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LIKELTHOOD INFERENCE IN AN AUTOREGRESSION WITH FIXED EFFECTS
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2 Department of Economics, Sciences Po, 28 rue des Saint-Péres, 75007 Paris, France.

We calculate the bias of the profile score for the regression coefficients in a multistratum autoregressive model with
stratum-specific intercepts. The bias is free of incidental parameters. Centering the profile score delivers an unbiased
estimating equation and, upon integration, an adjusted profile likelihood. A variety of other approaches to constructing
modified profile likelihoods are shown to yield equivalent results. However, the global maximizer of the adjusted likelihood

lies at infinity for any sample size, and the adjusted profile score has multiple zeros. We argue that the parameters are
local maximizers inside or on an ellipsoid centered at the maximum likelihood estimator.

Keywords: adjusted likelihood, autoregression, incidental parameters, local maximizer, recentered estimating equation.

1. Introduction

In the presence of nuisance parameters, inference based on the profile likelihood can be highly misleading. In
an N x T data array setting with stratum nuisance parameters, the maximum likelihood estimator is often
inconsistent as the number of strata, N, tends to infinity. This is the incidental parameter problem (Neyman
and Scott, 1948). It arises because profiling out the nuisance parameters from the likelihood introduces a bias
into the (profile) score function. One possible solution is to calculate this bias and to subtract it from the profile
score, as suggested by Neyman and Scott (1948, Section 5) and McCullagh and Tibshirani (1990). When the
bias is free of incidental parameters this yields a fully recentered score function which, in principle, paves the
way for consistent estimation under Neyman-Scott asymptotics (Godambe and Thompson, 1974). This is the
case in the classic many-normal-means example, but little is known about this possibility in other situations.

In this paper we consider a time series extension of Neyman and Scott’s (1948) classic example. The problem
is to estimate a pth order autoregressive model, possibly augmented with covariates, from data on N short
time series of length T. The model has stratum-specific intercepts (the fixed effects). The distribution of the
initial observations is left unrestricted and the p x 1 vector of autoregressive parameters, p, may lie outside the
stationary region. The bias of the profile score is found to depend only on p and T'. Hence, adjusting the profile
score by subtracting its bias gives a fixed T unbiased estimating equation and, upon integration, an adjusted
profile likelihood in the sense of Pace and Salvan (2006).

However, contrary to what standard maximum likelihood theory would suggest, the parameters of interest
are local maximizers of the adjusted likelihood. The global maximum is reached at infinity. This phenomenon
is not a small sample problem or an artifact of an unbounded parameter space. The adjusted likelihood has its
global maximum at infinity for any sample size, and may already be re-increasing in the stationary parameter
region and reach its maximum at the boundary. Consequently, consistent estimation is not achieved by global

maximization of the adjusted likelihood, and solving the adjusted score equation has to be supplemented by a

*Corresponding author. E-mail: koen. jochmans@sciences-po.org. Previous versions of this paper circulated as ‘An adjusted
profile likelihood for non-stationary panel data models with incidental parameters’ and ‘An adjusted profile likelihood for non-
stationary panel data models with fixed effects’. This version: November 13, 2012.
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solution selection rule, which we derive. The adjusted likelihood is re-increasing because the initial observations
are unrestricted. This difficulty does not arise when stationarity of the initial observations is imposed, as in
Cruddas, Reid, and Cox (1989). Further, when the data carry only little information, in a sense that we specify,
the Hessian of the adjusted likelihood is zero, implying first-order underidentification (Sargan, 1983) and non-
standard asymptotic properties of the resulting point estimates (Rotnitzky, Cox, Bottai, and Robins, 2000).

These features are not unique to our approach of modifying the profile likelihood. We show that several other
routes to constructing modified likelihoods yield the same results. When p = 1, the adjusted profile likelihood
coincides with Lancaster’s (2002) marginal posterior, which, in the absence of covariates, is a Bayesian version
of a Cox and Reid (1987) approximate conditional likelihood (see Sweeting, 1987). For general p, it is an
integrated likelihood in the sense of Kalbfleisch and Sprott (1970) and Arellano and Bonhomme (2009), as well
as a penalized likelihood as defined by Bester and Hansen (2009) (see DiCiccio, Martin, Stern, and Young, 1996
and Severini, 1998 for related approaches). The adjusted profile score equation, in turn, is a Woutersen (2002)
integrated moment equation and a locally orthogonal Cox and Reid (1987) moment equation, and solving it
is equivalent to inverting the probability limit of the least-squares estimator, as proposed by Bun and Carree
(2005).

2. Adjusted profile likelihood

2.1. Model and profile likelihood

Suppose we observe a scalar variable y, the first p > 1 lags of y, and a g-vector of covariates x (which may

include lags), for N strata ¢ and T periods ¢t. Assume that y;; is generated by
yit:y;7p+x;ﬁ+ai+€it, i=1,..,.N;t=1,..,T, (2.1)

where yi— = (Yit—1, .- yit_p)T and the ¢;; are identically distributed with mean zero and variance o2 and are
independent across i and ¢ and also of s for all i’ and /. Let y{ = (yi1—p)> - %i0) ' Xi = (@1, ., wir) |,
and g; = (g1,...,&;7) ' . We place no restrictions on how (y9, oy, X;), i = 1,..., N, are generated. The unknown
parameters are § = (p',87)", 02, and a,...,an. Let 6y and o2 be the true values of § and o2. Our interest
lies in consistently estimating 6y under large N and fixed T asymptotics. We do not impose the stationarity
condition on pg, i.e., we allow any py € RP.

Let ziy = (yiy_, o))", Yie = (yi—,-mvir—) ", Zi = (Yie, Xy), and y; = (yi1, ..., yiT) ', so that My; =
MZi0+ Me; where M = I —T~ 11" and ¢ is a conformable vector of ones. We assume that N~ vazl ZIMZ;
and its probability limit as N — oo are nonsingular. The Gaussian quasi-log-likelihood, conditional on y?, ..., y%
and normalized by the number of observations, is

1 v 2, 1 T 2
~SNT ZZ (loga + ﬁ(yit — 20 — ;) ) +c,
i=1 t=1
where, here and later, c is a non-essential constant. Profiling out aj, ..., ax and o gives the (normalized) profile

log-likelihood for 6,

1 1Y
1(0) = D) log <N Z(yi — Zﬂ)TM(yi — Zl-@)) + c.
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The profile score, s(f) = Vgi(#), has elements

5p,(0) = St (i = Zi6) My, j=1,.,p
" SN (i — Z:6)TM(y; — Z:6) e

sﬁ(g) _ Zi\;l(yz - Zia)TMxi,j ] -1 q
’ S (yi — Z:0) T M (y; — Z40)

where y; _; is the jth column of Y;_ and z; ; is the jth column of Xj.

For the analysis below, rewrite (2.1) as
Dy; = Cy? + Xi3 + 1o + €4, 1=1,..., N,

where D = D(p) and C' = C(p) are the T x T and T X p matrices

—p1 0
D: *pp , C: ..
0 0 Pp
0 - 0 —pp - —p 1 0 i e 0

Then
0 0
Yi e ) o Yi _ 0
(yi>€z+F€“ £‘<D_1(C’y?+Xiﬂ+Lai)>’ F(D—1>a

and y; —j = Sj(& + Fe;), where S; = (Opx(p—j), IT,Orx ), a selection matrix.

2.2. Bias of the profile score

The profile score is asymptotically biased, i.e., plimy_, .$(6p) # 0. Hence, the maximum likelihood estimator,

solving s(f) = 0, is inconsistent. (Throughout, probability limits and expectations are taken conditionally,

given (y?,a;, X;), i = 1,..., N.) The profile score bias is a polynomial in pg. For k = (ki,...,k,)" € NP, let

Pk = e p?j. Also, let 7= (1,...,p) T,

B (LTk)! k _
Yy = Z m/’a t=1,...., T -1,

7T k=t

and set g = 0.

(2.3)

LEMMA 1. The asymptotic bias of the profile score is plimy_, .. 5(60) = b(po), where b(p) = (b1 (p), .., bpiq(p)) "

and o
bj(p):_ztzoj WJ,D‘P& j=1,...,p,

bj(p) =0, j=p+L....p+q
In addition, if e, ~ N(0,02), then E[s(60)] = b(po).
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The bias of the profile score, b(pg), depends only on pg and 7. It is independent of the initial observations, the
fixed effects, and the covariates. This is in sharp contrast with the bias of the maximum likelihood estimator,
which was first derived by Nickell (1981) for the first order autoregressive model under the assumption of
stationarity of the initial observations. This bias depends on the initial observations, the fixed effects, and the
covariate values. Note, also, that the Nickell bias concerns a probability limit as N — oo whereas here, when
the errors are normal, E[s(6y)] = b(pp) is a finite sample result holding for fixed N and T" and may therefore be

of independent interest in a time series setting.

2.3. Centered profile score and adjusted profile likelihood

By construction, the centered (or adjusted) profile score,

5.(60) = s(6) — b(p),

is asymptotically unbiased, i.e., plimy_, . s.(60) = 0. Hence, s,(6) = 0 is a bias-adjusted estimating equation.
The question arises whether there is a corresponding adjustment to the profile likelihood. The differential

equation Vga(p) = b(p) has a solution indeed.

LEMMA 2. Up to an arbitrary constant of integration, the solution to Voa(p) = b(p) is given by

T-1

T—t (tThk—1)!

a(p):Zas(p), aS(p):_ Z T(T—l) Z kllk !plés’
ses t=|3| keKg:rTh=t P

where S is the collection of the non-empty subsets of {1,...,p}; |S| is the sum of the elements of S; Ks = {k €
NP|k; > 0 if and only if j € S}; and ps = (p;)jes and kg = (k;)jes are subvectors of p and k determined by S.

It follows that s,(f) = 0 is an estimating equation associated with the function

la(0) = 1(0) — a(p),

which we call an adjusted profile log-likelihood. Every subvector pg of p contributes to 1,(f) an adjustment
term, —ags(p), which takes the form of a multivariate polynomial in p;, j € S, with positive coefficients that

are independent of p.

3. Connections with the literature

Lancaster (2002) studied the first-order autoregressive model, with and without covariates, from a Bayesian

perspective. With p = 1, we have ¢; = p' and

T-1 T—1
B Tt B Tt
t=1 t=1

With independent uniform priors on the reparameterized effects 1; = a;e~(T=?) and on # and log 02, Lan-

caster’s posterior for ¥ = (07, 02) " is

f(¥|data) oc o~ NT D=2 exp (=N(T - 1)a(p) — Q*(0)02/2),
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where Q2(9) = Zfil(yi - ZiQ)TM(yZ- — Z;0) e—21(0) Integrating over o2 gives
f(6|data) o e N(T=Dale) (@2 (g))~N(T-1)/2

and, hence,

f(]data) o eV T—Dia(®), (3.1)

Thus, the posterior and the adjusted likelihood are equivalent. More generally, for any p and ¢, independent
uniform priors on 71, ..., nx, 8, log 02, with 7; = e~ T=1%) and a(p) as in Lemma 2, yield a posterior f(6|data)
that is related to I,(6) as in (3.1).

