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Abstract

We develop an empirical search-matching model with productivity shocks so as to analyze
policy interventions in a labor market with heterogeneous agents. To achieve this we develop
an equilibrium model of wage determination and employment, which is consistent with key
empirical facts. As such our model extends the current literature on equilibrium wage
determination with matching and provides a bridge between some of the most prominent
macro models and microeconometric research. The model incorporates long-term contracts,
on-the-job search and counter-offers, and a vacancy creation and destruction process linked
to productivity shocks. Importantly, the model allows for the possibility of assortative
matching between workers and jobs, a feature that had been ruled out by assumption in the
empirical equilibrium search literature to date. We use the model to estimate the potential
gain from an optimal unemployment insurance scheme, as well as the redistributive effects
of such a policy.
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1 Introduction

Labor market imperfections justify labor market interventions. Within a competitive framework

regulation would be welfare reducing, as it would typically reduce employment and increase

insiders’ wages. By contrast, any friction constraining the allocation of workers to jobs inevitably

spawns many mismatched job-worker pairs and allows some agents to appropriate a greater share

of the rent than a central planner would deem fit. In the now large body of literature using

search models to describe labor markets with heterogeneous agents, no paper, as far as we now,

has estimated a search-matching model with two-sided heterogeneity and used it to infer the

welfare cost of mismatched workers and firms. A fortiori, no empirical study has evaluated the

role of standard labor market regulations, such as unemployment insurance, in augmenting or

reducing mismatch. Our aim in this paper is to lay a first foundation stone to fill this gap.

We develop and estimate a search-matching model in which workers with different abilities

are assigned to different tasks. Our model links with the current literature on equilibrium search

and assortative matching. It extends the model of Shimer and Smith (2000) in various directions

(wage determination, on-the-job search, shocks to individual characteristics) and provides a

bridge between an essentially theoretical literature and the large microeconometric literature on

job mobility and wage dynamics.1

In this economy there are a fixed number of infinitely lived individuals, while the number

of jobs is endogenously determined so that the marginal entrant makes zero expected profits.

Workers are matched pairwise to jobs or tasks. They differ from each other according to abil-

ity, and ability differences are permanent. As in Mortensen and Pissarides (1994), jobs are

subject to persistent idiosyncratic productivity shocks, which can trigger separations and wage

renegotiations. The production function allows for complementarity between worker and job

characteristics, leading to the possibility of sorting in the labor market. Any worker-job pair

that meet will form a match when the surplus is non-negative — this accounts for the option

value of each partner of continuing to search for a better partner. Worker and firm heterogeneity

may be unobserved by the econometrician but they are observed by all parties when meetings

take place. Workers receive job offers while unemployed or employed at rates that differ in the

1See amongst others MaCurdy (1982), Altonji and Shakotko (1987), Abowd and Card (1989), Topel (1991),
Topel and Ward (1992), Meghir and Pistaferri (2004), Altonji and Williams (2005), Guvenen (2007), Bonhomme
and Robin (2009), Altonji, Smith, and Vidangos (2009), Guvenen (2009), Low, Meghir, and Pistaferri (2010).
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two states and depend on the endogenously determined market tightness. Search on the job may

trigger quits and wage renegotiations. We assume random matching, so workers cannot direct

their search to specific firm types. Finally, we shall allow for the possibility that workers and

firms be clustered by education but we shall not model this clustering.

An important feature of the model is that it generates wage dynamics. We assume that

wage contracts are long-term contracts which can be renegotiated only by mutual agreement,

i.e. when one of the partners can make a credible threat to walk away from the match, and

employers counter outside offers. We use the sequential auction framework of Postel-Vinay and

