# Likelihood inference in an Autoregression with fixed effects 

Geert Dhaene, Koen Jochmans

## To cite this version:

Geert Dhaene, Koen Jochmans. Likelihood inference in an Autoregression with fixed effects. 2013. hal-01070434

HAL Id: hal-01070434<br>https://sciencespo.hal.science/hal-01070434

Preprint submitted on 1 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Department of Economics

Discussion paper 2013-07

## Likelihood inference in an

## autoregression with fixed effects

Geert Dhaene
Koen Jochmans

# LIKELIHOOD INFERENCE IN AN AUTOREGRESSION WITH FIXED EFFECTS 

GEERT DHAENE ${ }^{1}$ and KOEN JOCHMANS ${ }^{2 *}$<br>${ }^{1}$ Department of Economics, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium.<br>${ }^{2}$ Department of Economics, Sciences Po, 28 rue des Saint-Pères, 75007 Paris, France.

We calculate the bias of the profile score for the regression coefficients in a multistratum autoregressive model with stratum-specific intercepts. The bias is free of incidental parameters. Centering the profile score delivers an unbiased estimating equation and, upon integration, an adjusted profile likelihood. A variety of other approaches to constructing modified profile likelihoods are shown to yield equivalent results. However, the global maximizer of the adjusted likelihood lies at infinity for any sample size, and the adjusted profile score has multiple zeros. We argue that the parameters are local maximizers inside or on an ellipsoid centered at the maximum likelihood estimator.

Keywords: adjusted likelihood, autoregression, incidental parameters, local maximizer, recentered estimating equation.

## 1. Introduction

In the presence of nuisance parameters, inference based on the profile likelihood can be highly misleading. In an $N \times T$ data array setting with stratum nuisance parameters, the maximum likelihood estimator is often inconsistent as the number of strata, $N$, tends to infinity. This is the incidental parameter problem (Neyman and Scott, 1948). It arises because profiling out the nuisance parameters from the likelihood introduces a bias into the (profile) score function. One possible solution is to calculate this bias and to subtract it from the profile score, as suggested by Neyman and Scott (1948, Section 5) and McCullagh and Tibshirani (1990). When the bias is free of incidental parameters this yields a fully recentered score function which, in principle, paves the way for consistent estimation under Neyman-Scott asymptotics (Godambe and Thompson, 1974). This is the case in the classic many-normal-means example, but little is known about this possibility in other situations.

In this paper we consider a time series extension of Neyman and Scott's (1948) classic example. The problem is to estimate a $p$ th order autoregressive model, possibly augmented with covariates, from data on $N$ short time series of length $T$. The model has stratum-specific intercepts (the fixed effects). The distribution of the initial observations is left unrestricted and the $p \times 1$ vector of autoregressive parameters, $\rho$, may lie outside the stationary region. The bias of the profile score is found to depend only on $\rho$ and $T$. Hence, adjusting the profile score by subtracting its bias gives a fixed $T$ unbiased estimating equation and, upon integration, an adjusted profile likelihood in the sense of Pace and Salvan (2006).

However, contrary to what standard maximum likelihood theory would suggest, the parameters of interest are local maximizers of the adjusted likelihood. The global maximum is reached at infinity. This phenomenon is not a small sample problem or an artifact of an unbounded parameter space. The adjusted likelihood has its global maximum at infinity for any sample size, and may already be re-increasing in the stationary parameter region and reach its maximum at the boundary. Consequently, consistent estimation is not achieved by global maximization of the adjusted likelihood, and solving the adjusted score equation has to be supplemented by a

[^0]solution selection rule, which we derive. The adjusted likelihood is re-increasing because the initial observations are unrestricted. This difficulty does not arise when stationarity of the initial observations is imposed, as in Cruddas, Reid, and Cox (1989). Further, when the data carry only little information, in a sense that we specify, the Hessian of the adjusted likelihood is zero, implying first-order underidentification (Sargan, 1983) and nonstandard asymptotic properties of the resulting point estimates (Rotnitzky, Cox, Bottai, and Robins, 2000).

These features are not unique to our approach of modifying the profile likelihood. We show that several other routes to constructing modified likelihoods yield the same results. When $p=1$, the adjusted profile likelihood coincides with Lancaster's (2002) marginal posterior, which, in the absence of covariates, is a Bayesian version of a Cox and Reid (1987) approximate conditional likelihood (see Sweeting, 1987). For general $p$, it is an integrated likelihood in the sense of Kalbfleisch and Sprott (1970) and Arellano and Bonhomme (2009), as well as a penalized likelihood as defined by Bester and Hansen (2009) (see DiCiccio, Martin, Stern, and Young, 1996 and Severini, 1998 for related approaches). The adjusted profile score equation, in turn, is a Woutersen (2002) integrated moment equation and a locally orthogonal Cox and Reid (1987) moment equation, and solving it is equivalent to inverting the probability limit of the least-squares estimator, as proposed by Bun and Carree (2005).

## 2. Adjusted profile likelihood

### 2.1. Model and profile likelihood

Suppose we observe a scalar variable $y$, the first $p \geq 1$ lags of $y$, and a $q$-vector of covariates $x$ (which may include lags), for $N$ strata $i$ and $T$ periods $t$. Assume that $y_{i t}$ is generated by

$$
\begin{equation*}
y_{i t}=y_{i t-}^{\top} \rho+x_{i t}^{\top} \beta+\alpha_{i}+\varepsilon_{i t}, \quad i=1, \ldots, N ; t=1, \ldots, T, \tag{2.1}
\end{equation*}
$$

where $y_{i t-}=\left(y_{i t-1}, \ldots, y_{i t-p}\right)^{\top}$ and the $\varepsilon_{i t}$ are identically distributed with mean zero and variance $\sigma^{2}$ and are independent across $i$ and $t$ and also of $x_{i^{\prime} t^{\prime}}$ for all $i^{\prime}$ and $t^{\prime}$. Let $y_{i}^{0}=\left(y_{i(1-p)}, \ldots, y_{i 0}\right)^{\top}, X_{i}=\left(x_{i 1}, \ldots, x_{i T}\right)^{\top}$, and $\varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i T}\right)^{\top}$. We place no restrictions on how $\left(y_{i}^{0}, \alpha_{i}, X_{i}\right), i=1, \ldots, N$, are generated. The unknown parameters are $\theta=\left(\rho^{\top}, \beta^{\top}\right)^{\top}, \sigma^{2}$, and $\alpha_{1}, \ldots, \alpha_{N}$. Let $\theta_{0}$ and $\sigma_{0}^{2}$ be the true values of $\theta$ and $\sigma^{2}$. Our interest lies in consistently estimating $\theta_{0}$ under large $N$ and fixed $T$ asymptotics. We do not impose the stationarity condition on $\rho_{0}$, i.e., we allow any $\rho_{0} \in \mathbb{R}^{p}$.

Let $z_{i t}=\left(y_{i t-}^{\top}, x_{i t}^{\top}\right)^{\top}, Y_{i-}=\left(y_{i 1-}, \ldots, y_{i T-}\right)^{\top}, Z_{i}=\left(Y_{i-}, X_{i}\right)$, and $y_{i}=\left(y_{i 1}, \ldots, y_{i T}\right)^{\top}$, so that $M y_{i}=$ $M Z_{i} \theta+M \varepsilon_{i}$ where $M=I_{T}-T^{-1} \iota \iota^{\top}$ and $\iota$ is a conformable vector of ones. We assume that $N^{-1} \sum_{i=1}^{N} Z_{i}^{\top} M Z_{i}$ and its probability limit as $N \rightarrow \infty$ are nonsingular. The Gaussian quasi-log-likelihood, conditional on $y_{1}^{0}, \ldots, y_{N}^{0}$ and normalized by the number of observations, is

$$
-\frac{1}{2 N T} \sum_{i=1}^{N} \sum_{t=1}^{T}\left(\log \sigma^{2}+\frac{1}{\sigma^{2}}\left(y_{i t}-z_{i t}^{\top} \theta-\alpha_{i}\right)^{2}\right)+\mathrm{c}
$$

where, here and later, c is a non-essential constant. Profiling out $\alpha_{1}, \ldots, \alpha_{N}$ and $\sigma^{2}$ gives the (normalized) profile log-likelihood for $\theta$,

$$
l(\theta)=-\frac{1}{2} \log \left(\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-Z_{i} \theta\right)^{\top} M\left(y_{i}-Z_{i} \theta\right)\right)+\mathrm{c} .
$$

The profile score, $s(\theta)=\nabla_{\theta} l(\theta)$, has elements

$$
\begin{aligned}
& s_{\rho_{j}}(\theta)=\frac{\sum_{i=1}^{N}\left(y_{i}-Z_{i} \theta\right)^{\top} M y_{i,-j}}{\sum_{i=1}^{N}\left(y_{i}-Z_{i} \theta\right)^{\top} M\left(y_{i}-Z_{i} \theta\right)}, \quad j=1, \ldots, p, \\
& s_{\beta_{j}}(\theta)=\frac{\sum_{i=1}^{N}\left(y_{i}-Z_{i} \theta\right)^{\top} M x_{i, j}}{\sum_{i=1}^{N}\left(y_{i}-Z_{i} \theta\right)^{\top} M\left(y_{i}-Z_{i} \theta\right)}, \quad j=1, \ldots, q,
\end{aligned}
$$

where $y_{i,-j}$ is the $j$ th column of $Y_{i-}$ and $x_{i, j}$ is the $j$ th column of $X_{i}$.
For the analysis below, rewrite (2.1) as

$$
D y_{i}=C y_{i}^{0}+X_{i} \beta+\iota \alpha_{i}+\varepsilon_{i}, \quad i=1, \ldots, N
$$

where $D=D(\rho)$ and $C=C(\rho)$ are the $T \times T$ and $T \times p$ matrices

$$
D=\left(\begin{array}{ccccccc}
1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-\rho_{1} & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
-\rho_{p} & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -\rho_{p} & \cdots & -\rho_{1} & 1
\end{array}\right), \quad C=\left(\begin{array}{ccccc}
\rho_{p} & \cdots & \cdots & \cdots & \rho_{1} \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & \rho_{p} \\
0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & 0
\end{array}\right) .
$$

Then

$$
\begin{equation*}
\binom{y_{i}^{0}}{y_{i}}=\xi_{i}+F \varepsilon_{i}, \quad \xi_{i}=\binom{y_{i}^{0}}{D^{-1}\left(C y_{i}^{0}+X_{i} \beta+\iota \alpha_{i}\right)}, \quad F=\binom{0}{D^{-1}} \tag{2.2}
\end{equation*}
$$

and $y_{i,-j}=S_{j}\left(\xi_{i}+F \varepsilon_{i}\right)$, where $S_{j}=\left(0_{T \times(p-j)}, I_{T}, 0_{T \times j}\right)$, a selection matrix.

### 2.2. Bias of the profile score

The profile score is asymptotically biased, i.e., $\operatorname{plim}_{N \rightarrow \infty} s\left(\theta_{0}\right) \neq 0$. Hence, the maximum likelihood estimator, solving $s(\theta)=0$, is inconsistent. (Throughout, probability limits and expectations are taken conditionally, given $\left(y_{i}^{0}, \alpha_{i}, X_{i}\right), i=1, \ldots, N$.) The profile score bias is a polynomial in $\rho_{0}$. For $k=\left(k_{1}, \ldots, k_{p}\right)^{\top} \in \mathbb{N}^{p}$, let $\rho^{k}=\prod_{j=1}^{p} \rho_{j}^{k_{j}}$. Also, let $\tau=(1, \ldots, p)^{\top}$,

$$
\begin{equation*}
\varphi_{t}=\sum_{\tau^{\top} k=t} \frac{\left(\iota^{\top} k\right)!}{k_{1}!\cdots k_{p}!} \rho^{k}, \quad t=1, \ldots, T-1 \tag{2.3}
\end{equation*}
$$

and set $\varphi_{0}=0$.

Lemma 1. The asymptotic bias of the profile score is $\operatorname{plim}_{N \rightarrow \infty} s\left(\theta_{0}\right)=b\left(\rho_{0}\right)$, where $b(\rho)=\left(b_{1}(\rho), \ldots, b_{p+q}(\rho)\right)^{\top}$ and

$$
\begin{array}{ll}
b_{j}(\rho)=-\sum_{t=0}^{T-j-1} \frac{T-j-t}{T(T-1)} \varphi_{t}, & j=1, \ldots, p, \\
b_{j}(\rho)=0, & j=p+1, \ldots, p+q
\end{array}
$$

In addition, if $\varepsilon_{i t} \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right)$, then $\mathbb{E}\left[s\left(\theta_{0}\right)\right]=b\left(\rho_{0}\right)$.

The bias of the profile score, $b\left(\rho_{0}\right)$, depends only on $\rho_{0}$ and $T$. It is independent of the initial observations, the fixed effects, and the covariates. This is in sharp contrast with the bias of the maximum likelihood estimator, which was first derived by Nickell (1981) for the first order autoregressive model under the assumption of stationarity of the initial observations. This bias depends on the initial observations, the fixed effects, and the covariate values. Note, also, that the Nickell bias concerns a probability limit as $N \rightarrow \infty$ whereas here, when the errors are normal, $\mathbb{E}\left[s\left(\theta_{0}\right)\right]=b\left(\rho_{0}\right)$ is a finite sample result holding for fixed $N$ and $T$ and may therefore be of independent interest in a time series setting.

### 2.3. Centered profile score and adjusted profile likelihood

By construction, the centered (or adjusted) profile score,

$$
s_{\mathrm{a}}(\theta)=s(\theta)-b(\rho),
$$

is asymptotically unbiased, i.e., $\operatorname{plim}_{N \rightarrow \infty} s_{\mathrm{a}}\left(\theta_{0}\right)=0$. Hence, $s_{\mathrm{a}}(\theta)=0$ is a bias-adjusted estimating equation. The question arises whether there is a corresponding adjustment to the profile likelihood. The differential equation $\nabla_{\theta} a(\rho)=b(\rho)$ has a solution indeed.

LEMMA 2. Up to an arbitrary constant of integration, the solution to $\nabla_{\theta} a(\rho)=b(\rho)$ is given by

$$
a(\rho)=\sum_{S \in \mathcal{S}} a_{S}(\rho), \quad a_{S}(\rho)=-\sum_{t=|S|}^{T-1} \frac{T-t}{T(T-1)} \sum_{k \in \mathcal{K}_{S}: \tau^{\top} k=t} \frac{\left(\iota^{\top} k-1\right)!}{k_{1}!\cdots k_{p}!} \rho_{S}^{k_{S}},
$$

where $\mathcal{S}$ is the collection of the non-empty subsets of $\{1, \ldots, p\} ;|S|$ is the sum of the elements of $S ; \mathcal{K}_{S}=\{k \in$ $\mathbb{N}^{p} \mid k_{j}>0$ if and only if $\left.j \in S\right\}$; and $\rho_{S}=\left(\rho_{j}\right)_{j \in S}$ and $k_{S}=\left(k_{j}\right)_{j \in S}$ are subvectors of $\rho$ and $k$ determined by $S$.

It follows that $s_{\mathrm{a}}(\theta)=0$ is an estimating equation associated with the function

$$
l_{\mathrm{a}}(\theta)=l(\theta)-a(\rho),
$$

which we call an adjusted profile log-likelihood. Every subvector $\rho_{S}$ of $\rho$ contributes to $l_{\mathrm{a}}(\theta)$ an adjustment term, $-a_{S}(\rho)$, which takes the form of a multivariate polynomial in $\rho_{j}, j \in S$, with positive coefficients that are independent of $p$.

## 3. Connections with the literature

Lancaster (2002) studied the first-order autoregressive model, with and without covariates, from a Bayesian perspective. With $p=1$, we have $\varphi_{t}=\rho^{t}$ and

$$
b_{1}(\rho)=-\sum_{t=1}^{T-1} \frac{T-t}{T(T-1)} \rho^{t-1}, \quad a(\rho)=-\sum_{t=1}^{T-1} \frac{T-t}{T(T-1) t} \rho^{t} .
$$

With independent uniform priors on the reparameterized effects $\eta_{i}=\alpha_{i} e^{-(T-1) a(\rho)}$ and on $\theta$ and $\log \sigma^{2}$, Lancaster's posterior for $\vartheta=\left(\theta^{\top}, \sigma^{2}\right)^{\top}$ is

$$
f(\vartheta \mid \text { data }) \propto \sigma^{-N(T-1)-2} \exp \left(-N(T-1) a(\rho)-Q^{2}(\theta) \sigma^{-2} / 2\right)
$$

where $Q^{2}(\theta)=\sum_{i=1}^{N}\left(y_{i}-Z_{i} \theta\right)^{\top} M\left(y_{i}-Z_{i} \theta\right) \propto e^{-2 l(\theta)}$. Integrating over $\sigma^{2}$ gives

$$
f(\theta \mid \text { data }) \propto e^{-N(T-1) a(\rho)}\left(Q^{2}(\theta)\right)^{-N(T-1) / 2}
$$

and, hence,

$$
\begin{equation*}
f(\theta \mid \text { data }) \propto e^{N(T-1) l_{\mathrm{a}}(\theta)} \tag{3.1}
\end{equation*}
$$

Thus, the posterior and the adjusted likelihood are equivalent. More generally, for any $p$ and $q$, independent uniform priors on $\eta_{1}, \ldots, \eta_{N}, \theta, \log \sigma^{2}$, with $\eta_{i}=\alpha_{i} e^{-(T-1) a(\rho)}$ and $a(\rho)$ as in Lemma 2 , yield a posterior $f(\theta \mid$ data $)$ that is related to $l_{\mathrm{a}}(\theta)$ as in (3.1).

Lancaster's choice of a prior on the reparameterized effects $\eta_{i}$ that is independent of $\vartheta$ is motivated by a first-order autoregression without covariates, where $\eta_{i}$ is orthogonal to $\vartheta$ and the posterior $f(\theta \mid$ data) (hence also $\left.e^{l_{\mathrm{a}}(\theta)}\right)$ has an interpretation as a Cox and Reid (1987) approximate conditional likelihood; see also Sweeting (1987). Orthogonalization to a multidimensional parameter is generally not possible (see, e.g., Severini, 2000, pp. 340-342). Here, orthogonalization is not possible when the model is augmented with covariates, as shown by Lancaster, or when the autoregressive order, $p$, is greater than one, as we show in Appendix A. From a bias correction perspective, however, orthogonality is sufficient but not necessary. In the present model, for any $p$ and $q, s_{\mathrm{a}}(\theta)=0$ is an unbiased estimating equation, and the bias calculation underlying it is immune to the non-existence of orthogonalized fixed effects.