Lancaster’s choice of a prior on the reparameterized effects n; that is independent of ¥ is motivated by a
first-order autoregression without covariates, where 7; is orthogonal to ¥ and the posterior f(6|data) (hence also
ela(e)) has an interpretation as a Cox and Reid (1987) approximate conditional likelihood; see also Sweeting
(1987). Orthogonalization to a multidimensional parameter is generally not possible (see, e.g., Severini, 2000,
pp. 340-342). Here, orthogonalization is not possible when the model is augmented with covariates, as shown
by Lancaster, or when the autoregressive order, p, is greater than one, as we show in Appendix A. From a bias
correction perspective, however, orthogonality is sufficient but not necessary. In the present model, for any p
and ¢, s,(0) = 0 is an unbiased estimating equation, and the bias calculation underlying it is immune to the
non-existence of orthogonalized fixed effects.

Arellano and Bonhomme’s (2009) approach shares the integration step with Lancaster (2002) but allows non-
uniform priors on fixed effects or, equivalently, non-orthogonalized fixed effects. Of interest are bias-reducing
priors, i.e., weighting schemes that deliver an integrated likelihood whose score equation has bias o(T!) as
opposed to the standard O(T~1!). The present model (with general p,q) illustrates an interesting result of
Arellano and Bonhomme that generalizes the scope of uniform integration to situations where orthogonalization

is impossible. For a given prior 7;(a;|1), the (normalized) log integrated likelihood is

N T
1 1
lint (V) = NT Zlog/a’T/2 exp (W Z(yzt — 20 — ai)2> mi(a;|¥) dey +c.
i=1 t=1

Choosing ;(ca;|9) oc e=(T=1aP) yields

T-1 , T-1 Q%(9)

5T log o —Ta(p)

lint (19> = -

Profiling out o2 gives 0%(6) = arg max,2 line (9) = Q?(0)/(N(T — 1)) and
T-1

lint (0) = m%x lint (19) = Tla(ﬂ) + C,

50 ling () and 1,(0) are equivalent. Because a(p) does not depend on true parameter values, m; (cv;[19) oc e~ (T=Hale)
is a data-independent bias-reducing (in fact, bias-eliminating) prior in the sense of Arellano and Bonhomme.
Now, m;(a;]9) oc e~ (T=1a(P) ig equivalent to m;(1;]0) o< 1, i.e., to a uniform prior on 7; = aze™ T~V Jeading
to the same I, (9). Arellano and Bonhomme (2009, Eq. (11)) give a necessary and sufficient condition for a

uniform prior to be bias-reducing. With ¢;(9,7;) = T~* 23:1 £;:(9,m;) denoting ¢’s (normalized) log-likelihood
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contribution in a parametrization 7);, the condition is that

pth_"’oN va T'B;) =o(1) as T — oo, (3.2)

where A; = A;(0,m:) = —Eg . Vi, bi(9,m:), Bi = Bi(9,m:) = Eg 1), Vo, £i(9,m;), and V,,(A; ' B;) is evaluated
at the true parameter values. When 7); and ¢ are orthogonal, B; = 0 and (3.2) holds. However, Condition (3.2)
is considerably weaker than parameter orthogonality. In the present model, when p > 1 or ¢ > 0, and thus no
orthogonalization is possible, it follows from our analysis and Arellano and Bonhomme (2009) that (3.2) must

hold for n; = aze~(T—=Da(P) Indeed, as we show in Appendix A,
Vi (A71Bi) =0 (3.3)

because A;lBZ- is free of n;.

Woutersen (2002) derived a likelihood-based moment condition in which parameters of interest and fixed
effects are orthogonal by construction even though orthogonality in the information matrix may not be possible.
With ¢; = £;(9, ;) = ZZ;I £;+(V, ;) a generic log-likelihood for stratum i, let

Eﬂ,ai VQT’&KZ

gi = gi(ﬂ7 Ot,‘) = Voli — Vaiéi Eﬁ,mvaiai&.

(3.4)

Then Ey o, 9; = 0 and parameter orthogonality holds in the sense that Ey o, Va,9; = 0 (under regularity condi-
tions). Woutersen’s (2002) integrated moment estimator of ¥ minimizes g, gint where giny = (NT) 71 vazl Jinti

and

1Va,0:9 1 Va,aia:t
Ginti = Ginti (V) = |gi — Vool T2 Vol Va,9i .
with @; () = argmax,, ¢;. The function gi,¢; is the Laplace approximation to fgie&" de;/ f etiday, that is, to g;
with «; integrated out using likelihood weights. Arellano (2003) obtained the same gint; as a locally orthogonal
Cox and Reid (1987) moment function. Woutersen and Voia (2004) calculated gin for the present model with
p = 1. For any p and ¢, the integrated moment condition essentially coincides with the adjusted profile score.

In Appendix A, it is shown that

- o722 M(y; — Zi8) — (T — 1) b(p)
0.5 = gos,” 20 M 203 2 P12 ) (39

On profiling out o2 from the minimand g;! gine, We obtain

e (0) = T (5(6) — D(p) = 54 (0).

Thus, Woutersen’s (2002) estimator of § minimizes the norm of the adjusted profile score.

The adjusted likelihood can also be viewed as a penalized log-likelihood in the sense of Bester and Hansen
2009). With ¢ = Ji T= Cigy Uiy = L (9, o), again denoting a generic log-likelihood, let m; = m;(9, ;) be a
i=1 t=1

function satisfying

T T T
. 1 1
Vai T £> Thj}I;cE T Z Valal it Z ’(plt + ]E [Valalalgzt] hm E T tz:; wzt e wit] } (36)
T

Vor; 5  lim E
T—o00

1 .

1 Vaolic Y Vit
T Z
t=1 t=1

T T
o Z it wit] , (3.7)
t=1 t=1
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where 1;; = —E [Vaiai&-t}*l Va,lit. Then £, = { — Z?Zl m; is a penalized log-likelihood. Bester and Hansen
(2009) provide a function that satisfies (3.6)—(3.7) in a general class of fixed-effect models and show that it
leads to £, whose first-order condition has bias o(T~!). In the present model, (3.6)—(3.7) can be solved exactly,
i.e., for finite T', thus allowing a full recentering of the score. With £;; = —%[logo? + (yi — 2,30 — ;) /2] + ¢,

the relevant differential equations are

1
Va.m:O, VQﬂ'z:(T—l)b(p), VU27'I',':—77
’ 202
which yields m; = —1log 02 + (T — 1)a(p) + c. Therefore,
N 2
be =10+ Eloga — N(T — 1al(p) +c (3.8)

and [(0) = max,,,  ay.0?le = N(T —1)la(0) + c. Thus, the (normalized) profile penalized log-likelihood and
the adjusted log-likelihood coincide. Bester and Hansen (2009) derived the exact solution to (3.6)—(3.7) for the
case p = 1 and noted the equivalence between the penalized log-likelihood and Lancaster’s (2002) posterior.
Bester and Hansen’s approach is to adjust the likelihood before profiling out the incidental parameters, while
we adjust it after doing so. In the present model, the two approaches coincide.

Finally, the adjusted profile score is also related to Bun and Carree (2005). Note that s(0) = Zi\il ZT M (y; —
Z:0)/Q*(0) and My; = MZ;0 + MZ; where 0 is the maximum likelihood estimator, with residuals &; satisfying

Zil Z M&; = 0. Therefore, solving s,(f) = 0 is equivalent to solving

h—6= (ZNj z7 MZi> b(p)Q(6). (3.9)

i=1
When p =1, (3.9) corresponds to Bun and Carree’s (2005) proposal for bias-correcting the maximum likelihood

estimate.

4. Global properties of the adjusted profile likelihood

At this point it is tempting to anticipate that 6, maximizes plimy_, /. (6). However, as shown below, —a(p)
dominates plimy_, .. 1(0) as ||p|| — oo in almost all directions and plimy_, . la(#) is unbounded from above.
Let h(6) = Vgrs(0), c(p) = Vyrb(p), and

L0)=LO)—alp),  L(6) = plimy_,1(6).
Sa(0) = S(0) = b(p), S(0) = plimy_, . 5(6),
H,(0) = H(0) — c(p), H(0) = plimy_, . h(0).

Using M (y; — Z;0) = —M Z;(6 — 6p) + Me;, we have
N
1 1
L() = -5 log <pth%ON Z (ef Me; —2(0 —00) " Z] Me; + (0 — 00) " Z, MZ;(6 — 90))> +c.
i=1
Let by = b(pg) = S(0y) and note that

N N
1 1
plimyy_, o > Z] Me; = <p11mN%ON > 5:M5i> bo = o (T — 1) bo.
i=1

i=1
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Hence, defining Vy = V(6y) by

=1 =1

N N
1 1
plimy o § Z]MZ; = <pth%oN E stsi> Vo =02 (T —1)V,

we can write

L(0) = _% log (1 —2(0 — 90)Tbo + (60— HO)TVE)(H - 90)) +c

by absorbing the term f% log (03 (T — 1)) into ¢. As N — oo, the maximum likelihood estimator of  converges
in probability to 0y, = argmaxy L(0) = 6y + Vo_lbo and has asymptotic bias Vo_lbo. This expression generalizes
the fixed T bias calculations in Nickell (1981) and Bun and Carree (2005). Note that (6p — 0m1) T Vo (6 — Om1) =

by Vg tbo. Furthermore,

1
L) = -5 log (1 — by Vg "bo + (0 — Om1) " Vo (0 — Oum1)) +c,
Vo(0 — 0,
s) = —— 0= Om) 7
1-— bO VO by + (9 — 9m1) Vo(9 — 9m1>
HO) = Yo +25(6)5(0)".

1= b Vi g + (0 — Ou) TV (6 — 1)

Note that L(-) and H(:) are even and S(-) is odd about 0., and that H(fy) = 2bob] — Vo and H,(6y) =
2bpby — Vo — co, where co = c(pg). Since L(0) is log-quadratic in 6 and a(p) is a multivariate polynomial with
negative coefficients, L,(0) = L(0) — a(p) is unbounded from above. For example, if we put p = kr with r in
the positive orthant of R? and let k& — oo, the term —a(p) dominates and L,(6) — oc.