Robin (2002) extended to allow for an extra layer of Nash bargaining as in Dey and Flinn (2005)

and Cahuc, Postel-Vinay, and Robin (2006). On-the-job search may thus lead to outside offers

and hence to wage changes and/or mobility. In addition, firm-level productivity shocks may

move the current contract outside the bargaining set and lead to wage renegotiation or to match

dissolution and a period of unemployment before reentering at a different wage (see Postel-Vinay

and Turon, 2010). The wage dynamics are thus explained by the structure of the model. The

question is whether the predicted dynamics match those documented in the empirical papers

mentioned earlier. If they do this offers a structural interpretation to such processes based

on productivity shocks and behavioral responses in wage setting. Note that in this paper we

abstract from human capital accumulation, which, while important, would complicate matters

beyond the scope of this first paper.2

Our model will also allow us to estimate how much sorting there is with respect to unob-

served characteristics. A first set of studies follow Abowd, Kramarz, and Margolis (1999, AKM)

and assess the degree of assortative matching in the labor market by calculating the correlation

between worker and firm fixed effects estimated by a panel-data regression of individual wages

on workers’ and employers’ indexes.3 They typically find non-significant or negative correla-

tions. However, Andrews, Gill, Schank, and Upward (2008) show that this estimated correlation

is contaminated by a spurious statistical bias and propose a bias-corrected estimator. Using

German IAB data, they find that the negative OLS estimate is turned into a positive number

after applying the bias correction (0.23 instead of somewhere in the range [−0.19,−0.15]).

2One possibility to make this extension tractable is to assume piece-rate contracts as in Barlevy (2008) and
Bagger, Fontaine, Postel-Vinay, and Robin (2011).

3See Goux and Maurin (1999) and Abowd, Kramarz, Pérez-Duarte, and Schmutte (2009) who present results
for French and U.S. matched employer-employee data, and Gruetter and Lalive (2009) for Austrian data.
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However, Eeckhout and Kircher (2011) strongly argue against the possibility of identifying

assortative matching in labor market by this approach, bias-corrected or not. This is because

the surplus of a match is not a monotonic function of worker and firm characteristics in general.

Depending on the distribution of matches around the optimal, Beckerian allocation, a positive or

a negative AKM correlation can be estimated irrespective of the sign of the correlation between

workers’ and firms’ true unobserved characteristics in the population of active matches. We

also find that the AKM correlation is misleading and show evidence that positive sorting with

respect to unobserved characteristics may induce a negative correlation in the worker and firm

effects estimated on a panel of wages. (de Melo, 2009, Bagger and Lentz, 2012) reach similar

conclusions with different models.

Identification of complementarity and sorting, given that we use a panel of workers’ wages

and labor market transitions extracted from the NLSY,4 is also hard to prove or disprove theo-

retically. However, we argue that sorting can be seen in the way wage and employment mobility

vary as a function of the length of time spent working following an unemployment spell. Due

to search frictions, the cohort of workers entering the labor market following a spell out of work

will start off mismatched, but through on-the-job search they will become better and better

matched with time spent in the labor market. If the tendency to sort in equilibrium is strong

this will result in wages spreading out as workers sort themselves. Monte Carlo simulations for

the Simulated Method of Moment estimator that we have implemented here seem to suggest

that the set of moments to match do identify sorting. We find that the NLSY data are best

fitted by our model assuming no complementarity and zero sorting for high-school dropouts and

positive complementarity and sorting for high-school graduates and post-graduates.

Finally, our model offers an empirical framework for understanding employment and wage

determination in the presence of firm-worker complementarities, search frictions and productiv-

ity shocks. As a result it offers a way for evaluating the extent to which regulation can be welfare

improving and can evaluate the impact of specific policies such as unemployment insurance. In a

search framework with match complementarities unemployment insurance can have ambiguous

effects on employment and total output. On the one hand, it allows workers to be more picky

4We preferred to stick to standard worker panel data for two reasons. First, matched employer-employee data
are less universal and not always easily accessible to researchers. Second, value-added per worker (used by Cahuc
et al., Bagger et al. and Bagger and Lentz) does not measure well the labor productivity of a single job isolated
from the other jobs in a firm.
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and form better matches, which comes at the cost of longer unemployment spells and higher

unemployment. On the other hand, the fact that higher quality matches will be formed may

induce firms to create more jobs, increasing the contact rate and potentially reducing unemploy-

ment duration. Our framework will allow this effect to be quantified. But, in addition, it allows

us to analyze the effect of such policies on the distribution of welfare thus showing who pays

and who benefits from such a policy in this non-competitive environment.