Arellano and Bonhomme's (2009) approach shares the integration step with Lancaster (2002) but allows nonuniform priors on fixed effects or, equivalently, non-orthogonalized fixed effects. Of interest are bias-reducing priors, i.e., weighting schemes that deliver an integrated likelihood whose score equation has bias $o\left(T^{-1}\right)$ as opposed to the standard $O\left(T^{-1}\right)$. The present model (with general $p, q$ ) illustrates an interesting result of Arellano and Bonhomme that generalizes the scope of uniform integration to situations where orthogonalization is impossible. For a given prior $\pi_{i}\left(\alpha_{i} \mid \vartheta\right)$, the (normalized) log integrated likelihood is

$$
l_{\mathrm{int}}(\vartheta)=\frac{1}{N T} \sum_{i=1}^{N} \log \int \sigma^{-T / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i t}-z_{i t}^{\top} \theta-\alpha_{i}\right)^{2}\right) \pi_{i}\left(\alpha_{i} \mid \vartheta\right) \mathrm{d} \alpha_{i}+\mathrm{c}
$$

Choosing $\pi_{i}\left(\alpha_{i} \mid \vartheta\right) \propto e^{-(T-1) a(\rho)}$ yields

$$
l_{\mathrm{int}}(\vartheta)=-\frac{T-1}{2 T} \log \sigma^{2}-\frac{T-1}{T} a(\rho)-\frac{Q^{2}(\theta)}{2 N T \sigma^{2}}+\mathrm{c}
$$

Profiling out $\sigma^{2}$ gives $\sigma^{2}(\theta)=\arg \max _{\sigma^{2}} l_{\text {int }}(\vartheta)=Q^{2}(\theta) /(N(T-1))$ and

$$
l_{\mathrm{int}}(\theta)=\max _{\sigma^{2}} l_{\mathrm{int}}(\vartheta)=\frac{T-1}{T} l_{\mathrm{a}}(\theta)+\mathrm{c}
$$

so $l_{\text {int }}(\theta)$ and $l_{\mathrm{a}}(\theta)$ are equivalent. Because $a(\rho)$ does not depend on true parameter values, $\pi_{i}\left(\alpha_{i} \mid \vartheta\right) \propto e^{-(T-1) a(\rho)}$ is a data-independent bias-reducing (in fact, bias-eliminating) prior in the sense of Arellano and Bonhomme. Now, $\pi_{i}\left(\alpha_{i} \mid \vartheta\right) \propto e^{-(T-1) a(\rho)}$ is equivalent to $\pi_{i}\left(\eta_{i} \mid \vartheta\right) \propto 1$, i.e., to a uniform prior on $\eta_{i}=\alpha_{i} e^{-(T-1) a(\rho)}$, leading to the same $l_{\text {int }}(\vartheta)$. Arellano and Bonhomme (2009, Eq. (11)) give a necessary and sufficient condition for a uniform prior to be bias-reducing. With $\ell_{i}\left(\vartheta, \eta_{i}\right)=T^{-1} \sum_{t=1}^{T} \ell_{i t}\left(\vartheta, \eta_{i}\right)$ denoting $i$ 's (normalized) log-likelihood
contribution in a parametrization $\eta_{i}$, the condition is that

$$
\begin{equation*}
\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \nabla_{\eta_{i}}\left(A_{i}^{-1} B_{i}\right)=o(1) \quad \text { as } T \rightarrow \infty \tag{3.2}
\end{equation*}
$$

where $A_{i}=A_{i}\left(\vartheta, \eta_{i}\right)=-\mathbb{E}_{\vartheta, \eta_{i}} \nabla_{\eta_{i} \eta_{i}} \ell_{i}\left(\vartheta, \eta_{i}\right), B_{i}=B_{i}\left(\vartheta, \eta_{i}\right)=\mathbb{E}_{\vartheta, \eta_{i}} \nabla_{\vartheta \eta_{i}} \ell_{i}\left(\vartheta, \eta_{i}\right)$, and $\nabla_{\eta_{i}}\left(A_{i}^{-1} B_{i}\right)$ is evaluated at the true parameter values. When $\eta_{i}$ and $\vartheta$ are orthogonal, $B_{i}=0$ and (3.2) holds. However, Condition (3.2) is considerably weaker than parameter orthogonality. In the present model, when $p>1$ or $q>0$, and thus no orthogonalization is possible, it follows from our analysis and Arellano and Bonhomme (2009) that (3.2) must hold for $\eta_{i}=\alpha_{i} e^{-(T-1) a(\rho)}$. Indeed, as we show in Appendix A,

$$
\begin{equation*}
\nabla_{\eta_{i}}\left(A_{i}^{-1} B_{i}\right)=0 \tag{3.3}
\end{equation*}
$$

because $A_{i}^{-1} B_{i}$ is free of $\eta_{i}$.
Woutersen (2002) derived a likelihood-based moment condition in which parameters of interest and fixed effects are orthogonal by construction even though orthogonality in the information matrix may not be possible. With $\ell_{i}=\ell_{i}\left(\vartheta, \alpha_{i}\right)=\sum_{t=1}^{T} \ell_{i t}\left(\vartheta, \alpha_{i}\right)$ a generic log-likelihood for stratum $i$, let

$$
\begin{equation*}
g_{i}=g_{i}\left(\vartheta, \alpha_{i}\right)=\nabla_{\vartheta} \ell_{i}-\nabla_{\alpha_{i}} \ell_{i} \frac{\mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\alpha_{i} \vartheta} \ell_{i}}{\mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\alpha_{i} \alpha_{i}} \ell_{i}} \tag{3.4}
\end{equation*}
$$

Then $\mathbb{E}_{\vartheta, \alpha_{i}} g_{i}=0$ and parameter orthogonality holds in the sense that $\mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\alpha_{i}} g_{i}=0$ (under regularity conditions). Woutersen's (2002) integrated moment estimator of $\vartheta$ minimizes $g_{\mathrm{int}}^{\top} g_{\mathrm{int}}$ where $g_{\mathrm{int}}=(N T)^{-1} \sum_{i=1}^{N} g_{\mathrm{int} i}$ and

$$
g_{\mathrm{int} i}=g_{\mathrm{inti} i}(\vartheta)=\left[g_{i}-\frac{1}{2} \frac{\nabla_{\alpha_{i} \alpha_{i}} g_{i}}{\nabla_{\alpha_{i} \alpha_{i}} \ell_{i}}+\frac{1}{2} \frac{\nabla_{\alpha_{i} \alpha_{i} \alpha_{i} \ell_{i}}}{\nabla_{\alpha_{i} \alpha_{i} \ell_{i}}} \nabla_{\alpha_{i}} g_{i}\right]_{\alpha_{i}=\widehat{\alpha}_{i}(\vartheta)}
$$

with $\widehat{\alpha}_{i}(\vartheta)=\arg \max _{\alpha_{i}} \ell_{i}$. The function $g_{\text {int } i}$ is the Laplace approximation to $\int g_{i} e^{\ell_{i}} \mathrm{~d} \alpha_{i} / \int e^{\ell_{i}} \mathrm{~d} \alpha_{i}$, that is, to $g_{i}$ with $\alpha_{i}$ integrated out using likelihood weights. Arellano (2003) obtained the same $g_{\text {int } i}$ as a locally orthogonal Cox and Reid (1987) moment function. Woutersen and Voia (2004) calculated $g_{\text {int }}$ for the present model with $p=1$. For any $p$ and $q$, the integrated moment condition essentially coincides with the adjusted profile score. In Appendix A, it is shown that

$$
\begin{equation*}
g_{\mathrm{int} i}\left(\theta, \sigma^{2}\right)=\binom{\sigma^{-2} Z_{i}^{\top} M\left(y_{i}-Z_{i} \theta\right)-(T-1) b(\rho)}{\sigma^{-4}\left(y_{i}-Z_{i} \theta\right)^{\top} M\left(y_{i}-Z_{i} \theta\right) / 2-\sigma^{-2}(T-1) / 2} \tag{3.5}
\end{equation*}
$$

On profiling out $\sigma^{2}$ from the minimand $g_{\text {int }}^{\top} g_{\text {int }}$, we obtain

$$
g_{\mathrm{int}}(\theta)=\frac{T-1}{T}(s(\theta)-b(\rho))=\frac{T-1}{T} s_{\mathrm{a}}(\theta) .
$$

Thus, Woutersen's (2002) estimator of $\theta$ minimizes the norm of the adjusted profile score.
The adjusted likelihood can also be viewed as a penalized log-likelihood in the sense of Bester and Hansen (2009). With $\ell=\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{i t}, \ell_{i t}=\ell_{i t}\left(\vartheta, \alpha_{i}\right)$, again denoting a generic log-likelihood, let $\pi_{i}=\pi_{i}\left(\vartheta, \alpha_{i}\right)$ be a function satisfying

$$
\begin{align*}
& \nabla_{\alpha_{i}} \pi_{i} \xrightarrow{p}  \tag{3.6}\\
& \lim _{T \rightarrow \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \nabla_{\alpha_{i} \alpha_{i}} \ell_{i t} \sum_{t=1}^{T} \psi_{i t}\right]+\frac{1}{2} \mathbb{E}\left[\nabla_{\alpha_{i} \alpha_{i} \alpha_{i}} \ell_{i t}\right] \lim _{T \rightarrow \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \psi_{i t} \sum_{t=1}^{T} \psi_{i t}\right],  \tag{3.7}\\
& \nabla_{\vartheta} \pi_{i} \xrightarrow{p} \\
& \lim _{T \rightarrow \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \nabla_{\alpha_{i} \vartheta} \ell_{i t} \sum_{t=1}^{T} \psi_{i t}\right]+\frac{1}{2} \mathbb{E}\left[\nabla_{\alpha_{i} \alpha_{i} \vartheta} \ell_{i t}\right] \lim _{T \rightarrow \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \psi_{i t} \sum_{t=1}^{T} \psi_{i t}\right],
\end{align*}
$$

where $\psi_{i t}=-\mathbb{E}\left[\nabla_{\alpha_{i} \alpha_{i}} \ell_{i t}\right]^{-1} \nabla_{\alpha_{i}} \ell_{i t}$. Then $\ell_{\pi}=\ell-\sum_{i=1}^{n} \pi_{i}$ is a penalized log-likelihood. Bester and Hansen (2009) provide a function that satisfies (3.6)-(3.7) in a general class of fixed-effect models and show that it leads to $\ell_{\pi}$ whose first-order condition has bias $o\left(T^{-1}\right)$. In the present model, (3.6)-(3.7) can be solved exactly, i.e., for finite $T$, thus allowing a full recentering of the score. With $\ell_{i t}=-\frac{1}{2}\left[\log \sigma^{2}+\left(y_{i t}-z_{i t}^{\top} \theta-\alpha_{i}\right)^{2} / \sigma^{2}\right]+\mathrm{c}$, the relevant differential equations are

$$
\nabla_{\alpha_{i}} \pi_{i}=0, \quad \nabla_{\theta} \pi_{i}=(T-1) b(\rho), \quad \nabla_{\sigma^{2}} \pi_{i}=-\frac{1}{2 \sigma^{2}}
$$

which yields $\pi_{i}=-\frac{1}{2} \log \sigma^{2}+(T-1) a(\rho)+$ c. Therefore,

$$
\begin{equation*}
\ell_{\pi}=\ell+\frac{N}{2} \log \sigma^{2}-N(T-1) a(\rho)+\mathrm{c} \tag{3.8}
\end{equation*}
$$

and $l_{\pi}(\theta)=\max _{\alpha_{1}, \ldots, \alpha_{N}, \sigma^{2}} \ell_{\pi}=N(T-1) l_{\mathrm{a}}(\theta)+\mathrm{c}$. Thus, the (normalized) profile penalized log-likelihood and the adjusted log-likelihood coincide. Bester and Hansen (2009) derived the exact solution to (3.6)-(3.7) for the case $p=1$ and noted the equivalence between the penalized log-likelihood and Lancaster's (2002) posterior. Bester and Hansen's approach is to adjust the likelihood before profiling out the incidental parameters, while we adjust it after doing so. In the present model, the two approaches coincide.

Finally, the adjusted profile score is also related to Bun and Carree (2005). Note that $s(\theta)=\sum_{i=1}^{N} Z_{i}^{\top} M\left(y_{i}-\right.$ $\left.Z_{i} \theta\right) / Q^{2}(\theta)$ and $M y_{i}=M Z_{i} \widehat{\theta}+M \widehat{\varepsilon}_{i}$ where $\widehat{\theta}$ is the maximum likelihood estimator, with residuals $\widehat{\varepsilon}_{i}$ satisfying $\sum_{i=1}^{N} Z_{i}^{\top} M \widehat{\varepsilon}_{i}=0$. Therefore, solving $s_{\mathrm{a}}(\theta)=0$ is equivalent to solving

$$
\begin{equation*}
\widehat{\theta}-\theta=\left(\sum_{i=1}^{N} Z_{i}^{\top} M Z_{i}\right)^{-1} b(\rho) Q^{2}(\theta) \tag{3.9}
\end{equation*}
$$

When $p=1$, (3.9) corresponds to Bun and Carree's (2005) proposal for bias-correcting the maximum likelihood estimate.

## 4. Global properties of the adjusted profile likelihood

At this point it is tempting to anticipate that $\theta_{0}$ maximizes plim ${ }_{N \rightarrow \infty} l_{\mathrm{a}}(\theta)$. However, as shown below, $-a(\rho)$ dominates $\operatorname{plim}_{N \rightarrow \infty} l(\theta)$ as $\|\rho\| \rightarrow \infty$ in almost all directions and $\operatorname{plim}_{N \rightarrow \infty} l_{\mathrm{a}}(\theta)$ is unbounded from above.

Let $h(\theta)=\nabla_{\theta^{\top}} s(\theta), c(\rho)=\nabla_{\theta^{\top}} b(\rho)$, and

$$
\begin{array}{ll}
L_{\mathrm{a}}(\theta)=L(\theta)-a(\rho), & L(\theta)=\operatorname{plim}_{N \rightarrow \infty} l(\theta) \\
S_{\mathrm{a}}(\theta)=S(\theta)-b(\rho), & S(\theta)=\operatorname{plim}_{N \rightarrow \infty} s(\theta) \\
H_{\mathrm{a}}(\theta)=H(\theta)-c(\rho), & H(\theta)=\operatorname{plim}_{N \rightarrow \infty} h(\theta)
\end{array}
$$

Using $M\left(y_{i}-Z_{i} \theta\right)=-M Z_{i}\left(\theta-\theta_{0}\right)+M \varepsilon_{i}$, we have

$$
L(\theta)=-\frac{1}{2} \log \left(\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(\varepsilon_{i}^{\top} M \varepsilon_{i}-2\left(\theta-\theta_{0}\right)^{\top} Z_{i}^{\top} M \varepsilon_{i}+\left(\theta-\theta_{0}\right)^{\top} Z_{i}^{\top} M Z_{i}\left(\theta-\theta_{0}\right)\right)\right)+\mathrm{c} .
$$

Let $b_{0}=b\left(\rho_{0}\right)=S\left(\theta_{0}\right)$ and note that

$$
\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} Z_{i}^{\top} M \varepsilon_{i}=\left(\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}^{\top} M \varepsilon_{i}\right) b_{0}=\sigma_{0}^{2}(T-1) b_{0}
$$

Hence, defining $V_{0}=V\left(\theta_{0}\right)$ by

$$
\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} Z_{i}^{\top} M Z_{i}=\left(\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}^{\top} M \varepsilon_{i}\right) V_{0}=\sigma_{0}^{2}(T-1) V_{0}
$$

we can write

$$
L(\theta)=-\frac{1}{2} \log \left(1-2\left(\theta-\theta_{0}\right)^{\top} b_{0}+\left(\theta-\theta_{0}\right)^{\top} V_{0}\left(\theta-\theta_{0}\right)\right)+\mathrm{c}
$$

by absorbing the term $-\frac{1}{2} \log \left(\sigma_{0}^{2}(T-1)\right)$ into c. As $N \rightarrow \infty$, the maximum likelihood estimator of $\theta$ converges in probability to $\theta_{\mathrm{ml}}=\arg \max _{\theta} L(\theta)=\theta_{0}+V_{0}^{-1} b_{0}$ and has asymptotic bias $V_{0}^{-1} b_{0}$. This expression generalizes the fixed $T$ bias calculations in Nickell (1981) and Bun and Carree (2005). Note that $\left(\theta_{0}-\theta_{\mathrm{ml}}\right)^{\top} V_{0}\left(\theta_{0}-\theta_{\mathrm{ml}}\right)=$ $b_{0}^{\top} V_{0}^{-1} b_{0}$. Furthermore,

$$
\begin{aligned}
L(\theta) & =-\frac{1}{2} \log \left(1-b_{0}^{\top} V_{0}^{-1} b_{0}+\left(\theta-\theta_{\mathrm{ml}}\right)^{\top} V_{0}\left(\theta-\theta_{\mathrm{ml}}\right)\right)+\mathrm{c} \\
S(\theta) & =-\frac{V_{0}\left(\theta-\theta_{\mathrm{ml}}\right)}{1-b_{0}^{\top} V_{0}^{-1} b_{0}+\left(\theta-\theta_{\mathrm{ml}}\right)^{\top} V_{0}\left(\theta-\theta_{\mathrm{ml}}\right)}, \\
H(\theta) & =-\frac{V_{0}}{1-b_{0}^{\top} V_{0}^{-1} b_{0}+\left(\theta-\theta_{\mathrm{ml}}\right)^{\top} V_{0}\left(\theta-\theta_{\mathrm{ml}}\right)}+2 S(\theta) S(\theta)^{\top}
\end{aligned}
$$

Note that $L(\cdot)$ and $H(\cdot)$ are even and $S(\cdot)$ is odd about $\theta_{\mathrm{ml}}$ and that $H\left(\theta_{0}\right)=2 b_{0} b_{0}^{\top}-V_{0}$ and $H_{\mathrm{a}}\left(\theta_{0}\right)=$ $2 b_{0} b_{0}^{\top}-V_{0}-c_{0}$, where $c_{0}=c\left(\rho_{0}\right)$. Since $L(\theta)$ is log-quadratic in $\theta$ and $a(\rho)$ is a multivariate polynomial with negative coefficients, $L_{\mathrm{a}}(\theta)=L(\theta)-a(\rho)$ is unbounded from above. For example, if we put $\rho=k r$ with $r$ in the positive orthant of $\mathbb{R}^{p}$ and let $k \rightarrow \infty$, the term $-a(\rho)$ dominates and $L_{\mathrm{a}}(\theta) \rightarrow \infty$.

It follows that $\theta_{0} \neq \arg \max _{\theta} L_{\mathrm{a}}(\theta)$ and $\theta_{0}$ has to be identified as a functional of $L_{\mathrm{a}}(\theta)$ other than its global maximizer (as in standard maximum likelihood theory). Because $S_{\mathrm{a}}\left(\theta_{0}\right)=0$, we need to select $\theta_{0}$ from the set of stationary points of $L_{\mathrm{a}}(\theta)$, that is, from the set of zeros of $S_{\mathrm{a}}(\theta)$. In general, this set is not a singleton. Indeed, whenever $\theta_{0}$ is a local maximizer of $L_{\mathrm{a}}(\theta)$ (which will often be the case, as shown below), $L_{\mathrm{a}}(\theta)$, being smooth and unbounded, must also have at least one local minimum. Because $l(\theta)$ is log-quadratic for any $N \geq 1$ and $a(\rho)$ does not depend on the data, $l_{\mathrm{a}}(\theta)$, too, is re-increasing, regardless of the sample size. Therefore, an estimation strategy based on solving $s_{\mathrm{a}}(\theta)=0$ has to be complemented by a solution selection rule.

### 4.1. First-order autoregression without covariates

In the first-order autoregressive model without covariates $(p=1, q=0)$, let $\zeta_{0}^{2}=\left(V_{0}-b_{0}^{2}\right) / V_{0}^{2}$. Then,

$$
\begin{aligned}
L(\rho) & =-\frac{1}{2} \log \left(\zeta_{0}^{2}+\left(\rho-\rho_{\mathrm{ml}}\right)^{2}\right)+\mathrm{c} \\
S(\rho) & =-\frac{\rho-\rho_{\mathrm{ml}}}{\zeta_{0}^{2}+\left(\rho-\rho_{\mathrm{ml}}\right)^{2}}, \quad H(\rho)=-\frac{\zeta_{0}^{2}-\left(\rho-\rho_{\mathrm{ml}}\right)^{2}}{\left(\zeta_{0}^{2}+\left(\rho-\rho_{\mathrm{ml}}\right)^{2}\right)^{2}}
\end{aligned}
$$

by absorbing $-\frac{1}{2} \log V_{0}$ into c. Note that $\zeta_{0}^{2}=-1 / H\left(\rho_{\mathrm{ml}}\right)$. Recall that $S(\rho)$ is odd about $\rho_{\mathrm{ml}}=\rho_{0}+b_{0} / V_{0}$. The zeros of $H(\rho)$ are $\underline{\rho}=\rho_{\mathrm{ml}}-\zeta_{0}$ and $\bar{\rho}=\rho_{\mathrm{ml}}+\zeta_{0}$, so $S(\rho)$ decreases on $[\underline{\rho}, \bar{\rho}]$ and increases elsewhere. All of $\underline{\rho}$, $\bar{\rho}, \rho_{\mathrm{ml}}$, and $\zeta_{0}$ are identified by $S(\cdot)$, and $\rho_{\mathrm{ml}}$ and $\zeta_{0}$ act as location and scale parameters of $S(\cdot)$. For any given $\rho_{0}, \rho_{\mathrm{ml}}$ and $\zeta_{0}$ are determined by $V_{0}$. As $V_{0}$ increases, $\left|b_{0} / V_{0}\right|$ and $\zeta_{0}$ decrease, that is, the bias of $\rho_{\mathrm{ml}}$ decreases in absolute value, the length of $[\underline{\rho}, \bar{\rho}]$ shrinks, and $S(\rho)$ becomes steeper on $[\underline{\rho}, \bar{\rho}]$.

There is a sharp lower bound on $V_{0}$. With $\xi_{0 i}$ and $F_{0}$ denoting $\xi_{i}$ and $F$ evaluated at $\rho_{0}$, we have $y_{i,-1}=$ $S_{1}\left(\xi_{0 i}+F_{0} \varepsilon_{i}\right)$. From the independence between $\xi_{0 i}$ and $\varepsilon_{i}$, we obtain

$$
V_{0}=\frac{\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} y_{i,-1}^{\top} M y_{i,-1}}{\sigma_{0}^{2}(T-1)}=V_{0}^{L B}+V_{\xi \xi}
$$

where

$$
V_{0}^{L B}=\frac{\operatorname{tr} F_{0}^{\top} S_{1}^{\top} M S_{1} F_{0}}{T-1}, \quad V_{\xi \xi}=\frac{\operatorname{pim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \xi_{0 i}^{\top} S_{1}^{\top} M S_{1} \xi_{0 i}}{\sigma_{0}^{2}(T-1)}
$$

So $V_{0} \geq V_{0}^{L B}$ and this lower bound implies an upper bound on $\left|b_{0} / V_{0}\right|$ and on the length of $[\underline{\rho}, \bar{\rho}]$, and a lower bound on the steepness of $S(\rho)$ on $[\underline{\rho}, \bar{\rho}]$.