It follows that 6y # argmaxy L,(0) and 6y has to be identified as a functional of L,(#) other than its global
maximizer (as in standard maximum likelihood theory). Because S,(6p) = 0, we need to select 6y from the
set of stationary points of L,(6), that is, from the set of zeros of S,(6). In general, this set is not a singleton.
Indeed, whenever 6 is a local maximizer of L,(0) (which will often be the case, as shown below), L,(#), being
smooth and unbounded, must also have at least one local minimum. Because [(0) is log-quadratic for any N > 1
and a(p) does not depend on the data, [,(), too, is re-increasing, regardless of the sample size. Therefore, an

estimation strategy based on solving s,(6) = 0 has to be complemented by a solution selection rule.
4.1. First-order autoregression without covariates
In the first-order autoregressive model without covariates (p = 1,q = 0), let (2 = (Vo — b%) /VE. Then,

L(p) = *%log(<§+(p*pml)2)+cv

S _ £ — Pml ’ H — Cg_(p_pml)2
() ¢+ (p— pm1)? (°) &+ (p—pm)?)”

by absorbing —1 log Vy into c. Note that (§ = —1/H (pm1). Recall that S(p) is odd about py = po +bo/Vo. The

zeros of H(p) are p = pm1 — (o and p = pm1 + (o, so S(p) decreases on [p,p] and increases elsewhere. All of p,
7, pm1, and (g are identified by S(-), and pny and ¢y act as location and scale parameters of S(-). For any given
00, pm1 and (o are determined by Vp. As Vj increases, |by/Vo| and (o decrease, that is, the bias of py, decreases

in absolute value, the length of [p, p] shrinks, and S(p) becomes steeper on [p, p].
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There is a sharp lower bound on V. With &y, and Fp denoting &; and F' evaluated at pg, we have y; —1 =

S1(&o0i + Foe;). From the independence between £y; and ;, we obtain

. N
. pth%oo% Zi:1 yz‘—l,——lMyi,fl

LB
= — V
‘ 02 (T —1) o+ Ve
where N
VLB _ trFoTslT—MSlFO Vie = pth%oo% Dim1 0:51 M Si&o;
0 T-1 7 (T 1) |

So Vi > VB and this lower bound implies an upper bound on |by/Vp| and on the length of [p, 7], and a lower

bound on the steepness of S(p) on [p, p].

LEMMA 3. VB is given by

2

1 T—2 1 T—2 7
VoLBZﬁ > (T—J—l)Poj—TE <§ P§>
3=0 7=0 \k=0

and satisfies (i) V{FB > 202 (ii) ViEE > 263 — co with equality if and only if T =2 or pg = 1.

By Lemma 3, H(pg) = 2b2 — V5 < 0 and, hence,

Vo — b2 b2

2 0 — 0o 0 2
— = > 20— — .
(P — pm1) V2 S (Po = pm1)

Therefore, po € [p,p]. Since S(p) is a rational function that vanishes at £oo and b(p) is a polynomial, S,(p)
has finitely many zeros. Thus, because S,(pg) = 0 and, by Lemma 3, H,(pg) = 2b3 — Vo — co < 0, it follows
that L,(p) has a local maximum or a flat inflection point at pg. Our main result for a first-order autoregression
without covariates is the uniqueness of such a point in [p,p], thereby identifying pg as a functional of L, (p).

Equivalently, po is the unique point in [p, p| where b(p) approaches S(p) from below.

THEOREM 1. pq is the unique point in [p,p] where L,(p) has a local mazimum or a flat inflection point.

L.(p) has a flat inflection point at pg if and only if Vo = Vi#B = 202 — ¢g. The latter equality holds if and
only if ' = 2 or pg = 1. The former holds if and only if V¢ = 0, which requires M 5£p; to be negligibly small
for almost all i. The elements of S1&y; are pé_ly? + Ei;ll pg_l, j=1,...,T, so MS1&; = 0 if and only if
y9(1 — po) = a;. The following corollary has been independently obtained by Ahn and Thomas (2006).

COROLLARY 1. When pg =1 and «; =0, La(p) has a flat inflection point at py for any T.

When py # 1, Vo = VEEB = 262 — ¢y only when T = 2 and a very strong condition holds on the initial
observations and the fixed effects, which is unlikely to hold in situations where a fixed effect modeling approach
is called for. Thus, when py # 1, except in quite special circumstances, po is the unique point in [p, p] where
L.(p) attains a strict local maximum. Note that, when pg is a local maximizer of L,(p), it need not be the
global maximizer on [p, p], which may instead be p. To see why this may happen, interpret the situation where

L.(p) has a flat inflection point at pg as a limiting case of the property that L,(p) is re-increasing.
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Figure 1 illustrates how pg is identified by L.(p) for two cases, each with T" = 4. The plots on the left
correspond to the case pg = .5 with Vy = VI8 + Vee and Vge corresponding to stationary initial observations.
Those on the right correspond to the unit root case without deterministic trends, i.e., po = 1 and Vy = V&, In
each case, the bottom figures show S(p) (solid line) and b(p) (dashed line); the top plots show L(p) (solid line),
—a(p) (dashed line), and L.(p) = L(p) — a(p) (thick line). In all the plots, vertical lines indicate p, po, and p,
from left to right. In the case of py = .5, pg is the unique local maximizer of L.(p) on [p,p]. Note that there is
a second solution of S,(p) = 0 on [p,p], which corresponds to a local minimum of L,(p). In the unit root case,
po is the unique flat inflection point of L,(p) on [p, p].

The asymptotic bias of the maximum likelihood estimator has the same sign as by because pm1 = po + bo/Vo.

The proof of Theorem 1, as a by-product, shows that if T is even, then by < 0; and, if T is odd, then b(p)

decreases and has a unique zero at some point p,, € [—2,—1), so by has the same sign as p,, — po.

Figure 1. Identification

0.8

0.6

0.4

0.2

0.6
0.4
0.2

0.2p
0.4
0.6

Left: po = 0.5. Right: po = 1. Bottom: S(p) (solid), b(p) (dashed). Top: L(p) (solid), —a(p) (dashed), La(p) (thick).
Vertical lines at p, po, and p.

4.2. First-order autoregression with covariates

In the first-order autoregressive model with covariates (p = 1,¢ > 1), profiling out 5 yields a profile likelihood

of p with essentially the same properties as in the model without covariates. Let 5(p) = argmaxg La(p, 3) =



Likelihood inference with fized effects 11

argmaxg L(p, 8) = argming (0 — 01) " Vo(0 — Om1). Partition Vo, V!, and by as

v )= (0 ) W= ()
Vo = PP P ’ vl — 0 0 , b — o)
0 ( Vosp Voss 0 VOBP VOM 0 0

With VI = (Vopp — Vops Vi Vose) 1, we have

088
Vogs (B(p) = Bm1) = —Vogp(p — pm1),
min(0 — O) Vo0 = Om) = (0= pm)*/ V",
L—bg Vg 'bo = 1-105,V{".

The first of these equations, together with V(0o — 60m1) = —bo, yields 3(po) = Bo, so Bp is identified whenever
po is. Profiling out 8 from L(p, 8) gives the limiting profile log-likelihood of p as

L(p) = Lip, B(p)) = 5 108 (G + (o~ pm)?) +¢

(slightly abusing notation), where (§ is redefined as (¢ = (1 — b3,V{”) V{§’ and 3 log V{” is absorbed into c.
LeEMMA 4. (VI")7L > VEB| with VIEB as defined earlier and given in Lemma 3.

We can now invoke the result for the model without covariates. Let p = pm1 — (o and p = pm1 + (o, with o

redefined as indicated.

THEOREM 2. pg is the unique point in [p, p| where Ly(p) = L(p) —a(p) has a local mazimum or a flat inflection

point.

By the proof of Lemma 4, the conditions under which pg is a flat inflection point of L,(p) are the same as
before. The presence of covariates does not affect the sign of the asymptotic bias of the maximum likelihood
estimator of p. It also follows from the proof of Lemma 4 that the inclusion of covariates in the model cannot

increase VJ’”, so the magnitude of pmi — po = V{’bo, can only decrease relative to the model without covariates.

4.3. pth-order autoregression

Consider first an autoregression with p > 1 and without covariates, i.e., ¢ = 0. Then

1 Vo
Lip) = —=log(1+ (p— pm1) Wo(p — pm N i —
(p) 5108 (1+ (0 = pan) Wolp = pumi)) + ¢ N
Wo(p — pm1)
S(p) = - :
(p) 1+ (p - pml)TWO(p - pml)
W,

H(p) = . +28(p)S(p) ",

1+ (p = o) TWop — o)
where —2 log(1 — b) Vy 'bo) is absorbed into c. Because Wy = —H (pm1), Wy is identified by L(-).
As in the p = 1 case, there is a lower bound on Vj. Recalling that Y;— = (ys,—1,...,%i,—p) and y; —; =
S;(€oi + Foei), where &y; and €; are independent, we have

_ plimy oy S, Vi MYi
3 (T—1)

Vo = Vo'P + Vee
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where VB and Vg¢ have elements

trFy ST MS,Fy plimy_, o 3 S, €0,8T M Si&oi

(V5”)

for 1 < j,k < p. Hence, Vy — VLB is positive semi-definite, which we write as Vo > V¥B. When p > T, while Vj
is nonsingular by assumption, rank(V“?) < T — 1 because S;Fy = 0 for j > T, which implies that (VOLB)jk =0
whenever j > T or k > T. Thus, when p > T, although Vj can be arbitrarily close to VZ?, Vy # ViEP. Further,
when p > T, b;j(p) = 0 for j > T because the sum defining b;(p) is empty, and ¢;;(p) = 0 for i + j > T'. Hence,
when p > T, V{EB — 2bgb) and ViEE — 2bgb] + o have only zeros beyond their leading (7' — 1) x (T — 1) blocks.

A proof of generalizations of (i)—(ii) of Lemma 3 and Theorem 1 to the p > 1 would be desirable but is more

difficult.! We resorted to numerical computations, which suggest that

ViEB > 2bgby,  VEP > 2boby — co, (4.1)

min(p, T —2)  if 30_ poj #lor T <p+2,

rank(Vy'? — 2bobg + o) = { p—1 else.

(4.2)

Specifically, we computed the eigenvalues of VEZ — 2bob] and ViEP — 2bgb] + ¢ for p = 2,3,4; T =2, ..., 7; and
all pg in a subset of RP chosen as follows. For p = 4, we put a square grid on the Cartesian product of the two

triangles defined by
“1<vy <1, Y2—1<m <1—1,
1<y <1, Ya—1<y3 <1 —1y,

(4.3)
which is the stationary region of the lag polynomial v(L) = (1 — v, L — v2L?)(1 — 43L — 74 L?). For each point
on this grid and for each of the values m = 1,2,4, py was calculated by equating the coefficients on both sides
of m — pg1 L — p02L2 — posL? — p04L4 = mvy(L). For m = 1, the stationary region is covered, while for larger m
a larger region is covered, though less densely. In addition to (4.3) we set v4 = 0 for p = 3, and 73 = 74, =0
for p = 2. The grid points on the region defined by (4.3) were spaced at intervals of .002 when p = 2, .02 when
p =3, and .1 when p = 4. We found that, uniformly over this numerical design, the eigenvalues of VZZ — 2byb]
and VLB — 2bgb) + ¢y are non-negative and the rank of V{¥B — 2bgb] + cg is as given by (4.2). These findings,
while obviously not a proof, support (4.1) and (4.2), and we shall proceed under the assumption that (4.1) and
(4.2) hold.?

Because Vo > Vi'P, (4.1) implies that Vo > 2b0b8— and that H,(po) = 2b0b8— — Vo —¢cg < 0. Pre- and
postmultiplication of Vy > 2bob] by bJ V}fl and V(flbo gives b V(flbo < % <1-b] Voflbo. Recalling that
(po — pm1) "Vo(po — pm1) = bg Vy by, we have

(Po — pm1) Wolpo — pm1) < 1.

[t/2] (t—k)! t—2k

LA major difficulty is the rapidly increasing complexity of ¢ as p increases. For example, ¢ = D ilo =2k P1 p’2C when

p = 2. In comparison, ¢; = p¢ when p = 1.