The paper proceeds as follows. Section 2 describe the model and Section 3 the estimation

procedure. Section 4 presents the results of estimation and analyses the fit. Section 5 presents

the welfare analysis. Section 6 analyses in detail unemployment insurance policy. Section 7

concludes.

2 The Model

Our model is an equilibrium model in the sense that all agents behave optimally, change state

and yet the different distributions of agents in all states remains constant over time (stationary).

We now explain how we construct such a model.

2.1 Workers, jobs and matches

Each individual worker is characterized by a level of permanent ability, supposed to be contin-

uously distributed across workers, observable by all agents, but not by the researcher. Let x

denote the rank of ability across workers. There are L individuals of which U are unemployed.

We also denote by u(x) the (endogenous) measure density of x among the unemployed.

Jobs are characterized by a technological factor, say labor productivity, which is also con-

tinuous and observable by all agents, but not the researcher. Let y denote the rank of labor

productivity across jobs, vacant or filled. There are N jobs in the economy, a number that

is endogenously determined. The endogenous measure density of vacant posts is v(y) and the

resulting number of vacancies is denoted by V =
∫
v(y) dy.

In a given job there are idiosyncratic productivity shocks. These may reflect changes in the

product market (shifts in the demand curve) or events such as changes in work practices or

investments (which here are not modeled). We assume that y fluctuates according to a jump

process: At a rate δ such shocks arrive and a new productivity level y′ is drawn from the uniform
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distribution on [0, 1]. Thus persistence of the shocks is controlled for by the size of δ.

A match between a worker of type x and a job of productivity y produces a flow of output

f(x, y). We will specify this function to allow for the possibility that x and y are complementary

in production, implying that sorting will increase total output. However, we wish to determine

this empirically, as it is important both for understanding the labor market and for evaluating

the potential effects of regulation. Matches can end both endogenously, as we characterize later,

and exogenously. We denote by ξ the rate of exogenous job destructions, defined as an event

that is unrelated to either worker or job characteristics.

Equilibrium will result in a joint distribution of x and y, the distribution of matches. We

denote this by h(x, y). Because x and y are uniformly distributed in the whole populations

of workers and jobs, a simple adding up constraint implies that all matched workers and the

unemployed sum up to L: ∫
h(x, y) dy + u(x) = L. (1)

Similarly all matched jobs and posted vacancies should add up to the total number of jobs N :

∫
h(x, y) dx+ v(y) = N. (2)

2.2 Match formation

Individuals and jobs are risk neutral and we assume efficiency, in the sense that any match where

the surplus is positive will be formed when the worker and the job meet. Under these conditions

we can characterize the set of equilibrium matches and their surplus separately from the sharing

of the surplus between workers and jobs.

Let W0(x) denote the present value of unemployment for a worker with characteristic x.

This will reflect the flow of income (or money metric utility of leisure) when out of work and

the expected present value of income that will arise following a successful job match. Similarly

Π0(y) denotes the present value to a job of posting a vacancy arising from the expected rev-

enues of employing a suitable worker net of expected posting costs. Let also W1(w, x, y) (resp.

Π1(w, x, y)) denote the present value of a wage contract w for a worker x employed at a job y

(resp. the firm’s discounted profit).

5



The surplus of an (x, y) match is defined by

S(x, y) = Π1(w, x, y)−Π0(y) +W1(w, x, y)−W0(x). (3)

For a pair (x, y) a match is feasible and sustainable if the surplus is nonnegative, S(x, y) ≥ 0.

2.3 Wage negotiation with unemployed workers

The wage for a worker transiting from unemployment is w = φ0(x, y) and we assume that it is

set to split the surplus according to Nash bargaining with worker’s bargaining parameter β:

W1 (φ0(x, y), x, y)−W0(x) = βS(x, y). (4)

Through the process of on-the-job search and offers/counteroffers her wage will subsequently

grow. A simple assumption would be to set β to zero. However this leads to the counterfactual

implication that for some matches initial wages are negative implying workers pay to obtain

a high value job with the potential of future wage increases. Although this is not implausible

(unpaid internships) this is never observed in our survey data. By allowing β to be determined

by the data we avoid this problem and allow greater flexibility in fitting the facts.