Lemma 3. $V_{0}^{L B}$ is given by

$$
V_{0}^{L B}=\frac{1}{T-1}\left(\sum_{j=0}^{T-2}(T-j-1) \rho_{0}^{2 j}-\frac{1}{T} \sum_{j=0}^{T-2}\left(\sum_{k=0}^{j} \rho_{0}^{k}\right)^{2}\right)
$$

and satisfies (i) $V_{0}^{L B} \geq 2 b_{0}^{2}$; (ii) $V_{0}^{L B} \geq 2 b_{0}^{2}-c_{0}$ with equality if and only if $T=2$ or $\rho_{0}=1$.

By Lemma 3, $H\left(\rho_{0}\right)=2 b_{0}^{2}-V_{0} \leq 0$ and, hence,

$$
\left(\bar{\rho}-\rho_{\mathrm{ml}}\right)^{2}=\frac{V_{0}-b_{0}^{2}}{V_{0}^{2}} \geq \frac{b_{0}^{2}}{V_{0}^{2}}=\left(\rho_{0}-\rho_{\mathrm{ml}}\right)^{2}
$$

Therefore, $\rho_{0} \in[\underline{\rho}, \bar{\rho}]$. Since $S(\rho)$ is a rational function that vanishes at $\pm \infty$ and $b(\rho)$ is a polynomial, $S_{\mathrm{a}}(\rho)$ has finitely many zeros. Thus, because $S_{\mathrm{a}}\left(\rho_{0}\right)=0$ and, by Lemma $3, H_{\mathrm{a}}\left(\rho_{0}\right)=2 b_{0}^{2}-V_{0}-c_{0} \leq 0$, it follows that $L_{\mathrm{a}}(\rho)$ has a local maximum or a flat inflection point at $\rho_{0}$. Our main result for a first-order autoregression without covariates is the uniqueness of such a point in $[\underline{\rho}, \bar{\rho}]$, thereby identifying $\rho_{0}$ as a functional of $L_{\mathrm{a}}(\rho)$. Equivalently, $\rho_{0}$ is the unique point in $[\underline{\rho}, \bar{\rho}]$ where $b(\rho)$ approaches $S(\rho)$ from below.

Theorem 1. $\rho_{0}$ is the unique point in $[\underline{\rho}, \bar{\rho}]$ where $L_{\mathrm{a}}(\rho)$ has a local maximum or a flat inflection point.
$L_{\mathrm{a}}(\rho)$ has a flat inflection point at $\rho_{0}$ if and only if $V_{0}=V_{0}^{L B}=2 b_{0}^{2}-c_{0}$. The latter equality holds if and only if $T=2$ or $\rho_{0}=1$. The former holds if and only if $V_{\xi \xi}=0$, which requires $M S_{1} \xi_{0 i}$ to be negligibly small for almost all $i$. The elements of $S_{1} \xi_{0 i}$ are $\rho_{0}^{j-1} y_{i}^{0}+\alpha_{i} \sum_{k=1}^{j-1} \rho_{0}^{k-1}, j=1, \ldots, T$, so $M S_{1} \xi_{0 i}=0$ if and only if $y_{i}^{0}\left(1-\rho_{0}\right)=\alpha_{i}$. The following corollary has been independently obtained by Ahn and Thomas (2006).

Corollary 1. When $\rho_{0}=1$ and $\alpha_{i}=0, L_{\mathrm{a}}(\rho)$ has a flat inflection point at $\rho_{0}$ for any $T$.

When $\rho_{0} \neq 1, V_{0}=V_{0}^{L B}=2 b_{0}^{2}-c_{0}$ only when $T=2$ and a very strong condition holds on the initial observations and the fixed effects, which is unlikely to hold in situations where a fixed effect modeling approach is called for. Thus, when $\rho_{0} \neq 1$, except in quite special circumstances, $\rho_{0}$ is the unique point in $[\underline{\rho}, \bar{\rho}]$ where $L_{\mathrm{a}}(\rho)$ attains a strict local maximum. Note that, when $\rho_{0}$ is a local maximizer of $L_{\mathrm{a}}(\rho)$, it need not be the global maximizer on $[\underline{\rho}, \bar{\rho}]$, which may instead be $\bar{\rho}$. To see why this may happen, interpret the situation where $L_{\mathrm{a}}(\rho)$ has a flat inflection point at $\rho_{0}$ as a limiting case of the property that $L_{\mathrm{a}}(\rho)$ is re-increasing.

Figure 1 illustrates how $\rho_{0}$ is identified by $L_{\mathrm{a}}(\rho)$ for two cases, each with $T=4$. The plots on the left correspond to the case $\rho_{0}=.5$ with $V_{0}=V_{0}^{L B}+V_{\xi \xi}$ and $V_{\xi \xi}$ corresponding to stationary initial observations. Those on the right correspond to the unit root case without deterministic trends, i.e., $\rho_{0}=1$ and $V_{0}=V_{0}^{L B}$. In each case, the bottom figures show $S(\rho)$ (solid line) and $b(\rho)$ (dashed line); the top plots show $L(\rho)$ (solid line), $-a(\rho)$ (dashed line), and $L_{\mathrm{a}}(\rho)=L(\rho)-a(\rho)$ (thick line). In all the plots, vertical lines indicate $\underline{\rho}, \rho_{0}$, and $\bar{\rho}$, from left to right. In the case of $\rho_{0}=.5, \rho_{0}$ is the unique local maximizer of $L_{\mathrm{a}}(\rho)$ on $[\underline{\rho}, \bar{\rho}]$. Note that there is a second solution of $S_{\mathrm{a}}(\rho)=0$ on $[\underline{\rho}, \bar{\rho}]$, which corresponds to a local minimum of $L_{\mathrm{a}}(\rho)$. In the unit root case, $\rho_{0}$ is the unique flat inflection point of $L_{\mathrm{a}}(\rho)$ on $[\underline{\rho}, \bar{\rho}]$.

The asymptotic bias of the maximum likelihood estimator has the same sign as $b_{0}$ because $\rho_{\mathrm{ml}}=\rho_{0}+b_{0} / V_{0}$. The proof of Theorem 1, as a by-product, shows that if $T$ is even, then $b_{0}<0$; and, if $T$ is odd, then $b(\rho)$ decreases and has a unique zero at some point $\rho_{u} \in[-2,-1)$, so $b_{0}$ has the same sign as $\rho_{u}-\rho_{0}$.

Figure 1. Identification


Left: $\rho_{0}=0.5$. Right: $\rho_{0}=1$. Bottom: $S(\rho)$ (solid), $b(\rho)$ (dashed). Top: $L(\rho)$ (solid), $-a(\rho)$ (dashed), $L_{\mathrm{a}}(\rho)$ (thick). Vertical lines at $\underline{\rho}, \rho_{0}$, and $\bar{\rho}$.

### 4.2. First-order autoregression with covariates

In the first-order autoregressive model with covariates $(p=1, q \geq 1)$, profiling out $\beta$ yields a profile likelihood of $\rho$ with essentially the same properties as in the model without covariates. Let $\beta(\rho)=\arg \max _{\beta} L_{\mathrm{a}}(\rho, \beta)=$
$\arg \max _{\beta} L(\rho, \beta)=\arg \min _{\beta}\left(\theta-\theta_{\mathrm{ml}}\right)^{\top} V_{0}\left(\theta-\theta_{\mathrm{ml}}\right)$. Partition $V_{0}, V_{0}^{-1}$, and $b_{0}$ as

$$
V_{0}=\left(\begin{array}{cc}
V_{0 \rho \rho} & V_{0 \rho \beta} \\
V_{0 \beta \rho} & V_{0 \beta \beta}
\end{array}\right), \quad V_{0}^{-1}=\left(\begin{array}{cc}
V_{0}^{\rho \rho} & V_{0}^{\rho \beta} \\
V_{0}^{\beta \rho} & V_{0}^{\beta \beta}
\end{array}\right), \quad b_{0}=\binom{b_{0 \rho}}{0} .
$$

With $V_{0}^{\rho \rho}=\left(V_{0 \rho \rho}-V_{0 \rho \beta} V_{0 \beta \beta}^{-1} V_{0 \beta \rho}\right)^{-1}$, we have

$$
\begin{aligned}
V_{0 \beta \beta}\left(\beta(\rho)-\beta_{\mathrm{ml}}\right) & =-V_{0 \beta \rho}\left(\rho-\rho_{\mathrm{ml}}\right) \\
\min _{\beta}\left(\theta-\theta_{\mathrm{ml}}\right)^{\top} V_{0}\left(\theta-\theta_{\mathrm{ml}}\right) & =\left(\rho-\rho_{\mathrm{ml}}\right)^{2} / V_{0}^{\rho \rho} \\
1-b_{0}^{\top} V_{0}^{-1} b_{0} & =1-b_{0 \rho}^{2} V_{0}^{\rho \rho}
\end{aligned}
$$

The first of these equations, together with $V_{0}\left(\theta_{0}-\theta_{\mathrm{ml}}\right)=-b_{0}$, yields $\beta\left(\rho_{0}\right)=\beta_{0}$, so $\beta_{0}$ is identified whenever $\rho_{0}$ is. Profiling out $\beta$ from $L(\rho, \beta)$ gives the limiting profile log-likelihood of $\rho$ as

$$
L(\rho)=L(\rho, \beta(\rho))=-\frac{1}{2} \log \left(\zeta_{0}^{2}+\left(\rho-\rho_{\mathrm{ml}}\right)^{2}\right)+\mathrm{c}
$$

(slightly abusing notation), where $\zeta_{0}^{2}$ is redefined as $\zeta_{0}^{2}=\left(1-b_{0 \rho}^{2} V_{0}^{\rho \rho}\right) V_{0}^{\rho \rho}$ and $\frac{1}{2} \log V_{0}^{\rho \rho}$ is absorbed into c.
Lemma 4. $\left(V_{0}^{\rho \rho}\right)^{-1} \geq V_{0}^{L B}$, with $V_{0}^{L B}$ as defined earlier and given in Lemma 3.
We can now invoke the result for the model without covariates. Let $\underline{\rho}=\rho_{\mathrm{ml}}-\zeta_{0}$ and $\bar{\rho}=\rho_{\mathrm{ml}}+\zeta_{0}$, with $\zeta_{0}$ redefined as indicated.

THEOREM 2. $\quad \rho_{0}$ is the unique point in $[\rho, \bar{\rho}]$ where $L_{\mathrm{a}}(\rho)=L(\rho)-a(\rho)$ has a local maximum or a flat inflection point.

By the proof of Lemma 4, the conditions under which $\rho_{0}$ is a flat inflection point of $L_{\mathrm{a}}(\rho)$ are the same as before. The presence of covariates does not affect the sign of the asymptotic bias of the maximum likelihood estimator of $\rho$. It also follows from the proof of Lemma 4 that the inclusion of covariates in the model cannot increase $V_{0}^{\rho \rho}$, so the magnitude of $\rho_{\mathrm{ml}}-\rho_{0}=V_{0}^{\rho \rho} b_{0 \rho}$ can only decrease relative to the model without covariates.

## 4.3. $p$ th-order autoregression

Consider first an autoregression with $p>1$ and without covariates, i.e., $q=0$. Then

$$
\begin{aligned}
L(\rho) & =-\frac{1}{2} \log \left(1+\left(\rho-\rho_{\mathrm{ml}}\right)^{\top} W_{0}\left(\rho-\rho_{\mathrm{ml}}\right)\right)+\mathrm{c}, \quad W_{0}=\frac{V_{0}}{1-b_{0}^{\top} V_{0}^{-1} b_{0}}, \\
S(\rho) & =-\frac{W_{0}\left(\rho-\rho_{\mathrm{ml}}\right)}{1+\left(\rho-\rho_{\mathrm{ml}}\right)^{\top} W_{0}\left(\rho-\rho_{\mathrm{ml}}\right)} \\
H(\rho) & =-\frac{W_{0}}{1+\left(\rho-\rho_{\mathrm{ml}}\right)^{\top} W_{0}\left(\rho-\rho_{\mathrm{ml}}\right)}+2 S(\rho) S(\rho)^{\top},
\end{aligned}
$$

where $-\frac{1}{2} \log \left(1-b_{0}^{\top} V_{0}^{-1} b_{0}\right)$ is absorbed into c. Because $W_{0}=-H\left(\rho_{\mathrm{ml}}\right), W_{0}$ is identified by $L(\cdot)$.
As in the $p=1$ case, there is a lower bound on $V_{0}$. Recalling that $Y_{i-}=\left(y_{i,-1}, \ldots, y_{i,-p}\right)$ and $y_{i,-j}=$ $S_{j}\left(\xi_{0 i}+F_{0} \varepsilon_{i}\right)$, where $\xi_{0 i}$ and $\varepsilon_{i}$ are independent, we have

$$
V_{0}=\frac{\operatorname{pim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} Y_{i-}^{\top} M Y_{i-}}{\sigma_{0}^{2}(T-1)}=V_{0}^{L B}+V_{\xi \xi}
$$

where $V_{0}^{L B}$ and $V_{\xi \xi}$ have elements

$$
\left(V_{0}^{L B}\right)_{j k}=\frac{\operatorname{tr} F_{0}^{\top} S_{j}^{\top} M S_{k} F_{0}}{T-1}, \quad\left(V_{\xi \xi}\right)_{j k}=\frac{\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \xi_{0 i}^{\top} S_{j}^{\top} M S_{k} \xi_{0 i}}{\sigma_{0}^{2}(T-1)}
$$

for $1 \leq j, k \leq p$. Hence, $V_{0}-V_{0}^{L B}$ is positive semi-definite, which we write as $V_{0} \geq V_{0}^{L B}$. When $p \geq T$, while $V_{0}$ is nonsingular by assumption, $\operatorname{rank}\left(V_{0}^{L B}\right) \leq T-1$ because $S_{j} F_{0}=0$ for $j \geq T$, which implies that $\left(V_{0}^{L B}\right)_{j k}=0$ whenever $j \geq T$ or $k \geq T$. Thus, when $p \geq T$, although $V_{0}$ can be arbitrarily close to $V_{0}^{L B}, V_{0} \neq V_{0}^{L B}$. Further, when $p \geq T, b_{j}(\rho)=0$ for $j \geq T$ because the sum defining $b_{j}(\rho)$ is empty, and $c_{i j}(\rho)=0$ for $i+j \geq T$. Hence, when $p \geq T, V_{0}^{L B}-2 b_{0} b_{0}^{\top}$ and $V_{0}^{L B}-2 b_{0} b_{0}^{\top}+c_{0}$ have only zeros beyond their leading $(T-1) \times(T-1)$ blocks.

A proof of generalizations of (i)-(ii) of Lemma 3 and Theorem 1 to the $p>1$ would be desirable but is more difficult. ${ }^{1}$ We resorted to numerical computations, which suggest that

$$
\begin{gather*}
V_{0}^{L B} \geq 2 b_{0} b_{0}^{\top}, \quad V_{0}^{L B} \geq 2 b_{0} b_{0}^{\top}-c_{0}  \tag{4.1}\\
\operatorname{rank}\left(V_{0}^{L B}-2 b_{0} b_{0}^{\top}+c_{0}\right)= \begin{cases}\min (p, T-2) & \text { if } \sum_{j=1}^{p} \rho_{0 j} \neq 1 \text { or } T<p+2, \\
p-1 & \text { else. }\end{cases} \tag{4.2}
\end{gather*}
$$

Specifically, we computed the eigenvalues of $V_{0}^{L B}-2 b_{0} b_{0}^{\top}$ and $V_{0}^{L B}-2 b_{0} b_{0}^{\top}+c_{0}$ for $p=2,3,4 ; T=2, \ldots, 7$; and all $\rho_{0}$ in a subset of $\mathbb{R}^{p}$ chosen as follows. For $p=4$, we put a square grid on the Cartesian product of the two triangles defined by

$$
\begin{array}{ll}
-1 \leq \gamma_{2} \leq 1, & \gamma_{2}-1 \leq \gamma_{1} \leq 1-\gamma_{2} \\
-1 \leq \gamma_{4} \leq 1, & \gamma_{4}-1 \leq \gamma_{3} \leq 1-\gamma_{4} \tag{4.3}
\end{array}
$$

which is the stationary region of the lag polynomial $\gamma(L)=\left(1-\gamma_{1} L-\gamma_{2} L^{2}\right)\left(1-\gamma_{3} L-\gamma_{4} L^{2}\right)$. For each point on this grid and for each of the values $m=1,2,4, \rho_{0}$ was calculated by equating the coefficients on both sides of $m-\rho_{01} L-\rho_{02} L^{2}-\rho_{03} L^{3}-\rho_{04} L^{4}=m \gamma(L)$. For $m=1$, the stationary region is covered, while for larger $m$ a larger region is covered, though less densely. In addition to (4.3) we set $\gamma_{4}=0$ for $p=3$, and $\gamma_{3}=\gamma_{4}=0$ for $p=2$. The grid points on the region defined by (4.3) were spaced at intervals of .002 when $p=2, .02$ when $p=3$, and .1 when $p=4$. We found that, uniformly over this numerical design, the eigenvalues of $V_{0}^{L B}-2 b_{0} b_{0}^{\top}$ and $V_{0}^{L B}-2 b_{0} b_{0}^{\top}+c_{0}$ are non-negative and the rank of $V_{0}^{L B}-2 b_{0} b_{0}^{\top}+c_{0}$ is as given by (4.2). These findings, while obviously not a proof, support (4.1) and (4.2), and we shall proceed under the assumption that (4.1) and (4.2) hold. ${ }^{2}$

Because $V_{0} \geq V_{0}^{L B}$, (4.1) implies that $V_{0} \geq 2 b_{0} b_{0}^{\top}$ and that $H_{\mathrm{a}}\left(\rho_{0}\right)=2 b_{0} b_{0}^{\top}-V_{0}-c_{0} \leq 0$. Pre- and postmultiplication of $V_{0} \geq 2 b_{0} b_{0}^{\top}$ by $b_{0}^{\top} V_{0}^{-1}$ and $V_{0}^{-1} b_{0}$ gives $b_{0}^{\top} V_{0}^{-1} b_{0} \leq \frac{1}{2} \leq 1-b_{0}^{\top} V_{0}^{-1} b_{0}$. Recalling that $\left(\rho_{0}-\rho_{\mathrm{ml}}\right)^{\top} V_{0}\left(\rho_{0}-\rho_{\mathrm{ml}}\right)=b_{0}^{\top} V_{0}^{-1} b_{0}$, we have

$$
\left(\rho_{0}-\rho_{\mathrm{ml}}\right)^{\top} W_{0}\left(\rho_{0}-\rho_{\mathrm{ml}}\right) \leq 1
$$

[^1]Therefore, if (4.1) and (4.2) hold, $\rho_{0}$ is a point in the ellipsoidal disk $\mathcal{E}=\left\{\rho:\left(\rho-\rho_{\mathrm{ml}}\right)^{\top} W_{0}\left(\rho-\rho_{\mathrm{ml}}\right) \leq 1\right\}$ where $L_{\mathrm{a}}(\rho)$ has a local maximum or a flat inflection point. We approached the question of uniqueness of such a point numerically. For the same numerical design as above and with $V_{0}=V_{0}^{L B}$, we applied the NewtonRaphson algorithm to find a stationary point of $L_{\mathrm{a}}(\rho)$, starting at $\rho_{\mathrm{ml}}$ and using the Moore-Penrose inverse of $H_{\mathrm{a}}(\rho)$ whenever $H_{\mathrm{a}}(\rho)$ is singular. Uniformly over this design, the algorithm was found to converge to $\rho_{0}$, thus supporting the conjecture that $\rho_{0}$ is the unique point in $\mathcal{E}$ where $L_{\mathrm{a}}(\rho)$ has a local maximum or a flat inflection point. ${ }^{3}$

In the model with covariates, just as before, $\beta$ can be profiled out of $L_{\mathrm{a}}(\theta)$. Here, again, $\beta_{0}=\beta\left(\rho_{0}\right)$. Lemma 4 continues to hold for $p>1$. Hence, if $\rho_{0}$ is identified in the model without covariates in the way we suggested, then it is identified in the model with covariates in exactly the same way, now with $\mathcal{E}$ defined through $W_{0}=\left(1-b_{0 \rho}^{\top} V_{0}^{\rho \rho} b_{0 \rho}\right)^{-1} V_{0 \rho \rho}$, in obvious notation.

