma 2, yield a posterior f(θ|data)

that is related to la(θ) as in (3.1).

Lancaster’s choice of a prior on the reparameterized effects ηi that is independent of ϑ is motivated by a

first-order autoregression without covariates, where ηi is orthogonal to ϑ and the posterior f(θ|data) (hence also
ela(✓)) has an interpretation as a Cox and Reid (1987) approximate conditional likelihood; see also Sweeting

(1987). Orthogonalization to a multidimensional parameter is generally not possible (see, e.g., Severini, 2000,

pp. 340–342). Here, orthogonalization is not possible when the model is augmented with covariates, as shown

by Lancaster, or when the autoregressive order, p, is greater than one, as we show in Appendix A. From a bias

correction perspective, however, orthogonality is sufficient but not necessary. In the present model, for any p

and q, sa(θ) = 0 is an unbiased estimating equation, and the bias calculation underlying it is immune to the

non-existence of orthogonalized fixed effects.

Arellano and Bonhomme’s (2009) approach shares the integration step with Lancaster (2002) but allows non-

uniform priors on fixed effects or, equivalently, non-orthogonalized fixed effects. Of interest are bias-reducing

priors, i.e., weighting schemes that deliver an integrated likelihood whose score equation has bias o(T−1) as

opposed to the standard O(T−1). The present model (with general p, q) illustrates an interesting result of

Arellano and Bonhomme that generalizes the scope of uniform integration to situations where orthogonalization

is impossible. For a given prior πi(αi|ϑ), the (normalized) log integrated likelihood is

lint(ϑ) =
1

NT

NX

i=1

log

Z
σ−T/2 exp

 
− 1

2σ2

TX

t=1

(yit − z>itθ − αi)
2

!
πi(αi|ϑ) dαi + c.

Choosing πi(αi|ϑ) / e−(T−1)a(⇢) yields

lint(ϑ) = −T − 1

2T
log σ2 − T − 1

T
a(ρ)− Q2(θ)

2NTσ2
+ c.

Profiling out σ2 gives σ2(θ) = argmaxσ2 lint(ϑ) = Q2(θ)/(N(T − 1)) and

lint(θ) = max
σ2

lint(ϑ) =
T − 1

T
la(θ) + c,

so lint(θ) and la(θ) are equivalent. Because a(ρ) does not depend on true parameter values, πi(αi|ϑ) / e−(T−1)a(⇢)

is a data-independent bias-reducing (in fact, bias-eliminating) prior in the sense of Arellano and Bonhomme.

Now, πi(αi|ϑ) / e−(T−1)a(⇢) is equivalent to πi(ηi|ϑ) / 1, i.e., to a uniform prior on ηi = αie
−(T−1)a(⇢), leading

to the same lint(ϑ). Arellano and Bonhomme (2009, Eq. (11)) give a necessary and sufficient condition for a

uniform prior to be bias-reducing. With `i(#, ⌘i) = T−1
PT

t=1 `it(#, ⌘i) denoting i’s (normalized) log-likelihood
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contribution in a parametrization ηi, the condition is that

plimN!1

1

N

NX

i=1

r⌘i
(A−1

i Bi) = o(1) as T ! 1, (3.2)

where Ai = Ai(ϑ, ηi) = −E#,⌘i
r⌘i⌘i

`i(#, ⌘i), Bi = Bi(#, ⌘i) = E#,⌘i
r#⌘i

`i(#, ⌘i), and r⌘i
(A−1

i Bi) is evaluated

at the true parameter values. When ⌘i and # are orthogonal, Bi = 0 and (3.2) holds. However, Condition (3.2)

is considerably weaker than parameter orthogonality. In the present model, when p > 1 or q > 0, and thus no

orthogonalization is possible, it follows from our analysis and Arellano and Bonhomme (2009) that (3.2) must

hold for ⌘i = ↵ie
−(T−1)a(⇢). Indeed, as we show in Appendix A,

r⌘i
(A−1

i Bi) = 0 (3.3)

because A−1
i Bi is free of ⌘i.

Woutersen (2002) derived a likelihood-based moment condition in which parameters of interest and fixed

effects are orthogonal by construction even though orthogonality in the information matrix may not be possible.

With `i = `i(#,↵i) =
PT

t=1 `it(#,↵i) a generic log-likelihood for stratum i, let

gi = gi(#,↵i) = r#`i −r↵i
`i

E#,↵i
r↵i#`i

E#,↵i
r↵i↵i

`i
. (3.4)

Then E#,↵i
gi = 0 and parameter orthogonality holds in the sense that E#,↵i

r↵i
gi = 0 (under regularity condi-

tions). Woutersen’s (2002) integrated moment estimator of # minimizes g>intgint where gint = (NT )−1
PN

i=1 ginti

and

ginti = ginti(#) =


gi −

1

2

r↵i↵i
gi

r↵i↵i
`i

+
1

2

r↵i↵i↵i
`i

r↵i↵i
`i

r↵i
gi

]

↵i=b↵i(#)

,

with b↵i(#) = argmax↵i
`i. The function ginti is the Laplace approximation to

R
gie

`id↵i/
R
e`id↵i, that is, to gi

with ↵i integrated out using likelihood weights. Arellano (2003) obtained the same ginti as a locally orthogonal

Cox and Reid (1987) moment function. Woutersen and Voia (2004) calculated gint for the present model with

p = 1. For any p and q, the integrated moment condition essentially coincides with the adjusted profile score.

In Appendix A, it is shown that

ginti(✓,σ
2) =

✓
σ−2Z>

i M(yi − Zi✓)− (T − 1) b(⇢)
σ−4(yi − Zi✓)

>M(yi − Zi✓)/2− σ−2 (T − 1) /2

◆
. (3.5)

On profiling out σ2 from the minimand g>intgint, we obtain

gint(✓) =
T − 1

T
(s(✓)− b(⇢)) =

T − 1

T
sa(✓).

Thus, Woutersen’s (2002) estimator of ✓ minimizes the norm of the adjusted profile score.

The adjusted likelihood can also be viewed as a penalized log-likelihood in the sense of Bester and Hansen

(2009). With ` =
PN

i=1

PT
t=1 `it, `it = `it(#,↵i), again denoting a generic log-likelihood, let ⇡i = ⇡i(#,↵i) be a

function satisfying

r↵i
⇡i

p! lim
T!1

E

"
1

T

TX

t=1

r↵i↵i
`it

TX

t=1

 it

#
+

1

2
E [r↵i↵i↵i

`it] lim
T!1

E

"
1

T

TX

t=1

 it

TX

t=1

 it

#
, (3.6)

r#⇡i
p! lim

T!1
E

"
1

T

TX

t=1

r↵i#`it

TX

t=1

 it

#
+

1

2
E [r↵i↵i#`it] lim

T!1
E

"
1

T

TX

t=1

 it

TX

t=1

 it

#
, (3.7)
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where ψit = −E [r↵i↵i
`it]

−1 r↵i
`it. Then `⇡ = ` −Pn

i=1 ⇡i is a penalized log-likelihood. Bester and Hansen

(2009) provide a function that satisfies (3.6)–(3.7) in a general class of fixed-effect models and show that it

leads to `⇡ whose first-order condition has bias o(T−1). In the present model, (3.6)–(3.7) can be solved exactly,

i.e., for finite T , thus allowing a full recentering of the score. With `it = − 1
2 [log σ

2 + (yit − z>it✓ − ↵i)
2/σ2] + c,

the relevant differential equations are

r↵i
⇡i = 0, r✓⇡i = (T − 1)b(⇢), rσ2⇡i = − 1

2σ2
,

which yields ⇡i = − 1
2 log σ

2 + (T − 1)a(⇢) + c. Therefore,

`⇡ = `+
N

2
log σ2 −N(T − 1)a(⇢) + c (3.8)

and l⇡(✓) = max↵1,...,↵N ,σ2 `⇡ = N(T − 1)la(✓) + c. Thus, the (normalized) profile penalized log-likelihood and

the adjusted log-likelihood coincide. Bester and Hansen (2009) derived the exact solution to (3.6)–(3.7) for the

case p = 1 and noted the equivalence between the penalized log-likelihood and Lancaster’s (2002) posterior.

Bester and Hansen’s approach is to adjust the likelihood before profiling out the incidental parameters, while

we adjust it after doing so. In the present model, the two approaches coincide.

Finally, the adjusted profile score is also related to Bun and Carree (2005). Note that s(✓) =
PN

i=1 Z
>
i M(yi−

Zi✓)/Q
2(✓) and Myi = MZi

b✓+Mb"i where b✓ is the maximum likelihood estimator, with residuals b"i satisfying
PN

i=1 Z
>
i Mb"i = 0. Therefore, solving sa(✓) = 0 is equivalent to solving

b✓ − ✓ =

 
NX

i=1

Z>
i MZi

!−1

b(⇢)Q2(✓). (3.9)

When p = 1, (3.9) corresponds to Bun and Carree’s (2005) proposal for bias-correcting the maximum likelihood

estimate.

4. Global properties of the adjusted profile likelihood

At this point it is tempting to anticipate that ✓0 maximizes plimN!1la(✓). However, as shown below, −a(⇢)

dominates plimN!1l(✓) as k⇢k ! 1 in almost all directions and plimN!1la(✓) is unbounded from above.

Let h(✓) = r✓>s(✓), c(⇢) = r✓>b(⇢), and

La(✓) = L(✓)− a(⇢), L(✓) = plimN!1l(✓),

Sa(✓) = S(✓)− b(⇢), S(✓) = plimN!1s(✓),

Ha(✓) = H(✓)− c(⇢), H(✓) = plimN!1h(✓).

Using M(yi − Zi✓) = −MZi(✓ − ✓0) +M"i, we have

L(✓) = −1

2
log

 
plimN!1

1

N

NX

i=1

(
">i M"i − 2(✓ − ✓0)

>Z>
i M"i + (✓ − ✓0)

>Z>
i MZi(✓ − ✓0)

)
!

+ c.

Let b0 = b(⇢0) = S(✓0) and note that

plimN!1

1

N

NX

i=1

Z>
i M"i =

 
plimN!1

1

N

NX

i=1

">i M"i

!
b0 = σ2

0 (T − 1) b0.
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Hence, defining V0 = V (θ0) by

plimN!1

1

N

NX

i=1

Z>
i MZi =

 
plimN!1

1

N

NX

i=1

ε>i Mεi

!
V0 = σ2

0 (T − 1)V0,

we can write

L(θ) = −1

2
log
(
1− 2(θ − θ0)

>b0 + (θ − θ0)
>V0(θ − θ0)

)
+ c

by absorbing the term − 1
2 log

(
σ2
0 (T − 1)

)
into c. As N ! 1, the maximum likelihood estimator of θ converges

in probability to θml = argmax✓ L(θ) = θ0+V −1
0 b0 and has asymptotic bias V −1

0 b0. This expression generalizes

the fixed T bias calculations in Nickell (1981) and Bun and Carree (2005). Note that (θ0 − θml)
>V0(θ0 − θml) =

b>0 V
−1
0 b0. Furthermore,

L(θ) = −1

2
log
(
1− b>0 V

−1
0 b0 + (θ − θml)

>V0(θ − θml)
)
+ c,

S(θ) = − V0(θ − θml)

1− b>0 V
−1
0 b0 + (θ − θml)>V0(θ − θml)

,

H(θ) = − V0

1− b>0 V
−1
0 b0 + (θ − θml)>V0(θ − θml)

+ 2S(θ)S(θ)>.