2.4 Renegotiation

Wages can only be renegotiated when either side has an interest to separate if they do not obtain

an improved offer, assuming that the match remains viable for both parties. The events that

can trigger renegotiation occur when a suitable outside offer is made, or when a productivity

shock changes the value of the surplus sufficiently. We consider first the impact of an outside

offer.

2.4.1 Poaching

A key source of wage renegotiation and growth in this model is on-the-job search. This generates

alternative opportunities for workers and either job mobility or responses to the outside offers

with resulting wage increases. We assume that incumbent employers respond to outside offers:

a negotiation game is then played between the worker and both jobs as in Dey and Flinn (2005)
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and Cahuc, Postel-Vinay, and Robin (2006).

If a worker x, currently paired to a job y such that S(x, y) ≥ 0, finds an alternative job y′ such

that S(x, y′) ≥ S(x, y), the worker moves to the alternative job. This is because the poaching

firm can always pay more than the current one can match. Alternatively, if the alternative job

y′ produces less surplus than the current job, but more than the worker’s share of the surplus

at the current job, i.e. W1−W0(x) < S(x, y′) < S(x, y) (where W1 denotes the present value of

the current contract), then the worker uses the outside offer to negotiate up her wage. Lastly, if

S(x, y′) ≤ W1 −W0(x), the worker has nothing to gain from the competition between y and y′

because she cannot make a credible threat to leave, and the wage does not change.

In either one of the first two cases, the worker ends up in the higher surplus match, and uses

the lower surplus match as the outside option when bargaining. Assume S(x, y) ≥ S(x, y′). The

bargained wage in this case is w = φ1(x, y, y
′) such that the worker obtains the entire surplus

of the incumbent job plus a share of the incremental surplus between the two jobs, i.e.

W1

(
φ1(x, y, y

′), x, y
)
−W0(x) = S(x, y′) + β

[
S(x, y)− S(x, y′)

]
(5)

= βS(x, y) + (1− β)S(x, y′).

The share of the increased surplus β accruing to the worker will be determined empirically.

In our approach there is an asymmetry between workers and firms because the latter do not

search when the job is filled. As a result they do not fire workers when they find an alternative

who would lead to a larger total surplus, nor do they force wages down when an alternative

worker is found whose pay would imply an increased share for the firm. We decided to impose

this asymmetry because in many institutional contexts it is hard for the firm to replace workers

in this way. Moreover, we suspect that even when allowed firms would be reluctant to do so

in practice. We do, however, allow firms to fire a worker when the current surplus becomes

negative and then immediately search for a replacement.

2.4.2 Productivity shocks

Another potential source of renegotiation is when a productivity shock changes y to y′ thus

altering the value of the surplus. If y′ is such that S(x, y′) < 0, the match is endogenously

destroyed: the worker becomes unemployed and the job will post a vacancy.
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Suppose now that S(x, y′) ≥ 0. The value of the current wage contract w becomesW1(w, x, y
′).

Future pay negotiations whether due to productivity shocks or competition with outside offers

will be affected by the the new value of the match. However, the current wage may or may

not change. If the wage w is such that the worker is still obtaining at least as much as her

outside option, without taking more than the new surplus, 0 ≤W1(w, x, y
′)−W0(x) ≤ S(x, y

′),

neither the worker nor the job has a credible threat to force renegotiation: both are better

off with the current wage w being paid to the worker than walking away from the match to

unemployment and to a vacancy respectively. In this case there will be no renegotiation. If,

however, W1(w, x, y
′) −W0(x) < 0 or W1(w, x, y

′) −W0(x) > S(x, y′) (with S(x, y′) ≥ 0) then

renegotiation will take place because a wage can be found that keeps the match viable and each

partner better off within the match relative to unemployment for the worker and a vacancy for

the job.