## 5. Estimation and inference

For a given $\rho$, define

$$
\widehat{\beta}(\rho)=\arg \max _{\beta} l_{\mathrm{a}}(\rho, \beta)=\arg \max _{\beta} l(\rho, \beta)=\left(\sum_{i=1}^{N} X_{i}^{\top} M X_{i}\right)^{-1} \sum_{i=1}^{N} X_{i}^{\top} M\left(y_{i}-Y_{i-} \rho\right)
$$

The unadjusted and adjusted profile log-likelihoods for $\rho$ are $l(\rho)=l(\rho, \widehat{\beta}(\rho))$ and $l_{\mathrm{a}}(\rho)=l(\rho)-a(\rho)$. Let $s(\rho)$, $s_{\mathrm{a}}(\rho), h(\rho)$, and $h_{\mathrm{a}}(\rho)$ be the corresponding profile scores and Hessians. Let $\widehat{W}=-h\left(\widehat{\rho}_{\mathrm{ml}}\right)$, where $\widehat{\rho}_{\mathrm{ml}}$ is the maximum likelihood estimator of $\rho_{0}$, and let $\widehat{\mathcal{E}}=\left\{\rho:\left(\rho-\widehat{\rho}_{\mathrm{ml}}\right)^{\top} \widehat{W}\left(\rho-\widehat{\rho}_{\mathrm{ml}}\right) \leq 1\right\}$. We define the adjusted likelihood estimator of $\rho_{0}$ as

$$
\widehat{\rho}_{\mathrm{al}}=\arg \min _{\rho \in \widehat{\mathcal{E}}} s_{\mathrm{a}}^{\top}(\rho) s_{\mathrm{a}}(\rho) \quad \text { s.t. } \quad h_{\mathrm{a}}(\rho) \leq 0,
$$

that is, as the strict local maximizer of $l_{\mathrm{a}}(\rho)$ on the interior of $\widehat{\mathcal{E}}$ if such a maximizer exists and otherwise as the minimizer of the norm of $s_{\mathrm{a}}(\rho)$ on $\widehat{\mathcal{E}}$. The adjusted likelihood estimator of $\beta_{0}$, then, is $\widehat{\beta}_{\mathrm{al}}=\widehat{\beta}\left(\widehat{\rho}_{\mathrm{al}}\right)$.

Let $N \rightarrow \infty$. Then $l_{\mathrm{a}}(\rho)$ converges to $L_{\mathrm{a}}(\rho)$ uniformly in $\rho$ since $-a(\rho)$ is nonstochastic and $\sup _{\rho}|l(\rho)-L(\rho)|=$ $o_{p}(1)$. Further, $\widehat{\rho}_{\mathrm{ml}} \xrightarrow{p} \rho_{\mathrm{ml}}, \widehat{W} \xrightarrow{p}-H\left(\rho_{\mathrm{ml}}\right)=W_{0}$, and $\widehat{\mathcal{E}} \xrightarrow{p} \mathcal{E}$ in the sense that $\operatorname{Pr}[\rho \in \widehat{\mathcal{E}}] \rightarrow 1_{\{\rho \in \mathcal{E}\}}$ for any $\rho$ not on the boundary of $\mathcal{E}$. It follows that $\widehat{\theta}_{\text {al }}=\left(\widehat{\rho}_{\text {al }}^{\top}, \widehat{\beta}_{\text {al }}^{\top}\right)^{\top} \xrightarrow{p} \theta_{0}$.

When $H_{\mathrm{a}}\left(\theta_{0}\right)$ is nonsingular, by a Taylor series expansion of $s_{\mathrm{a}}(\theta)$ around $\theta_{0}$,

$$
\begin{equation*}
\sqrt{N}\left(\widehat{\theta}_{\mathrm{al}}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}(0, \Omega), \quad \Omega=H_{\mathrm{a}}\left(\theta_{0}\right)^{-1}\left(V_{0}-b_{0} b_{0}^{\top}\right) H_{\mathrm{a}}\left(\theta_{0}\right)^{-1} \tag{5.1}
\end{equation*}
$$

The asymptotic variance can be estimated in the usual way. ${ }^{4}$
We have not investigated the limit distribution of $\widehat{\theta}_{\mathrm{al}}$ in the situation where $H_{\mathrm{a}}\left(\theta_{0}\right)$ is singular (which includes all cases where $\rho_{0}$ is a flat inflection point). Presumably this could be done by using arguments along the lines of Rotnitzky, Cox, Bottai, and Robins (2000).

[^2]We used simulations to examine the finite sample properties of the adjusted likelihood estimator in first- and second-order autoregressions without covariates and in a first-order autoregressive model with one stationary covariate. We compared the estimator with the one-step Arellano and Bond (1991) estimator, which leaves the initial observations unrestricted, ${ }^{5}$ and with two estimators that are consistent only under rectangular array asymptotics (see Li, Lindsay, and Waterman, 2003 and Sartori, 2003). The latter two estimators have an asymptotic bias that is $O\left(T^{-2}\right)$. The first of these estimators corrects the maximum likelihood estimate. For the first-order autoregression without covariates, we used the estimator of Hahn and Kuersteiner (2002), which is targeted to this setup. For the other models, we used its extension to possibly nonlinear models as proposed by Hahn and Kuersteiner (2011). The second large $T$ estimator considered is the penalized likelihood estimator of Bester and Hansen (2009). ${ }^{6}$

In all the designs, we set $N=100$, generated $\varepsilon_{i t}$ and $\alpha_{i}$ as $\mathcal{N}(0,1)$ variates, and chose $\rho_{0}$ in the interior of the stationary region, which implies that $y_{i t}$ is eventually stationary as $t \rightarrow \infty$. We varied the information content of the data through the initial observations. Let $\mu_{i}=\lim _{t \rightarrow \infty} \mathbb{E}\left(y_{i t-} \mid \alpha_{i}\right)$ and $\Sigma_{i}=\lim _{t \rightarrow \infty} \operatorname{Var}\left(y_{i t-} \mid \alpha_{i}\right)$, so, if $y_{i}^{0}$ was drawn from the stationary distribution, we would just have $\mu_{i}=\mathbb{E}\left(y_{i}^{0} \mid \alpha_{i}\right)$ and $\Sigma_{i}=\operatorname{Var}\left(y_{i}^{0} \mid \alpha_{i}\right)$. Let $G_{i} G_{i}^{\top}=\Sigma_{i}$ be the Cholesky factorization of $\Sigma_{i}$. We set $y_{i}^{0}=\mu_{i}+\psi G_{i} \iota$ for some chosen scalar $\psi \geq 0$, which is a $p$-variate version of setting the initial observations $\psi$ standard deviations away from the stationary mean. So $\psi$ controls the outlyingness of the initial observations relative to the stationary distributions. All else being equal, $V_{0}$ increases in $\psi$ and $V_{0} \rightarrow V_{0}^{L B}$ as $\psi \rightarrow 0$, so the data carry less information as $\psi$ gets smaller. The effect of strong inlying observations (small $\psi$ ) on the informativeness of the data is stronger when $T$ is small because it takes time to revert to the stationary distribution. The effect of $\psi$ is vanishingly small as $\rho_{0}$ moves to the boundary of the stationary region. We set $\psi=0,1,2$ when $p=1$ and $\psi=.3,1,2$ when $p=2$.

In the models without a covariate, $\mu_{i}$ and $\Sigma_{i}$ follow immediately from $\alpha_{i}$ and $\rho_{0}$. In the model with a covariate, $x_{i t}$ was generated by $x_{i t}=\delta \alpha_{i}+\gamma x_{i t-1}+u_{i t}$ with $u_{i t} \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right)$ and $x_{i 0}$ drawn from the stationary distribution. Here,

$$
\mu_{i}=\frac{\alpha_{i}}{1-\rho_{0}}\left(1+\frac{\delta \beta_{0}}{1-\gamma}\right), \quad \Sigma_{i}=\frac{1}{1-\rho_{0}^{2}}\left(1+\frac{\beta_{0}^{2}}{1-\gamma^{2}}\left(\frac{1+\gamma \rho_{0}}{1-\gamma \rho_{0}}\right) \sigma_{u}^{2}\right) .
$$

We set $\delta=\gamma=\sigma_{u}=.5$ and $\beta_{0}=1-\rho_{0}$, inducing dependence between the covariate and the fixed effect, and keeping the long-run multiplier of $x$ on $y$ constant at unity across designs.

Tables 1-5 in Appendix B present Monte Carlo estimates, based on 10, 000 replications, of the bias and the standard deviation (std) of the estimators considered, as well as the coverage rates of the corresponding asymptotic and bootstrap $95 \%$ confidence intervals ( $\mathrm{ci}_{.95}^{\mathrm{a}}$ and $\mathrm{ci}_{.95}^{\mathrm{b}}$ ). Bootstrap confidence intervals were computed using the percentile method with 39 bootstrap samples formed by randomly drawing $N$ strata with replacement from $\{1, \ldots, N\}$.

In the first-order autoregression with $\rho_{0}=.5$ (upper panel in Table 1), both $\widehat{\rho}_{\text {al }}$ and $\widehat{\rho}_{\text {ab }}$ perform well. The adjusted likelihood estimator has smaller standard deviation and is virtually unbiased, except when $\psi=0$

[^3]and $T=2$. Both estimators deliver $95 \%$ confidence intervals with broadly correct coverage, although the coverage errors are somewhat larger for $\hat{\rho}_{\text {ab }}$, where they also increase in $T$. The latter observation is in line with the theoretical results of Alvarez and Arellano (2003). The estimator of Hahn and Kuersteiner (2002) outperforms the Bester and Hansen (2009) estimator, although both exhibit substantial bias for small $T$ and their performance is sensitive to $\psi$.

When $\rho_{0}$ is increased to .95 (lower panel in Table 1), the performance of all estimators tends to worsen. $\widehat{\rho}_{\text {ab }}$ deteriorates the most, showing a substantial bias, large dispersion, and confidence intervals with much lower coverage. $\widehat{\rho}_{\text {al }}$ continues to have little bias and provides confidence intervals with approximately correct coverage, with the bootstrap-based confidence intervals being slightly better. In most designs, both $\widehat{\rho}_{\text {hk }}$ and $\widehat{\rho}_{\text {bh }}$ outperform $\widehat{\rho}_{\mathrm{ab}}$ in terms of bias and standard deviation. Their confidence intervals, however, are not reliable.

In the second-order autoregression (Tables 2 and 3), both $\widehat{\rho}_{\text {al }}$ and $\widehat{\rho}_{\text {ab }}$ perform well in terms of bias, although there is a non-negligible bias when $T=2$, and also when $T=4$ and the initial observations are strong inlyers. As $N=100$, the probability that the adjusted likelihood has no local maximum in the relevant region is fairly large when both $T$ and $\psi$ are small. In most designs, $\widehat{\rho}_{\text {al }}$ has smaller standard deviation than $\widehat{\rho}_{\text {ab }}$, with the difference decreasing in $T$ and $\psi$. For both estimators, the confidence intervals have very reasonable coverage. As before, $\widehat{\rho}_{\text {hk }}$ and $\widehat{\rho}_{\text {bh }}$ still show a substantial bias for most of the designs considered. Together with their small standard deviation for most values of $T$, this again leads to their confidence intervals being too narrow.

In the model with a covariate (Tables 4 and 5 ), the coefficient on $x_{i t}$, $\beta_{0}$, is generally estimated with small bias by all estimators. Regarding the estimation of $\rho_{0}$, the tables show a similar pattern as in the model without a covariate. $\widehat{\rho}_{\text {al }}$ has little bias and well-behaved confidence intervals for all designs, especially when computed by bootstrapping. The same holds for $\widehat{\rho}_{\mathrm{ab}}$ only when $\rho_{0}=.5$. $\widehat{\rho}_{\mathrm{hk}}$ and $\widehat{\rho}_{\mathrm{bh}}$ only start to perform reasonably when $T \geq 16$, although the coverage errors of their confidence intervals remain large for all values of $T$ considered.

## Appendix A: Proofs

Proof of Lemma 1. Using (2.2),

$$
\begin{aligned}
\operatorname{plim}_{N \rightarrow \infty} s_{\rho_{j}}\left(\theta_{0}\right) & =\frac{\operatorname{plim}_{N \rightarrow \infty} N^{-1} \sum_{i=1}^{N} \varepsilon_{i}^{\top} M S_{j}\left(\xi_{0 i}+F_{0} \varepsilon_{i}\right)}{\operatorname{plim}_{N \rightarrow \infty} N^{-1} \sum_{i=1}^{N} \varepsilon_{i}^{\top} M \varepsilon_{i}}=\frac{\mathbb{E}\left(\varepsilon_{i}^{\top} M S_{j} F_{0} \varepsilon_{i}\right)}{\mathbb{E}\left(\varepsilon_{i}^{\top} M \varepsilon_{i}\right)} \\
& =\frac{\operatorname{tr} M S_{j} F_{0}}{T-1}, \\
\operatorname{plim}_{N \rightarrow \infty} s_{\beta_{j}}\left(\theta_{0}\right) & =0,
\end{aligned}
$$

where $\xi_{0 i}$ and $F_{0}$ are $\xi_{i}$ and $F$, evaluated at $\theta_{0}$. If, in addition, the disturbances are normal variates, i.e., $\varepsilon_{i t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then

$$
\begin{align*}
\mathbb{E}\left[s_{\rho_{j}}\left(\theta_{0}\right)\right] & =\mathbb{E}\left(\frac{\sum_{i=1}^{N} \varepsilon_{i}^{\top} M S_{j}\left(\xi_{0 i}+F_{0} \varepsilon_{i}\right)}{\sum_{i=1}^{N} \varepsilon_{i}^{\top} M \varepsilon_{i}}\right)=\mathbb{E}\left(\frac{\sum_{i=1}^{N} \varepsilon_{i}^{\top} M S_{j} F_{0} M \varepsilon_{i}}{\sum_{i=1}^{N} \varepsilon_{i}^{\top} M \varepsilon_{i}}\right) \\
& =\frac{\mathbb{E}\left(\varepsilon_{i}^{\top} M S_{j} F_{0} M \varepsilon_{i}\right)}{\mathbb{E}\left(\varepsilon_{i}^{\top} M \varepsilon_{i}\right)}=\frac{\operatorname{tr} M S_{j} F_{0}}{T-1},  \tag{A.2}\\
\mathbb{E}\left[s_{\beta_{j}}\left(\theta_{0}\right)\right] & =0,
\end{align*}
$$

by well-known properties of the normal distribution and the following geometric argument, which goes back to Fisher (1930) and Geary (1933). Let $v \sim \mathcal{N}\left(0, \sigma^{2} I_{g}\right)$ and let $Q$ be a $g \times h$ matrix such that $Q^{\top} Q=I_{h}$, so $Q Q^{\top}$ is idempotent. Write $I_{g}-Q Q^{\top}$ as $P P^{\top}$, where $P^{\top} P=I_{g-h}$. Transform $v$ into $m=P^{\top} v$, the radius $r=\left(v^{\top} Q Q^{\top} v\right)^{1 / 2}$, and the
$h-1$ polar angles $a$ of $Q^{\top} v$. Then the elements of $\left(m^{\top}, r, a^{\top}\right)^{\top}$ are independent. Therefore, for any $g \times g$ matrix $W$, if $A=v^{\top} Q Q^{\top} W Q Q^{\top} v$ and $B=v^{\top} Q Q^{\top} v$, then the ratio $A / B$ depends on $v$ only through $a$ and hence is independent of $B$, which implies that $\mathbb{E}(A)=\mathbb{E}(A / B) \mathbb{E}(B)$ and $\mathbb{E}(A / B)=\mathbb{E}(A) / \mathbb{E}(B) .{ }^{7}$ The transition to (A.2) now follows from applying this property to the ratio

$$
\frac{\sum_{i=1}^{N} \varepsilon_{i}^{\top} M S_{j} F_{0} M \varepsilon_{i}}{\sum_{i=1}^{N} \varepsilon_{i}^{\top} M \varepsilon_{i}}=\frac{\varepsilon^{\top}\left(I_{N} \otimes M\right)\left(I_{N} \otimes S_{j} F_{0}\right)\left(I_{N} \otimes M\right) \varepsilon}{\varepsilon^{\top}\left(I_{N} \otimes M\right) \varepsilon}
$$

with $v=\varepsilon=\left(\varepsilon_{1}^{\top}, \ldots, \varepsilon_{N}^{\top}\right)^{\top}, Q Q^{\top}=I_{N} \otimes M$, and $W=I_{N} \otimes S_{j} F_{0}$. The proof is completed by writing $\operatorname{tr} M S_{j} F_{0}$ in terms of the $\varphi_{t}$. Note that

$$
S_{j} F=\left(\begin{array}{cc}
0 & 0 \\
D_{j}^{-1} & 0
\end{array}\right)
$$

where $D_{j}^{-1}$ is the leading $(T-j) \times(T-j)$ block of $D^{-1}$. For arbitrary $\rho_{1}, \ldots, \rho_{T-1}, D$ and its inverse are

$$
D=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
-\rho_{1} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
-\rho_{T-1} & \cdots & -\rho_{1} & 1
\end{array}\right), \quad D^{-1}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\phi_{1} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
\phi_{T-1} & \cdots & \phi_{1} & 1
\end{array}\right)
$$

where $\phi_{1}, \ldots, \phi_{T-1}$ are recursively obtained as $\phi_{1}=\rho_{1}$ and $\phi_{j}=\rho_{j}+\sum_{k=1}^{j-1} \phi_{k} \rho_{j-k}, j=2, \ldots, T-1$. Recursive substitution gives

$$
\phi_{j}=\sum_{k_{1}+2 k_{2}+\cdots+j k_{j}=j} \frac{\left(k_{1}+\ldots+k_{p}\right)!}{k_{1}!\cdots k_{p}!} \rho_{1}^{k_{1}} \rho_{2}^{k_{2}} \cdots \rho_{j}^{k_{j}} .
$$

Putting $\rho_{p+1}=\cdots=\rho_{T-1}=0$ gives $\phi_{j}=\varphi_{j}$. Therefore,

$$
\frac{\operatorname{tr} M S_{j} F_{0}}{T-1}=-\frac{\iota^{\top} D_{j}^{-1} \iota}{T(T-1)}=-\sum_{t=0}^{T-j-1} \frac{T-j-t}{T(T-1)} \varphi_{t}, \quad j=1, \ldots, p
$$

which equals $b_{j}(\rho)$.
Proof of Lemma 2. For $j=1, \ldots, p$, let $\mathcal{S}_{j}=\{S \in \mathcal{S} \mid j \in S\}$. Group terms by $S \in \mathcal{S}_{j}$ to write

$$
\int b_{j}(\rho) d \rho_{j}=\sum_{S \in \mathcal{S}_{j}} B_{j, S}(\rho)+\mathrm{c}
$$

where

$$
B_{j, S}(\rho)=-\sum_{t=0}^{T-j-1} \frac{T-j-t}{T(T-1)} \sum_{k \in \mathcal{K}_{j, S}: \tau^{\top} k=t} \frac{\left(\iota^{\top} k\right)!}{k_{1}!\cdots\left(k_{j}+1\right)!\cdots k_{p}!} \rho_{j} \rho_{S}^{k_{S}}
$$

and $\mathcal{K}_{j, S}=\left\{k \in \mathbb{N}^{p} \mid\right.$ for all $j^{\prime} \neq j, k_{j^{\prime}}>0$ if ond only if $\left.j^{\prime} \in S\right\} \supset \mathcal{K}_{S}$. A change of variable from $k_{j}+1$ to $k_{j}$ gives

$$
B_{j, S}(\rho)=-\sum_{t=|S|-j}^{T-j-1} \frac{T-j-t}{T(T-1)} \sum_{k \in \mathcal{K}_{S}: \tau^{\top} k=t+j} \frac{\left(\iota^{\top} k-1\right)!}{k_{1}!\cdots k_{p}!} \rho_{S}^{k_{S}},
$$

where the lower limit in the first sum changed from 0 to $|S|-j$ because, when $t<|S|-j$, no $k \in \mathcal{K}_{S}$ satisfies $\tau^{\top} k=t+j$. A further change of variable from $t+j$ to $t$ gives $B_{j, S}(\rho)=a_{S}(\rho)$, with $a_{S}(\rho)$ as defined in (2). Therefore,

$$
b_{j}(\rho)=\nabla_{\rho_{j}} \sum_{S \in \mathcal{S}_{j}} a_{S}(\rho)=\nabla_{\rho_{j}} \sum_{S \in \mathcal{S}} a_{S}(\rho)=\nabla_{\rho_{j}} a(\rho),
$$

which completes the proof.