2The same computations but with 7" = 8,9, 10 further supported the conclusions. Here, however, when m = 4 and p = 3,4
the computations are numerically less stable because the polynomial terms may be extremely large and their sum numerically
imprecise.
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Therefore, if (4.1) and (4.2) hold, po is a point in the ellipsoidal disk &€ = {p : (p — pm1) Wo(p — pm1) < 1}
where L,(p) has a local maximum or a flat inflection point. We approached the question of uniqueness of such
a point numerically. For the same numerical design as above and with Vy = V"B, we applied the Newton-
Raphson algorithm to find a stationary point of L,(p), starting at py1 and using the Moore-Penrose inverse of
H,(p) whenever H,(p) is singular. Uniformly over this design, the algorithm was found to converge to pg, thus
supporting the conjecture that pg is the unique point in & where L,(p) has a local maximum or a flat inflection
point.>

In the model with covariates, just as before, 5 can be profiled out of L,(6). Here, again, Sy = B(po).
Lemma 4 continues to hold for p > 1. Hence, if pg is identified in the model without covariates in the way we
suggested, then it is identified in the model with covariates in exactly the same way, now with £ defined through

Wo = (1= bg,V{bo,) ' Vopp, in obvious notation.
5. Estimation and inference

For a given p, define

N
B(p) = argmgxla(p, B) = arg mgxl(@ B) = (Z X,TMXz) ;XJM (yi —Yi_p).

=1

o~

The unadjusted and adjusted profile log-likelihoods for p are {(p) = I(p, B(p)) and l.(p) = l(p) — a(p). Let s(p),
sa(p), h(p), and ha(p) be the corresponding profile scores and Hessians. Let W = —h(pm1), where ppy is the
maximum likelihood estimator of po, and let £ = {p:(p- ﬁml)TW(p — Pm1) < 1}. We define the adjusted
likelihood estimator of py as

Pal = argmin s, (p)sa(p) s.t. ha(p) <0,
peE

that is, as the strict local maximizer of l,(p) on the interior of & if such a maximizer exists and otherwise as
the minimizer of the norm of s,(p) on &. The adjusted likelihood estimator of 3y, then, is Bal = B(ﬁal)

Let N — oo. Then [,(p) converges to La(p) uniformly in p since —a(p) is nonstochastic and sup,, [[(p) —L(p)| =
0p(1). Further, pm LN Prl, w A —H(pm1) = Wy, and & 2 € in the sense that Pr[p € é’\] — 1y,ecey for any p
not on the boundary of £. It follows that gal = (ﬁ;'—l, B:'I)T 2 0,.

When H,(6p) is nonsingular, by a Taylor series expansion of s,(#) around 6,
VN (B — 60) SN (0,Q), Q= Ha(60) (Vo — bobg ) Ha(6) . (5.1)

The asymptotic variance can be estimated in the usual way.*
We have not investigated the limit distribution of 8.1 in the situation where H,(0p) is singular (which includes
all cases where pg is a flat inflection point). Presumably this could be done by using arguments along the lines

of Rotnitzky, Cox, Bottai, and Robins (2000).

3Computations with 7' = 8,9, 10 gave the same results except in certain cases with m = 4 and p = 3,4 where the algorithm
failed to converge because the rank of Ha(p) was underestimated.

4Note that the information equality does not hold, although this could be rectified by rescaling the adjusted profile score; see
McCullagh and Tibshirani (1990).
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We used simulations to examine the finite sample properties of the adjusted likelihood estimator in first- and
second-order autoregressions without covariates and in a first-order autoregressive model with one stationary
covariate. We compared the estimator with the one-step Arellano and Bond (1991) estimator, which leaves the
initial observations unrestricted,® and with two estimators that are consistent only under rectangular array
asymptotics (see Li, Lindsay, and Waterman, 2003 and Sartori, 2003). The latter two estimators have an
asymptotic bias that is O(T~2). The first of these estimators corrects the maximum likelihood estimate. For
the first-order autoregression without covariates, we used the estimator of Hahn and Kuersteiner (2002), which
is targeted to this setup. For the other models, we used its extension to possibly nonlinear models as proposed
by Hahn and Kuersteiner (2011). The second large T' estimator considered is the penalized likelihood estimator
of Bester and Hansen (2009).5

In all the designs, we set N = 100, generated € and a; as A(0,1) variates, and chose py in the interior
of the stationary region, which implies that y;; is eventually stationary as ¢ — co. We varied the information
content of the data through the initial observations. Let p; = lim;— o0 E(ys—|c;) and X; = limy_, o Var(y;—|a;),
so, if y? was drawn from the stationary distribution, we would just have p; = E(y?]a;) and X; = Var(y?]a;).
Let GiGiT = 3; be the Cholesky factorization of ¥;. We set y? = p; + Gy for some chosen scalar ¢ > 0, which
is a p-variate version of setting the initial observations ¢ standard deviations away from the stationary mean.
So v controls the outlyingness of the initial observations relative to the stationary distributions. All else being
equal, Vj increases in ¢ and Vi — V{'P as ¢ — 0, so the data carry less information as v gets smaller. The
effect of strong inlying observations (small /) on the informativeness of the data is stronger when T is small
because it takes time to revert to the stationary distribution. The effect of v is vanishingly small as py moves
to the boundary of the stationary region. We set ¢ = 0,1,2 when p =1 and ¢ = .3,1,2 when p = 2.

In the models without a covariate, pu; and ¥; follow immediately from «; and pg. In the model with a
covariate, z;; was generated by z;; = o, + ywi—1 + gy with uy ~ N(0, O’Z) and ;o drawn from the stationary

distribution. Here,

; 5 1 2 1+
gy = — <1+ 50), 5, = 2(1+ 5°2<7p°)a5).
1I—po 11—~ 1 —pg I—=~*\1—="7p0

We set 6 =~y =0, =.5 and By = 1 — pg, inducing dependence between the covariate and the fixed effect, and

keeping the long-run multiplier of z on y constant at unity across designs.

Tables 1-5 in Appendix B present Monte Carlo estimates, based on 10,000 replications, of the bias and the
standard deviation (std) of the estimators considered, as well as the coverage rates of the corresponding asymp-
totic and bootstrap 95% confidence intervals (ci%; and ci%g). Bootstrap confidence intervals were computed
using the percentile method with 39 bootstrap samples formed by randomly drawing N strata with replacement
from {1,..., N}.

In the first-order autoregression with py = .5 (upper panel in Table 1), both p, and pa1, perform well. The

adjusted likelihood estimator has smaller standard deviation and is virtually unbiased, except when ¢ = 0

5The Arellano and Bond (1991) estimator is a generalized method of moments estimator based on the moments
E(zij(eit —€it—1)] =0, =1,....,T5t =2,...,T; and E [y;s—j(esx —€i¢—1)] =0, =2,...,;t =2,...,T.

6The estimators of Hahn and Kuersteiner (2011) and Bester and Hansen (2009) require a bandwidth choice. We set the
bandwidth equal to unity, following the suggestion of Bester and Hansen (2009, p. 134).
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and T = 2. Both estimators deliver 95% confidence intervals with broadly correct coverage, although the
coverage errors are somewhat larger for p,p, where they also increase in T. The latter observation is in line
with the theoretical results of Alvarez and Arellano (2003). The estimator of Hahn and Kuersteiner (2002)
outperforms the Bester and Hansen (2009) estimator, although both exhibit substantial bias for small T and
their performance is sensitive to .

When pq is increased to .95 (lower panel in Table 1), the performance of all estimators tends to worsen.
Pab deteriorates the most, showing a substantial bias, large dispersion, and confidence intervals with much
lower coverage. p, continues to have little bias and provides confidence intervals with approximately correct
coverage, with the bootstrap-based confidence intervals being slightly better. In most designs, both ppx and ppp
outperform pap, in terms of bias and standard deviation. Their confidence intervals, however, are not reliable.

In the second-order autoregression (Tables 2 and 3), both p,; and p,p, perform well in terms of bias, although
there is a non-negligible bias when 7' = 2, and also when 7' = 4 and the initial observations are strong inlyers.
As N = 100, the probability that the adjusted likelihood has no local maximum in the relevant region is fairly
large when both T and 1 are small. In most designs, p, has smaller standard deviation than p,p,, with the
difference decreasing in T and . For both estimators, the confidence intervals have very reasonable coverage.
As before, pnx and ppy, still show a substantial bias for most of the designs considered. Together with their small
standard deviation for most values of T, this again leads to their confidence intervals being too narrow.

In the model with a covariate (Tables 4 and 5), the coefficient on x;, By, is generally estimated with small
bias by all estimators. Regarding the estimation of pg, the tables show a similar pattern as in the model without
a covariate. p,1 has little bias and well-behaved confidence intervals for all designs, especially when computed by
bootstrapping. The same holds for p,y, only when py = .5. phx and ppy only start to perform reasonably when

T > 16, although the coverage errors of their confidence intervals remain large for all values of T" considered.

Appendix A: Proofs
Proof of Lemma 1. Using (2.2),

plin’lN_)OOJ\f_1 Zi\le €;FMS]'(§07;+F0€¢) E(c’-:;rMSjFo&;)

pthaoQSPj (90)

pliInj\,HooN*lX:f\[:1 el Me;  E(e] Mey)
o trMSjFo
T T—-17

plimN%oosﬁj (90) = 0,

where &; and Fy are & and F, evaluated at . If, in addition, the disturbances are normal variates, i.e., e;: ~ N(0,0?),
then

E[s, (60) = E Zivzl ef MS;(€oi + Foei) _E vazl ef MS;FoMe;
" SN el Me; SN el Me;
_ E(e/ MS;FoMe;)  ttMS;Fy (A.2)
E(efMe;)) — T-1"7 :

E[Sﬁj (6o)] = O,

by well-known properties of the normal distribution and the following geometric argument, which goes back to Fisher
(1930) and Geary (1933). Let v ~ N(0,0°1,) and let Q be a g x h matrix such that QT Q = I, so QQ ' is idempotent.
Write I, — QQ" as PPT, where PTP = I4—p. Transform v into m = PTu, the radius r = (’UTQQTU)l/Q, and the
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h — 1 polar angles a of QTv. Then the elements of (m',r,a")" are independent. Therefore, for any g x g matrix W, if
A=2"QQ"WQQ v and B = v" QQ " v, then the ratio A/B depends on v only through a and hence is independent
of B, which implies that E(A) = E(A/B)E(B) and E(A/B) = E(A)/E(B).” The transition to (A.2) now follows from
applying this property to the ratio

SN el MS;FoMe; e (In ® M)(In ® S;Fo)(In ® M)e

S e Me, T (I @ M)e

withv=e=(ef,...,en)", QQT = In ® M, and W = Iy ® S; Fy. The proof is completed by writing trM S, Fy) in terms

of the ;. Note that
0 0
sr=( o o)

where Dj_1 is the leading (T — j) x (T — j) block of D™'. For arbitrary pi, ..., pr—1, D and its inverse are

1 0 - 0 1 0 - 0

D: _p1 7 D,1: ¢1 ,
: o0 : o0
—pr_1 - —p1 1 br_1 - P11

where ¢1, ..., ¢p7—1 are recursively obtained as ¢1 = p1 and ¢; = p; +Zf;i OkpPj—k, J = 2,...,T—1. Recursive substitution
gives
(k14 ... + kp)! ki ke Kj

¢j = | | P1 P2 . pj .

k1 42kt +jk;=j kil kp!
Putting pp+1 = -+ = pr—1 = 0 gives ¢; = ¢;. Therefore,
T—j-1
trMS; Fo TD . |
I —1 77'1( Z T(T Sotv i=1,...,p,
t=
which equals b;(p).