To define how the renegotiation takes place and what is the possible outcome we use a setup

similar to that considered by MacLeod and Malcomson (1993) and Postel-Vinay and Turon

(2010). The new wage contract is such that it moves the current wage the smallest amount

necessary to put it back in the bargaining set. Thus, if at the old contract W1(w, x, y
′)−W0(x) <

0, a new wage w′ = ψ0(x, y
′) is negotiated such that

W1(ψ0(x, y
′), x, y′)−W0(x) = 0, (6)

which just satisfies the worker’s participation constraint. If at the new y′, W1(w, x, y
′)−W0(x) >

S(x, y′), a new wage w′ = ψ1(x, y
′) such that the firm’s participation constraint is just binding

W1(ψ1(x, y
′), x, y′)−W0(x) = S(x, y′). (7)

Separations and pay changes may happen following both good shocks that increase the value

of productivity y and bad shocks that decrease it. It is all about mismatch: what matters is

what happens to the overall surplus. A positive productivity shock, for example, can imply that

the quality of the match becomes worse and the surplus declines, since the outside option of

the firm has changed and it may be worthwhile to separate from the current worker and post

a vacancy to find a better worker. Conversely a negative productivity shock can improve the

8



surplus if this means the job type is now closer to the optimal one sought by the worker. A

shock that reduces the surplus can still lead to a wage increase to compensate the worker who

is now matched with a job with fewer future prospects of wage increases. Thus what really

matters as far as the viability of the match and the possible options for renegotiation is whether

a shock improves or worsens a particular match, measured by whether it leads to an increase or a

decrease, respectively of the surplus. Wages respond to job specific productivity shocks, but not

always in an obvious direction. Later, in Subsection 4.4 we consider further the non-monotonic

relationship between wages and firm productivity, and the implications for empirical estimates

of the degree of sorting of workers across jobs.

2.5 The meeting function

We relate the aggregate number of meetings between vacancies and searching workers through a

standard aggregate matching function M(·, ·). This takes as inputs the total number of vacancies

V and the total amount of effective job seekers s0U + s1 (L− U). The matching function is

assumed to be increasing in both arguments and exhibit constant returns to scale.

For the purpose of exposition it is useful to define

κ =
M(s0U + s1(L− U), V )

[s0U + s1(L− U)]V
,

which summarizes the effect of market tightness in a single variable. In a stationary equilibrium

κ is constant, but it is not invariant to policy, and it is important to allow it to change when

evaluating interventions or counterfactual regulations. Note that while M(·, ·) governs the ag-

gregate number of meetings, whether or not a meeting translates into a match will be determined

by the decisions of workers and firms.

The matching parameter κ allows to calculate all relevant meeting rates. The instanta-

neous rate at which an unemployed worker meets a vacancy of type y is s0κV ·
v(y)
V = s0κv(y).

The instantaneous probability for any vacancy to make a contact with an unemployed worker

is s0κu(x). Employed workers are poached by jobs of type y with instantaneous probability

s1κv(y). Finally, the rate at which vacancies are contacted by a worker x employed at a job y

is s1κh(x, y).
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2.6 Value functions

The next step in solving the model is to characterize the value functions of workers and jobs,

which have been kept implicit up to now. These define the decision rules for each agent. We

proceed by assuming that time is continuous.

2.6.1 Unemployed workers

Unemployed workers are always assumed to be available for work at a suitable wage rate. While

unemployed they receive income or money-metric utility (say home production) depending on

their ability x and denoted by b(x). Thus the present value of unemployment to a worker of type

x is W0(x), which satisfies the option value equation

rW0(x) = b(x) + s0κβ

∫
S(x, y)+v(y) dy, (8)

where the discount rate is denoted by r and where we define in general a+ = max(a, 0). Thus

the integral represents the expected value of the surplus of feasible matches given the worker

draws from the distribution of vacant jobs v(y). She contacts a job of type y at a rate s0κv(y)

and the match is consummated if the surplus S(x, y) is non negative, in which case she gets a

share β of the surplus.