[^4]Proof of Equation (3.3). In the parameterization $\eta_{i}=\alpha_{i} e^{-(T-1) a(\rho)}$, we have

$$
\begin{aligned}
\ell_{i}\left(\vartheta, \eta_{i}\right) & =-\frac{1}{2} \log \sigma^{2}-\frac{1}{2 T \sigma^{2}} \sum_{t=1}^{T}\left(y_{i t}-z_{i t}^{\top} \theta-\eta_{i} e^{(T-1) a(\rho)}\right)^{2}+c, \\
\nabla_{\eta_{i}} \ell_{i}\left(\vartheta, \eta_{i}\right) & =\frac{e^{(T-1) a(\rho)}}{T \sigma^{2}}\left(y_{i}-Z_{i} \theta-\eta_{i} e^{(T-1) a(\rho)} \iota\right)^{\top} \iota
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{E}_{\vartheta, \eta_{i}} \nabla_{\eta_{i} \eta_{i}} \ell_{i}\left(\vartheta, \eta_{i}\right) & =-\sigma^{-2} e^{2(T-1) a(\rho)}, \quad \mathbb{E}_{\vartheta, \eta_{i}} \nabla_{\sigma^{2} \eta_{i}} \ell_{i}\left(\vartheta, \eta_{i}\right)=0, \\
\mathbb{E}_{\vartheta, \eta_{i}} \nabla_{\theta \eta_{i}} \ell_{i}\left(\vartheta, \eta_{i}\right) & =-\sigma^{-2} e^{(T-1) a(\rho)}\left(\eta_{i}(T-1) b(\rho) e^{(T-1) a(\rho)}+\mathbb{E}_{\vartheta, \eta_{i}} Z_{i}^{\top} \iota / T\right) .
\end{aligned}
$$

The $j$ th column of $Y_{i-}$ is $y_{i,-j}=S_{j}\left(\xi_{i}+F \varepsilon_{i}\right)$, so the $j$ th element of $\mathbb{E}_{\vartheta, \eta_{i}} Y_{i-}^{\top} \iota$ is

$$
\mathbb{E}_{\vartheta, \eta_{i}} y_{i,-j}^{\top} \iota=\iota^{\top} S_{j} \xi_{i}=\iota^{\top} D_{j}^{-1} \iota \eta_{i} e^{(T-1) a(\rho)}+T m_{j}, \quad m_{j}=\iota^{\top} S_{j}\binom{y_{i}^{0}}{D^{-1}\left(C y_{i}^{0}+X_{i} \beta\right)} / T .
$$

Hence,

$$
\mathbb{E}_{\vartheta, \eta_{i}} Z_{i-\iota / T}^{\top}=-\eta_{i}(T-1) b(\rho) e^{(T-1) a(\rho)}+m,
$$

where $m=\left(m_{1}, \ldots, m_{p}, \iota^{\top} X_{i} / T\right)^{\top}$ is free of $\eta_{i}$. Consequently,

$$
A_{i}^{-1} B_{i}=-e^{-(T-1) a(\rho)}\binom{m}{0}
$$

and $\nabla_{\eta_{i}}\left(A_{i}^{-1} B_{i}\right)=0$.
Proof that no orthogonalization exists when $p>1$. In the original parameterization, if $l_{i}\left(\vartheta, \alpha_{i}\right)$ is $i$ 's log-likelihood contribution, we have

$$
\begin{aligned}
\mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\alpha_{i} \alpha_{i}} l_{i}\left(\vartheta, \alpha_{i}\right) & =-\sigma^{-2}, \quad \mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\sigma^{2} \alpha_{i}} l_{i}\left(\vartheta, \alpha_{i}\right)=0, \\
\mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\theta \alpha_{i}} l_{i}\left(\vartheta, \alpha_{i}\right) & =-\sigma^{-2} \mathbb{E}_{\vartheta, \alpha_{i}} Z_{i}^{\top} \iota / T,
\end{aligned}
$$

and so, by the preceeding proof,

$$
A_{i}^{-1} B_{i}=-\binom{\mathbb{E}_{\vartheta, \alpha_{i}} Z_{i}^{\top} \iota / T}{0}=-\binom{-(T-1) b(\rho) \alpha_{i}+m}{0}
$$

Suppose some reparameterized fixed effect, say $\zeta_{i}$, is orthogonal to $\vartheta$. Then $\alpha_{i}=\alpha_{i}\left(\vartheta, \zeta_{i}\right)$ must satisfy the differential equation $\nabla_{\vartheta} \alpha_{i}=A_{i}^{-1} B_{i}$, that is,

$$
\begin{align*}
\nabla_{\rho_{j}} \alpha_{i} & =(T-1) b_{j}(\rho) \alpha_{i}-m_{j}, & & j=1, \ldots, p  \tag{A.3}\\
\nabla_{\beta_{j}} \alpha_{i} & =-m_{p+j}, & & j=1, \ldots, q \tag{A.4}
\end{align*}
$$

and $\nabla_{\sigma^{2}} \alpha_{i}=0$. We show that these equations are inconsistent. Suppose $q>0$. Then (A.3) implies $\nabla_{\rho_{j} \beta_{j^{\prime}}} \alpha_{i}=-\nabla_{\beta_{j^{\prime}}} m_{j}$, which is generally non-zero, while (A.4) implies $\nabla_{\rho_{j} \beta_{j^{\prime}}} \alpha_{i}=0$, so the equations are inconsistent. Suppose $q=0$. Then

$$
T m_{j}=\iota^{\top} S_{j}\binom{I_{p}}{D^{-1} C} y_{i}^{0}, \quad j=1, \ldots, p
$$

and, because $\nabla_{\rho_{j^{\prime}}} b_{j}(\rho)=\nabla_{\rho_{j^{\prime}} \rho_{j}} a(\rho)=\nabla_{\rho_{j}} b_{j^{\prime}}(\rho)$, (A.3) will be inconsistent if $\nabla_{\rho_{j^{\prime}}} m_{j} \neq \nabla_{\rho_{j}} m_{j^{\prime}}$ for some $j, j^{\prime}$. Take $j=p$ and $j^{\prime}=p-1$. The first element of $y_{i}^{0}$ appears in $T m_{p}$ and $T m_{p-1}$ with coefficients $\gamma_{p}=1+\rho_{p} \sum_{t=0}^{T-p-1} \varphi_{t}$ and $\gamma_{p-1}=\rho_{p} \sum_{t=0}^{T-p} \varphi_{t}$, respectively. Differentiating gives

$$
\nabla_{\rho_{p-1}} \gamma_{p}=\rho_{p} \sum_{t=0}^{T-p-1} \nabla_{\rho_{p-1}} \varphi_{t}=\rho_{p} \sum_{t=1}^{T-p} \nabla_{\rho_{p}} \varphi_{t}, \quad \nabla_{\rho_{p}} \gamma_{p-1}=\rho_{p} \sum_{t=1}^{T-p} \nabla_{\rho_{p}} \varphi_{t}+\sum_{k=0}^{T-p} \varphi_{t}
$$

using $\varphi_{0}=1$ and $\nabla_{\rho_{p-1}} \varphi_{t}=\nabla_{\rho_{p}} \varphi_{t+1}$. The latter follows from differentiating $\varphi_{t}$ and a change of variable from $k_{p-1}-1$ to $k_{p-1}$, giving

$$
\nabla_{\rho_{p-1}} \varphi_{t}=\sum_{\tau^{\top}} \frac{\left(\iota^{\top} k+1\right)!}{k_{1}!\cdots k_{p}!} \rho^{k}
$$

which is invariant under a unit shift of $p$ and $t$. Therefore, $\nabla_{\rho_{p-1}} \gamma_{p} \neq \nabla_{\rho_{p}} \gamma_{p-1}$, and (A.3) is inconsistent.

Proof of Equation (3.5). By the preceeding proof,

$$
\frac{\mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\alpha_{i} \vartheta} \ell_{i}}{\mathbb{E}_{\vartheta, \alpha_{i}} \nabla_{\alpha_{i} \alpha_{i}} \ell_{i}}=\binom{\mathbb{E}_{\vartheta, \alpha_{i}} Z_{i}^{\top} \iota / T}{0}
$$

and so

$$
g_{i}=\binom{\sigma^{-2}\left(Z_{i}^{\top}-\mathbb{E}_{\vartheta, \alpha_{i}} Z_{i}^{\top} \iota \iota^{\top} / T\right)\left(y_{i}-Z_{i} \theta-\iota \alpha_{i}\right)}{\sigma^{-4}\left(y_{i}-Z_{i} \theta-\iota \alpha_{i}\right)^{\top}\left(y_{i}-Z_{i} \theta-\iota \alpha_{i}\right) / 2-\sigma^{-2} T / 2} .
$$

Recalling $\mathbb{E}_{\vartheta, \alpha_{i}} Z_{i}^{\top} \iota / T=-(T-1) b(\rho) \alpha_{i}+m$, we have

$$
\nabla_{\alpha_{i} \alpha_{i}} g_{i}=\binom{-2 \sigma^{-2} T(T-1) b(\rho)}{\sigma^{-4} T}, \quad \nabla_{\alpha_{i} \alpha_{i}} \ell_{i}=-\sigma^{-2} T
$$

and therefore

$$
g_{i}-\frac{1}{2} \frac{\nabla_{\alpha_{i} \alpha_{i}} g_{i}}{\nabla_{\alpha_{i} \alpha_{i}} \ell_{i}}=\binom{\sigma^{-2}\left(Z_{i}^{\top}-\mathbb{E}_{\vartheta, \alpha_{i}} Z_{i}^{\top} \iota \iota^{\top} / T\right)\left(y_{i}-Z_{i} \theta-\iota \alpha_{i}\right)-(T-1) b(\rho)}{\sigma^{-4}\left(y_{i}-Z_{i} \theta-\iota \alpha_{i}\right)^{\top}\left(y_{i}-Z_{i} \theta-\iota \alpha_{i}\right) / 2-\sigma^{-2}(T-1) / 2}
$$

Evaluating at $\alpha_{i}=\widehat{\alpha}_{i}(\vartheta)=\iota^{\top}\left(y_{i}-Z_{i} \theta\right) / T$ and noting that $\nabla_{\alpha_{i} \alpha_{i} \alpha_{i}} \ell_{i}=0$ gives (3.5).
Proof of Lemma 3. Let $A=S_{1} F_{0}$ and $B=\nabla_{\rho_{0}} A$. Then

$$
b_{0}=-\frac{\iota^{\top} A \iota}{T(T-1)}, \quad c_{0}=-\frac{\iota^{\top} B \iota}{T(T-1)}, \quad V_{0}^{L B}=\frac{\operatorname{tr} A^{\top} M A}{T-1}=\frac{T \operatorname{tr} A A^{\top}-\iota^{\top} A A^{\top} \iota}{T(T-1)} .
$$

Hence, $V_{0}^{L B} \geq 2 b_{0}^{2}$ and $V_{0}^{L B} \geq 2 b_{0}^{2}-c_{0}$ if and only if

$$
\begin{align*}
T \operatorname{tr} A A^{\top}-\iota^{\top} A A^{\top} \iota-\frac{2\left(\iota^{\top} A \iota\right)^{2}}{T(T-1)} & \geq 0  \tag{A.5}\\
T \operatorname{tr} A A^{\top}-\iota^{\top} A A^{\top} \iota-\frac{2\left(\iota^{\top} A \iota\right)^{2}}{T(T-1)}-\iota^{\top} B \iota & \geq 0 \tag{A.6}
\end{align*}
$$

The matrix $A=A_{T}$ is

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad T=2 \\
& A=\left(\begin{array}{cc}
A_{T-1} & 0 \\
a_{T}^{\top} & 0
\end{array}\right), \quad a_{T}=\left(\rho^{T-2}, \rho^{T-3}, \ldots, 1\right)^{\top}, \quad T>2
\end{aligned}
$$

where the subscript on $\rho$ is omitted. By recursion, it can be deduced that

$$
\begin{aligned}
\iota^{\top} A \iota & =\sum_{j=0}^{T-2}(T-j-1) \rho^{j},
\end{aligned} \iota^{\top} B \iota=\sum_{j=1}^{T-2} j(T-j-1) \rho^{j-1}, ~=\sum_{j=0}^{T-2}(T-j-1) \rho^{2 j}, \quad \iota^{\top} A A^{\top} \iota=\sum_{j=0}^{T-2}\left(\sum_{k=0}^{j} \rho^{k}\right)^{2}, ~ l
$$

yielding $V_{0}^{L B}$ as stated in the lemma. Now let $r>0$ and use the equalities just obtained to see that if (A.6) holds for $\rho=r$, then (A.5) holds for $\rho=r$ and (A.5) and (A.6) hold for $\rho=-r$, with strict inequalities for $T \geq 3$. Hence, we only need to show that (A.6) holds for $\rho \geq 0$, with equality if and only if $T=2$ or $\rho=1$. Write (A.6) as $Q_{T} \geq 0$. Because $Q_{2}=0$, to show that (A.6) holds, it suffices to show that $\Delta Q_{T} \geq 0$ for $T \geq 2$, where $\Delta(\cdot)_{T}=(\cdot)_{T+1}-(\cdot)_{T}$. Write $\Delta Q_{T}$ as

$$
\begin{aligned}
\Delta Q_{T}= & \Delta\left(T \operatorname{tr} A A^{\top}-\iota^{\top} A A^{\top} \iota-2 \frac{\left(\iota^{\top} A \iota\right)^{2}}{T(T-1)}-\iota^{\top} B \iota\right)_{T} \\
= & \left\{\left(\operatorname{tr} A A^{\top}\right)_{T+1}-2 \frac{\left(\iota^{\top} A \iota\right)_{T+1}^{2}}{T(T+1)}\right\}+\left\{2 \frac{\left(\iota^{\top} A \iota\right)_{T}^{2}}{T(T-1)}-\Delta\left(\iota^{\top} B \iota\right)_{T}\right\} \\
& +\left\{T \Delta\left(\operatorname{tr} A A^{\top}\right)_{T}-\Delta\left(\iota^{\top} A A^{\top} \iota\right)_{T}\right\}
\end{aligned}
$$

and denote the quantities in braces as $\tau_{1}, \tau_{2}$, and $\tau_{3}$. Using $T(T+1) / 2=\sum_{i=0}^{T-1}(T-i)$, we have

$$
\begin{aligned}
\tau_{1} & =\sum_{j=0}^{T-1}(T-j) \rho^{2 j}-\frac{2}{T(T+1)}\left(\sum_{j=0}^{T-1}(T-j) \rho^{j}\right)^{2} \\
& =\frac{2}{T(T+1)}\left(\sum_{i=0}^{T-1} \sum_{j=0}^{T-1}(T-i)(T-j) \rho^{2 j}-\sum_{i=0}^{T-1} \sum_{j=0}^{T-1}(T-i)(T-j) \rho^{i+j}\right) \\
& =\frac{2}{T(T+1)} u^{\top} R u
\end{aligned}
$$

where $u=(T, T-1, \ldots, 1)^{\top}$ and

$$
R=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\rho^{2} & \rho^{2} & \cdots & \rho^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\rho^{2 T-2} & \rho^{2 T-2} & \cdots & \rho^{2 T-2}
\end{array}\right)-\left(\begin{array}{cccc}
1 & \rho & \cdots & \rho^{T-1} \\
\rho & \rho^{2} & \cdots & \rho^{T} \\
\vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T} & \cdots & \rho^{2 T-2}
\end{array}\right)
$$

Consider the principal minors of $R$. Those of order 1 are 0 ; those of order 2 are

$$
\operatorname{det}\left(\begin{array}{cc}
0 & \rho^{2 i}-\rho^{i+j} \\
\rho^{2 j}-\rho^{i+j} & 0
\end{array}\right)=\rho^{i+j}\left(\rho^{j}-\rho^{i}\right)^{2} \geq 0, \quad 0<i<j<T,
$$

given $\rho \geq 0$; and those of order greater than 2 are 0 because $R$ is the sum of two matrices of rank 1 and, hence, $\operatorname{rank}(R) \leq 2$. Therefore, $R$ is positive semi-definite and $\tau_{1} \geq 0$. Furthermore,

$$
\tau_{3}=T \sum_{j=0}^{T-1} \rho^{2 j}-\left(\sum_{j=0}^{T-1} \rho^{j}\right)^{2}=\sum_{i=0}^{T-1} \sum_{j=0}^{T-1} \rho^{2 j}-\sum_{i=0}^{T-1} \sum_{j=0}^{T-1} \rho^{i+j}=\iota^{\top} R \iota \geq 0
$$

Use

$$
\begin{aligned}
\Delta\left(\iota^{\top} B \iota\right)_{T} & =\sum_{j=1}^{T-1} j(T-j) \rho^{j-1}-\sum_{j=1}^{T-2} j(T-j-1) \rho^{j-1}=\sum_{j=0}^{T-2}(j+1) \rho^{j} \\
& =\frac{2}{T(T-1)} \sum_{i=0}^{T-2} \sum_{j=0}^{T-2}(T-i-1)(j+1) \rho^{j}
\end{aligned}
$$

to write

$$
\tau_{2}=d\left(\sum_{i=0}^{T-2} \sum_{j=0}^{T-2}(T-i-1)(T-j-1) \rho^{i+j}-\sum_{i=0}^{T-2} \sum_{j=0}^{T-2}(T-i-1)(j+1) \rho^{j}\right)
$$

where $d=\frac{2}{T(T-1)}$. Note that $\tau_{2}$ is a polynomial of degree $2 T-4$ in $\rho$. When $T=2$ or $\rho=1, \tau_{2}=0$. When $\rho \neq 1$,

$$
\left(\iota^{\top} A \iota\right)_{T}=\frac{T-1-T \rho+\rho^{T}}{(1-\rho)^{2}}, \quad \Delta\left(\iota^{\top} B \iota\right)_{T}=\frac{1-\rho^{T}-T \rho^{T-1}+T \rho^{T}}{(1-\rho)^{2}}
$$

and so

$$
\tau_{2}=\frac{d\left(T-1-T \rho+\rho^{T}\right)^{2}}{(1-\rho)^{4}}-\frac{1-\rho^{T}-T \rho^{T-1}+T \rho^{T}}{(1-\rho)^{2}}
$$

For $T>2$,

$$
\lim _{\rho \rightarrow 1} \tau_{2}(1-\rho)^{-2}=\frac{1}{72} T(T-1)(T-2)(T+1)>0
$$

and, therefore, $\tau_{2}=(1-\rho)^{2} P(T, \rho)$, where $P(T, \rho)$ is a polynomial of degree $2 T-6$. If all coefficients of $P(T, \rho)=$ $\sum_{j=0}^{2 T-6} p_{j} \rho^{j}$ are positive, we conclude that $\tau_{2} \geq 0$. Write $\tau_{2}=\sum_{j=0}^{2 T-4} q_{j} \rho^{j}$, where $q_{j}$ is found as

$$
q_{j}= \begin{cases}\frac{d}{6}\{(j+1)(j(j-1)+6(T-1)(T-j-1))-3 j T(T-1)\}, & j \leq T-2 \\ \frac{d}{6}(2 T-j-1)(2 T-j-2)(2 T-j-3), & T-1 \leq j\end{cases}
$$

Equating the coefficients of $\tau_{2}$ and $(1-\rho)^{2} P(T, \rho)$ gives $p_{k}=\sum_{j=0}^{k}(k+1-j) q_{j}$. To show that $p_{k}>0$ for $0 \leq k \leq$ $2 T-6$, we only need to show that $p_{k}>0$ for $k$ up to $T-2$ because for larger $k, q_{k}>0$ and so $p_{k}$ increases in $k$. For $k$ up to $\min (T-2,2 T-6)$, we obtain

$$
p_{k}=\frac{d}{12}(k+1)(k+2)(k+3)\left((T-1)(2 T-k-2)+\frac{k}{10}(k-1)-T(T-1)\right)
$$

and, hence, $p_{k}>0$ because either $k<T-2$, implying $2 T-k-2>T$, or $k=T-2 \leq 2 T-6$, implying $T \geq 4$ and $k \geq 2$. Therefore, $\tau_{2} \geq 0$. This establishes $Q_{T} \geq 0$, that is, (A.6). Recall that $Q_{2}=0$ and note that $\rho=1$ implies $\tau_{1}=\tau_{2}=\tau_{3}=0$ and, hence, $Q_{T}=0$. Therefore, $Q_{T}=0$ if $T=2$ or $\rho=1$. If $T \geq 2$ and $\rho \neq 1$, then $\Delta Q_{T}>0$ because $\tau_{3}>0$ when $T=2$ and $\tau_{2}>0$ when $T>2$. Therefore, $Q_{T}=0$ only if $T=2$ or $\rho=1$.