Note that L(·) and H(·) are even and S(·) is odd about θml and that H(θ0) = 2b0b
>
0 − V0 and Ha(θ0) =

2b0b
>
0 − V0 − c0, where c0 = c(ρ0). Since L(θ) is log-quadratic in θ and a(ρ) is a multivariate polynomial with

negative coefficients, La(θ) = L(θ) − a(ρ) is unbounded from above. For example, if we put ρ = kr with r in

the positive orthant of Rp and let k ! 1, the term −a(ρ) dominates and La(θ) ! 1.

It follows that θ0 6= argmax✓ La(θ) and θ0 has to be identified as a functional of La(θ) other than its global

maximizer (as in standard maximum likelihood theory). Because Sa(θ0) = 0, we need to select θ0 from the

set of stationary points of La(θ), that is, from the set of zeros of Sa(θ). In general, this set is not a singleton.

Indeed, whenever θ0 is a local maximizer of La(θ) (which will often be the case, as shown below), La(θ), being

smooth and unbounded, must also have at least one local minimum. Because l(θ) is log-quadratic for any N ≥ 1

and a(ρ) does not depend on the data, la(θ), too, is re-increasing, regardless of the sample size. Therefore, an

estimation strategy based on solving sa(θ) = 0 has to be complemented by a solution selection rule.

4.1. First-order autoregression without covariates

In the first-order autoregressive model without covariates (p = 1, q = 0), let ζ20 =
(
V0 − b20

)
/V 2

0 . Then,

L(ρ) = −1

2
log
(
ζ20 + (ρ− ρml)

2
)
+ c,

S(ρ) = − ρ− ρml

ζ20 + (ρ− ρml)2
, H(ρ) = − ζ20 − (ρ− ρml)

2

(ζ20 + (ρ− ρml)2)
2 ,

by absorbing − 1
2 log V0 into c. Note that ζ20 = −1/H(ρml). Recall that S(ρ) is odd about ρml = ρ0 + b0/V0. The

zeros of H(ρ) are ρ = ρml − ζ0 and ρ = ρml + ζ0, so S(ρ) decreases on [ρ, ρ] and increases elsewhere. All of ρ,

ρ, ρml, and ζ0 are identified by S(·), and ρml and ζ0 act as location and scale parameters of S(·). For any given

ρ0, ρml and ζ0 are determined by V0. As V0 increases, |b0/V0| and ζ0 decrease, that is, the bias of ρml decreases

in absolute value, the length of [ρ, ρ] shrinks, and S(ρ) becomes steeper on [ρ, ρ].
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There is a sharp lower bound on V0. With ξ0i and F0 denoting ξi and F evaluated at ρ0, we have yi,−1 =

S1(ξ0i + F0εi). From the independence between ξ0i and εi, we obtain

V0 =
plimN!1

1
N

PN
i=1 y

>
i,−1Myi,−1

σ2
0 (T − 1)

= V LB
0 + V⇠⇠,

where

V LB
0 =

trF>
0 S>

1 MS1F0

T − 1
, V⇠⇠ =

plimN!1
1
N

PN
i=1 ξ

>
0iS

>
1 MS1ξ0i

σ2
0 (T − 1)

.

So V0 ≥ V LB
0 and this lower bound implies an upper bound on |b0/V0| and on the length of [ρ, ρ], and a lower

bound on the steepness of S(ρ) on [ρ, ρ].

Lemma 3. V LB
0 is given by

V LB
0 =

1

T − 1

0
@

T−2X

j=0

(T − j − 1) ρ2j0 − 1

T

T−2X

j=0

 
jX

k=0

ρk0

!2
1
A

and satisfies (i) V LB
0 ≥ 2b20; (ii) V LB

0 ≥ 2b20 − c0 with equality if and only if T = 2 or ρ0 = 1.

By Lemma 3, H(ρ0) = 2b20 − V0  0 and, hence,

(ρ− ρml)
2 =

V0 − b20
V 2
0

≥ b20
V 2
0

= (ρ0 − ρml)
2.

Therefore, ρ0 2 [ρ, ρ]. Since S(ρ) is a rational function that vanishes at ±1 and b(ρ) is a polynomial, Sa(ρ)

has finitely many zeros. Thus, because Sa(ρ0) = 0 and, by Lemma 3, Ha(ρ0) = 2b20 − V0 − c0  0, it follows

that La(ρ) has a local maximum or a flat inflection point at ρ0. Our main result for a first-order autoregression

without covariates is the uniqueness of such a point in [ρ, ρ], thereby identifying ρ0 as a functional of La(ρ).

Equivalently, ρ0 is the unique point in [ρ, ρ] where b(ρ) approaches S(ρ) from below.

Theorem 1. ρ0 is the unique point in [ρ, ρ] where La(ρ) has a local maximum or a flat inflection point.

La(ρ) has a flat inflection point at ρ0 if and only if V0 = V LB
0 = 2b20 − c0. The latter equality holds if and

only if T = 2 or ρ0 = 1. The former holds if and only if V⇠⇠ = 0, which requires MS1ξ0i to be negligibly small

for almost all i. The elements of S1ξ0i are ρ
j−1
0 y0i + αi

Pj−1
k=1 ρ

k−1
0 , j = 1, ..., T , so MS1ξ0i = 0 if and only if

y0i (1− ρ0) = αi. The following corollary has been independently obtained by Ahn and Thomas (2006).

Corollary 1. When ρ0 = 1 and αi = 0, La(ρ) has a flat inflection point at ρ0 for any T .

When ρ0 6= 1, V0 = V LB
0 = 2b20 − c0 only when T = 2 and a very strong condition holds on the initial

observations and the fixed effects, which is unlikely to hold in situations where a fixed effect modeling approach

is called for. Thus, when ρ0 6= 1, except in quite special circumstances, ρ0 is the unique point in [ρ, ρ] where

La(ρ) attains a strict local maximum. Note that, when ρ0 is a local maximizer of La(ρ), it need not be the

global maximizer on [ρ, ρ], which may instead be ρ. To see why this may happen, interpret the situation where

La(ρ) has a flat inflection point at ρ0 as a limiting case of the property that La(ρ) is re-increasing.
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Figure 1 illustrates how ρ0 is identified by La(ρ) for two cases, each with T = 4. The plots on the left

correspond to the case ρ0 = .5 with V0 = V LB
0 + V⇠⇠ and V⇠⇠ corresponding to stationary initial observations.

Those on the right correspond to the unit root case without deterministic trends, i.e., ρ0 = 1 and V0 = V LB
0 . In

each case, the bottom figures show S(ρ) (solid line) and b(ρ) (dashed line); the top plots show L(ρ) (solid line),

−a(ρ) (dashed line), and La(ρ) = L(ρ) − a(ρ) (thick line). In all the plots, vertical lines indicate ρ, ρ0, and ρ,

from left to right. In the case of ρ0 = .5, ρ0 is the unique local maximizer of La(ρ) on [ρ, ρ]. Note that there is

a second solution of Sa(ρ) = 0 on [ρ, ρ], which corresponds to a local minimum of La(ρ). In the unit root case,

ρ0 is the unique flat inflection point of La(ρ) on [ρ, ρ].

The asymptotic bias of the maximum likelihood estimator has the same sign as b0 because ρml = ρ0 + b0/V0.

The proof of Theorem 1, as a by-product, shows that if T is even, then b0 < 0; and, if T is odd, then b(ρ)

decreases and has a unique zero at some point ρu 2 [−2,−1), so b0 has the same sign as ρu − ρ0.

Figure 1. Identification
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Left: ρ0 = 0.5. Right: ρ0 = 1. Bottom: S(ρ) (solid), b(ρ) (dashed). Top: L(ρ) (solid), −a(ρ) (dashed), La(ρ) (thick).
Vertical lines at ρ, ρ0, and ρ.

4.2. First-order autoregression with covariates

In the first-order autoregressive model with covariates (p = 1, q ≥ 1), profiling out β yields a profile likelihood

of ρ with essentially the same properties as in the model without covariates. Let β(ρ) = argmaxβ La(ρ,β) =



Likelihood inference with fixed effects 11

argmaxβ L(ρ,β) = argminβ(θ − θml)
>V0(θ − θml). Partition V0, V

−1
0 , and b0 as

V0 =

✓
V0⇢⇢ V0⇢β

V0β⇢ V0ββ

◆
, V −1

0 =

✓
V ⇢⇢
0 V ⇢β

0

V β⇢
0 V ββ

0

◆
, b0 =

✓
b0⇢
0

◆
.

With V ⇢⇢
0 = (V0⇢⇢ − V0⇢βV

−1
0ββV0β⇢)

−1, we have

V0ββ (β(ρ)− βml) = −V0β⇢(ρ− ρml),

min
β

(θ − θml)
>V0(θ − θml) = (ρ− ρml)

2/V ⇢⇢
0 ,

1− b>0 V
−1
0 b0 = 1− b20⇢V

⇢⇢
0 .

The first of these equations, together with V0(θ0 − θml) = −b0, yields β(ρ0) = β0, so β0 is identified whenever

ρ0 is. Profiling out β from L(ρ,β) gives the limiting profile log-likelihood of ρ as

L(ρ) = L(ρ,β(ρ)) = −1

2
log
(
ζ20 + (ρ− ρml)

2
)
+ c

(slightly abusing notation), where ζ20 is redefined as ζ20 =
(
1− b20⇢V

⇢⇢
0

)
V ⇢⇢
0 and 1

2 log V
⇢⇢
0 is absorbed into c.

Lemma 4. (V ⇢⇢
0 )−1 ≥ V LB

0 , with V LB
0 as defined earlier and given in Lemma 3.

We can now invoke the result for the model without covariates. Let ρ = ρml − ζ0 and ρ = ρml + ζ0, with ζ0

redefined as indicated.

Theorem 2. ρ0 is the unique point in [ρ, ρ] where La(ρ) = L(ρ)−a(ρ) has a local maximum or a flat inflection

point.

By the proof of Lemma 4, the conditions under which ρ0 is a flat inflection point of La(ρ) are the same as

before. The presence of covariates does not affect the sign of the asymptotic bias of the maximum likelihood

estimator of ρ. It also follows from the proof of Lemma 4 that the inclusion of covariates in the model cannot

increase V ⇢⇢
0 , so the magnitude of ρml−ρ0 = V ⇢⇢

0 b0⇢ can only decrease relative to the model without covariates.

4.3. pth-order autoregression

Consider first an autoregression with p > 1 and without covariates, i.e., q = 0. Then

L(ρ) = −1

2
log
(
1 + (ρ− ρml)

>W0(ρ− ρml)
)
+ c, W0 =

V0

1− b>0 V
−1
0 b0

,

S(ρ) = − W0(ρ− ρml)

1 + (ρ− ρml)>W0(ρ− ρml)
,

H(ρ) = − W0

1 + (ρ− ρml)>W0(ρ− ρml)
+ 2S(ρ)S(ρ)>,

where − 1
2 log(1− b>0 V

−1
0 b0) is absorbed into c. Because W0 = −H(ρml), W0 is identified by L(·).