Proof of Lemma 2. For j=1,..,p,let S; = {S € S|j € S}. Group terms by S € S; to write

[bs60)in; = Y- Busto

ses;
where iy
e -
Z _]_7; > kl...(/ib._f)ll)l...klpjpgs
t= ek, srTh=t 7 ' P
and K; s = {k € N?| for all j' # j, k;s > 0 if ond only if j* € S} D Ks. A change of variable from k; + 1 to k; gives
T—j-1 ) -
T—j—t (¢ k=1) &
B; = — P — RS AN, 71
5.5 (p) > T(T-1) > kil okl PS
t=|S|—j kEKg:T T k=t+j

where the lower limit in the first sum changed from 0 to |S| — j because, when t < |S| —j, no k € K satisfies 7' k = t+7.
A further change of variable from ¢ + j to ¢ gives Bj s(p) = as(p), with as(p) as defined in (2). Therefore,

bi(p) =V, Y as(p) =V, > as(p) = Vy,alp),

ses; ses

which completes the proof. O

"For a discussion and historical perspective on this device, see Conniffe and Spencer (2001).
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Proof of Equation (3.3). In the parameterization 7; = ozie*(Tfl)“("), we have

T
_ 1 2 1 T (T—1)a(p)y2
Li(9,m) = —§log0 _W;(yii_zite_nie ) +c
(T—1)a(p)
€ —1)a T
Vi li(9,m:) = T(yi — Z:0 — eV (p>L) L

and

Eﬁﬂh’vmmei(ﬁv ni) = _07262(T71)a(p)7 Eﬁﬂh‘vcﬂm&(ﬁ?ni) =0,

Eg,n; Von i(9,m:) = —o %@ (77i (T - 1)b(P)€(T_1)a(p) + Eo,n, ZiTL/T)~

The jth column of Y;_ is 4;,_; = S;(€&; + Fe;) , so the jth element of Ey . Y; ¢ is

0
Eo.n,ys 5t =0 8i€ =0 D eV 4 Ty omy =TS, < D! (056 + XiB) ) /T
i i

Hence,
Eo n; ZiT—"/T =" (T - 1)b(p)e(T71)a(p> +m,
where m = (ma,...,mp, 1" X;/T) 7 is free of ;. Consequently,
AR — - (-Da(p) (M
7 T 0
and V,, (A7'B;) = 0. O

Proof that no orthogonalization exists when p > 1. In the original parameterization, if [;(9, ;) is 4’s
log-likelihood contribution, we have

Eo,a;Vaia li(0,ai) = —o 2, E9,0;Vo2q,li(0, i) =0,
Eﬁ,aiveaili(197 ai) = 7072E797aiZ;L/T,
and so, by the preceeding proof,
ATB = — Eo,0; Z5 /T _ —(T —1)b(p)a; + m .
0 0

Suppose some reparameterized fixed effect, say (;, is orthogonal to . Then a; = «;(9, (;) must satisfy the differential
equation Vya; = A;lBi, that is,

VPjO‘i = (T_ 1)bj(p)a’b - my, Jj=1....p (AS)

Vﬁ} Qg = —Mp+j, ] = 17 <4, (A4)

and V_ 2a; = 0. We show that these equations are inconsistent. Suppose ¢ > 0. Then (A.3) implies ijgj,ai = —ng,mj,
which is generally non-zero, while (A.4) implies ij/;j, a; = 0, so the equations are inconsistent. Suppose ¢ = 0. Then

1, .
ij:LTSj<D—plC>y?7 j=1...,p

and, because V, ,b;(p) = V., p;a(p) = V,;b5:(p), (A.3) will be inconsistent if V, ,m; # V,;m; for some J,j'. Take
j =pand j' =p— 1. The first element of 3 appears in T'm, and T'm,_1 with coefficients v, = 1 + p, ZtT;OP*I ¢ and
Yp—1 = Pp ZtT:_Op ¢, respectively. Differentiating gives

T—p—1

T—p T—p T—p
vpp_pr = Pp Z vpp_1<Pt = Pp Z vppﬂota vpp'fol = Pp Z vppSOt + Z Pt
t=1 k=0

t=0 t=1

using wo = 1 and V,,, 0t = V,, r11. The latter follows from differentiating ¢¢ and a change of variable from k,_1 —1
to kp—1, giving

(LTk—Fl)' k
Vopoor = D kil kP
7T k=t—p+1 ’ P

which is invariant under a unit shift of p and ¢. Therefore, V,,_;7p # V,,7p—1, and (A.3) is inconsistent. O
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Proof of Equation (3.5). By the preceeding proof,
Ey.a;Va,oli [ Ega, 2] )T
]E'ﬂ,oa,; vaiaigi B 0

and so
aiZ(ZiT —Ev,q, Z,L-TLLT/T) (yi — Zif — 1)

9= ( o™? (ys — Z:0 — LOéi)—r (yi — Zi0 — 1) /2 — 0'72T/2 ) ’
Recalling Ey,o, Z; t/T = —(T — 1)b(p)o; + m, we have

— _2 J—
I L D T

and therefore

 AVaagi _ (072 —Eoa, 28w T) (yi — Zi6 — 1ou) — (T — 1)b(p)
S Veioili  \ 0 i —Zi0 —10)" (yi — Zi0 — 1) /2 — 0 2(T = 1)/2 )~
Evaluating at o; = @;(9) = ¢ (y; — Z:0)/T and noting that Va,a,a; £ = 0 gives (3.5). O

Proof of Lemma 3. Let A= S1Fy and B = V,,A. Then

LT AL LB 1 trATMA  TtrAAT —.TAAT,

-1 77 WhETp o T T(T 1)

bo = T(T—1)

Hence, ViEZ > 202 and VEEB > 202 — ¢ if and only if

2 (LTAL)Q
TtrAAT — TAAT - 2 > A.
tr L L TT-1) ° 0, (A.5)
2 (LTAL)Q
TtrAAT — TAAT - S TR > A.
tr L L TT—1) ¢t Bt > 0 (A.6)
The matrix A = At is
0 0
b (00) 1
A = ( AT—Fl 0 ) , ar = (pT72,pT737...7 l)T7 T>2,
ar 0
where the subscript on p is omitted. By recursion, it can be deduced that
T—2 ‘ T—2 _
JA = (T—-j-1p, B=) jT-j-1)p",
j=0 j=1
T2 ) T-2 / J 2
trAA’ = (T —j—1)p¥, JAAT L = Z ( pk> ,
j=0 =0 \k=0

yielding Vi&? as stated in the lemma. Now let 7 > 0 and use the equalities just obtained to see that if (A.6) holds for
p =, then (A.5) holds for p = r and (A.5) and (A.6) hold for p = —r, with strict inequalities for T > 3. Hence, we only
need to show that (A.6) holds for p > 0, with equality if and only if 7= 2 or p = 1. Write (A.6) as Qr > 0. Because
Q2 = 0, to show that (A.6) holds, it suffices to show that AQr > 0 for T' > 2, where A (*) = (*)py — (+)p- Write AQr
as

TA 2
AQr = A (TtrAAT —TAAT, - QT(LTib) — B
( B T

)
T N GON

41 T (T+1)

+{ra (trAAT)T -A (JAAH)T}



Likelihood inference with fized effects 19

and denote the quantities in braces as 71, 72, and 73. Using T (T'+ 1) /2 = ZiT;Ol (T — i), we have

o= jZO(T—j)P2j_ T(T2+1) <Z (T—j)pJ)

§=0
T—1T-1 ) T—1T-1 o
- s ST S ICETICER )
i=0 j= 0 i=0 j=0
2 T
= —u R
T(r+n"

where u = (T, T —1,...,1)" and

1 1 1 1 p pT—t
p2 p2 p2 P P2 T
R= , _
pQT—Q pQT—2 pZT—Z prl pT p2T—2

Consider the principal minors of R. Those of order 1 are 0; those of order 2 are

24

_ pitd L N 2
det<p2j_0pi+j P Op ):pl+](p3—pl) >0, 0<i<y<T,

given p > 0; and those of order greater than 2 are 0 because R is the sum of two matrices of rank 1 and, hence,
rank (R) < 2. Therefore, R is positive semi-definite and 71 > 0. Furthermore,

T-1 T-1 \? T-1T-1  T-1T-1
S50 SR O SIS 90 SEEES w SEEETPRY)
j=0 j=0 i=0 j=0 i=0 j=0
Use
T—1 T—2 _
A(TBY) = Y- Z] —i-DP T =Y G+
T j=1 j=0
9 T—2T-2
= = T—i—1)@G+1)p
T 2 2 T —i-DG+Dp
=0 j=0
t it
o wrte T—2T-2 T—2T-2 '
TQ:d<ZZ(T—i—1)(T p= 3 (T—iz1) ]+1)p]),
i=0 j=0 i=0 j=0
Whered:ﬂ%_l).Note that 7 is a polynomial of degree 27" — 4 in p. When T'=2 or p =1, 7o = 0. When p # 1,
T-1-T T L—pt —Tp" ' +Tp"
(LTAL) :—p;rp, A(LTBL) = p p 2+ p,
T (1-p) T (1-p)
and so 5
AT =1 =Tp+p") 1 Ty 4 Ty
2 = -
(1-p)* (1-p)*
For T > 2,

lim 72 (1 —p) 2 = T(T N(T—-2)(T+1)>0
p—1 72
and, therefore, 7 = (1 — p)?> P (T, p), where P (T,p) is a polynomlal of degree 2T — 6. If all coefficients of P (T, p) =

Z?TO p;p’ are positive, we conclude that 2 > 0. Write 7 = ZJ 54 q;p’, where ¢; is found as

HE+DGE-D+6(T-1)(T—5—1)=3jT(T -1}, j<T-2,
q; =
dr—-j-1)2T—-j-2)(2T—j-3), T-1<3.
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Equating the coefficients of 75 and (1 — p)? P (T, p) gives pr = 25:0 (k4+1—j)gq;. To show that pr > 0 for 0 < k <
2T — 6, we only need to show that px > 0 for & up to T' — 2 because for larger k, g, > 0 and so pi increases in k. For k
up to min(T — 2,27 — 6), we obtain

pe= L 1) (k+2) (k+3) ((T—l)(?T—k—?)—&—ﬁ(lf—l)—T(T—l))

12 10

and, hence, pr > 0 because either £ < T — 2, implying 2T' —k —2 > T, or k =T — 2 < 2T — 6, implying T" > 4 and
k > 2. Therefore, 72 > 0. This establishes Q7 > 0, that is, (A.6). Recall that Q2 = 0 and note that p = 1 implies
71 = 712 = 713 = 0 and, hence, @7 = 0. Therefore, Qr =0if T =2o0r p=1. If T > 2 and p # 1, then AQr > 0 because
73 >0 when T'= 2 and 72 > 0 when T" > 2. Therefore, Qr =0 only if ' =2 or p = 1. O