Proof of Theorem 1. $L_{\mathrm{a}}(\rho)$ having a local maximum or a flat inflection point at $\rho_{0}$ is equivalent to $b(\rho)$ approaching $S(\rho)$ from below as $\rho$ approaches $\rho_{0}$ from the left. We will write this as $b(\rho) \uparrow S(\rho)$ at $\rho_{0}$, and show that $b(\rho) \uparrow S(\rho)$ on $[\underline{\rho}, \bar{\rho}]$ at most once. From

$$
\nabla_{\rho} H(\rho)=\frac{2\left(\rho-\rho_{\mathrm{ml}}\right)\left(3 \zeta_{0}^{2}-\left(\rho-\rho_{\mathrm{ml}}\right)^{2}\right)}{\left(\zeta_{0}^{2}+\left(\rho-\rho_{\mathrm{ml}}\right)^{2}\right)^{3}}
$$

it follows that $S(\rho)$ is strictly concave on $\left[\underline{\rho}, \rho_{\mathrm{ml}}\right]$ and strictly convex on $\left[\rho_{\mathrm{ml}}, \bar{\rho}\right]$. Because $\varphi_{t}=\rho^{t}, b(\rho)$ and its first two derivatives are

$$
\begin{aligned}
b(\rho) & =-\sum_{t=0}^{T-2} \frac{T-1-t}{T(T-1)} \rho^{t}, \\
c(\rho) & =-\sum_{t=1}^{T-2} \frac{t(T-1-t)}{T(T-1)} \rho^{t-1}, \quad d(\rho)=-\sum_{t=2}^{T-2} \frac{t(t-1)(T-1-t)}{T(T-1)} \rho^{t-2} .
\end{aligned}
$$

For $\rho \neq 1$,

$$
\begin{aligned}
b(\rho) & =-\frac{T-1-T \rho+\rho^{T}}{T(T-1)(1-\rho)^{2}}, \quad c(\rho)=-\frac{T-2-T \rho+T \rho^{T-1}-(T-2) \rho^{T}}{T(T-1)(1-\rho)^{3}}, \\
d(\rho) & =-\frac{2 T-6-2 T \rho+T(T-1) \rho^{T-2}-2 T(T-3) \rho^{T-1}+(T-2)(T-3) \rho^{T}}{T(T-1)(1-\rho)^{4}} .
\end{aligned}
$$

When $T \leq 3, b(\rho)$ is linear and so, given that $S(\rho)$ is concave-convex on $[\underline{\rho}, \bar{\rho}], b(\rho) \uparrow S(\rho)$ on $[\underline{\rho}, \bar{\rho}]$ at most once. Suppose $T \geq 4$. Then, $b(\rho)$ is a polynomial of degree 2 or higher with negative coefficients, so $b(\rho)$ is negative, decreasing, and strictly concave, on $\mathbb{R}_{+}$. Further, by Descartes' rule of signs, $c(\rho)$ has one zero on $\mathbb{R}_{-}$when $T$ is even and none when $T$ is odd, and $d(\rho)$ has no zeros on $\mathbb{R}_{-}$when $T$ is even and one when $T$ is odd. Suppose $T$ is even. Then $c(-1)=0$ and $b(-1)=-\frac{1}{2(T-1)}<0$, so $b(\rho)$ is negative and strictly concave on $\mathbb{R}$, and, hence, its intersection with $S(\rho)$ on $[\underline{\rho}, \bar{\rho}]$ can only be on $\left(\rho_{\mathrm{ml}}, \bar{\rho}\right]$, where $S(\rho)$ is strictly convex and is approached from below by $b(\rho)$ at most once. Now suppose $T$ is odd and $T \geq 5$. Then,

$$
d(-1)=\frac{T-3}{4 T}>0, \quad d\left(-\frac{1}{2}\right)=-\frac{2^{4-T}(T-2)\left(2^{T}-3 T+1\right)}{27 T(T-1)}<0
$$

so $b(\rho)$ is strictly convex on $\left(-\infty, \rho_{v}\right]$ and strictly concave on $\left[\rho_{v}, \infty\right)$ for some $\rho_{v} \in\left(-1,-\frac{1}{2}\right)$ and decreases on $\mathbb{R}$. Define $\rho_{u}$ by $b\left(\rho_{u}\right)=0$, that is, by $T\left(1-\rho_{u}\right)=1-\rho_{u}^{T}, \rho_{u} \in \mathbb{R}_{-}$. Since $T \geq 5$, we have $-2<\rho_{u}<-1$. Thus, $b(\rho)$ is negative and strictly convex on $\left(\rho_{u}, \rho_{v}\right]$, with $-2<\rho_{u}<-1<\rho_{v}<-\frac{1}{2}$. Let $R=\left[\rho_{u}, \rho_{v}\right] \cap\left[\rho_{\mathrm{ml}}, \bar{\rho}\right]$. If $R$ is empty, then $\rho_{v}<\rho_{\mathrm{ml}}$ or $\bar{\rho}<\rho_{u}$; in either case, by the concavity-convexity of $S(\rho), b(\rho) \uparrow S(\rho)$ on $[\underline{\rho}, \bar{\rho}]$ at most once. If $R$ is non-empty, to show that $b(\rho) \uparrow S(\rho)$ on $[\underline{\rho}, \bar{\rho}]$ at most once, it suffices to show that $S(\rho)$ decreases faster than $b(\rho)$ on $R$, i.e., $H(\rho)<c(\rho)$ for $\rho \in R$. We will show below that (i) $V_{0}^{L B} \geq \frac{T-1}{T}$ if $\rho_{0} \leq 0$; (ii) $V_{0}^{L B} \geq \frac{1}{2}$ if $\rho_{0}>0$. By (ii), $\rho_{\mathrm{ml}}=\rho_{0}+b_{0} / V_{0} \geq \rho_{0}+2 b_{0}>-\frac{1}{2}$ if $0<\rho_{0} \leq 1$ because $b(0)=-\frac{1}{T}, b(1)=-\frac{1}{2}$, and $b(\rho)$ is concave on [ 0,1$]$. Further, $\rho_{\mathrm{ml}}>0$ if $\rho_{0}>1$ because, then, $\frac{b_{0}}{V_{0}}>\frac{1}{2 b_{0}}>-1$. Hence, $R$ is empty if $\rho_{0}>0$. Now suppose $\rho_{0} \leq 0$. Define $\rho_{w}$ by $S\left(\rho_{w}\right)=b\left(\rho_{v}\right), \rho_{w} \in\left[\rho_{\mathrm{ml}}, \bar{\rho}\right]$; and $\rho_{w}^{\prime}$ by $S\left(\rho_{w}^{\prime}\right)=b(0)=-\frac{1}{T}, \rho_{w}^{\prime} \in\left[\rho_{\mathrm{ml}}, \bar{\rho}\right]$. Then $\rho_{w}-\rho_{\mathrm{ml}}<\rho_{w}^{\prime}-\rho_{\mathrm{ml}}=\frac{1}{2}\left(T-\sqrt{T^{2}-4 \zeta_{0}^{2}}\right)$. By (i), $\zeta_{0}^{2}=\frac{V_{0}-b_{0}^{2}}{V_{0}^{2}} \leq \frac{1}{V_{0}} \leq \frac{T}{T-1} \leq \frac{5}{4}$. Since $H(\rho)$ increases on $\left[\rho_{\mathrm{ml}}, \bar{\rho}\right]$ and $H\left(\rho_{w}^{\prime}\right)$ decreases in $T$ and increases in $\zeta_{0}^{2}$,

$$
\begin{aligned}
H\left(\rho_{w}\right) & =-\frac{\zeta_{0}^{2}}{\left(\zeta_{0}^{2}+\left(\rho_{w}-\rho_{\mathrm{ml}}\right)^{2}\right)^{2}}+2 S^{2}\left(\rho_{w}\right)<-\frac{\zeta_{0}^{2}}{\left(\zeta_{0}^{2}+\left(\rho_{w}^{\prime}-\rho_{\mathrm{ml}}\right)^{2}\right)^{2}}+\frac{2}{T^{2}} \\
& \leq-\frac{5 / 4}{\left(\frac{5}{4}+\frac{1}{4}(5-\sqrt{20})^{2}\right)^{2}}+\frac{2}{25}<-\frac{1}{2}
\end{aligned}
$$

and so, $H(\rho)<-\frac{1}{2}$ for $\rho \in\left[\rho_{\mathrm{ml}}, \rho_{w}\right]$. On the other hand, $T\left(1-\rho_{u}\right)=1-\rho_{u}^{T}$ implies $\frac{1-\rho_{u}}{\rho_{u}}=\frac{1-\rho_{u}^{T-1}}{T-1}$ and, therefore,

$$
c\left(\rho_{u}\right)=-\frac{-T+T \rho_{u}^{T-1}}{T(T-1)\left(1-\rho_{u}\right)^{2}}=\frac{1}{\rho_{u}\left(1-\rho_{u}\right)}>-\frac{1}{2} .
$$

So, $c(\rho)>-\frac{1}{2}$ for $\rho \in\left[\rho_{u}, \rho_{v}\right]$ and $H(\rho)<c(\rho)$ for $\rho \in R$. We conclude that $b(\rho) \uparrow S(\rho)$ on $[\rho, \bar{\rho}]$ at most once, provided (i) and (ii) hold, which we now show. Write $V_{0}^{L B}=\frac{1}{T(T-1)} \sum_{j=0}^{2 T-4} v_{j} \rho_{0}^{j}$, where

$$
\begin{aligned}
v_{2 j}= & T(T-j-1) \\
& -\left\{(2 j+1)(T-j-1)-j(j+1)+(2 j-T+1)(2 j-T+2) 1_{\{2 j \geq T\}}\right\}, \\
v_{2 j+1}= & -\left\{(2 j+2)(T-j-2)-j(j+1)+(2 j-T+2)(2 j-T+3) 1_{\{2 j+1 \geq T\}}\right\},
\end{aligned}
$$

using $\left(\sum_{k=0}^{j} \rho^{k}\right)^{2}=\sum_{k=0}^{j}(k+1) \rho^{k}+\sum_{k=1}^{j}(j-k+1) \rho^{j+k}$. Clearly, $v_{2 j+1}<0$. Further, $v_{2 j}>0$ because

$$
v_{2 j}= \begin{cases}(T-2 j-1)(T-j-1)+j(j+1) & \text { if } 0 \leq 2 j<T, \\ (T-j-1)(j+1) & \text { if } T \leq 2 j \leq 2 T-4 .\end{cases}
$$

Hence, $V_{0}^{L B}$ decreases in $\rho_{0}$ on $\mathbb{R}_{-}$and (i) follows because $V_{0}^{L B}=\frac{T-1}{T}$ when $\rho_{0}=0$. When $0<\rho_{0}<1$, a sufficient condition for $V_{0}^{L B} \geq \frac{1}{2}$ is that $d_{k} \geq 0$ for $0 \leq k \leq T-2$, where $d_{k}=\sum_{j=0}^{k}\left(v_{2 j}+v_{2 j+1}\right)-\frac{T(T-1)}{2}$. We have

$$
v_{2 j}+v_{2 j+1}= \begin{cases}(T-2 j-1)(T-j-1)-(T-2 j-2)(2 j+2) & \text { if } 2 j+1<T \\ (2 j-T+3)(T-j-1) & \text { if } 2 j+1 \geq T\end{cases}
$$

Only when $2 j+1<T$ is it possible that $v_{2 j}+v_{2 j+1}<0$, so it suffices to show that $d_{k} \geq 0$ for $2 k+1<T$. We obtain, for $2 k+1<T$,

$$
d_{k}=\frac{1}{2}(k+1)\left(2 T^{2}-5 T k+4 k^{2}-8 T+13 k+10\right)-\frac{T(T-1)}{2} .
$$

Define $f_{k}$ by $d_{k}=\frac{1}{2}(k+1) f_{k}$. Then, $f_{0}=(T-2)(T-5) \geq 0, f_{1}=\frac{1}{2}\left(3 T^{2}-25 T+54\right)>0$, and, for $k \geq 2$,

$$
\begin{aligned}
f_{k} & >\frac{5}{3} T^{2}-5 T k+4 k^{2}-8 T+13 k+10 \\
& =\frac{1}{3}((T-2 k-2)(5 T-6 k-16)+k(T-5)+2(T-1))>0 .
\end{aligned}
$$

Hence, $V_{0}^{L B} \geq \frac{1}{2}$ when $0<\rho_{0}<1$. When $\rho_{0} \geq 1$, it also holds that $V_{0}^{L B} \geq \frac{1}{2}$ because then $b_{0}<b(1)=-\frac{1}{2}$ and $V_{0}^{L B} \geq 2 b_{0}^{2}$. Therefore, (ii) holds.

Proof of Lemma 4. Use $y_{i,-1}=S_{1}\left(\xi_{0 i}+F_{0} \varepsilon_{i}\right)$ to write $Z_{i}=\left(y_{i,-1}, X_{i}\right)=\left(S_{1} F_{0} \varepsilon_{i}, 0\right)+\Xi_{i}$, where $\Xi_{i}=\left(S_{1} \xi_{0 i}, X_{i}\right)$ is independent of $\varepsilon_{i}$. Proceeding as above, we have

$$
V_{0}=\frac{\operatorname{pim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} Z_{i}^{\top} M Z_{i}}{\sigma_{0}^{2}(T-1)}=\left(\begin{array}{cc}
V_{0}^{L B} & 0 \\
0 & 0
\end{array}\right)+V_{\Xi},
$$

where

$$
V_{\Xi}=\left(\begin{array}{cc}
V_{\xi \xi} & V_{\xi X} \\
V_{X \xi} & V_{X X}
\end{array}\right)=\frac{\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \Xi_{i}^{\top} M \Xi_{i}}{\sigma_{0}^{2}(T-1)}
$$

is positive semi-definite and $V_{X X}$ is positive definite by assumption. Therefore, $V_{\xi \xi}-V_{\xi X} V_{X X}^{-1} V_{X \xi} \geq 0$ and $\left(V_{0}^{\rho \rho}\right)^{-1}=$ $V_{0}^{L B}+V_{\xi \xi}-V_{\xi X} V_{X X}^{-1} V_{X \xi} \geq V_{0}^{L B}$.

## Appendix B: Tables

Table 1. Simulation results for the first-order autoregression, $N=100$ observations.

|  |  |  | bias |  |  |  |  | std |  |  |  | $\mathrm{ci}_{.}^{\mathrm{a}} 95$ |  |  | $\mathrm{ci}_{.}^{\mathrm{b}} 95$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\psi$ | $T$ | $\rho_{0}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ |
| 0 | 2 | . 50 | $-.143$ | - | -. 747 | -. 996 | . 266 | - | . 151 | . 106 | . 879 | . 919 | . 003 | . 002 | . 928 | . 979 | . 011 | . 000 |
| 1 | 2 | . 50 | . 027 | - | $-.375$ | -. 750 | . 268 | - | . 140 | . 093 | . 942 | . 934 | . 352 | . 000 | . 948 | . 967 | . 321 | . 000 |
| 2 | 2 | . 50 | . 026 |  | . 112 | $-.425$ | . 168 | - | . 112 | . 075 | . 969 | . 943 | 1.000 | . 001 | . 949 | . 943 | . 825 | . 005 |
| 0 | 4 | . 50 | . 006 | -. 043 | $-.296$ | -. 441 | . 142 | . 148 | . 066 | . 055 | . 955 | . 921 | . 009 | . 000 | . 945 | . 913 | . 025 | . 000 |
| 1 | 4 | . 50 | . 014 | $-.055$ | $-.141$ | -. 328 | . 124 | . 166 | . 067 | . 055 | . 964 | . 925 | . 474 | . 000 | . 942 | . 906 | . 493 | . 001 |
| 2 | 4 | . 50 | . 003 | -. 015 | . 073 | -. 184 | . 064 | . 084 | . 056 | . 046 | . 968 | . 937 | . 941 | . 021 | . 939 | . 932 | . 775 | . 045 |
| 0 | 6 | . 50 | . 007 | $-.033$ | $-.147$ | -. 246 | . 090 | . 081 | . 051 | . 043 | . 968 | . 923 | . 155 | . 000 | . 944 | . 887 | . 231 | . 001 |
| 1 | 6 | . 50 | . 003 | -. 047 | $-.072$ | $-.196$ | . 067 | . 098 | . 049 | . 041 | . 971 | . 911 | . 666 | . 003 | . 945 | . 864 | . 698 | . 009 |
| 2 | 6 | . 50 | -. 001 | -. 022 | . 043 | $-.123$ | . 045 | . 064 | . 042 | . 035 | . 958 | . 924 | . 873 | . 064 | . 937 | . 905 | . 834 | . 101 |
| 0 | 8 | . 50 | . 001 | -. 027 | $-.085$ | -. 163 | . 056 | . 058 | . 043 | . 036 | . 965 | . 921 | . 427 | . 005 | . 941 | . 864 | . 516 | . 011 |
| 1 | 8 | . 50 | . 000 | -. 040 | $-.044$ | $-.137$ | . 048 | . 069 | . 040 | . 034 | . 960 | . 908 | . 773 | . 022 | . 944 | . 835 | . 809 | . 037 |
| 2 | 8 | . 50 | . 000 | -. 022 | . 029 | -. 092 | . 036 | . 052 | . 034 | . 030 | . 954 | . 927 | . 870 | . 128 | . 946 | . 889 | . 877 | . 171 |
| 0 | 16 | . 50 | -. 001 | -. 020 | $-.022$ | -. 064 | . 028 | . 030 | . 026 | . 024 | . 948 | . 902 | . 841 | . 238 | . 944 | . 794 | . 865 | . 274 |
| 1 | 16 | . 50 | $-.001$ | -. 027 | $-.012$ | $-.059$ | . 026 | . 035 | . 025 | . 023 | . 947 | . 880 | . 904 | . 278 | . 946 | . 760 | . 918 | . 321 |
| 2 | 16 | . 50 | -. 001 | -. 022 | . 009 | -. 047 | . 023 | . 032 | . 023 | . 021 | . 947 | . 890 | . 915 | . 387 | . 946 | . 792 | . 936 | . 426 |
| 0 | 24 | . 50 | $-.001$ | -. 018 | $-.010$ | -. 039 | . 021 | . 022 | . 020 | . 019 | . 944 | . 868 | . 902 | . 461 | . 944 | . 728 | . 916 | . 496 |
| 1 | 24 | . 50 | $-.001$ | -. 023 | $-.006$ | $-.037$ | . 020 | . 025 | . 020 | . 019 | . 943 | . 850 | . 925 | . 492 | . 941 | . 691 | . 931 | . 527 |
| 2 | 24 | . 50 | . 000 | $-.020$ | . 004 | -. 031 | . 019 | . 024 | . 018 | . 017 | . 946 | . 865 | . 928 | . 555 | . 943 | . 724 | . 939 | . 582 |
| 0 | 2 | . 95 | $-.143$ |  | $-.525$ | -1.000 | . 265 | - | . 150 | . 100 | . 879 | . 922 | . 287 | . 000 | . 927 | . 980 | . 128 | . 000 |
| 1 | 2 | . 95 | $-.120$ | - | $-.490$ | $-.977$ | . 266 | - | . 152 | . 101 | . 893 | . 921 | . 369 | . 000 | . 934 | . 978 | . 170 | . 000 |
| 2 | 2 | . 95 | -. 059 | - | $-.385$ | -. 907 | . 265 | - | . 152 | . 101 | . 918 | . 930 | . 638 | . 000 | . 947 | . 975 | . 346 | . 000 |
| 0 | 4 | . 95 | -. 086 | -. 676 | $-.276$ | $-.537$ | . 124 | . 456 | . 071 | . 057 | . 889 | . 673 | . 074 | . 000 | . 908 | . 615 | . 059 | . 000 |
| 1 | 4 | . 95 | $-.061$ | -. 696 | $-.239$ | -. 509 | . 124 | . 472 | . 073 | . 059 | . 910 | . 689 | . 185 | . 000 | . 932 | . 627 | . 132 | . 000 |
| 2 | 4 | . 95 | $-.015$ | -. 386 | $-.151$ | -. 443 | . 123 | . 418 | . 070 | . 055 | . 939 | . 812 | . 636 | . 000 | . 948 | . 755 | . 450 | . 000 |
| 0 | 6 | . 95 | -. 059 | -. 468 | $-.189$ | -. 382 | . 084 | . 263 | . 051 | . 042 | . 889 | . 543 | . 046 | . 000 | . 899 | . 306 | . 056 | . 000 |
| 1 | 6 | . 95 | $-.038$ | -. 511 | $-.157$ | $-.357$ | . 083 | . 272 | . 049 | . 041 | . 911 | . 534 | . 151 | . 000 | . 936 | . 296 | . 140 | . 000 |
| 2 | 6 | . 95 | $-.003$ | $-.286$ | $-.080$ | -. 297 | . 082 | . 233 | . 046 | . 038 | . 944 | . 749 | . 718 | . 000 | . 949 | . 520 | . 604 | . 000 |
| 0 | 8 | . 95 | -. 044 | -. 346 | $-.146$ | $-.301$ | . 063 | . 174 | . 038 | . 032 | . 889 | . 433 | . 032 | . 000 | . 908 | . 151 | . 048 | . 000 |
| 1 | 8 | . 95 | $-.025$ | -. 399 | $-.115$ | $-.276$ | . 063 | . 192 | . 038 | . 032 | . 915 | . 396 | . 159 | . 000 | . 944 | . 145 | . 171 | . 000 |
| 2 | 8 | . 95 | . 002 | -. 226 | $-.046$ | $-.222$ | . 063 | . 159 | . 035 | . 029 | . 946 | . 660 | . 807 | . 000 | . 940 | . 356 | . 730 | . 000 |
| 0 | 16 | . 95 | -. 016 | -. 148 | $-.076$ | $-.167$ | . 034 | . 061 | . 020 | . 018 | . 901 | . 237 | . 024 | . 000 | . 941 | . 020 | . 058 | . 000 |
| 1 | 16 | . 95 | $-.005$ | -. 197 | $-.052$ | $-.147$ | . 034 | . 076 | . 020 | . 018 | . 929 | . 145 | . 217 | . 000 | . 942 | . 015 | . 272 | . 000 |
| 2 | 16 | . 95 | . 004 | $-.125$ | $-.006$ | $-.107$ | . 030 | . 063 | . 017 | . 015 | . 959 | . 350 | . 947 | . 000 | . 942 | . 085 | . 923 | . 000 |
| 0 | 24 | . 95 | -. 006 | $-.090$ | $-.050$ | $-.115$ | . 024 | . 033 | . 015 | . 013 | . 920 | . 157 | . 038 | . 000 | . 942 | . 006 | . 084 | . 000 |
| 1 | 24 | . 95 | . 000 | -. 126 | $-.032$ | -. 099 | . 024 | . 042 | . 014 | . 013 | . 943 | . 059 | . 301 | . 000 | . 942 | . 003 | . 378 | . 000 |
| 2 | 24 | . 95 | . 001 | -. 091 | . 001 | $-.070$ | . 018 | . 038 | . 011 | . 011 | . 962 | . 164 | . 955 | . 000 | . 946 | . 020 | . 947 | . 000 |

'-' indicates non-existence of the moment.