As in the p = 1 case, there is a lower bound on V0. Recalling that Yi− = (yi,−1, ..., yi,−p) and yi,−j =

Sj(ξ0i + F0εi), where ξ0i and εi are independent, we have

V0 =
plimN!1

1
N

PN
i=1 Y

>
i−MYi−

σ2
0 (T − 1)

= V LB
0 + V⇠⇠
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where V LB
0 and V⇠⇠ have elements

(
V LB
0

)
jk

=
trF>

0 S>
j MSkF0

T − 1
, (V⇠⇠)jk =

plimN!1
1
N

PN
i=1 ξ

>
0iS

>
j MSkξ0i

σ2
0 (T − 1)

,

for 1  j, k  p. Hence, V0 −V LB
0 is positive semi-definite, which we write as V0 ≥ V LB

0 . When p ≥ T , while V0

is nonsingular by assumption, rank(V LB
0 )  T −1 because SjF0 = 0 for j ≥ T , which implies that

(
V LB
0

)
jk

= 0

whenever j ≥ T or k ≥ T . Thus, when p ≥ T , although V0 can be arbitrarily close to V LB
0 , V0 6= V LB

0 . Further,

when p ≥ T , bj(ρ) = 0 for j ≥ T because the sum defining bj(ρ) is empty, and cij(ρ) = 0 for i+ j ≥ T . Hence,

when p ≥ T , V LB
0 − 2b0b

>
0 and V LB

0 − 2b0b
>
0 + c0 have only zeros beyond their leading (T − 1)⇥ (T − 1) blocks.

A proof of generalizations of (i)–(ii) of Lemma 3 and Theorem 1 to the p > 1 would be desirable but is more

difficult.1 We resorted to numerical computations, which suggest that

V LB
0 ≥ 2b0b

>
0 , V LB

0 ≥ 2b0b
>
0 − c0, (4.1)

rank(V LB
0 − 2b0b

>
0 + c0) =

⇢
min(p, T − 2) if

Pp
j=1 ρ0j 6= 1 or T < p+ 2,

p− 1 else.
(4.2)

Specifically, we computed the eigenvalues of V LB
0 − 2b0b

>
0 and V LB

0 − 2b0b
>
0 + c0 for p = 2, 3, 4; T = 2, ..., 7; and

all ρ0 in a subset of Rp chosen as follows. For p = 4, we put a square grid on the Cartesian product of the two

triangles defined by
−1  γ2  1, γ2 − 1  γ1  1− γ2,
−1  γ4  1, γ4 − 1  γ3  1− γ4,

(4.3)

which is the stationary region of the lag polynomial γ(L) = (1− γ1L− γ2L
2)(1− γ3L− γ4L

2). For each point

on this grid and for each of the values m = 1, 2, 4, ρ0 was calculated by equating the coefficients on both sides

of m− ρ01L− ρ02L
2 − ρ03L

3 − ρ04L
4 = mγ(L). For m = 1, the stationary region is covered, while for larger m

a larger region is covered, though less densely. In addition to (4.3) we set γ4 = 0 for p = 3, and γ3 = γ4 = 0

for p = 2. The grid points on the region defined by (4.3) were spaced at intervals of .002 when p = 2, .02 when

p = 3, and .1 when p = 4. We found that, uniformly over this numerical design, the eigenvalues of V LB
0 − 2b0b

>
0

and V LB
0 − 2b0b

>
0 + c0 are non-negative and the rank of V LB

0 − 2b0b
>
0 + c0 is as given by (4.2). These findings,

while obviously not a proof, support (4.1) and (4.2), and we shall proceed under the assumption that (4.1) and

(4.2) hold.2

Because V0 ≥ V LB
0 , (4.1) implies that V0 ≥ 2b0b

>
0 and that Ha(ρ0) = 2b0b

>
0 − V0 − c0  0. Pre- and

postmultiplication of V0 ≥ 2b0b
>
0 by b>0 V

−1
0 and V −1

0 b0 gives b>0 V
−1
0 b0  1

2  1 − b>0 V
−1
0 b0. Recalling that

(ρ0 − ρml)
>V0(ρ0 − ρml) = b>0 V

−1
0 b0, we have

(ρ0 − ρml)
>W0(ρ0 − ρml)  1.

1A major difficulty is the rapidly increasing complexity of ϕt as p increases. For example, ϕt =
Pbt/2c

k=0
(t−k)!

(t−2k)!k!
ρt−2k
1 ρk2 when

p = 2. In comparison, ϕt = ρt1 when p = 1.
2The same computations but with T = 8, 9, 10 further supported the conclusions. Here, however, when m = 4 and p = 3, 4

the computations are numerically less stable because the polynomial terms may be extremely large and their sum numerically
imprecise.



Likelihood inference with fixed effects 13

Therefore, if (4.1) and (4.2) hold, ρ0 is a point in the ellipsoidal disk E = {ρ : (ρ − ρml)
>W0(ρ − ρml)  1}

where La(ρ) has a local maximum or a flat inflection point. We approached the question of uniqueness of such

a point numerically. For the same numerical design as above and with V0 = V LB
0 , we applied the Newton-

Raphson algorithm to find a stationary point of La(ρ), starting at ρml and using the Moore-Penrose inverse of

Ha(ρ) whenever Ha(ρ) is singular. Uniformly over this design, the algorithm was found to converge to ρ0, thus

supporting the conjecture that ρ0 is the unique point in E where La(ρ) has a local maximum or a flat inflection

point.3

In the model with covariates, just as before, β can be profiled out of La(θ). Here, again, β0 = β(ρ0).

Lemma 4 continues to hold for p > 1. Hence, if ρ0 is identified in the model without covariates in the way we

suggested, then it is identified in the model with covariates in exactly the same way, now with E defined through

W0 = (1− b>0⇢V
⇢⇢
0 b0⇢)

−1V0⇢⇢, in obvious notation.

5. Estimation and inference

For a given ρ, define

bβ(ρ) = argmax
β

la(ρ,β) = argmax
β

l(ρ,β) =

 
NX

i=1

X>
i MXi

!−1 NX

i=1

X>
i M (yi − Yi−ρ) .

The unadjusted and adjusted profile log-likelihoods for ρ are l(ρ) = l(ρ, bβ(ρ)) and la(ρ) = l(ρ)− a(ρ). Let s(ρ),

sa(ρ), h(ρ), and ha(ρ) be the corresponding profile scores and Hessians. Let cW = −h(bρml), where bρml is the

maximum likelihood estimator of ρ0, and let bE = {ρ : (ρ − bρml)
>cW (ρ − bρml)  1}. We define the adjusted

likelihood estimator of ρ0 as

bρal = argmin
⇢2bE

s>a (ρ)sa(ρ) s.t. ha(ρ)  0,

that is, as the strict local maximizer of la(ρ) on the interior of bE if such a maximizer exists and otherwise as

the minimizer of the norm of sa(ρ) on bE . The adjusted likelihood estimator of β0, then, is bβal = bβ(bρal).
LetN ! 1. Then la(ρ) converges to La(ρ) uniformly in ρ since −a(ρ) is nonstochastic and sup⇢ |l(ρ)−L(ρ)| =

op(1). Further, bρml
p! ρml, cW p! −H(ρml) = W0, and bE p! E in the sense that Pr[ρ 2 bE ] ! 1{⇢2E} for any ρ

not on the boundary of E . It follows that bθal = (bρ>al, bβ>
al)

> p! θ0.

When Ha(θ0) is nonsingular, by a Taylor series expansion of sa(θ) around θ0,

p
N(bθal − θ0)

d! N (0,Ω) , Ω = Ha(θ0)
−1(V0 − b0b

>
0 )Ha(θ0)

−1. (5.1)

The asymptotic variance can be estimated in the usual way.4

We have not investigated the limit distribution of bθal in the situation where Ha(θ0) is singular (which includes

all cases where ρ0 is a flat inflection point). Presumably this could be done by using arguments along the lines

of Rotnitzky, Cox, Bottai, and Robins (2000).

3Computations with T = 8, 9, 10 gave the same results except in certain cases with m = 4 and p = 3, 4 where the algorithm
failed to converge because the rank of Ha(ρ) was underestimated.

4Note that the information equality does not hold, although this could be rectified by rescaling the adjusted profile score; see
McCullagh and Tibshirani (1990).
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We used simulations to examine the finite sample properties of the adjusted likelihood estimator in first- and

second-order autoregressions without covariates and in a first-order autoregressive model with one stationary

covariate. We compared the estimator with the one-step Arellano and Bond (1991) estimator, which leaves the

initial observations unrestricted,5 and with two estimators that are consistent only under rectangular array

asymptotics (see Li, Lindsay, and Waterman, 2003 and Sartori, 2003). The latter two estimators have an

asymptotic bias that is O(T−2). The first of these estimators corrects the maximum likelihood estimate. For

the first-order autoregression without covariates, we used the estimator of Hahn and Kuersteiner (2002), which

is targeted to this setup. For the other models, we used its extension to possibly nonlinear models as proposed

by Hahn and Kuersteiner (2011). The second large T estimator considered is the penalized likelihood estimator

of Bester and Hansen (2009).6

In all the designs, we set N = 100, generated εit and αi as N (0, 1) variates, and chose ρ0 in the interior

of the stationary region, which implies that yit is eventually stationary as t ! 1. We varied the information

content of the data through the initial observations. Let µi = limt!1 E(yit−|αi) and Σi = limt!1 Var(yit−|αi),

so, if y0i was drawn from the stationary distribution, we would just have µi = E(y0i |αi) and Σi = Var(y0i |αi).

Let GiG
>
i = Σi be the Cholesky factorization of Σi. We set y0i = µi+ψGiι for some chosen scalar ψ ≥ 0, which

is a p-variate version of setting the initial observations ψ standard deviations away from the stationary mean.

So ψ controls the outlyingness of the initial observations relative to the stationary distributions. All else being

equal, V0 increases in ψ and V0 ! V LB
0 as ψ ! 0, so the data carry less information as ψ gets smaller. The

effect of strong inlying observations (small ψ) on the informativeness of the data is stronger when T is small

because it takes time to revert to the stationary distribution. The effect of ψ is vanishingly small as ρ0 moves

to the boundary of the stationary region. We set ψ = 0, 1, 2 when p = 1 and ψ = .3, 1, 2 when p = 2.

In the models without a covariate, µi and Σi follow immediately from αi and ρ0. In the model with a

covariate, xit was generated by xit = δαi + γxit−1 + uit with uit ⇠ N (0,σ2
u) and xi0 drawn from the stationary

distribution. Here,

µi =
αi

1− ρ0

✓
1 +

δβ0

1− γ

◆
, Σi =

1

1− ρ20

✓
1 +

β2
0

1− γ2

✓
1 + γρ0

1− γρ0

◆
σ2
u

◆
.

We set δ = γ = σu = .5 and β0 = 1− ρ0, inducing dependence between the covariate and the fixed effect, and

keeping the long-run multiplier of x on y constant at unity across designs.

Tables 1–5 in Appendix B present Monte Carlo estimates, based on 10, 000 replications, of the bias and the

standard deviation (std) of the estimators considered, as well as the coverage rates of the corresponding asymp-

totic and bootstrap 95% confidence intervals (cia.95 and cib.95). Bootstrap confidence intervals were computed

using the percentile method with 39 bootstrap samples formed by randomly drawing N strata with replacement

from {1, ..., N}.
In the first-order autoregression with ρ0 = .5 (upper panel in Table 1), both bρal and bρab perform well. The

adjusted likelihood estimator has smaller standard deviation and is virtually unbiased, except when ψ = 0

5The Arellano and Bond (1991) estimator is a generalized method of moments estimator based on the moments
E [xij(εit − εit−1)] = 0, j = 1, ..., T ; t = 2, ..., T ; and E [yit−j(εit − εit−1)] = 0, j = 2, ..., t; t = 2, ..., T .