2.6.2 Vacant jobs

Using (3), (4), and (5), the present value of profits for an unmatched job meeting a worker with

human capital x from unemployment is

Π1(φ0(x, y), x, y)−Π0(y) = (1− β)S(x, y).

where 1−β represents the proportion of the surplus retained by the firm and Π0(y) is the value

of a vacancy. A job meeting a worker who is already employed will have to pay more to attract

her. The value of a job with productivity y, meeting an employed worker in a lower surplus

match with productivity y′ is

Π1(φ1(x, y, y
′), x, y)−Π0(y) = (1− β)

[
S(x, y)− S(x, y′)

]
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Based on this notation, the present value of a vacancy for a job with productivity y is

rΠ0(y) = −c+ δ

∫ [
Π0(y

′)−Π0(y)
]
dy′ + s0κ (1− β)

∫
S(x, y)+u(x) dx

+ s1κ (1− β)

∫∫ [
S(x, y)− S(x, y′)

]+
h(x, y′) dx dy′. (9)

The c is a per-period cost of keeping a vacancy open. The second term reflects the impact of

a change in productivity from y to y′, assuming that productivity shocks continue to accrue

at rate δ when the job is vacant and assuming that the distribution of productivity shocks is

uniform [0,1]. The third term is the expected gain from matching with a previously unemployed

worker. The fourth term is the expected gain from poaching a worker who is already matched

with another job. The notation [·]+ ensures that integration is over all possible x and y′ that

increase the current surplus.

We show in the Appendix that Π′
0(y) > 0 so that we can assume that the last job that enters

makes zero profit, Π0(0) = 0, that is

c = δ

∫
Π0(y

′)dy′ + s0κ (1− β)

∫
S(x, 0)+u(x) dx

+ s1κ (1− β)

∫ [
S(x, 0)− S(x, y′)

]+
h(x, y′) dx dy′. (10)

This condition will determine the number of potential jobs N in the economy. Firms enter the

market and draw a y in the uniform distribution. At some point the expected profit of the least

productive firms reaches zero and firms stop entering. It may be that the ex ante risk of drawing

a y yielding a negative expected profit is just unbearable. Alternatively, we could (and we had

in a previous version) assume that N is exogenously given and large enough so there would exist

a positive threshold y such that Π0(y) = 0. All vacant job with Π0(y) < 0 would thus decide to

remain “idle” and not paying the cost of posting a vacancy until the next shock moving Π0(y)

above 0. The problem with this approach is that it creates a nasty singularity at y that the

former free entry assumption avoids.5

5The discontinuity arises because a match with y < y may still be viable if it comes to life after a negative
productivity shock and no renegotiation cost has to be paid.

11



2.6.3 Employed workers

In order to derive the wage rates we need to define the value of a job to a worker W1(w, x, y).

This is the present value to the worker of a wage contract w for a feasible match (x, y) (if

S(x, y) < 0 there is no match and no wage). Any wage contract w delivers w in the first unit

of time. The continuation value depends on competing events: the job may be terminated with

probability ξ; the job may be hit by a productivity shock with probability δ; the worker may be

poached with probability s1κV .

Given the above discussion, the flow value of working at wage rate w in a feasible match

(x, y) is determined by the following Bellman equation,

(r + δ + ξ + s1κv(A(w, x, y))) [W1(w, x, y)−W0(x)] = w − rW0(x)

+ δ

∫ [
min

{
S(x, y′),W1(w, x, y

′)−W0(x)
}]+

dy′

+ s1κ

∫

A(w,x,y)

[
βmax

{
S(x, y), S(x, y′)

}
+ (1− β)min

{
S(x, y), S(x, y′)

}]
v(y′) dy′, (11)

where

A(w, x, y) =
{
y′ :W1(w, x, y)−W0(x) < S(x, y′)

}

is the set of jobs that can lead to a wage change (either by moving or renegotiation) and

µ(A) =
∫
A µ(y) dy, for any set A and any density µ.

On the right hand side the first term is the wage net of the flow value of unemployment.

The second term is the expected excess value to the worker of a productivity shock (times the

probability that it occurs): in this case the worker either ends up with the entire new surplus

or the new value or indeed nothing if the match is no longer feasible. The third term is the

expected excess value following an outside offer as in equation (5). The integral is over all offers

that can improve the value (whether the worker moves or not).