Table 2. Simulation results for the second-order autoregression, $N=100$ observations.

|  |  |  | bias |  |  |  | std |  |  |  |  | $\mathrm{ci}^{\mathrm{a}} 95$ |  |  | $\mathrm{ci}_{.} \mathrm{b}^{\text {b }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\psi$ | $T$ | $\rho_{0}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ |
| . 3 | 2 | . 60 | $-.147$ | - | -. 999 | -. 999 | . 264 | - | . 102 | . 102 | . 885 | . 919 | . 000 | . 000 | . 930 | . 980 | . 000 | . 000 |
|  |  | . 20 | $-.118$ | - | -. 881 | -. 881 | . 714 | - | . 515 | . 515 | . 955 | . 942 | . 577 | . 577 | . 934 | . 984 | . 634 | . 634 |
| 1 | 2 | . 60 | $-.147$ | - | $-1.000$ | $-1.000$ | . 266 | - | . 103 | . 103 | . 873 | . 923 | . 000 | . 000 | . 925 | . 980 | . 000 | . 000 |
|  |  | . 20 | $-.128$ | - | $-.885$ | $-.885$ | . 315 | - | . 182 | . 182 | . 909 | . 927 | . 002 | . 002 | . 922 | . 979 | . 011 | . 011 |
| 2 | 2 | . 60 | $-.144$ |  | $-1.001$ | $-1.001$ | . 267 | - | . 100 | . 100 | . 878 | . 926 | . 000 | . 000 | . 924 | . 982 | . 000 | . 000 |
|  |  | . 20 | -. 126 | - | -. 888 | -. 888 | . 261 | - | . 120 | . 120 | . 890 | . 928 | . 000 | . 000 | . 917 | . 981 | . 000 | . 000 |
| . 3 | 4 | . 60 | -. 069 | $-.263$ | $-.339$ | $-.405$ | . 123 | . 274 | . 070 | . 068 | . 902 | . 787 | . 005 | . 000 | . 919 | . 710 | . 007 | . 001 |
|  |  | . 20 | $-.031$ | $-.116$ | $-.454$ | -. 424 | . 099 | . 134 | . 079 | . 076 | . 940 | . 811 | . 000 | . 000 | . 932 | . 769 | . 000 | $.001$ |
| 1 | 4 | . 60 | . 001 | $-.040$ | $-.250$ | -. 312 | . 122 | . 120 | . 065 | . 062 | . 952 | . 926 | . 045 | . 002 | . 952 | . 906 | . 056 | . 005 |
|  |  | . 20 | $-.001$ | $-.020$ | -. 386 | -. 362 | . 093 | . 090 | . 072 | . 068 | . 963 | . 937 | . 000 | . 000 | . 948 | . 927 | . 002 | . 003 |
| 2 | 4 | . 60 | . 008 | $-.011$ | -. 132 | -. 177 | . 081 | . 064 | . 050 | . 048 | . 969 | . 937 | . 297 | . 058 | . 944 | . 933 | . 316 | . 087 |
|  |  | . 20 | . 004 | $-.006$ | $-.256$ | $-.241$ | . 072 | . 064 | . 059 | . 056 | . 965 | . 942 | . 005 | . 007 | . 941 | . 938 | . 020 | . 024 |
| . 3 | 6 | . 60 | $-.031$ | -. 148 | -. 196 | -. 237 | . 082 | . 137 | . 054 | . 053 | . 926 | . 777 | . 071 | . 007 | . 931 | . 591 | . 087 | . 019 |
|  |  | . 20 | $-.016$ | -. 072 | -. 336 | -. 322 | . 069 | . 077 | . 053 | . 052 | . 949 | . 833 | . 000 | . 000 | . 945 | . 713 | . 001 | . 001 |
| 1 | 6 | . 60 | . 009 | -. 039 | -. 131 | -. 167 | . 082 | . 073 | . 051 | . 050 | . 962 | . 910 | . 314 | . 096 | . 948 | . 850 | . 326 | . 128 |
|  |  | . 20 | . 005 | $-.017$ | -. 269 | $-.256$ | . 066 | . 058 | . 051 | . 049 | . 964 | . 930 | . 000 | . 001 | . 944 | . 915 | . 002 | . 003 |
| 2 | 6 | . 60 | . 002 | $-.011$ | $-.052$ | $-.078$ | . 048 | . 046 | . 041 | . 040 | . 959 | . 933 | . 768 | . 522 | . 946 | . 922 | . 765 | . 555 |
|  |  | . 20 | . 000 | -. 005 | -. 169 | $-.158$ | . 046 | . 044 | . 042 | . 041 | . 952 | . 943 | . 025 | . 036 | . 942 | . 943 | . 051 | . 063 |
| . 3 | 8 | . 60 | $-.015$ | -. 098 | -. 136 | -. 162 | . 064 | . 088 | . 046 | . 045 | . 943 | . 782 | . 180 | . 065 | . 944 | . 555 | . 217 | . 093 |
|  |  | . 20 | $-.006$ | $-.050$ | -. 264 | -. 256 | . 056 | . 057 | . 043 | . 042 | . 958 | . 846 | . 000 | . 000 | . 945 | . 712 | . 000 | . 000 |
| 1 | 8 | . 60 | . 008 | -. 032 | -. 086 | -. 108 | . 063 | . 054 | . 042 | . 042 | . 964 | . 905 | . 507 | . 288 | . 950 | . 835 | . 532 | . 325 |
|  |  | . 20 | . 004 | -. 014 | -. 208 | -. 200 | . 052 | . 045 | . 040 | . 039 | . 970 | . 936 | . 001 | . 001 | . 949 | . 911 | . 005 | . 006 |
| 2 | 8 | . 60 | . 001 | -. 011 | -. 028 | -. 044 | . 037 | . 037 | . 034 | . 034 | . 958 | . 933 | . 877 | . 757 | . 945 | . 919 | . 873 | . 771 |
|  |  | . 20 | . 000 | $-.003$ | -. 129 | -. 121 | . 036 | . 036 | . 034 | . 034 | . 950 | . 949 | . 046 | . 062 | . 952 | . 948 | . 085 | . 104 |
| . 3 | 16 | . 60 | . 003 | -. 041 | $-.052$ | $-.059$ | . 037 | . 036 | . 029 | . 029 | . 965 | . 794 | . 588 | . 494 | . 945 | . 574 | . 619 | . 538 |
|  |  | . 20 | . 001 | $-.025$ | -. 140 | -. 138 | . 035 | . 031 | . 027 | . 026 | . 963 | . 862 | . 001 | . 001 | . 944 | . 744 | . 003 | . 003 |
| 1 | 16 | . 60 | . 000 | -. 024 | $-.033$ | $-.039$ | . 031 | . 031 | . 028 | . 028 | . 957 | . 869 | . 773 | . 703 | . 940 | . 753 | . 784 | . 723 |
|  |  | . 20 | . 000 | $-.011$ | -. 111 | $-.108$ | . 029 | . 028 | . 026 | . 026 | . 948 | . 927 | . 013 | . 014 | . 940 | . 890 | . 026 | . 030 |
| 2 | 16 | . 60 | . 000 | -. 010 | $-.007$ | $-.012$ | . 025 | . 026 | . 025 | . 025 | . 947 | . 925 | . 944 | . 921 | . 945 | . 887 | . 937 | . 921 |
|  |  | . 20 | $-.001$ | $-.003$ | $-.071$ | $-.068$ | . 024 | . 024 | . 024 | . 024 | . 944 | . 940 | . 160 | . 184 | . 946 | . 939 | . 215 | . 240 |
| . 3 | 24 | . 60 | . 000 | -. 028 | -. 029 | -. 032 | . 024 | . 025 | . 023 | . 023 | . 948 | . 793 | . 758 | . 711 | . 947 | . 603 | . 776 | . 737 |
|  |  | . 20 | . 000 | -. 018 | -. 091 | -. 090 | . 024 | . 023 | . 021 | . 021 | . 949 | . 876 | . 010 | . 012 | . 942 | . 758 | . 026 | . 028 |
| 1 | 24 | . 60 | . 000 | -. 020 | $-.018$ | $-.021$ | . 023 | . 023 | . 022 | . 022 | . 946 | . 848 | . 855 | . 828 | . 946 | . 724 | . 864 | . 837 |
|  |  | . 20 | $-.001$ | -. 011 | $-.076$ | $-.075$ | . 022 | . 022 | . 021 | . 021 | . 949 | . 914 | . 043 | . 047 | . 947 | . 866 | . 078 | . 085 |
| 2 | 24 | . 60 | . 000 | $-.011$ | $-.004$ | $-.007$ | . 020 | . 020 | . 020 | . 020 | . 951 | . 913 | . 948 | . 940 | . 952 | . 858 | . 946 | . 941 |
|  |  | . 20 | . 000 | $-.003$ | $-.051$ | $-.050$ | . 019 | . 019 | . 019 | . 019 | . 947 | . 945 | . 243 | . 265 | . 948 | . 941 | . 315 | . 334 |

[^5]Table 3. Simulation results for the second-order autoregression, $N=100$ observations (continued).

|  |  |  | bias |  |  |  | std |  |  |  |  | $\mathrm{ci}^{\mathrm{a}} 95$ |  |  | $\mathrm{ci}_{.}{ }^{\mathrm{b}}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\psi$ | $T$ | $\rho_{0}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ | $\widehat{\rho}_{\text {al }}$ | $\widehat{\rho}_{\text {ab }}$ | $\widehat{\rho}_{\text {hk }}$ | $\widehat{\rho}_{\text {bh }}$ |
| . 3 | 2 | 1 | $-.146$ | - | -1.000 | $-1.000$ | . 267 | - | . 102 | . 102 | . 875 | . 923 | . 000 | . 000 | . 924 | . 977 | . 000 | . 000 |
|  |  | $-.2$ | $-.082$ | - | -. 523 | -. 523 | . 607 | - | . 444 | . 444 | . 966 | . 962 | . 772 | . 772 | . 943 | . 990 | . 806 | . 806 |
| 1 | 2 | 1 | $-.147$ | - | $-1.002$ | -1.002 | . 272 | - | . 103 | . 103 | . 875 | . 916 | . 000 | . 000 | . 927 | . 979 | . 000 | . 000 |
|  |  | $-.2$ | $-.077$ | - | $-.520$ | $-.520$ | . 233 | - | . 150 | . 150 | . 921 | . 922 | . 065 | . 065 | . 927 | . 976 | . 128 | . 128 |
| 2 | 2 | 1 | $-.148$ | - | $-1.000$ | $-1.000$ | . 266 | - | . 102 | . 102 | . 883 | . 924 | . 000 | . 000 | . 927 | . 980 | . 000 | . 000 |
|  |  | $-.2$ | $-.077$ | - | $-.518$ | $-.518$ | . 166 | - | . 088 | . 088 | . 905 | . 923 | . 000 | . 000 | . 918 | . 978 | . 001 | . 001 |
| . 3 | 4 | 1 | $-.068$ | $-.224$ | $-.325$ | -. 393 | . 117 | . 252 | . 068 | . 066 | . 906 | . 807 | . 004 | . 000 | . 908 | . 723 | . 007 | . 001 |
|  |  | $-.2$ | . 006 | -. 018 | -. 318 | -. 264 | . 088 | . 084 | . 078 | . 075 | . 968 | . 941 | . 017 | . 059 | . 945 | . 943 | . 046 | . 112 |
| 1 | 4 | 1 | . 010 | $-.031$ | $-.210$ | $-.271$ | . 114 | . 098 | . 059 | . 058 | . 955 | . 927 | . 084 | . 003 | . 948 | . 909 | . 085 | . 008 |
|  |  | $-.2$ | . 009 | $-.003$ | -. 301 | $-.250$ | . 081 | . 078 | . 074 | . 071 | . 969 | . 940 | . 015 | . 055 | . 947 | . 948 | . 041 | $.099$ |
| 2 | 4 | 1 | . 002 | -. 009 | -. 092 | -. 132 | . 060 | . 051 | . 043 | . 042 | . 970 | . 939 | . 454 | . 126 | . 947 | . 936 | . 442 | . 152 |
|  |  | $-.2$ | . 002 | -. 002 | -. 220 | -. 184 | . 061 | . 061 | . 060 | . 058 | . 949 | . 939 | . 036 | . 102 | . 940 | . 943 | . 086 | . 169 |
| . 3 | 6 | 1 | $-.030$ | -. 112 | -. 163 | -. 208 | . 078 | . 113 | . 053 | . 052 | . 926 | . 817 | . 160 | . 024 | . 927 | . 644 | . 169 | . 037 |
|  |  | $-.2$ | . 002 | $-.017$ | -. 263 | -. 230 | . 062 | . 057 | . 053 | . 052 | . 965 | . 929 | . 002 | . 009 | . 946 | . 914 | . 009 | . 022 |
| 1 | 6 | 1 | . 007 | -. 026 | -. 085 | -. 124 | . 072 | . 061 | . 047 | . 046 | . 964 | . 923 | . 604 | . 260 | . 947 | . 878 | . 582 | . 273 |
|  |  | $-.2$ | . 004 | -. 001 | -. 204 | -. 174 | . 052 | . 051 | . 047 | . 046 | . 962 | . 949 | . 014 | . 045 | . 949 | . 952 | . 038 | $.083$ |
| 2 | 6 | 1 | . 000 | -. 009 | $-.020$ | -. 046 | . 039 | . 039 | . 037 | . 036 | . 950 | . 934 | . 917 | . 757 | . 940 | . 926 | . 906 | . 763 |
|  |  | $-.2$ | . 002 | . 002 | -. 122 | -. 101 | . 041 | . 042 | . 040 | . 039 | . 945 | . 941 | . 134 | . 271 | . 949 | . 945 | . 207 | . 354 |
| . 3 | 8 | 1 | $-.008$ | -. 064 | -. 091 | -. 121 | . 059 | . 071 | . 045 | . 044 | . 952 | . 850 | . 489 | . 229 | . 946 | . 675 | . 488 | . 254 |
|  |  | $-.2$ | . 001 | -. 016 | -. 217 | -. 196 | . 051 | . 046 | . 041 | . 041 | . 964 | . 926 | . 001 | . 004 | . 938 | . 900 | . 004 | . 010 |
| 1 | 8 | 1 | . 004 | $-.022$ | -. 044 | -. 070 | . 051 | . 047 | . 040 | . 039 | . 970 | . 918 | . 818 | . 600 | . 949 | . 866 | . 798 | . 599 |
|  |  | $-.2$ | . 000 | -. 002 | -. 159 | $-.140$ | . 041 | . 041 | . 038 | . 037 | . 953 | . 945 | . 016 | . 042 | . 947 | . 946 | . 042 | . 084 |
| 2 | 8 | 1 | $-.001$ | -. 009 | -. 005 | -. 023 | . 033 | . 034 | . 032 | . 032 | . 947 | . 934 | . 948 | . 890 | . 950 | . 920 | . 940 | . 877 |
|  |  | $-.2$ | . 001 | . 002 | -. 091 | -. 076 | . 034 | . 035 | . 033 | . 032 | . 941 | . 943 | . 212 | . 346 | . 946 | . 944 | . 284 | . 426 |
| . 3 | 16 | 1 | . 000 | $-.027$ | -. 019 | $-.027$ | . 030 | . 032 | . 028 | . 028 | . 955 | . 859 | . 902 | . 844 | . 948 | . 727 | . 894 | . 834 |
|  |  | $-.2$ | . 001 | -. 008 | -. 110 | -. 105 | . 029 | . 028 | . 025 | . 025 | . 954 | . 938 | . 009 | . 016 | . 943 | . 917 | . 026 | . 039 |
| 1 | 16 | 1 | $-.002$ | -. 019 | -. 009 | -. 017 | . 027 | . 029 | . 026 | . 026 | . 948 | . 895 | . 939 | . 905 | . 944 | . 807 | . 929 | . 895 |
|  |  | $-.2$ | . 000 | -. 002 | $-.086$ | $-.081$ | . 026 | . 026 | . 024 | . 024 | . 951 | . 948 | . 068 | . 103 | . 947 | . 944 | . 116 | . 157 |
| 2 | 16 | 1 | . 000 | -. 009 | . 004 | -. 002 | . 024 | . 025 | . 024 | . 024 | . 944 | . 926 | . 944 | . 949 | . 948 | . 896 | . 946 | . 947 |
|  |  | $-.2$ | . 000 | . 001 | -. 054 | -. 049 | . 023 | . 023 | . 022 | . 022 | . 942 | . 943 | . 327 | . 410 | . 947 | . 946 | . 405 | . 483 |
| . 3 | 24 | 1 | $-.001$ | -. 019 | $-.005$ | -. 009 | . 022 | . 024 | . 022 | . 022 | . 945 | . 869 | . 939 | . 925 | . 942 | . 764 | . 936 | . 920 |
|  |  | $-.2$ | . 000 | -. 007 | -. 072 | -. 070 | . 022 | . 022 | . 020 | . 020 | . 948 | . 933 | . 055 | . 073 | . 949 | . 911 | . 104 | . 123 |
| 1 | 24 | 1 | $-.001$ | $-.015$ | -. 002 | -. 005 | . 021 | . 022 | . 021 | . 021 | . 948 | . 897 | . 952 | . 946 | . 948 | . 816 | . 946 | . 942 |
|  |  | $-.2$ | . 000 | -. 004 | -. 060 | -. 058 | . 021 | . 021 | . 020 | . 020 | . 949 | . 944 | . 146 | . 182 | . 951 | . 938 | . 209 | . 243 |
| 2 | 24 | 1 | . 000 | -. 009 | . 004 | . 001 | . 019 | . 020 | . 019 | . 019 | . 947 | . 918 | . 946 | . 950 | . 947 | . 877 | . 940 | . 945 |
|  |  | $-.2$ | . 000 | . 000 | $-.041$ | -. 039 | . 018 | . 019 | . 018 | . 018 | . 948 | . 948 | . 395 | . 443 | . 949 | . 951 | . 474 | . 519 |

'-, indicates non-existence of the moment.