6The estimators of Hahn and Kuersteiner (2011) and Bester and Hansen (2009) require a bandwidth choice. We set the
bandwidth equal to unity, following the suggestion of Bester and Hansen (2009, p. 134).
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and T = 2. Both estimators deliver 95% confidence intervals with broadly correct coverage, although the

coverage errors are somewhat larger for bρab, where they also increase in T . The latter observation is in line

with the theoretical results of Alvarez and Arellano (2003). The estimator of Hahn and Kuersteiner (2002)

outperforms the Bester and Hansen (2009) estimator, although both exhibit substantial bias for small T and

their performance is sensitive to ψ.

When ρ0 is increased to .95 (lower panel in Table 1), the performance of all estimators tends to worsen.

bρab deteriorates the most, showing a substantial bias, large dispersion, and confidence intervals with much

lower coverage. bρal continues to have little bias and provides confidence intervals with approximately correct

coverage, with the bootstrap-based confidence intervals being slightly better. In most designs, both bρhk and bρbh
outperform bρab in terms of bias and standard deviation. Their confidence intervals, however, are not reliable.

In the second-order autoregression (Tables 2 and 3), both bρal and bρab perform well in terms of bias, although

there is a non-negligible bias when T = 2, and also when T = 4 and the initial observations are strong inlyers.

As N = 100, the probability that the adjusted likelihood has no local maximum in the relevant region is fairly

large when both T and ψ are small. In most designs, bρal has smaller standard deviation than bρab, with the

difference decreasing in T and ψ. For both estimators, the confidence intervals have very reasonable coverage.

As before, bρhk and bρbh still show a substantial bias for most of the designs considered. Together with their small

standard deviation for most values of T , this again leads to their confidence intervals being too narrow.

In the model with a covariate (Tables 4 and 5), the coefficient on xit, β0, is generally estimated with small

bias by all estimators. Regarding the estimation of ρ0, the tables show a similar pattern as in the model without

a covariate. bρal has little bias and well-behaved confidence intervals for all designs, especially when computed by

bootstrapping. The same holds for bρab only when ρ0 = .5. bρhk and bρbh only start to perform reasonably when

T ≥ 16, although the coverage errors of their confidence intervals remain large for all values of T considered.

Appendix A: Proofs

Proof of Lemma 1. Using (2.2),

plimN!1sρj (θ0) =
plimN!1N−1PN

i=1 ε
>
i MSj(ξ0i + F0εi)

plimN!1N−1
PN

i=1 ε
>
i Mεi

=
E(ε>i MSjF0εi)

E(ε>i Mεi)

=
trMSjF0

T − 1
,

plimN!1sβj
(θ0) = 0,

where ξ0i and F0 are ξi and F , evaluated at θ0. If, in addition, the disturbances are normal variates, i.e., εit ⇠ N (0, σ2),
then

E[sρj (θ0)] = E

 PN
i=1 ε

>
i MSj(ξ0i + F0εi)PN

i=1 ε
>
i Mεi

!

= E

 PN
i=1 ε

>
i MSjF0MεiPN

i=1 ε
>
i Mεi

!

=
E(ε>i MSjF0Mεi)

E(ε>i Mεi)
=

trMSjF0

T − 1
, (A.2)

E[sβj
(θ0)] = 0,

by well-known properties of the normal distribution and the following geometric argument, which goes back to Fisher
(1930) and Geary (1933). Let v ⇠ N (0, σ2Ig) and let Q be a g ⇥ h matrix such that Q>Q = Ih, so QQ> is idempotent.
Write Ig − QQ> as PP>, where P>P = Ig−h. Transform v into m = P>v, the radius r = (v>QQ>v)1/2, and the
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h− 1 polar angles a of Q>v. Then the elements of (m>, r, a>)> are independent. Therefore, for any g ⇥ g matrix W , if
A = v>QQ>WQQ>v and B = v>QQ>v, then the ratio A/B depends on v only through a and hence is independent
of B, which implies that E(A) = E(A/B)E(B) and E(A/B) = E(A)/E(B).7 The transition to (A.2) now follows from
applying this property to the ratio

PN
i=1 ε

>
i MSjF0MεiPN

i=1 ε
>
i Mεi

=
ε>(IN ⌦M)(IN ⌦ SjF0)(IN ⌦M)ε

ε>(IN ⌦M)ε

with v = ε = (ε>1 , ..., ε
>
N )>, QQ> = IN ⌦M , and W = IN ⌦ SjF0. The proof is completed by writing trMSjF0 in terms

of the ϕt. Note that

SjF =

✓
0 0

D−1
j 0

◆
,

where D−1
j is the leading (T − j)⇥ (T − j) block of D−1. For arbitrary ρ1, ..., ρT−1, D and its inverse are

D =

0

BBBB@

1 0 · · · 0

−ρ1
. . .

. . .
...

...
. . .

. . . 0
−ρT−1 · · · −ρ1 1

1

CCCCA
, D−1 =

0

BBBB@

1 0 · · · 0

φ1

. . .
. . .

...
...

. . .
. . . 0

φT−1 · · · φ1 1

1

CCCCA
,

where φ1, ..., φT−1 are recursively obtained as φ1 = ρ1 and φj = ρj+
Pj−1

k=1 φkρj−k, j = 2, ..., T−1. Recursive substitution
gives

φj =
X

k1+2k2+···+jkj=j

(k1 + ...+ kp)!

k1! · · · kp!
ρk1

1 ρk2

2 · · · ρkj

j .

Putting ρp+1 = · · · = ρT−1 = 0 gives φj = ϕj . Therefore,

trMSjF0

T − 1
= −

ι>D−1
j ι

T (T − 1)
= −

T−j−1X

t=0

T − j − t

T (T − 1)
ϕt, j = 1, . . . , p,

which equals bj(ρ).

Proof of Lemma 2. For j = 1, ..., p, let Sj = {S 2 S|j 2 S}. Group terms by S 2 Sj to write

Z
bj(ρ)dρj =

X

S2Sj

Bj,S(ρ) + c,

where

Bj,S(ρ) = −
T−j−1X

t=0

T − j − t

T (T − 1)

X

k2Kj,S :τ>k=t

(ι>k)!

k1! · · · (kj + 1)! · · · kp!
ρjρ

kS
S

and Kj,S = {k 2 N
p| for all j0 6= j, kj0 > 0 if ond only if j0 2 S} ⊃ KS . A change of variable from kj + 1 to kj gives

Bj,S(ρ) = −
T−j−1X

t=|S|−j

T − j − t

T (T − 1)

X

k2KS :τ>k=t+j

(ι>k − 1)!

k1! · · · kp!
ρkS
S ,

where the lower limit in the first sum changed from 0 to |S|−j because, when t < |S|−j, no k 2 KS satisfies τ>k = t+j.
A further change of variable from t+ j to t gives Bj,S(ρ) = aS(ρ), with aS(ρ) as defined in (2). Therefore,

bj(ρ) = rρj

X

S2Sj

aS(ρ) = rρj

X

S2S

aS(ρ) = rρja(ρ),

which completes the proof.

7For a discussion and historical perspective on this device, see Conniffe and Spencer (2001).
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Proof of Equation (3.3). In the parameterization ηi = αie
−(T−1)a(ρ), we have

`i(#, ⌘i) = −1

2
log σ2 − 1

2Tσ2

TX

t=1

(yit − z>it✓ − ⌘ie
(T−1)a(ρ))2 + c,

rηi`i(#, ⌘i) =
e(T−1)a(ρ)

Tσ2
(yi − Zi✓ − ⌘ie

(T−1)a(ρ)
◆)>◆,

and

Eϑ,ηirηiηi`i(#, ⌘i) = −σ−2e2(T−1)a(ρ), Eϑ,ηirσ2ηi
`i(#, ⌘i) = 0,

Eϑ,ηirθηi`i(#, ⌘i) = −σ−2e(T−1)a(ρ)
⇣
⌘i(T − 1)b(⇢)e(T−1)a(ρ) + Eϑ,ηiZ

>
i ◆/T

⌘
.

The jth column of Yi− is yi,−j = Sj(⇠i + F "i) , so the jth element of Eϑ,ηiY
>
i−◆ is

Eϑ,ηiy
>
i,−j◆ = ◆

>Sj⇠i = ◆
>D−1

j ◆⌘ie
(T−1)a(ρ) + Tmj , mj = ◆

>Sj

✓
y0
i

D−1
(
Cy0

i +Xiβ
)
◆
/T.

Hence,
Eϑ,ηiZ

>
i−◆/T = −⌘i(T − 1)b(⇢)e(T−1)a(ρ) +m,

where m = (m1, ...,mp, ◆
>Xi/T )

> is free of ⌘i. Consequently,

A−1
i Bi = −e−(T−1)a(ρ)

✓
m
0

◆

and rηi(A
−1
i Bi) = 0.

Proof that no orthogonalization exists when p > 1. In the original parameterization, if li(#,↵i) is i’s
log-likelihood contribution, we have

Eϑ,αi
rαiαi li(#,↵i) = −σ−2, Eϑ,αi

rσ2αi
li(#,↵i) = 0,

Eϑ,αi
rθαi

li(#,↵i) = −σ−2
Eϑ,αi

Z>
i ◆/T,

and so, by the preceeding proof,

A−1
i Bi = −

✓
Eϑ,αi

Z>
i ◆/T

0

◆
= −

✓
−(T − 1)b(⇢)↵i +m

0

◆
.

Suppose some reparameterized fixed effect, say ⇣i, is orthogonal to #. Then ↵i = ↵i(#, ⇣i) must satisfy the differential
equation rϑ↵i = A−1

i Bi, that is,

rρj↵i = (T − 1)bj(⇢)↵i −mj , j = 1, . . . , p, (A.3)

rβj
↵i = −mp+j , j = 1, . . . , q, (A.4)

and rσ2↵i = 0. We show that these equations are inconsistent. Suppose q > 0. Then (A.3) implies rρjβj0
↵i = −rβj0

mj ,
which is generally non-zero, while (A.4) implies rρjβj0

↵i = 0, so the equations are inconsistent. Suppose q = 0. Then

Tmj = ◆
>Sj

✓
Ip

D−1C

◆
y0
i , j = 1, . . . , p,

and, because rρj0
bj(⇢) = rρj0ρj

a(⇢) = rρj bj0(⇢), (A.3) will be inconsistent if rρj0
mj 6= rρjmj0 for some j, j0. Take

j = p and j0 = p− 1. The first element of y0
i appears in Tmp and Tmp−1 with coefficients γp = 1 + ⇢p

PT−p−1
t=0 't and

γp−1 = ⇢p
PT−p

t=0 't, respectively. Differentiating gives

rρp−1
γp = ⇢p

T−p−1X

t=0

rρp−1
't = ⇢p

T−pX

t=1

rρp't, rρpγp−1 = ⇢p

T−pX

t=1

rρp't +

T−pX

k=0

't,

using '0 = 1 and rρp−1
't = rρp't+1. The latter follows from differentiating 't and a change of variable from kp−1 − 1

to kp−1, giving

rρp−1
't =

X

τ>k=t−p+1

(◆>k + 1)!

k1! · · · kp!
⇢
k,

which is invariant under a unit shift of p and t. Therefore, rρp−1
γp 6= rρpγp−1, and (A.3) is inconsistent.
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Proof of Equation (3.5). By the preceeding proof,

Eϑ,αi
rαiϑ`i

Eϑ,αi
rαiαi`i

=

✓
Eϑ,αi

Z>
i ◆/T

0

◆

and so

gi =

✓
σ−2(Z>

i − Eϑ,αi
Z>

i ◆◆
>/T ) (yi − Zi✓ − ◆↵i)

σ−4 (yi − Zi✓ − ◆↵i)
> (yi − Zi✓ − ◆↵i) /2− σ−2T/2

◆
.