Proof of Theorem 1. L,(p) having a local maximum or a flat inflection point at pg is equivalent to b(p) approaching
S(p) from below as p approaches po from the left. We will write this as b(p) 1T S(p) at po, and show that b(p) 1 S(p) on
[p, p] at most once. From
2(p — put) (38 — (p = pm)®)

(G + (p = pm)?)’
it follows that S(p) is strictly concave on [p, pm1] and strictly convex on [pmi, p]. Because ¢ = p', b(p) and its first two
derivatives are

V,H(p) =

—=T-1-t,
blp) = *Zmpy
T—-2
(p) = 72 —1—tpt,1’ Ztt—lf_—l;—t) -2
t=2
For p # 1,
. T—-1-Tp+p" _ T—2-Tp+Tp" ' = (T -2)p"
T Trm e Y TT-Di-p°

2T —6—2Tp+T(T—1)p" > =2T(T=3)p" '+ (T —-2)(T-3)p"
T(T—1)(1-p)

When T < 3, b(p) is linear and so, given that S(p) is concave-convex on [p, |, b(p) T S(p) on [p, p] at most once. Suppose
T > 4. Then, b(p) is a polynomial of degree 2 or higher with negative coefficients, so b(p) is negative, decreasing, and
strictly concave, on Ry. Further, by Descartes’ rule of signs, c(p) has one zero on R_ when T is even and none when T'
is odd, and d(p) has no zeros on R_ when T is even and one when 7" is odd. Suppose T is even. Then ¢(—1) = 0 and
b(—1) = —ﬁ < 0, so b(p) is negative and strictly concave on R, and, hence, its intersection with S(p) on [p,p] can
only be on (pm1, p], where S(p) is strictly convex and is approached from below by b(p) at most once. Now suppose T is
odd and T" > 5. Then,

21T —2) (2" - 3T +1)
- 27T (T — 1) <5

d(=1) = =7 >0, d(—3) =

so b(p) is strictly convex on (—oo, p,] and strictly concave on [p,, c0) for some p, € (=1, —1) and decreases on R. Define
pu by b(py) =0, that is, by T (1 — pu) = 1 — pL, pu € R_ Since T > 5, we have —2 < p, < —1. Thus, b(p) is negative
and strictly convex on (pu, pv], with —2 < p, < =1 < py < —5. Let R = [pu, po] N [pm1, #]. If R is empty, then p, < pmi or
P < pu; in either case, by the concavity-convexity of S(p), b(p ) 1 S(p) on [p, p] at most once. If R is non-empty, to show
that b(p) T S(p) on [p, p] at most once, it suffices to show that S(p) decreases faster than b(p) on R, i.e., H(p) < c(p) for

p € R. We will show below that (i) Vi"? > =1 1pr < 0; (i) Vi*? > Lif po > 0. By (ii), pm1 = po+bo/Vo > po+2bo > —3

if 0 < po < 1 because b(0) = —7, b(1) = —3, and b(p) is concave on [0, 1]. Further, pm > 0 if po > 1 because, then,
bO > % > —1. Hence, R is empty if po > 0. Now suppose po < 0. Define py, by S(pw) = b(pv), pw € [pm1, p]; and py, by

— Vo —b2
S( w) = b(0) = =7, ply € [pan, pl- Then pu = pui < piv = pumr = 3(T = /T = 4G5). By (1), €6 = 520 < 5 < 755 < §.

Since H(p) increases on [pm1, p] and H(p),) decreases in T and increases in (3,

H(pw) = - & — +25%(pw) < — G — +%
(G + (pw — pm1)?) @+ —pa)?)” T
5/4 2 1

IN

3+ <
(GriG-vo) = 2
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T—1
1—p 1—p
“ = —— and, therefore,

and so, H(p) < —3 for p € [pm1, pw]. On the other hand, T' (1 — p,) = 1 — p,, implies ke =

~T +TpLf™* o 1
T(T—1)(1—pa)®  pu(l—pu)

1

So, c(p) > —3 for p € [pu, pu] and H(p) < c(p) for p € R. We conclude that b(p) T S(p) on [p, p] at most once, provided

(i) and (i) hold, which we now show. Write Vi“? = ﬁ Z?Z; “vjpl, where

V25 = T(T—j—l)
@+ )T ——-1) =G+ D+ 2 —T+1) (2 — T +2) Lzj>ry }
vgjp1 = —{(2J+2)T—j—-2)—j+1)+ 2 —T+2) (2 — T +3)12j41>7} } »

using (37 _o pF)? =30 o (k+1)pF + 300, ( — k + 1) pT*. Clearly, vz;41 < 0. Further, vz; > 0 because

o = J T =2 =1)(T == +j(+1) f0<2<T,
TV (T —-5-1)G+1) if 7 <2j <27 — 4.

Hence, V&2 decreases in po on R_ and (i) follows because VB = % when pp = 0. When 0 < po < 1, a sufficient
condition for V{8 > % is that dx > 0 for 0 < k < T — 2, where dj, = Efzo (v2j + v2j41) — w We have

vor by =L T=2=D(T=j=1)=(T=2j=2)(2j+2) f2j+1<T,
2j 2j+1 = (2j—T+3)(T—j—1) if2j+1>T.

Only when 2j 4+ 1 < T is it possible that va; + v2;41 < 0, so it suffices to show that di > 0 for 2k + 1 < T'. We obtain,
for 2k +1 < T,

T(T —1)

—

Define fx by di = 3 (k+1) fx. Then, fo = (T —2)(T —5) >0, f1 = 3 (3T% — 25T + 54) > 0, and, for k > 2,

dk:%(kH) (217 — 5Tk + 4k> — 8T + 13k + 10) —

fe > §T275Tk+4k278T+13k+10
1
= g((T—Qk—2)(5T—6k—16)+k(T—5)—|—2(T—1))>0.
Hence, V&P > % when 0 < po < 1. When po > 1, it also holds that V&? > % because then by < b(1) = —% and
VB > 2b3. Therefore, (ii) holds. O

Proof of Lemma 4. Use Yi,—1 = S1 (&)1 + Fo&i) to write Z; = (yi,,l, Xl) = (S1F0€i, 0) + =i, where Z; = (51501', XZ)
is independent of ;. Proceeding as above, we have

' o2 (T 1) =L o o =
where e
ve o ( Vee  Vex \ _ plimyooy 3, S ME
T\ Ve Vxx o3 (T~ 1)
is positive semi-definite and Vx x is positive definite by assumption. Therefore, Vee — Vex Vi x Ve > 0 and (V) ™! =
Vi P + Vee = Vex Vi Ve > Vo7 -

Appendix B: Tables



Table 1. Simulation results for the first-order autoregression, N = 100 observations.

bias std ci%s cits

v T po Pal Pab Phk Pbh Pal  Pab  Phk  Pbh Pal  Pab Phk  Pbh Pal  Pab  Phk  Pbh

0 2 .50 | —.143 — =747 —.996 | .266 — .151 .106 | .879 .919 .003 .002 | .928 .979 .011 .000
1 2 .50 027 — =375 —.750 | .268 — .140 .093 | .942 934 352 .000 | .948 967 .321 .000
2 2 .50 .026 — 112 —.425 | .168 — 112 075 | .969 .943 1.000 .001 | .949 943 .825 .005
0 4 .50 .006 —.043 —.296 —.441 | .142 148 .066 .055 | .955 .921 .009 .000 | .945 913 .025 .000
1 4 .50 014 —-.055 —.141 —.328 | .124 .166 .067 .055 | .964 .925 474 .000 | 942 906 .493 .001
2 4 .50 .003 —-.015 073 —.184 | .064 .084 .056 .046 | .968 .937 941 .021 | .939 .932 .775 .045
0 6 .50 .007 —.033 —.147 —.246 | .090 .081 .051 .043 | .968 .923 155 .000 | .944 887 .231 .001
1 6 .50 003 —.047 —.072 —.196 | .067 .098 .049 .041 | 971 911 .666 .003 | .945 .864 .698 .009
2 6 .50 | —.001 —.022 .043 —.123 | .045 .064 .042 .035 | .958 .924 873  .064 | .937 .905 .834 .101
0 8 .50 .001 —.027 —.085 —.163 | .056 .058 .043 .036 | .965 .921 427  .005 | .941 .864 516 .011
1 8 .50 .000 —.040 —.044 —.137 | .048 .069 .040 .034 | .960 .908 73 022 | 944 835 .809 .037
2 8 .50 .000 —.022 .029 —.092 | .036 .052 .034 .030 | .954 .927 870 128 | 946 .889 877 171
0 16 .50 | —.001 —.020 —.022 —.064 | .028 .030 .026 .024 | .948 .902 841 238 | .944 794 865 274
1 16 .50 | —.001 —.027 -—.012 —.059 | .026 .035 .025 .023 | .947 .880 904 278 | 946 .760 .918 .321
2 16 .50 | —.001 —.022 .009 —.047 | .023 .032 .023 .021 | .947 .890 915 387 | .946 .792 936 .426
0 24 50| —.001 -—.018 -—.010 —.039 | .021 .022 .020 .019 | .944 .868 902 461 | 944 728 916 .496
1 24 50| —.001 -—.023 —.006 —.037 | .020 .025 .020 .019 | .943 .850 925 492 | 941 .691 931 .527
2 24 .50 .000 —.020 .004 —.031 | .019 .024 .018 .017 | .946 .865 928 555 | 943 .724 939 .582
0 2 .95 | —.143 — =525 —1.000 | .265 — .150 .100 | .879 .922 287 .000 | .927 980 .128 .000
1 2 .95 | —.120 — —.490 —.977 | .266 — .152 101 | .893 .921 369  .000 | .934 .978 .170 .000
2 2 .95 | —.059 —  —=.385 —.907 | .265 — .152  .101 | .918 .930 638  .000 | .947 975 .346 .000
0 4 95| —.086 —.676 —.276 —.537 | 124 .456 .071 .057 | .889 .673 .074 .000 | .908 .615 .059 .000
1 4 95| —.061 —.696 —.239 —.509 | .124 472 .073 .059 | .910 .689 185 .000 | .932 .627 .132 .000
2 4 95| —.015 —-.386 —.151 —.443 | 123 418 .070 .055 | .939 .812 636 .000 | .948 .755 .450 .000
0 6 .95 | —.059 —.468 —.189 —.382 | .084 .263 .051 .042 | .889 .543 .046 .000 | .899 .306 .056 .000
1 6 .95 | —.038 —.511 —.157 —.357 | .083 .272 .049 .041 | 911 534 151 .000 | .936 .296 .140 .000
2 6 .95 | —.003 —.286 —.080 —.297 | .082 .233 .046 .038 | .944 .749 718 .000 | .949  .520 .604 .000
0 8 95| —.044 —-.346 —.146 —.301 | .063 .174 .038 .032 | .889 .433 .032  .000 | .908 .151 .048 .000
1 8 95| —.025 -—-.399 -—.115 —.276 | .063 .192 .038 .032 | .915 .396 159 .000 | .944 .145 171 .000
2 8 .95 002 —.226 —.046 —.222 | .063 .159 .035 .029 | .946 .660 807 .000 | .940 .356 .730 .000
0 16 95| —.016 —.148 —.076 —.167 | .034 .061 .020 .018 | .901 .237 .024 .000 | .941 .020 .058 .000
1 16 .95 | —.006 —.197 —.052 —.147 | .034 .076 .020 .018 | .929 .145 217 .000 | .942 .015 .272 .000
2 16 .95 004 —.125 —.006 —.107 | .030 .063 .017 .015 | .959 .350 947 .000 | .942 .085 .923 .000
0 24 95| —.006 —.090 -—.050 —.115 | .024 .033 .015 .013 | .920 .157 .038 .000 | .942 .006 .084 .000
1 24 .95 .000 —-.126 —.032 —.099 | .024 .042 .014 .013 | .943 .059 301 .000 | .942 .003 .378 .000
2 24 .95 .001 —.091 .001 —.070 | .018 .038 .011 .011 | .962 .164 955  .000 | .946 .020 .947 .000