Table 4. Simulation results for the first-order autoregression with a covariate, $N=100$ observtions.

|  |  |  | bias |  |  |  | std |  |  |  |  | $\mathrm{ci}^{\mathrm{a}} .95$ |  |  | ci $^{\text {b }} 95$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\psi$ | $T$ | $\theta_{0}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\mathrm{bh}}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\text {bh }}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\mathrm{bh}}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\text {bh }}$ |
| 0 | 2 | . 50 | -. 112 | -. 133 | -. 961 | -. 961 | . 268 | - | . 103 | . 103 | . 890 | . 863 | . 000 | . 000 | . 935 | . 942 | . 000 | . 000 |
|  |  | . 50 | $-.032$ | -. 039 | -. 242 | -. 242 | . 230 | - | . 166 | . 166 | . 958 | . 926 | . 663 | . 663 | . 935 | . 958 | . 714 | . 714 |
| 1 | 2 | . 50 | . 035 | -. 001 | -. 743 | -. 743 | . 268 | - | . 096 | . 096 | . 945 | . 921 | . 000 | . 000 | . 945 | . 952 | . 000 | . 000 |
|  |  | . 50 | . 005 | . 002 | $-.075$ | $-.075$ | . 232 | - | . 178 | . 178 | . 972 | . 953 | . 916 | . 916 | . 948 | . 954 | . 928 | . 928 |
| 2 | 2 | . 50 | . 022 | . 000 | -. 422 | -. 422 | . 167 | - | . 076 | . 076 | . 967 | . 941 | . 001 | . 001 | . 945 | . 950 | . 004 | . 004 |
|  |  | . 50 | $-.002$ | -. 001 | . 019 | . 019 | . 233 | - | . 202 | . 202 | . 943 | . 940 | . 938 | . 938 | . 944 | . 944 | . 942 | . 941 |
| 0 | 4 | . 50 | . 015 | $-.097$ | -. 361 | -. 413 | . 141 | . 120 | . 059 | . 056 | . 959 | . 854 | . 000 | . 000 | . 946 | . 737 | . 001 | . 000 |
|  |  | . 50 | . 006 | $-.010$ | -. 031 | -. 048 | . 124 | . 120 | . 127 | . 121 | . 964 | . 944 | . 906 | . 909 | . 949 | . 949 | . 943 | . 936 |
| 1 | 4 | . 50 | . 012 | -. 064 | -. 260 | -. 310 | . 116 | . 102 | . 056 | . 054 | . 968 | . 882 | . 006 | . 000 | . 947 | . 811 | . 017 | . 001 |
|  |  | . 50 | . 001 | . 000 | . 018 | . 004 | . 124 | . 122 | . 130 | . 124 | . 948 | . 942 | . 911 | . 926 | . 945 | . 946 | . 938 | . 941 |
| 2 | 4 | . 50 | . 001 | -. 023 | -. 137 | -. 175 | . 060 | . 061 | . 046 | . 044 | . 966 | . 927 | . 161 | . 027 | . 949 | . 897 | . 223 | . 054 |
|  |  | . 50 | $-.002$ | . 000 | . 029 | . 023 | . 123 | . 123 | . 129 | . 124 | . 940 | . 941 | . 914 | . 929 | . 944 | . 944 | . 941 | . 943 |
| 0 | 6 | . 50 | . 004 | $-.067$ | -. 192 | -. 230 | . 082 | . 071 | . 042 | . 042 | . 969 | . 831 | . 007 | . 000 | . 945 | . 635 | . 014 | . 001 |
|  |  | . 50 | . 001 | $-.004$ | . 000 | -. 010 | . 092 | . 091 | . 096 | . 094 | . 949 | . 945 | . 927 | . 933 | . 947 | . 945 | . 946 | . 944 |
| 1 | 6 | . 50 | . 000 | $-.054$ | -. 150 | -. 184 | . 062 | . 065 | . 041 | . 040 | . 968 | . 856 | . 047 | . 005 | . 943 | . 702 | . 071 | . 014 |
|  |  | . 50 | . 001 | . 002 | . 018 | . 011 | . 092 | . 092 | . 096 | . 094 | . 943 | . 942 | . 923 | . 932 | . 947 | . 948 | . 943 | . 944 |
| 2 | 6 | . 50 | . 000 | -. 025 | -. 090 | -. 114 | . 042 | . 044 | . 034 | . 034 | . 958 | . 906 | . 259 | . 080 | . 943 | . 830 | . 309 | . 123 |
|  |  | . 50 | . 000 | . 003 | . 020 | . 017 | . 091 | . 091 | . 095 | . 093 | . 945 | . 945 | . 929 | . 935 | . 944 | . 945 | . 942 | . 943 |
| 0 | 8 | . 50 | $-.001$ | $-.055$ | -. 127 | -. 152 | . 052 | . 052 | . 035 | . 035 | . 966 | . 812 | . 054 | . 008 | . 945 | . 573 | . 074 | . 020 |
|  |  | . 50 | . 001 | -. 001 | . 006 | . 001 | . 076 | . 076 | . 080 | . 079 | . 948 | . 948 | . 936 | . 941 | . 947 | . 947 | . 947 | . 947 |
| 1 | 8 | . 50 | $-.001$ | $-.048$ | -. 105 | -. 127 | . 045 | . 049 | . 034 | . 034 | . 955 | . 829 | . 128 | . 034 | . 938 | . 631 | . 156 | . 058 |
|  |  | . 50 | . 000 | . 002 | . 013 | . 009 | . 077 | . 077 | . 080 | . 079 | . 942 | . 942 | . 929 | . 935 | . 948 | . 946 | . 941 | . 944 |
| 2 | 8 | . 50 | $-.001$ | $-.027$ | -. 069 | -. 086 | . 035 | . 037 | . 029 | . 029 | . 948 | . 877 | . 334 | . 158 | . 942 | . 763 | . 374 | . 202 |
|  |  | . 50 | . 000 | . 003 | . 014 | . 013 | . 077 | . 076 | . 079 | . 078 | . 945 | . 946 | . 934 | . 937 | . 946 | . 946 | . 943 | . 943 |
| 0 | 16 | . 50 | $-.001$ | $-.038$ | -. 052 | $-.060$ | . 027 | . 028 | . 023 | . 023 | . 950 | . 717 | . 387 | . 275 | . 948 | . 411 | . 418 | . 310 |
|  |  | . 50 | . 000 | . 002 | . 005 | . 004 | . 051 | . 051 | . 052 | . 052 | . 948 | . 947 | . 944 | . 945 | . 947 | . 946 | . 945 | . 945 |
| 1 | 16 | . 50 | $-.001$ | -. 036 | -. 048 | -. 055 | . 025 | . 027 | . 022 | . 022 | . 952 | . 732 | . 435 | . 312 | . 949 | . 441 | . 463 | . 352 |
|  |  | . 50 | . 000 | . 003 | . 007 | . 006 | . 051 | . 051 | . 052 | . 052 | . 944 | . 944 | . 939 | . 940 | . 947 | . 948 | . 947 | . 947 |
| 2 | 16 | . 50 | $-.001$ | $-.027$ | -. 038 | $-.044$ | . 022 | . 024 | . 020 | . 020 | . 943 | . 787 | . 532 | . 421 | . 939 | . 548 | . 559 | . 461 |
|  |  | . 50 | $-.001$ | . 003 | . 006 | . 006 | . 051 | . 051 | . 052 | . 052 | . 945 | . 946 | . 944 | . 944 | . 950 | . 950 | . 948 | . 948 |
| 0 | 24 | . 50 | . 000 | -. 033 | -. 033 | -. 036 | . 020 | . 020 | . 018 | . 018 | . 946 | . 635 | . 570 | . 497 | . 946 | . 315 | . 599 | . 531 |
|  |  | . 50 | . 001 | . 003 | . 004 | . 004 | . 041 | . 041 | . 041 | . 041 | . 943 | . 943 | . 941 | . 942 | . 945 | . 944 | . 945 | . 945 |
| 1 | 24 | . 50 | $-.001$ | -. 033 | -. 031 | -. 034 | . 019 | . 020 | . 018 | . 018 | . 945 | . 634 | . 586 | . 516 | . 944 | . 330 | . 609 | . 546 |
|  |  | . 50 | . 000 | . 003 | . 004 | . 004 | . 041 | . 042 | . 042 | . 042 | . 945 | . 944 | . 943 | . 943 | . 944 | . 943 | . 943 | . 943 |
| 2 | 24 | . 50 | . 000 | $-.027$ | -. 026 | -. 029 | . 018 | . 018 | . 016 | . 016 | . 947 | . 692 | . 647 | . 578 | . 948 | . 407 | . 665 | . 606 |
|  |  | . 50 | . 000 | . 004 | . 005 | . 005 | . 041 | . 041 | . 042 | . 042 | . 941 | . 942 | . 941 | . 941 | . 943 | . 942 | . 942 | . 942 |

'-' indicates non-existence of the moment.

Table 5. Simulation results for the first-order autoregression with a covariate, $N=100$ observations (continued).

|  |  |  | bias |  |  |  | std |  |  |  |  | $\mathrm{ci}_{.95}^{\mathrm{a}}$ |  |  | ci ${ }_{.}^{\text {b }} 9$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\psi$ | $T$ | $\theta_{0}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\mathrm{bh}}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\text {bh }}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\text {bh }}$ | $\widehat{\theta}_{\text {al }}$ | $\widehat{\theta}_{\text {ab }}$ | $\widehat{\theta}_{\text {hk }}$ | $\widehat{\theta}_{\text {bh }}$ |
| 0 | 2 | . 95 | -. 144 | -. 942 | -1.000 | $-1.000$ | . 266 | - | . 102 | . 102 | . 879 | . 804 | . 000 | . 000 | . 929 | . 919 | . 000 | . 000 |
|  |  | . 05 | $-.002$ | -. 029 | -. 026 | -. 026 | . 215 | - | . 160 | . 160 | . 975 | . 976 | . 932 | . 932 | . 946 | . 988 | . 941 | . 941 |
| 1 | 2 | . 95 | -. 122 | -. 917 | -. 977 | -. 977 | . 267 | - | . 102 | . 102 | . 890 | . 820 | . 000 | . 000 | . 936 | . 927 | . 000 | . 000 |
|  |  | . 05 | -. 001 | . 008 | . 013 | . 013 | . 215 | - | . 163 | . 163 | . 977 | . 979 | . 938 | . 938 | . 947 | . 988 | . 943 | . 943 |
| 2 | 2 | . 95 | -. 062 | -. 382 | -. 908 | -. 908 | . 268 | - | . 100 | . 100 | . 915 | . 842 | . 000 | . 000 | . 946 | . 936 | . 000 | . 000 |
|  |  | . 05 | . 002 | . 014 | . 045 | . 045 | . 224 | - | . 168 | . 168 | . 973 | . 967 | . 926 | . 926 | . 943 | . 983 | . 933 | . 934 |
| 0 | 4 | . 95 | -. 086 | -. 641 | $-.487$ | $-.537$ | . 124 | . 253 | . 060 | . 058 | . 890 | . 270 | . 000 | . 000 | . 909 | . 125 | . 000 | . 000 |
|  |  | . 05 | -. 002 | $-.015$ | $-.013$ | $-.014$ | . 117 | . 108 | . 116 | . 110 | . 977 | . 951 | . 918 | . 930 | . 950 | . 955 | . 948 | . 948 |
| 1 | 4 | . 95 | -. 064 | $-.585$ | -. 461 | $-.510$ | . 126 | . 256 | . 060 | . 059 | . 903 | . 327 | . 000 | . 000 | . 932 | . 160 | . 000 | . 000 |
|  |  | . 05 | . 000 | . 010 | . 015 | . 013 | . 119 | . 110 | . 119 | . 114 | . 974 | . 946 | . 911 | . 923 | . 950 | . 955 | . 940 | . 943 |
| 2 | 4 | . 95 | -. 018 | -. 303 | -. 398 | $-.445$ | . 124 | . 198 | . 057 | . 056 | . 933 | . 593 | . 000 | . 000 | . 945 | . 394 | . 000 | . 000 |
|  |  | . 05 | . 002 | . 020 | . 039 | . 037 | . 123 | . 113 | . 120 | . 115 | . 971 | . 941 | . 898 | . 912 | . 949 | . 947 | . 931 | . 932 |
| 0 | 6 | . 95 | $-.059$ | $-.452$ | -. 352 | $-.382$ | . 085 | . 146 | . 042 | . 042 | . 885 | . 099 | . 000 | . 000 | . 898 | . 013 | . 000 | . 000 |
|  |  | . 05 | -. 002 | $-.010$ | -. 008 | -. 009 | . 091 | . 087 | . 091 | . 089 | . 971 | . 947 | . 924 | . 931 | . 946 | . 949 | . 945 | . 945 |
| 1 | 6 | . 95 | -. 038 | $-.407$ | -. 328 | $-.357$ | . 083 | . 149 | . 041 | . 041 | . 914 | . 147 | . 000 | . 000 | . 938 | . 024 | . 000 | . 000 |
|  |  | . 05 | . 000 | . 008 | . 010 | . 009 | . 091 | . 086 | . 091 | . 089 | . 973 | . 943 | . 925 | . 932 | . 947 | . 946 | . 943 | . 942 |
| 2 | 6 | . 95 | -. 004 | -. 202 | $-.272$ | -. 298 | . 083 | . 104 | . 038 | . 038 | . 945 | . 440 | . 000 | . 000 | . 948 | . 149 | . 000 | . 000 |
|  |  | . 05 | -. 002 | . 012 | . 022 | . 022 | . 091 | . 086 | . 091 | . 089 | . 968 | . 947 | . 924 | . 929 | . 948 | . 947 | . 940 | . 940 |
| 0 | 8 | . 95 | -. 044 | $-.348$ | -. 283 | -. 301 | . 064 | . 099 | . 032 | . 033 | . 888 | . 033 | . 000 | . 000 | . 902 | . 002 | . 000 | . 000 |
|  |  | . 05 | $.000$ | $-.006$ | -. 005 | $-.005$ | . 075 | . 073 | . 076 | . 075 | . 973 | . 944 | . 929 | . 933 | . 949 | . 947 | . 945 | . 945 |
| 1 | 8 | . 95 | $-.025$ | -. 309 | -. 259 | $-.277$ | . 063 | . 100 | . 032 | . 032 | . 912 | . 066 | . 000 | . 000 | . 942 | . 004 | . 000 | . 000 |
|  |  | . 05 | . 000 | . 007 | . 008 | . 008 | . 075 | . 073 | . 075 | . 074 | . 972 | . 947 | 0.93 | . 937 | . 950 | . 951 | . 948 | . 948 |
| 2 | 8 | . 95 | . 003 | $-.148$ | $-.207$ | $-.222$ | . 063 | . 066 | . 029 | . 029 | . 948 | . 340 | . 000 | . 000 | . 944 | . 066 | . 000 | . 000 |
|  |  | . 05 | . 001 | . 012 | . 019 | . 019 | . 077 | . 074 | . 076 | . 076 | . 964 | . 947 | . 932 | . 936 | . 949 | . 947 | . 941 | . 942 |
| 0 | 16 | . 95 | -. 016 | -. 175 | -. 162 | -. 166 | . 034 | . 039 | . 018 | . 018 | . 904 | . 001 | . 000 | . 000 | . 936 | . 000 | . 000 | . 000 |
|  |  | . 05 | . 000 | $-.003$ | $-.003$ | $-.003$ | . 051 | . 051 | . 051 | . 051 | . 970 | . 943 | . 939 | . 941 | . 946 | . 945 | . 946 | . 945 |
| 1 | 16 | . 95 | -. 004 | $-.154$ | -. 142 | $-.146$ | . 033 | . 038 | . 018 | . 018 | . 945 | . 004 | . 000 | . 000 | . 945 | . 000 | . 000 | . 000 |
|  |  | . 05 | . 000 | . 004 | . 004 | . 004 | . 051 | . 051 | . 051 | . 051 | . 966 | . 944 | . 941 | . 941 | . 948 | . 945 | . 943 | . 944 |
| 2 | 16 | . 95 | . 003 | -. 076 | -. 104 | $-.107$ | . 030 | . 025 | . 015 | . 015 | . 959 | . 095 | . 000 | . 000 | . 945 | . 002 | . 000 | . 000 |
|  |  | . 05 | . 000 | . 005 | . 008 | . 008 | . 051 | . 050 | . 051 | . 051 | . 952 | . 946 | . 941 | . 942 | . 948 | . 947 | . 946 | . 946 |
| 0 | 24 | . 95 | -. 006 | -. 116 | $-.113$ | $-.115$ | . 024 | . 023 | . 013 | . 013 | . 917 | . 000 | . 000 | . 000 | . 942 | . 000 | . 000 | . 000 |
|  |  | . 05 | . 000 | $-.002$ | -. 002 | -. 002 | . 041 | . 041 | . 041 | . 041 | . 969 | . 944 | . 943 | . 943 | . 946 | . 947 | . 948 | . 947 |
| 1 | 24 | . 95 | . 000 | -. 102 | -. 097 | -. 099 | . 024 | . 022 | . 013 | . 013 | . 942 | . 000 | . 000 | . 000 | . 940 | . 000 | . 000 | . 000 |
|  |  | . 05 | . 000 | . 003 | . 003 | . 003 | . 041 | . 041 | . 041 | . 041 | . 960 | . 944 | . 940 | . 940 | . 945 | . 942 | . 941 | . 941 |
| 2 | 24 | . 95 | . 001 | $-.055$ | -. 068 | -. 069 | . 018 | . 015 | . 011 | . 011 | . 962 | . 024 | . 000 | . 000 | . 943 | . 000 | . 000 | . 000 |
|  |  | . 05 | . 000 | . 004 | . 005 | . 005 | . 041 | . 041 | . 041 | . 041 | . 944 | . 942 | . 940 | . 940 | . 945 | . 943 | . 944 | . 943 |

## References

Ahn, S. C. and G. M. Thomas (2006). Likelihood based inference for dynamic panel data models. Unpublished manuscript.
Alvarez, J. and M. Arellano (2003). The time series and cross-section asymptotics of dynamic panel data estimators. Econometrica, 71:1121-1159.
Arellano, M. (2003). Discrete choices with panel data. Investigaciones Económicas, 27:423-458.
Arellano, M. and S. Bond (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58:277-297.
Arellano, M. and S. Bonhomme (2009). Robust priors in nonlinear panel data models. Econometrica, 77:489-536.
Bester, C. A. and C. Hansen (2009). A penalty function approach to bias reduction in nonlinear panel models with fixed effects. Journal of Business \& Economic Statistics, 27:131-148.
Bun, M. J. and M. A. Carree (2005). Bias-corrected estimation in dynamic panel data models. Journal of Business $\mathcal{E}$ Economic Statistics, 23:200-210.
Conniffe, D. and J. E. Spencer (2001). When moments of ratios are ratios of moments. The Statistician, 50:161-168.
Cox, D. R. and N. Reid (1987). Parameter orthogonality and approximate conditional inference (with discussion). Journal of the Royal Statistical Society, Series B, 49:1-39.
Cruddas, A., N. Reid, and D. R. Cox (1989). A time series illustration of approximate conditional likelihood. Biometrika, 76:231-237.
DiCiccio, T. J., M. A. Martin, S. E. Stern, and G. A. Young (1996). Information bias and adjusted profile likelihoods. Journal of the Royal Statistical Society, Series B, 458:189-203.
Fisher, R. (1930). The moments of the distribution for normal samples of measures of departure from normality. Proceedings of the Royal Society of London, Series A, 130:16-28.
Geary, R. (1933). A general expression for the moments of certain symmetrical functions of normal samples. Biometrika, 25:184-186.
Godambe, V. P. and M. E. Thompson (1974). Estimating equations in the presence of a nuisance parameters. Annals of Statistics, 2:568-571.
Hahn, J. and G. Kuersteiner (2002). Asymptotically unbiased inference for a dynamic panel data model with fixed effects when both $n$ and $T$ are large. Econometrica, 70:1639-1657.
Hahn, J. and G. Kuersteiner (2011). Bias reduction for dynamic nonlinear panel data models with fixed effects. Econometric Theory, 27:1152-1191.
Kalbfleisch, J. P. and D. A. Sprott (1970). Application of likelihood methods to models involving large numbers of parameters (with discussion). Journal of the Royal Statistical Society, Series B, 32:175-208.
Lancaster, T. (2002). Orthogonal parameters and panel data. Review of Economic Studies, 69:647-666.
McCullagh, P. and R. Tibshirani (1990). A simple method for the adjustment of profile likelihoods. Journal of the Royal Statistical Society, Series B, 52:325-344.
Neyman, J. and E. L. Scott (1948). Consistent estimates based on partially consistent observations. Econometrica, 16:1-32.
Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49:1417-1426.
Pace, L. and A. Salvan (2006). Adjustments of profile likelihood from a new perspective. Journal of Statistical Planning and Inference, 136:3554-3564.
Rotnitzky, A., D. R. Cox, M. Bottai, and J. Robins (2000). Likelihood-based inference with singular information matrix. Bernoulli, 6:243-284.
Sargan, J. D. (1983). Identification and lack of identification. Econometrica, 51:1605-1633.
Sartori, N. (2003). Modified profile likelihood in models with stratum nuisance parameters. Biometrika, 90:533-549.
Severini, T. A. (1998). An approximation to the modified profile likelihood function. Biometrika, 85:403-411.
Severini, T. A. (2000). Likelihood Methods in Statistics. Oxford Statistical Science Series. Oxford University Press.
Sweeting, T. J. (1987). Discussion of the paper by Professors Cox and Reid. Journal of the Royal Statistical Society, Series B, 49:20-21.
Woutersen, T. (2002). Robustness against incidental parameters. Unpublished manuscript.
Woutersen, T. and M. Voia (2004). Efficient estimation of the dynamic linear model with fixed effects and regressors. Unpublished manuscript.


[^0]:    ${ }^{*}$ Corresponding author. E-mail: koen.jochmans@sciences-po.org. Previous versions of this paper circulated as 'An adjusted profile likelihood for non-stationary panel data models with incidental parameters' and 'An adjusted profile likelihood for nonstationary panel data models with fixed effects'. This version: November 13, 2012.

[^1]:    ${ }^{1} \mathrm{~A}$ major difficulty is the rapidly increasing complexity of $\varphi_{t}$ as $p$ increases. For example, $\varphi_{t}=\sum_{k=0}^{\lfloor t / 2\rfloor} \frac{(t-k)!}{(t-2 k)!k!} \rho_{1}^{t-2 k} \rho_{2}^{k}$ when $p=2$. In comparison, $\varphi_{t}=\rho_{1}^{t}$ when $p=1$.
    ${ }^{2}$ The same computations but with $T=8,9,10$ further supported the conclusions. Here, however, when $m=4$ and $p=3,4$ the computations are numerically less stable because the polynomial terms may be extremely large and their sum numerically imprecise.

[^2]:    ${ }^{3}$ Computations with $T=8,9,10$ gave the same results except in certain cases with $m=4$ and $p=3,4$ where the algorithm failed to converge because the rank of $H_{\mathrm{a}}(\rho)$ was underestimated.
    ${ }^{4}$ Note that the information equality does not hold, although this could be rectified by rescaling the adjusted profile score; see McCullagh and Tibshirani (1990).

[^3]:    ${ }^{5}$ The Arellano and Bond (1991) estimator is a generalized method of moments estimator based on the moments $\mathbb{E}\left[x_{i j}\left(\varepsilon_{i t}-\varepsilon_{i t-1}\right)\right]=0, j=1, \ldots, T ; t=2, \ldots, T$; and $\mathbb{E}\left[y_{i t-j}\left(\varepsilon_{i t}-\varepsilon_{i t-1}\right)\right]=0, j=2, \ldots, t ; t=2, \ldots, T$.
    ${ }^{6}$ The estimators of Hahn and Kuersteiner (2011) and Bester and Hansen (2009) require a bandwidth choice. We set the bandwidth equal to unity, following the suggestion of Bester and Hansen (2009, p. 134).

[^4]:    ${ }^{7}$ For a discussion and historical perspective on this device, see Conniffe and Spencer (2001).

[^5]:    -' indicates non-existence of the moment.