Recalling Eϑ,αi
Z>

i ◆/T = −(T − 1)b(⇢)↵i +m, we have

rαiαigi =

✓
−2σ−2T (T − 1)b(⇢)

σ−4T

◆
, rαiαi`i = −σ−2T,

and therefore

gi − 1

2

rαiαigi
rαiαi`i

=

✓
σ−2(Z>

i − Eϑ,αi
Z>

i ◆◆
>/T ) (yi − Zi✓ − ◆↵i)− (T − 1)b(⇢)

σ−4(yi − Zi✓ − ◆↵i)
>(yi − Zi✓ − ◆↵i)/2− σ−2(T − 1)/2

◆
.

Evaluating at ↵i = b↵i(#) = ◆>(yi − Zi✓)/T and noting that rαiαiαi`i = 0 gives (3.5).

Proof of Lemma 3. Let A = S1F0 and B = rρ0A. Then

b0 = − ◆>A◆

T (T − 1)
, c0 = − ◆>B◆

T (T − 1)
, V LB

0 =
trA>MA

T − 1
=

T trAA> − ◆>AA>◆

T (T − 1)
.

Hence, V LB
0 ≥ 2b20 and V LB

0 ≥ 2b20 − c0 if and only if

T trAA> − ◆
>AA>

◆− 2
(
◆>A◆

)2

T (T − 1)
≥ 0, (A.5)

T trAA> − ◆
>AA>

◆− 2
(
◆>A◆

)2

T (T − 1)
− ◆

>B◆ ≥ 0. (A.6)

The matrix A = AT is

A =

✓
0 0
1 0

◆
, T = 2,

A =

✓
AT−1 0

a>
T 0

◆
, aT = (⇢T−2, ⇢T−3, ..., 1)>, T > 2,

where the subscript on ⇢ is omitted. By recursion, it can be deduced that

◆
>A◆ =

T−2X

j=0

(T − j − 1) ⇢j , ◆
>B◆ =

T−2X

j=1

j (T − j − 1) ⇢j−1,

trAA> =

T−2X

j=0

(T − j − 1) ⇢2j , ◆
>AA>

◆ =

T−2X

j=0

 
jX

k=0

⇢
k

!2

,

yielding V LB
0 as stated in the lemma. Now let r > 0 and use the equalities just obtained to see that if (A.6) holds for

⇢ = r, then (A.5) holds for ⇢ = r and (A.5) and (A.6) hold for ⇢ = −r, with strict inequalities for T ≥ 3. Hence, we only
need to show that (A.6) holds for ⇢ ≥ 0, with equality if and only if T = 2 or ⇢ = 1. Write (A.6) as QT ≥ 0. Because
Q2 = 0, to show that (A.6) holds, it suffices to show that ∆QT ≥ 0 for T ≥ 2, where ∆ (·)T = (·)T+1 − (·)T . Write ∆QT

as

∆QT = ∆

 

T trAA> − ◆
>AA>

◆− 2

(
◆>A◆

)2

T (T − 1)
− ◆

>B◆

!

T

=

8
<

:

⇣
trAA>

⌘

T+1
− 2

(
◆>A◆

)2
T+1

T (T + 1)

9
=

;+

(

2

(
◆>A◆

)2
T

T (T − 1)
−∆

⇣
◆
>B◆

⌘

T

)

+
n
T∆

⇣
trAA>

⌘

T
−∆

⇣
◆
>AA>

◆
⌘

T

o
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and denote the quantities in braces as ⌧1, ⌧2, and ⌧3. Using T (T + 1) /2 =
PT−1

i=0 (T − i), we have

⌧1 =

T−1X

j=0

(T − j) ⇢2j − 2

T (T + 1)

 
T−1X

j=0

(T − j) ⇢j
!2

=
2

T (T + 1)

 
T−1X

i=0

T−1X

j=0

(T − i) (T − j) ⇢2j −
T−1X

i=0

T−1X

j=0

(T − i) (T − j) ⇢i+j

!

=
2

T (T + 1)
u>Ru,

where u = (T, T − 1, ..., 1)> and

R =

0

BBB@

1 1 · · · 1
⇢2 ⇢2 · · · ⇢2

...
...

. . .
...

⇢2T−2 ⇢2T−2 · · · ⇢2T−2

1

CCCA
−

0

BBB@

1 ⇢ · · · ⇢T−1

⇢ ⇢2 · · · ⇢T

...
...

. . .
...

⇢T−1 ⇢T · · · ⇢2T−2

1

CCCA
.

Consider the principal minors of R. Those of order 1 are 0; those of order 2 are

det

✓
0 ⇢2i − ⇢i+j

⇢2j − ⇢i+j 0

◆
= ⇢

i+j
⇣
⇢
j − ⇢

i
⌘2

≥ 0, 0 < i < j < T,

given ⇢ ≥ 0; and those of order greater than 2 are 0 because R is the sum of two matrices of rank 1 and, hence,
rank (R)  2. Therefore, R is positive semi-definite and ⌧1 ≥ 0. Furthermore,

⌧3 = T

T−1X

j=0

⇢
2j −

 
T−1X

j=0

⇢
j

!2

=

T−1X

i=0

T−1X

j=0

⇢
2j −

T−1X

i=0

T−1X

j=0

⇢
i+j = ◆

>R◆ ≥ 0.

Use

∆
⇣
◆
>B◆

⌘

T
=

T−1X

j=1

j (T − j) ⇢j−1 −
T−2X

j=1

j (T − j − 1) ⇢j−1 =

T−2X

j=0

(j + 1) ⇢j

=
2

T (T − 1)

T−2X

i=0

T−2X

j=0

(T − i− 1) (j + 1) ⇢j

to write

⌧2 = d

 
T−2X

i=0

T−2X

j=0

(T − i− 1) (T − j − 1) ⇢i+j −
T−2X

i=0

T−2X

j=0

(T − i− 1) (j + 1) ⇢j
!

,

where d = 2
T (T−1)

. Note that ⌧2 is a polynomial of degree 2T − 4 in ⇢. When T = 2 or ⇢ = 1, ⌧2 = 0. When ⇢ 6= 1,

⇣
◆
>A◆

⌘

T
=

T − 1− T⇢+ ⇢T

(1− ⇢)2
, ∆

⇣
◆
>B◆

⌘

T
=

1− ⇢T − T⇢T−1 + T⇢T

(1− ⇢)2
,

and so

⌧2 =
d
(
T − 1− T⇢+ ⇢T

)2

(1− ⇢)4
− 1− ⇢T − T⇢T−1 + T⇢T

(1− ⇢)2
.

For T > 2,

lim
ρ!1

⌧2 (1− ⇢)−2 =
1

72
T (T − 1) (T − 2) (T + 1) > 0

and, therefore, ⌧2 = (1− ⇢)2 P (T, ⇢), where P (T, ⇢) is a polynomial of degree 2T − 6. If all coefficients of P (T, ⇢) =P2T−6
j=0 pj⇢

j are positive, we conclude that ⌧2 ≥ 0. Write ⌧2 =
P2T−4

j=0 qj⇢
j , where qj is found as

qj =

8
<

:

d
6
{(j + 1) (j (j − 1) + 6 (T − 1) (T − j − 1))− 3jT (T − 1)} , j  T − 2,

d
6
(2T − j − 1) (2T − j − 2) (2T − j − 3) , T − 1  j.
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Equating the coefficients of ⌧2 and (1− ⇢)2 P (T, ⇢) gives pk =
Pk

j=0 (k + 1− j) qj . To show that pk > 0 for 0  k 
2T − 6, we only need to show that pk > 0 for k up to T − 2 because for larger k, qk > 0 and so pk increases in k. For k
up to min(T − 2, 2T − 6), we obtain

pk =
d

12
(k + 1) (k + 2) (k + 3)

✓
(T − 1) (2T − k − 2) +

k

10
(k − 1)− T (T − 1)

◆

and, hence, pk > 0 because either k < T − 2, implying 2T − k − 2 > T , or k = T − 2  2T − 6, implying T ≥ 4 and
k ≥ 2. Therefore, ⌧2 ≥ 0. This establishes QT ≥ 0, that is, (A.6). Recall that Q2 = 0 and note that ⇢ = 1 implies
⌧1 = ⌧2 = ⌧3 = 0 and, hence, QT = 0. Therefore, QT = 0 if T = 2 or ⇢ = 1. If T ≥ 2 and ⇢ 6= 1, then ∆QT > 0 because
⌧3 > 0 when T = 2 and ⌧2 > 0 when T > 2. Therefore, QT = 0 only if T = 2 or ⇢ = 1.

Proof of Theorem 1. La(⇢) having a local maximum or a flat inflection point at ⇢0 is equivalent to b(⇢) approaching
S(⇢) from below as ⇢ approaches ⇢0 from the left. We will write this as b(⇢) " S(⇢) at ⇢0, and show that b(⇢) " S(⇢) on
[⇢, ⇢] at most once. From

rρH(⇢) =
2(⇢− ⇢ml)

(
3⇣20 − (⇢− ⇢ml)

2
)

(⇣20 + (⇢− ⇢ml)2)
3

it follows that S(⇢) is strictly concave on [⇢, ⇢ml] and strictly convex on [⇢ml, ⇢]. Because 't = ⇢t, b(⇢) and its first two
derivatives are

b(⇢) = −
T−2X

t=0

T − 1− t

T (T − 1)
⇢
t,

c(⇢) = −
T−2X

t=1

t (T − 1− t)

T (T − 1)
⇢
t−1, d(⇢) = −

T−2X

t=2

t (t− 1) (T − 1− t)

T (T − 1)
⇢
t−2.

For ⇢ 6= 1,

b(⇢) = − T − 1− T⇢+ ⇢T

T (T − 1) (1− ⇢)2
, c(⇢) = −T − 2− T⇢+ T⇢T−1 − (T − 2) ⇢T

T (T − 1) (1− ⇢)3
,

d(⇢) = −2T − 6− 2T⇢+ T (T − 1) ⇢T−2 − 2T (T − 3) ⇢T−1 + (T − 2) (T − 3) ⇢T

T (T − 1) (1− ⇢)4
.