¢

)

indicates non-existence of the moment.
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Table 2. Simulation results for the second-order autoregression, N = 100 observations.

bias std cifys cibs

T po Pal Pab Phk Pbh Pal  Pab  Phk  Pbh Pal  Pab  Phk  Pbh Pal  Pab  Phk  Pbh
2 .60 | —.147 — —.999 —.999 | .264 — .102 .102 | .885 .919 .000 .000 | .930 .980 .000 .000
20 | —.118 — —.881 —.881 | .714 — .b15 515 | .955 942 577 577 | 934 984 .634 .634

2 .60 | —.147 — —1.000 —1.000 | .266 — .103 .103 | .873 .923 .000 .000 | .925 980 .000 .000
20 | —.128 — —.885 —.885 | .315 — 182 182 | .909 .927 .002 .002 | .922 979 .011 .011

2 .60 | —.144 — —1.001 -1.001 | .267 — .100 .100 | .878 .926 .000 .000 | .924 .982 .000 .000
20 | —.126 — —.888 —.888 | .261 — 120 .120 | .890 .928 .000 .000 | .917 981 .000 .000

4 .60 | —.069 —.263 —.339 —.405 | .123 .274 .070 .068 | .902 .787 .005 .000 | .919 .710 .007 .001
20 | —.031 —.116 —.454 —.424 | .099 .134 079 .076 | .940 .811 .000 .000 | .932 .769 .000 .001

4 .60 .001 —.040 —.250 -.312 | .122 120 .065 .062 | .952 926 .045 .002 | .952 906 .056 .005
.20 | —.001 —.020 —.386 —.362 | .093 .090 .072 .068 | .963 .937 .000 .000 | .948 .927 .002 .003
4 .60 008 —.011 —.132 —.177 | .081 .064 .050 .048 | .969 .937 .297 .058 | .944 933 .316 .087
.20 .004 —.006 —.256 —.241 | .072 .064 .059 .056 | .965 .942 .005 .007 | .941 938 .020 .024

6 .60 | —.031 —.148 —.196 —.237 | .082 137 .054 .053 | .926 .777 .071 .007 | .931 .591 .087 .019
20 | —.016 —.072 —.336 —.322 | .069 .077 .063 .052 | .949 .833 .000 .000 | .945 .713 .001 .001

6 .60 .009 —.039 —.131 —.167 | .082 .073 .051 .050 | .962 910 .314 .096 | .948 .850 .326 .128
.20 .005 —.017 —.269 —.256 | .066 .058 .051 .049 | .964 .930 .000 .001 | .944 915 .002 .003

6 .60 .002 —.011 —.052 —.078 | .048 .046 .041 .040 | .959 933 .768 .522 | .946 .922 .765 .555
.20 .000 —.005 —.169 —.158 | .046 .044 .042 .041 | 952 943 .025 .036 | .942 943 .051 .063

8 .60 | —.015 —.098 —.136 —.162 | .064 .088 .046 .045 | .943 .782 .180 .065 | .944 555 .217 .093
20 | —.006 —.050 —.264 —.256 | .056 .057 .043 .042 | .958 .846 .000 .000 | .945 .712 .000 .000

8 .60 .008 —.032 —.086 —.108 | .063 .054 .042 .042 | .964 905 .507 .288 | .950 .835 .532 .325
.20 004 —-.014 —.208 —.200 | .052 .045 .040 .039 | .970 .936 .001 .001 | .949 .911 .005 .006

8 .60 .001 —.011 —.028 —.044 | .037 .037 .034 .034 | .958 933 .877 .757 | .945 919 873 .771
.20 .000 —.003 —.129 —.121 | .036 .036 .034 .034 | 950 .949 .046 .062 | .952 948 .085 .104

16 .60 .003 —.041 —.052 —.059 | .037 .036 .029 .029 | .965 .794 588 .494 | .945 574 .619 .538
.20 .001 —.025 —.140 —.138 | .035 .031 .027 .026 | .963 .862 .001 .001 | .944 .744 .003 .003

16 .60 .000 —.024 —.033 —.039 | .031 .031 .028 .028 | .957 .869 .773 .703 | .940 .753 .784 .723
.20 .000 —.011 —.111 —.108 | .029 .028 .026 .026 | .948 927 .013 .014 | .940 .890 .026 .030

16 .60 .000 -—.010 —.007 —.012 | .025 .026 .025 .025 | .947 925 944 921 | .945 .887 .937 921
20 | —.001 —.003 —.071 —.068 | .024 .024 .024 .024 | 944 940 .160 .184 | 946 .939 215 .240
24 .60 .000 —.028 —.029 —.032 | .024 .025 .023 .023 | .948 .793 .758 .711 | .947 .603 .776 .737
.20 .000 —.018 —.091 —.090 | .024 .023 .021 .021 | .949 876 .010 .012 | .942 .758 .026 .028
24 .60 .000 —.020 —.018 —.021 | .023 .023 .022 .022 | .946 .848 .855 .828 | 946 .724 .864 .837
.20 | —.001 —.011 —.076 —.075 | .022 .022 .021 .021 | .949 914 .043 .047 | .947 866 .078 .085

24 .60 .000 —.011 —.004 —.007 | .020 .020 .020 .020 | .951 913 .948 .940 | .952 .858 .946 .941
.20 .000 —.003 —.051 —.050 | .019 .019 .019 .019 | .947 945 243 .265 | .948 941 315 .334

¢

)

indicates non-existence of the moment.

§199[fo poxf ypm aousiafur pooyLayLT

€¢



Table 3. Simulation results for the second-order autoregression, N = 100 observations (continued).

bias std ci%s cibys

T PO ﬁal ﬁab ﬁhk ﬁbh ﬁal ﬁab ﬁhk ﬁbh ﬁal ﬁab ﬁhk ﬁbh ﬁal ﬁab ﬁhk ﬁbh
2 1| —.146 — —=1.000 —1.000 | .267 — 102 .102 | .875 .923 .000 .000 | .924 977 .000 .000
—.2 | —.082 — —.523 —.523 | .607 — 444 444 | 966 962 772 772 | 943 990 .806 .806

2 1| —.147 — —=1.002 -1.002 | .272 — .103 .103 | .875 916 .000 .000 | .927 .979 .000 .000
-2 | =.077 — —.520 —.520 | .233 — .150 150 | .921 922 .065 .065 | .927 976 .128 .128

2 1| —.148 — —1.000 —1.000 | .266 — .102 .102 | .883 .924 .000 .000 | .927 .980 .000 .000
-2 | =077 — —.518 —.518 | .166 — .088 .088 | .905 .923 .000 .000 | .918 978 .001 .001

4 1| —.068 —.224 —.325 —-.393 | .117 .252 .068 .066 | .906 .807 .004 .000 | .908 .723 .007 .001
—.2 .006 —.018 —.318 —.264 | .088 .084 .078 .075 | 968 .941 .017 .059 | .945 .943 .046 .112

4 1 .010 —-.031 —.210 —.271 | 114 .098 .059 .058 | 955 .927 .084 .003 | .948 .909 .085 .008
-2 .009 —-.003 —.301 —.250 | .081 .078 .074 .071 | .969 .940 .015 .055 | .947 948 .041 .099

4 1 .002  —.009 —.092 —.132 | .060 .051 .043 .042 | .970 939 .454 126 | .947 936 .442 .152
—.2 .002 —.002 —.220 —.184 | .061 .061 .060 .058 | .949 .939 .036 .102 | .940 .943 .086 .169
6 1| —-.030 —.112 —.163 —.208 | .078 .113 .053 .052 | 926 .817 .160 .024 | 927 .644 .169 .037
—.2 .002 —-.017 —.263 —.230 | .062 .057 .053 .052 | .965 .929 .002 .009 | .946 .914 .009 .022

6 1 .007 —.026 —.085 —.124 | .072 .061 .047 .046 | 964 923 .604 .260 | .947 .878 .B8&2 .273
-2 .004 —.001 —.204 —.174 | .052 .051 .047 .046 | .962 949 .014 .045 | 949 952 .038 .083

6 1 .000 —.009 —.020 —.046 | .039 .039 .037 .036 | .950 .934 917 757 | .940 .926 906 .763
-2 .002 .002 —.122 —.101 | .041 .042 .040 .039 | .945 941 .134 271 | .949 945 .207 .354

8 1| —.008 —.064 —.091 —.121 | .059 .071 .045 .044 | 952 .850 .489 229 | 946 .675 .488 254
—.2 .001 —-.016 —.217 —.196 | .061 .046 .041 .041 | .964 .926 .001 .004 | .938 .900 .004 .010

8 1 .004 —.022 —.044 —.070 | .061 .047 .040 .039 | 970 .918 .818 .600 | .949 .866 .798 .599
-2 .000 —.002 —.159 —.140 | .041 .041 .038 .037 | 953 .945 .016 .042 | 947 946 .042 .084

8 1| —.001 —.009 —.005 —.023 | .033 .034 .032 .032 | .947 934 948 .890 | .950 .920 .940 .877
—.2 .001 .002 —.091 —.076 | .034 .035 .033 .032 | .941 943 212 346 | .946 944 .284 .426

16 1 .000 —.027 —.019 —.027 | .030 .032 .028 .028 | .955 .859 .902 .844 | 948 727 .894 .834
-2 .001 —.008 —.110 —.105 | .029 .028 .025 .025 | .954 .938 .009 .016 | .943 917 .026 .039

16 1| —.002 —-.019 —.009 —.017 | .027 .029 .026 .026 | .948 .895 .939 905 | .944 .807 .929 .895
-2 .000 —.002 —.086 —.081 | .026 .026 .024 .024 | 951 .948 .068 .103 | .947 944 116 .157
16 1 .000 —.009 .004 —.002 | .024 .025 .024 .024 | 944 926 .944 949 | 948 896 .946 .947
—.2 .000 .001 —.054 —.049 | .023 .023 .022 .022 | .942 943 .327 410 | .947 946 .405 .483

24 1| —-.001 -.019 —.005 —.009 | .022 .024 .022 .022 | 945 .869 .939 925 | 942 .764 .936 .920
-2 .000 —.007 —.072 —.070 | .022 .022 .020 .020 | .948 933 .055 .073 | .949 911 .104 .123

24 1| —.001 —-.015 —.002 —.005 | .021 .022 .021 .021 | .948 897 .952 946 | .948 816 .946 .942
-2 .000 —.004 —.060 —.058 | .021 .021 .020 .020 | .949 .944 146 .182 | 951 .938 .209 .243

24 1 .000 —.009 .004 .001 | .019 .020 .019 .019 | .947 918 .946 .950 | .947 877 .940 945
—-.2 .000 .000 —.041 —.039 | .018 .019 .018 .018 | 948 .948 .395 443 | 949 951 474 519

‘—’ indicates non-existence of the moment.
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Table 4. Simulation results for the first-order autoregression with a covariate, N = 100 observtions.

bias std cifys cits

T O a1 Oan Onk Ovn 0a1  Oap  Onk Oon 01 Oan Ok Oun O Oab Onk Oon
2 50| —.112 —.133 —.961 —.961 | .268 — .103 .103 | .890 .863 .000 .000 | .935 .942 .000 .000
50 | —.032 —.039 —.242 —.242 | .230 — .166 .166 | .958 .926 .663 .663 | .935 .958 714 .714

2 .50 .035 —.001 —.743 —.743 | .268 — .096 .096 | .945 921 .000 .000 | .945 .952 .000 .000
.50 .005 .002 —-.075 —.075 | .232 — 178 178 | 972 953 .916 .916 | .948 .954 .928 .928
2 .50 .022 .000 —.422 —.422 | .167 — .076 .076 | .967 .941 .001 .001 | .945 .950 .004 .004
50 | —.002 —.001 .019 .019 | .233 —  .202 .202 | 943 .940 938 938 | .944 944 942 941

4 .50 .015 —.097 —-.361 —.413 | .141 .120 .059 .056 | .959 .854 .000 .000 | .946 .737 .001 .000
.50 006 —.010 —.031 —.048 | .124 .120 .127 .121 | 964 .944 906 .909 | .949 .949 943 .936

4 .50 012 —-.064 —-.260 —-.310 | .116 .102 .056 .054 | .968 .882 .006 .000 | .947 .811 .017 .001
.50 .001 .000 .018 004 | 124 122 .130 .124 | .948 .942 911 .926 | .945 946 .938 .941
4 .50 .001 —.023 —.137 —.175 | .060 .061 .046 .044 | .966 .927 .161 .027 | .949 .897 .223 .054
.50 | —.002 .000 .029 023 | 123 123  .129 124 | .940 .941 914 929 | 944 .944 941 .943

6 .50 .004 —-.067 —.192 —.230 | .082 .071 .042 .042 | .969 .831 .007 .000 | .945 .635 .014 .001
.50 .001 —.004 .000 —.010 | .092 .091 .096 .094 | .949 .945 927 .933 | .947 945 .946 .944
6 .50 .000 —.054 —.150 —.184 | .062 .065 .041 .040 | .968 .856 .047 .005 | .943 .702 .071 .014
.50 .001 .002 .018 011 | .092 .092 .096 .094 | .943 .942 923 .932 | .947 948 943 944

6 .50 .000 —.026 —.090 —.114 | .042 .044 .034 .034 | .958 .906 .259 .080 | .943 .830 .309 .123
.50 .000 .003 .020 017 | .091 .091 .095 .093 | .945 .945 929 935 | .944 .945 942 .943

8 b0 | —.001 —-.055 —.127 —.152 | .052 .052 .035 .035 | .966 .812 .054 .008 | .945 573 .074 .020
.50 .001 —.001 .006 .001 | .076 .076 .080 .079 | .948 .948 .936 .941 | .947 947 .947 .947

8 .50 | —.001 —.048 —.105 —.127 | .045 .049 .034 .034 | .955 .829 .128 .034 | .938 .631 .156 .058
.50 .000 .002 .013 .009 | .077 .077 .080 .079 | .942 942 929 935 | .948 .946 .941 .944

8 .50 | —.001 —.027 —.069 —.086 | .035 .037 .029 .029 | .948 877 .334 .158 | .942 763 .374 .202
.50 .000 .003 .014 013 | .077 .076 .079 .078 | .945 946 .934 .937 | 946 .946 .943 .943

16 .50 | —.001 —.038 —.052 —.060 | .027 .028 .023 .023 | .950 .717 .387 .275 | .948 411 418 .310
.50 .000 .002 .005 .004 | .051 .051 .052 .052 | .948 .947 .944 945 | .947 946 .945 .945

16 .50 | —.001 —.036 —.048 —.055 | .025 .027 .022 .022 | .952 .732 435 .312 | .949 .441 463 .352
.50 .000 .003 .007 .006 | .051 .051 .052 .052 | .944 .944 .939 .940 | .947 .948 .947 .947

16 .50 | —.001 —.027 —.038 —.044 | .022 .024 .020 .020 | .943 .787 .532 421 | .939 .548 .5b59  .461
.50 | —.001 .003 .006 .006 | .051 .051 .052 .052 | .945 .946 .944 .944 | 950 .950 .948 .948

24 .50 .000 —-.033 —.033 —.036 | .020 .020 .018 .018 | .946 .635 .B70 .497 | .946 .315 .599 531
.50 .001 .003 .004 .004 | .041 .041 .041 .041 | .943 .943 941 .942 | 945 944 945 945

24 50 | —.001 —-.033 —.031 —.034 | .019 .020 .018 .018 | .945 .634 .58 .516 | .944 .330 .609 .546
.50 .000 .003 .004 004 | .041 .042 .042 .042 | .945 .944 943 .943 | .944 943 943 .943

24 .50 .000 -—-.027 —.026 —.029 | .018 .018 .016 .016 | .947 .692 .647 578 | .948 .407 .665 .606
.50 .000 .004 .005 005 | .041 .041 .042 .042 | .941 .942 941 941 | .943 942 942 .942

¢

)

indicates non-existence of the moment.
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Table 5. Simulation results for the first-order autoregression with a covariate, N = 100 observations (continued).

bias std ci%s cibys

T 6 01 Oan Onk Ovn Oa1  Oab On Oun Oa O Ouk  Oun Oa Oap  Ouk  Obn
2 95| —.144 —-.942 —1.000 —-1.000 | .266 — .102 .102 | .879 .804 .000 .000 | .929 .919 .000 .000
.05 | —.002 —.029 —.026 —.026 | .215 — .160 .160 | .975 976 .932 .932 | 946 .988 .941 941
2 .95 | —.122 —917 —.977 —.977 | .267 — .102 .102 | .890 .820 .000 .000 | .936 .927 .000 .000
.05 | —.001 .008 .013 .013 | .215 — .163 .163 | 977 .979 938 .938 | .947 988 .943 .943
2 .95 | —.062 —.382 —.908 —.908 | .268 — .100 .100 | .915 .842 .000 .000 | .946 .936 .000 .000
.05 .002 .014 .045 .045 | .224 — .168 .168 | .973 .967 .926 .926 | .943 .983 .933 .934
4 .95 | —.086 —.641 —.487 —.537 | .124 .253 .060 .058 | .890 .270 .000 .000 | .909 .125 .000 .000
.05 | —.002 —.015 —.013 —.014 | .117 .108 .116 .110 | .977 .951 .918 .930 | .950 .955 .948 .948
4 95| —.064 —.585 —.461 —.510 | .126 .2566 .060 .059 | .903 .327 .000 .000 | .932 .160 .000 .000
.05 .000 .010 .015 013 | .119 .110 .119 .114 | .974 946 911 .923 | .950 .955 .940 .943
4 95| —.018 —.303 —.398 —.445 | 124 198 .057 .056 | .933 .593 .000 .000 | .945 .394 .000 .000
.05 .002 .020 .039 037 | 123 113 .120 .115 | .971 .941 .898 912 | .949 .947 931 .932
6 .95 | —.059 —.452 —.352 —.382 | .085 .146 .042 .042 | .885 .099 .000 .000 | .898 .013 .000 .000
.05 | —.002 —-.010 —.008 —.009 | .091 .087 .091 .089 | .971 .947 .924 931 | .946 .949 945 .945
6 .95 | —.038 —.407 —.328 —.357 | .083 .149 .041 .041 | .914 .147 .000 .000 | .938 .024 .000 .000
.05 .000 .008 .010 .009 | .091 .086 .091 .089 | 973 .943 .925 932 | .947 946 .943 .942
6 .95 | —.004 —.202 —.272 —.298 | .083 .104 .038 .038 | .945 .440 .000 .000 | .948 .149 .000 .000
.05 | —.002 .012 .022 022 | .091 .086 .091 .089 | .968 .947 .924 929 | .948 947 .940 .940
8 .95 | —.044 —.348 —.283 —.301 | .064 .099 .032 .033 | .888 .033 .000 .000 | .902 .002 .000 .000
.05 .000 —.006 —.005 —.005 | .075 .073 .076 .075 | 973 944 .929 933 | .949 .947 945 .945
8 .95 | —.025 —.309 —.259 -.277 | .063 .100 .032 .032 | .912 .066 .000 .000 | .942 .004 .000 .000
.05 .000 .007 .008 .008 | .075 .073 .075 .074 | 972 .947 0.93 937 | .950 .951 .948 .948
8 .95 .003 —.148 —.207 —.222 | .063 .066 .029 .029 | .948 .340 .000 .000 | .944 .066 .000 .000
.05 .001 .012 .019 .019 | .077 .074 .076 .076 | .964 .947 932 .936 | .949 .947 941 .942
16 .95 | —.016 —.175 —.162 —.166 | .034 .039 .018 .018 | .904 .001 .000 .000 | .936 .000 .000 .000
.05 .000 —.003 —.003 —.003 | .01 .051 .051 .051 | .970 .943 .939 .941 | 946 .945 .946 .945
16 .95 | —.004 —.154 —.142 —.146 | .033 .038 .018 .018 | .945 .004 .000 .000 | .945 .000 .000 .000
.05 .000 .004 .004 .004 | .051 .051 .051 .051 | .966 .944 941 .941 | .948 .945 .943 .944
16 .95 .003 —.076 —.104 —.107 | .030 .025 .015 .015 | .959 .095 .000 .000 | .945 .002 .000 .000
.05 .000 .005 .008 .008 | .051 .050 .051 .051 | .952 .946 .941 .942 | 948 .947 946 .946
24 95| —.006 -—.116 —.113 —.115 | .024 .023 .013 .013 | .917 .000 .000 .000 | .942 .000 .000 .000
.05 .000 —.002 —.002 —.002 | .041 .041 .041 .041 | .969 944 943 .943 | .946 .947 948 .947
24 .95 .000 —.102 —.097 —.099 | .024 .022 .013 .013 | .942 .000 .000 .000 | .940 .000 .000 .000
.05 .000 .003 .003 .003 | .041 .041 .041 .041 | .960 .944 .940 .940 | .945 942 941 .941
24 .95 .001 —.055 —.068 —.069 | .018 .015 .011 .011 | .962 .024 .000 .000 | .943 .000 .000 .000
.05 .000 .004 .005 .005 | .041 .041 .041 .041 | .944 942 940 .940 | .945 943 944 .943

‘—’ indicates non-existence of the moment.
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