When T  3, b(⇢) is linear and so, given that S(⇢) is concave-convex on [⇢, ⇢], b(⇢) " S(⇢) on [⇢, ⇢] at most once. Suppose
T ≥ 4. Then, b(⇢) is a polynomial of degree 2 or higher with negative coefficients, so b(⇢) is negative, decreasing, and
strictly concave, on R+. Further, by Descartes’ rule of signs, c(⇢) has one zero on R− when T is even and none when T
is odd, and d(⇢) has no zeros on R− when T is even and one when T is odd. Suppose T is even. Then c(−1) = 0 and
b(−1) = − 1

2(T−1)
< 0, so b(⇢) is negative and strictly concave on R, and, hence, its intersection with S(⇢) on [⇢, ⇢] can

only be on (⇢ml, ⇢], where S(⇢) is strictly convex and is approached from below by b(⇢) at most once. Now suppose T is
odd and T ≥ 5. Then,

d(−1) =
T − 3

4T
> 0, d(− 1

2
) = −24−T (T − 2)

(
2T − 3T + 1

)

27T (T − 1)
< 0,

so b(⇢) is strictly convex on (−1, ⇢v] and strictly concave on [⇢v,1) for some ⇢v 2 (−1,− 1
2
) and decreases on R. Define

⇢u by b(⇢u) = 0, that is, by T (1− ⇢u) = 1− ⇢Tu , ⇢u 2 R−. Since T ≥ 5, we have −2 < ⇢u < −1. Thus, b(⇢) is negative
and strictly convex on (⇢u, ⇢v], with −2 < ⇢u < −1 < ⇢v < − 1

2
. Let R = [⇢u, ⇢v]\ [⇢ml, ⇢]. If R is empty, then ⇢v < ⇢ml or

⇢ < ⇢u; in either case, by the concavity-convexity of S(⇢), b(⇢) " S(⇢) on [⇢, ⇢] at most once. If R is non-empty, to show
that b(⇢) " S(⇢) on [⇢, ⇢] at most once, it suffices to show that S(⇢) decreases faster than b(⇢) on R, i.e., H(⇢) < c(⇢) for

⇢ 2 R. We will show below that (i) V LB
0 ≥ T−1

T
if ⇢0  0; (ii) V LB

0 ≥ 1
2
if ⇢0 > 0. By (ii), ⇢ml = ⇢0+b0/V0 ≥ ⇢0+2b0 > − 1

2

if 0 < ⇢0  1 because b(0) = − 1
T
, b(1) = − 1

2
, and b(⇢) is concave on [0, 1]. Further, ⇢ml > 0 if ⇢0 > 1 because, then,

b0
V0

> 1
2b0

> −1. Hence, R is empty if ⇢0 > 0. Now suppose ⇢0  0. Define ⇢w by S(⇢w) = b(⇢v), ⇢w 2 [⇢ml, ⇢]; and ⇢
0
w by

S(⇢0w) = b(0) = − 1
T
, ⇢0w 2 [⇢ml, ⇢]. Then ⇢w − ⇢ml < ⇢0w − ⇢ml =

1
2
(T −

p
T 2 − 4⇣20 ). By (i), ⇣20 =

V0−b2
0

V 2

0

 1
V0

 T
T−1

 5
4
.

Since H(⇢) increases on [⇢ml, ⇢] and H(⇢0w) decreases in T and increases in ⇣20 ,

H(⇢w) = − ⇣20(
⇣20 + (⇢w − ⇢ml)

2)2 + 2S2(⇢w) < − ⇣20(
⇣20 + (⇢0w − ⇢ml)

2)2 +
2

T 2

 − 5/4
⇣

5
4
+ 1

4

(
5−

p
20
)2⌘2 +

2

25
< −1

2
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and so, H(⇢) < − 1
2
for ⇢ 2 [⇢ml, ⇢w]. On the other hand, T (1− ⇢u) = 1− ⇢Tu implies 1−ρu

ρu
=

1−ρT−1

u

T−1
and, therefore,

c(⇢u) = − −T + T⇢T−1
u

T (T − 1) (1− ⇢u)
2 =

1

⇢u (1− ⇢u)
> −1

2
.

So, c(⇢) > − 1
2
for ⇢ 2 [⇢u, ⇢v] and H(⇢) < c(⇢) for ⇢ 2 R. We conclude that b(⇢) " S(⇢) on [⇢, ⇢] at most once, provided

(i) and (ii) hold, which we now show. Write V LB
0 = 1

T (T−1)

P2T−4
j=0 vj⇢

j
0, where

v2j = T (T − j − 1)

−
{
(2j + 1) (T − j − 1)− j(j + 1) + (2j − T + 1) (2j − T + 2) 1{2j≥T}

 
,

v2j+1 = −
{
(2j + 2) (T − j − 2)− j(j + 1) + (2j − T + 2) (2j − T + 3) 1{2j+1≥T}

 
,

using (
Pj

k=0 ⇢
k)2 =

Pj
k=0 (k + 1) ⇢k +

Pj
k=1 (j − k + 1) ⇢j+k. Clearly, v2j+1 < 0. Further, v2j > 0 because

v2j =

⇢
(T − 2j − 1) (T − j − 1) + j(j + 1) if 0  2j < T,
(T − j − 1) (j + 1) if T  2j  2T − 4.

Hence, V LB
0 decreases in ⇢0 on R− and (i) follows because V LB

0 = T−1
T

when ⇢0 = 0. When 0 < ⇢0 < 1, a sufficient

condition for V LB
0 ≥ 1

2
is that dk ≥ 0 for 0  k  T − 2, where dk =

Pk
j=0 (v2j + v2j+1)− T (T−1)

2
. We have

v2j + v2j+1 =

⇢
(T − 2j − 1) (T − j − 1)− (T − 2j − 2) (2j + 2) if 2j + 1 < T,
(2j − T + 3) (T − j − 1) if 2j + 1 ≥ T.

Only when 2j + 1 < T is it possible that v2j + v2j+1 < 0, so it suffices to show that dk ≥ 0 for 2k + 1 < T . We obtain,
for 2k + 1 < T ,

dk =
1

2
(k + 1)

(
2T 2 − 5Tk + 4k2 − 8T + 13k + 10

)
− T (T − 1)

2
.

Define fk by dk = 1
2
(k + 1) fk. Then, f0 = (T − 2) (T − 5) ≥ 0, f1 = 1

2

(
3T 2 − 25T + 54

)
> 0, and, for k ≥ 2,

fk >
5

3
T 2 − 5Tk + 4k2 − 8T + 13k + 10

=
1

3
((T − 2k − 2) (5T − 6k − 16) + k (T − 5) + 2 (T − 1)) > 0.

Hence, V LB
0 ≥ 1

2
when 0 < ⇢0 < 1. When ⇢0 ≥ 1, it also holds that V LB

0 ≥ 1
2
because then b0 < b(1) = − 1

2
and

V LB
0 ≥ 2b20. Therefore, (ii) holds.

Proof of Lemma 4. Use yi,−1 = S1(⇠0i + F0"i) to write Zi = (yi,−1, Xi) = (S1F0"i, 0) + Ξi, where Ξi = (S1⇠0i, Xi)
is independent of "i. Proceeding as above, we have

V0 =
plimN!1

1
N

PN
i=1 Z

>
i MZi

σ2
0 (T − 1)

=

✓
V LB
0 0
0 0

◆
+ VΞ,

where

VΞ =

✓
Vξξ VξX

VXξ VXX

◆
=

plimN!1
1
N

PN
i=1 Ξ

>
i MΞi

σ2
0 (T − 1)

is positive semi-definite and VXX is positive definite by assumption. Therefore, Vξξ − VξXV −1
XXVXξ ≥ 0 and (V ρρ

0 )−1 =
V LB
0 + Vξξ − VξXV −1

XXVXξ ≥ V LB
0 .

Appendix B: Tables
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Table 1. Simulation results for the first-order autoregression, N = 100 observations.

bias std cia.95 cib.95

 T ⇢0 b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh
0 2 .50 −.143 — −.747 −.996 .266 — .151 .106 .879 .919 .003 .002 .928 .979 .011 .000
1 2 .50 .027 — −.375 −.750 .268 — .140 .093 .942 .934 .352 .000 .948 .967 .321 .000
2 2 .50 .026 — .112 −.425 .168 — .112 .075 .969 .943 1.000 .001 .949 .943 .825 .005
0 4 .50 .006 −.043 −.296 −.441 .142 .148 .066 .055 .955 .921 .009 .000 .945 .913 .025 .000
1 4 .50 .014 −.055 −.141 −.328 .124 .166 .067 .055 .964 .925 .474 .000 .942 .906 .493 .001
2 4 .50 .003 −.015 .073 −.184 .064 .084 .056 .046 .968 .937 .941 .021 .939 .932 .775 .045
0 6 .50 .007 −.033 −.147 −.246 .090 .081 .051 .043 .968 .923 .155 .000 .944 .887 .231 .001
1 6 .50 .003 −.047 −.072 −.196 .067 .098 .049 .041 .971 .911 .666 .003 .945 .864 .698 .009
2 6 .50 −.001 −.022 .043 −.123 .045 .064 .042 .035 .958 .924 .873 .064 .937 .905 .834 .101
0 8 .50 .001 −.027 −.085 −.163 .056 .058 .043 .036 .965 .921 .427 .005 .941 .864 .516 .011
1 8 .50 .000 −.040 −.044 −.137 .048 .069 .040 .034 .960 .908 .773 .022 .944 .835 .809 .037
2 8 .50 .000 −.022 .029 −.092 .036 .052 .034 .030 .954 .927 .870 .128 .946 .889 .877 .171
0 16 .50 −.001 −.020 −.022 −.064 .028 .030 .026 .024 .948 .902 .841 .238 .944 .794 .865 .274
1 16 .50 −.001 −.027 −.012 −.059 .026 .035 .025 .023 .947 .880 .904 .278 .946 .760 .918 .321
2 16 .50 −.001 −.022 .009 −.047 .023 .032 .023 .021 .947 .890 .915 .387 .946 .792 .936 .426
0 24 .50 −.001 −.018 −.010 −.039 .021 .022 .020 .019 .944 .868 .902 .461 .944 .728 .916 .496
1 24 .50 −.001 −.023 −.006 −.037 .020 .025 .020 .019 .943 .850 .925 .492 .941 .691 .931 .527
2 24 .50 .000 −.020 .004 −.031 .019 .024 .018 .017 .946 .865 .928 .555 .943 .724 .939 .582

0 2 .95 −.143 — −.525 −1.000 .265 — .150 .100 .879 .922 .287 .000 .927 .980 .128 .000
1 2 .95 −.120 — −.490 −.977 .266 — .152 .101 .893 .921 .369 .000 .934 .978 .170 .000
2 2 .95 −.059 — −.385 −.907 .265 — .152 .101 .918 .930 .638 .000 .947 .975 .346 .000
0 4 .95 −.086 −.676 −.276 −.537 .124 .456 .071 .057 .889 .673 .074 .000 .908 .615 .059 .000
1 4 .95 −.061 −.696 −.239 −.509 .124 .472 .073 .059 .910 .689 .185 .000 .932 .627 .132 .000
2 4 .95 −.015 −.386 −.151 −.443 .123 .418 .070 .055 .939 .812 .636 .000 .948 .755 .450 .000
0 6 .95 −.059 −.468 −.189 −.382 .084 .263 .051 .042 .889 .543 .046 .000 .899 .306 .056 .000
1 6 .95 −.038 −.511 −.157 −.357 .083 .272 .049 .041 .911 .534 .151 .000 .936 .296 .140 .000
2 6 .95 −.003 −.286 −.080 −.297 .082 .233 .046 .038 .944 .749 .718 .000 .949 .520 .604 .000
0 8 .95 −.044 −.346 −.146 −.301 .063 .174 .038 .032 .889 .433 .032 .000 .908 .151 .048 .000
1 8 .95 −.025 −.399 −.115 −.276 .063 .192 .038 .032 .915 .396 .159 .000 .944 .145 .171 .000
2 8 .95 .002 −.226 −.046 −.222 .063 .159 .035 .029 .946 .660 .807 .000 .940 .356 .730 .000
0 16 .95 −.016 −.148 −.076 −.167 .034 .061 .020 .018 .901 .237 .024 .000 .941 .020 .058 .000
1 16 .95 −.005 −.197 −.052 −.147 .034 .076 .020 .018 .929 .145 .217 .000 .942 .015 .272 .000
2 16 .95 .004 −.125 −.006 −.107 .030 .063 .017 .015 .959 .350 .947 .000 .942 .085 .923 .000
0 24 .95 −.006 −.090 −.050 −.115 .024 .033 .015 .013 .920 .157 .038 .000 .942 .006 .084 .000
1 24 .95 .000 −.126 −.032 −.099 .024 .042 .014 .013 .943 .059 .301 .000 .942 .003 .378 .000
2 24 .95 .001 −.091 .001 −.070 .018 .038 .011 .011 .962 .164 .955 .000 .946 .020 .947 .000

‘—’ indicates non-existence of the moment.
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Table 2. Simulation results for the second-order autoregression, N = 100 observations.

bias std cia.95 cib.95

 T ⇢0 b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh
.3 2 .60 −.147 — −.999 −.999 .264 — .102 .102 .885 .919 .000 .000 .930 .980 .000 .000

.20 −.118 — −.881 −.881 .714 — .515 .515 .955 .942 .577 .577 .934 .984 .634 .634
1 2 .60 −.147 — −1.000 −1.000 .266 — .103 .103 .873 .923 .000 .000 .925 .980 .000 .000

.20 −.128 — −.885 −.885 .315 — .182 .182 .909 .927 .002 .002 .922 .979 .011 .011
2 2 .60 −.144 — −1.001 −1.001 .267 — .100 .100 .878 .926 .000 .000 .924 .982 .000 .000

.20 −.126 — −.888 −.888 .261 — .120 .120 .890 .928 .000 .000 .917 .981 .000 .000
.3 4 .60 −.069 −.263 −.339 −.405 .123 .274 .070 .068 .902 .787 .005 .000 .919 .710 .007 .001

.20 −.031 −.116 −.454 −.424 .099 .134 .079 .076 .940 .811 .000 .000 .932 .769 .000 .001
1 4 .60 .001 −.040 −.250 −.312 .122 .120 .065 .062 .952 .926 .045 .002 .952 .906 .056 .005

.20 −.001 −.020 −.386 −.362 .093 .090 .072 .068 .963 .937 .000 .000 .948 .927 .002 .003
2 4 .60 .008 −.011 −.132 −.177 .081 .064 .050 .048 .969 .937 .297 .058 .944 .933 .316 .087

.20 .004 −.006 −.256 −.241 .072 .064 .059 .056 .965 .942 .005 .007 .941 .938 .020 .024
.3 6 .60 −.031 −.148 −.196 −.237 .082 .137 .054 .053 .926 .777 .071 .007 .931 .591 .087 .019

.20 −.016 −.072 −.336 −.322 .069 .077 .053 .052 .949 .833 .000 .000 .945 .713 .001 .001
1 6 .60 .009 −.039 −.131 −.167 .082 .073 .051 .050 .962 .910 .314 .096 .948 .850 .326 .128

.20 .005 −.017 −.269 −.256 .066 .058 .051 .049 .964 .930 .000 .001 .944 .915 .002 .003
2 6 .60 .002 −.011 −.052 −.078 .048 .046 .041 .040 .959 .933 .768 .522 .946 .922 .765 .555

.20 .000 −.005 −.169 −.158 .046 .044 .042 .041 .952 .943 .025 .036 .942 .943 .051 .063
.3 8 .60 −.015 −.098 −.136 −.162 .064 .088 .046 .045 .943 .782 .180 .065 .944 .555 .217 .093

.20 −.006 −.050 −.264 −.256 .056 .057 .043 .042 .958 .846 .000 .000 .945 .712 .000 .000
1 8 .60 .008 −.032 −.086 −.108 .063 .054 .042 .042 .964 .905 .507 .288 .950 .835 .532 .325

.20 .004 −.014 −.208 −.200 .052 .045 .040 .039 .970 .936 .001 .001 .949 .911 .005 .006
2 8 .60 .001 −.011 −.028 −.044 .037 .037 .034 .034 .958 .933 .877 .757 .945 .919 .873 .771

.20 .000 −.003 −.129 −.121 .036 .036 .034 .034 .950 .949 .046 .062 .952 .948 .085 .104
.3 16 .60 .003 −.041 −.052 −.059 .037 .036 .029 .029 .965 .794 .588 .494 .945 .574 .619 .538

.20 .001 −.025 −.140 −.138 .035 .031 .027 .026 .963 .862 .001 .001 .944 .744 .003 .003
1 16 .60 .000 −.024 −.033 −.039 .031 .031 .028 .028 .957 .869 .773 .703 .940 .753 .784 .723

.20 .000 −.011 −.111 −.108 .029 .028 .026 .026 .948 .927 .013 .014 .940 .890 .026 .030
2 16 .60 .000 −.010 −.007 −.012 .025 .026 .025 .025 .947 .925 .944 .921 .945 .887 .937 .921

.20 −.001 −.003 −.071 −.068 .024 .024 .024 .024 .944 .940 .160 .184 .946 .939 .215 .240
.3 24 .60 .000 −.028 −.029 −.032 .024 .025 .023 .023 .948 .793 .758 .711 .947 .603 .776 .737

.20 .000 −.018 −.091 −.090 .024 .023 .021 .021 .949 .876 .010 .012 .942 .758 .026 .028
1 24 .60 .000 −.020 −.018 −.021 .023 .023 .022 .022 .946 .848 .855 .828 .946 .724 .864 .837

.20 −.001 −.011 −.076 −.075 .022 .022 .021 .021 .949 .914 .043 .047 .947 .866 .078 .085
2 24 .60 .000 −.011 −.004 −.007 .020 .020 .020 .020 .951 .913 .948 .940 .952 .858 .946 .941

.20 .000 −.003 −.051 −.050 .019 .019 .019 .019 .947 .945 .243 .265 .948 .941 .315 .334

‘—’ indicates non-existence of the moment.
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Table 3. Simulation results for the second-order autoregression, N = 100 observations (continued).

bias std cia.95 cib.95

 T ⇢0 b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh b⇢al b⇢ab b⇢hk b⇢bh
.3 2 1 −.146 — −1.000 −1.000 .267 — .102 .102 .875 .923 .000 .000 .924 .977 .000 .000

−.2 −.082 — −.523 −.523 .607 — .444 .444 .966 .962 .772 .772 .943 .990 .806 .806
1 2 1 −.147 — −1.002 −1.002 .272 — .103 .103 .875 .916 .000 .000 .927 .979 .000 .000

−.2 −.077 — −.520 −.520 .233 — .150 .150 .921 .922 .065 .065 .927 .976 .128 .128
2 2 1 −.148 — −1.000 −1.000 .266 — .102 .102 .883 .924 .000 .000 .927 .980 .000 .000

−.2 −.077 — −.518 −.518 .166 — .088 .088 .905 .923 .000 .000 .918 .978 .001 .001
.3 4 1 −.068 −.224 −.325 −.393 .117 .252 .068 .066 .906 .807 .004 .000 .908 .723 .007 .001

−.2 .006 −.018 −.318 −.264 .088 .084 .078 .075 .968 .941 .017 .059 .945 .943 .046 .112
1 4 1 .010 −.031 −.210 −.271 .114 .098 .059 .058 .955 .927 .084 .003 .948 .909 .085 .008

−.2 .009 −.003 −.301 −.250 .081 .078 .074 .071 .969 .940 .015 .055 .947 .948 .041 .099
2 4 1 .002 −.009 −.092 −.132 .060 .051 .043 .042 .970 .939 .454 .126 .947 .936 .442 .152

−.2 .002 −.002 −.220 −.184 .061 .061 .060 .058 .949 .939 .036 .102 .940 .943 .086 .169
.3 6 1 −.030 −.112 −.163 −.208 .078 .113 .053 .052 .926 .817 .160 .024 .927 .644 .169 .037

−.2 .002 −.017 −.263 −.230 .062 .057 .053 .052 .965 .929 .002 .009 .946 .914 .009 .022
1 6 1 .007 −.026 −.085 −.124 .072 .061 .047 .046 .964 .923 .604 .260 .947 .878 .582 .273

−.2 .004 −.001 −.204 −.174 .052 .051 .047 .046 .962 .949 .014 .045 .949 .952 .038 .083
2 6 1 .000 −.009 −.020 −.046 .039 .039 .037 .036 .950 .934 .917 .757 .940 .926 .906 .763

−.2 .002 .002 −.122 −.101 .041 .042 .040 .039 .945 .941 .134 .271 .949 .945 .207 .354
.3 8 1 −.008 −.064 −.091 −.121 .059 .071 .045 .044 .952 .850 .489 .229 .946 .675 .488 .254

−.2 .001 −.016 −.217 −.196 .051 .046 .041 .041 .964 .926 .001 .004 .938 .900 .004 .010
1 8 1 .004 −.022 −.044 −.070 .051 .047 .040 .039 .970 .918 .818 .600 .949 .866 .798 .599

−.2 .000 −.002 −.159 −.140 .041 .041 .038 .037 .953 .945 .016 .042 .947 .946 .042 .084
2 8 1 −.001 −.009 −.005 −.023 .033 .034 .032 .032 .947 .934 .948 .890 .950 .920 .940 .877

−.2 .001 .002 −.091 −.076 .034 .035 .033 .032 .941 .943 .212 .346 .946 .944 .284 .426
.3 16 1 .000 −.027 −.019 −.027 .030 .032 .028 .028 .955 .859 .902 .844 .948 .727 .894 .834

−.2 .001 −.008 −.110 −.105 .029 .028 .025 .025 .954 .938 .009 .016 .943 .917 .026 .039
1 16 1 −.002 −.019 −.009 −.017 .027 .029 .026 .026 .948 .895 .939 .905 .944 .807 .929 .895

−.2 .000 −.002 −.086 −.081 .026 .026 .024 .024 .951 .948 .068 .103 .947 .944 .116 .157
2 16 1 .000 −.009 .004 −.002 .024 .025 .024 .024 .944 .926 .944 .949 .948 .896 .946 .947

−.2 .000 .001 −.054 −.049 .023 .023 .022 .022 .942 .943 .327 .410 .947 .946 .405 .483
.3 24 1 −.001 −.019 −.005 −.009 .022 .024 .022 .022 .945 .869 .939 .925 .942 .764 .936 .920

−.2 .000 −.007 −.072 −.070 .022 .022 .020 .020 .948 .933 .055 .073 .949 .911 .104 .123
1 24 1 −.001 −.015 −.002 −.005 .021 .022 .021 .021 .948 .897 .952 .946 .948 .816 .946 .942

−.2 .000 −.004 −.060 −.058 .021 .021 .020 .020 .949 .944 .146 .182 .951 .938 .209 .243
2 24 1 .000 −.009 .004 .001 .019 .020 .019 .019 .947 .918 .946 .950 .947 .877 .940 .945

−.2 .000 .000 −.041 −.039 .018 .019 .018 .018 .948 .948 .395 .443 .949 .951 .474 .519

‘—’ indicates non-existence of the moment.
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Table 4. Simulation results for the first-order autoregression with a covariate, N = 100 observtions.

bias std cia.95 cib.95

 T ✓0 b✓al b✓ab b✓hk b✓bh b✓al b✓ab b✓hk b✓bh b✓al b✓ab b✓hk b✓bh b✓al b✓ab b✓hk b✓bh
0 2 .50 −.112 −.133 −.961 −.961 .268 — .103 .103 .890 .863 .000 .000 .935 .942 .000 .000

.50 −.032 −.039 −.242 −.242 .230 — .166 .166 .958 .926 .663 .663 .935 .958 .714 .714
1 2 .50 .035 −.001 −.743 −.743 .268 — .096 .096 .945 .921 .000 .000 .945 .952 .000 .000

.50 .005 .002 −.075 −.075 .232 — .178 .178 .972 .953 .916 .916 .948 .954 .928 .928
2 2 .50 .022 .000 −.422 −.422 .167 — .076 .076 .967 .941 .001 .001 .945 .950 .004 .004

.50 −.002 −.001 .019 .019 .233 — .202 .202 .943 .940 .938 .938 .944 .944 .942 .941
0 4 .50 .015 −.097 −.361 −.413 .141 .120 .059 .056 .959 .854 .000 .000 .946 .737 .001 .000

.50 .006 −.010 −.031 −.048 .124 .120 .127 .121 .964 .944 .906 .909 .949 .949 .943 .936
1 4 .50 .012 −.064 −.260 −.310 .116 .102 .056 .054 .968 .882 .006 .000 .947 .811 .017 .001

.50 .001 .000 .018 .004 .124 .122 .130 .124 .948 .942 .911 .926 .945 .946 .938 .941
2 4 .50 .001 −.023 −.137 −.175 .060 .061 .046 .044 .966 .927 .161 .027 .949 .897 .223 .054

.50 −.002 .000 .029 .023 .123 .123 .129 .124 .940 .941 .914 .929 .944 .944 .941 .943
0 6 .50 .004 −.067 −.192 −.230 .082 .071 .042 .042 .969 .831 .007 .000 .945 .635 .014 .001

.50 .001 −.004 .000 −.010 .092 .091 .096 .094 .949 .945 .927 .933 .947 .945 .946 .944
1 6 .50 .000 −.054 −.150 −.184 .062 .065 .041 .040 .968 .856 .047 .005 .943 .702 .071 .014

.50 .001 .002 .018 .011 .092 .092 .096 .094 .943 .942 .923 .932 .947 .948 .943 .944
2 6 .50 .000 −.025 −.090 −.114 .042 .044 .034 .034 .958 .906 .259 .080 .943 .830 .309 .123

.50 .000 .003 .020 .017 .091 .091 .095 .093 .945 .945 .929 .935 .944 .945 .942 .943
0 8 .50 −.001 −.055 −.127 −.152 .052 .052 .035 .035 .966 .812 .054 .008 .945 .573 .074 .020

.50 .001 −.001 .006 .001 .076 .076 .080 .079 .948 .948 .936 .941 .947 .947 .947 .947
1 8 .50 −.001 −.048 −.105 −.127 .045 .049 .034 .034 .955 .829 .128 .034 .938 .631 .156 .058

.50 .000 .002 .013 .009 .077 .077 .080 .079 .942 .942 .929 .935 .948 .946 .941 .944
2 8 .50 −.001 −.027 −.069 −.086 .035 .037 .029 .029 .948 .877 .334 .158 .942 .763 .374 .202

.50 .000 .003 .014 .013 .077 .076 .079 .078 .945 .946 .934 .937 .946 .946 .943 .943
0 16 .50 −.001 −.038 −.052 −.060 .027 .028 .023 .023 .950 .717 .387 .275 .948 .411 .418 .310

.50 .000 .002 .005 .004 .051 .051 .052 .052 .948 .947 .944 .945 .947 .946 .945 .945
1 16 .50 −.001 −.036 −.048 −.055 .025 .027 .022 .022 .952 .732 .435 .312 .949 .441 .463 .352

.50 .000 .003 .007 .006 .051 .051 .052 .052 .944 .944 .939 .940 .947 .948 .947 .947
2 16 .50 −.001 −.027 −.038 −.044 .022 .024 .020 .020 .943 .787 .532 .421 .939 .548 .559 .461

.50 −.001 .003 .006 .006 .051 .051 .052 .052 .945 .946 .944 .944 .950 .950 .948 .948
0 24 .50 .000 −.033 −.033 −.036 .020 .020 .018 .018 .946 .635 .570 .497 .946 .315 .599 .531

.50 .001 .003 .004 .004 .041 .041 .041 .041 .943 .943 .941 .942 .945 .944 .945 .945
1 24 .50 −.001 −.033 −.031 −.034 .019 .020 .018 .018 .945 .634 .586 .516 .944 .330 .609 .546

.50 .000 .003 .004 .004 .041 .042 .042 .042 .945 .944 .943 .943 .944 .943 .943 .943
2 24 .50 .000 −.027 −.026 −.029 .018 .018 .016 .016 .947 .692 .647 .578 .948 .407 .665 .606

.50 .000 .004 .005 .005 .041 .041 .042 .042 .941 .942 .941 .941 .943 .942 .942 .942

‘—’ indicates non-existence of the moment.
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Table 5. Simulation results for the first-order autoregression with a covariate, N = 100 observations (continued).

bias std cia.95 cib.95

 T ✓0 b✓al b✓ab b✓hk b✓bh b✓al b✓ab b✓hk b✓bh b✓al b✓ab b✓hk b✓bh b✓al b✓ab b✓hk b✓bh
0 2 .95 −.144 −.942 −1.000 −1.000 .266 — .102 .102 .879 .804 .000 .000 .929 .919 .000 .000

.05 −.002 −.029 −.026 −.026 .215 — .160 .160 .975 .976 .932 .932 .946 .988 .941 .941
1 2 .95 −.122 −.917 −.977 −.977 .267 — .102 .102 .890 .820 .000 .000 .936 .927 .000 .000

.05 −.001 .008 .013 .013 .215 — .163 .163 .977 .979 .938 .938 .947 .988 .943 .943
2 2 .95 −.062 −.382 −.908 −.908 .268 — .100 .100 .915 .842 .000 .000 .946 .936 .000 .000

.05 .002 .014 .045 .045 .224 — .168 .168 .973 .967 .926 .926 .943 .983 .933 .934
0 4 .95 −.086 −.641 −.487 −.537 .124 .253 .060 .058 .890 .270 .000 .000 .909 .125 .000 .000

.05 −.002 −.015 −.013 −.014 .117 .108 .116 .110 .977 .951 .918 .930 .950 .955 .948 .948
1 4 .95 −.064 −.585 −.461 −.510 .126 .256 .060 .059 .903 .327 .000 .000 .932 .160 .000 .000

.05 .000 .010 .015 .013 .119 .110 .119 .114 .974 .946 .911 .923 .950 .955 .940 .943
2 4 .95 −.018 −.303 −.398 −.445 .124 .198 .057 .056 .933 .593 .000 .000 .945 .394 .000 .000

.05 .002 .020 .039 .037 .123 .113 .120 .115 .971 .941 .898 .912 .949 .947 .931 .932
0 6 .95 −.059 −.452 −.352 −.382 .085 .146 .042 .042 .885 .099 .000 .000 .898 .013 .000 .000

.05 −.002 −.010 −.008 −.009 .091 .087 .091 .089 .971 .947 .924 .931 .946 .949 .945 .945
1 6 .95 −.038 −.407 −.328 −.357 .083 .149 .041 .041 .914 .147 .000 .000 .938 .024 .000 .000

.05 .000 .008 .010 .009 .091 .086 .091 .089 .973 .943 .925 .932 .947 .946 .943 .942
2 6 .95 −.004 −.202 −.272 −.298 .083 .104 .038 .038 .945 .440 .000 .000 .948 .149 .000 .000

.05 −.002 .012 .022 .022 .091 .086 .091 .089 .968 .947 .924 .929 .948 .947 .940 .940
0 8 .95 −.044 −.348 −.283 −.301 .064 .099 .032 .033 .888 .033 .000 .000 .902 .002 .000 .000

.05 .000 −.006 −.005 −.005 .075 .073 .076 .075 .973 .944 .929 .933 .949 .947 .945 .945
1 8 .95 −.025 −.309 −.259 −.277 .063 .100 .032 .032 .912 .066 .000 .000 .942 .004 .000 .000

.05 .000 .007 .008 .008 .075 .073 .075 .074 .972 .947 0.93 .937 .950 .951 .948 .948
2 8 .95 .003 −.148 −.207 −.222 .063 .066 .029 .029 .948 .340 .000 .000 .944 .066 .000 .000

.05 .001 .012 .019 .019 .077 .074 .076 .076 .964 .947 .932 .936 .949 .947 .941 .942
0 16 .95 −.016 −.175 −.162 −.166 .034 .039 .018 .018 .904 .001 .000 .000 .936 .000 .000 .000

.05 .000 −.003 −.003 −.003 .051 .051 .051 .051 .970 .943 .939 .941 .946 .945 .946 .945
1 16 .95 −.004 −.154 −.142 −.146 .033 .038 .018 .018 .945 .004 .000 .000 .945 .000 .000 .000

.05 .000 .004 .004 .004 .051 .051 .051 .051 .966 .944 .941 .941 .948 .945 .943 .944
2 16 .95 .003 −.076 −.104 −.107 .030 .025 .015 .015 .959 .095 .000 .000 .945 .002 .000 .000

.05 .000 .005 .008 .008 .051 .050 .051 .051 .952 .946 .941 .942 .948 .947 .946 .946
0 24 .95 −.006 −.116 −.113 −.115 .024 .023 .013 .013 .917 .000 .000 .000 .942 .000 .000 .000

.05 .000 −.002 −.002 −.002 .041 .041 .041 .041 .969 .944 .943 .943 .946 .947 .948 .947
1 24 .95 .000 −.102 −.097 −.099 .024 .022 .013 .013 .942 .000 .000 .000 .940 .000 .000 .000

.05 .000 .003 .003 .003 .041 .041 .041 .041 .960 .944 .940 .940 .945 .942 .941 .941
2 24 .95 .001 −.055 −.068 −.069 .018 .015 .011 .011 .962 .024 .000 .000 .943 .000 .000 .000

.05 .000 .004 .005 .005 .041 .041 .041 .041 .944 .942 .940 .940 .945 .943 .944 .943

‘—’ indicates non-existence of the moment.



Likelihood inference with fixed effects 27

References

Ahn, S. C. and G. M. Thomas (2006). Likelihood based inference for dynamic panel data models. Unpublished manuscript.

Alvarez, J. and M. Arellano (2003). The time series and cross-section asymptotics of dynamic panel data estimators.
Econometrica, 71:1121–1159.

Arellano, M. (2003). Discrete choices with panel data. Investigaciones Económicas, 27:423–458.
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