2.6.4 The match output and joint surplus

Having defined the non-employment value for the worker, the vacancy value for the firm, the

value of a contract w to the worker (with a similar expression for the value to the firm), we can

now calculate the surplus value S(x, y) defined by equation (3). We show in Appendix A that
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the match surplus S(x, y) is effectively independent of the current wage contract and is defined

by the fixed point in the following equation,

(r + ξ + δ)S(x, y) = f(x, y)− b(x) + c

− s0κβ

∫
S(x, y′)+v(y′) dy′ − s0κ (1− β)

∫
S(x, y)+u(x) dx

− s1κ (1− β)

∫∫ [
S(x, y)− S(x, y′)

]+
h(x, y′) dx dy′

+ s1κβ

∫ [
S(x, y′)− S(x, y)

]+
v(y′) dy′ + δ

∫
S(x, y′)+ dy′. (12)

The important point to note from this expression is that the surplus of an (x, y) match never

depends on the wage. This follows from the Bertrand competition between the incumbent and

the poaching firm that is induced by on-the-job search and disconnects the poached employees’

outside option from both the value of unemployment and their current wage contract. Thus the

Pareto possibility set for the value of the worker and the job is convex in all cases, implying

that the conditions for a Nash bargain are satisfied. This contrasts with Shimer’s (2006) model,

where jobs do not respond to outside offers and where the actual value of the wage determines

employment duration in a particular job. This feature also has a computational advantage since

the equilibrium distribution of matches can be determined without simultaneously computing

the wage rates for workers.

2.7 Steady-state flow equations

The final set of equations needed to pin down the surplus and the distribution of matches are

those defining equilibrium in this economy. In a stationary equilibrium the number of jobs N ,

the distribution of matches as well as the distribution of x among the unemployed and of y

among the posted vacancies are all constant over time.

The total number of matches in the economy is

L− U = N − V =

∫
h(x, y) dx dy. (13)

Existing matches, characterized by the pair (x, y), can be destroyed for a number of reasons.

First, there is exogenous job destruction at a rate ξ; second, with probability δ, the job com-
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ponent of match productivity changes to some value y′ different from y, and the worker may

move to unemployment or may keep the job forming a new match (x, y′); third, the worker may

change job because a job offer has to be made and has to be acceptable for x currently matched

with y (see below the notation). On the inflow side, new (x, y) matches are formed when some

unemployed or employed workers of type x match with vacant jobs y, or when (x, y′) matches

are hit with a productivity shock and exogenously change from (x, y′) to (x, y).

In a steady state all these must balance leaving the match distribution unchanged. Thus

formally we have for all (x, y) such that the match is feasible (i.e. S(x, y) ≥ 0),

[
δ + ξ + s1κv(B(x, y))

]
h(x, y) = δ

∫
h(x, y′) dy′ + [s0u(x) + s1h(x,B(x, y))]κv(y), (14)

where

B(x, y) = {y′ : 0 ≤ S(x, y′) < S(x, y)},

B(x, y) = {y′ : S(x, y′) ≥ S(x, y)},

are the sets of jobs that would imply (B) or not imply (B) an improvement of the match surplus

for x. Thus, s1κv(B(x, y)) is the probability of receiving an alternative offer, when employed,

from a job that beats the current one.

This equation defines the steady-state equilibrium, together with the following accounting

equations for the workers:

u(x) = L−

∫
h(x, y) dy = L

ξ + δ
∫
1{S(x, y) < 0} dy

ξ + δ
∫
1{S(x, y) < 0} dy + s0κv (M(x))

, (15)

where δ
∫
1{S(x, y) < 0} dy is the endogenous job destruction rate and s0κv(M(x)) is the job

finding rate (M(x) = {y : S(x, y) ≥ 0}).

For the jobs we have

v(y) = N −

∫
h(x, y) dx. (16)

The aggregate number of vacancies is then determined as V =
∫
v(y) dy. Note that one can

either say that the free entry condition fixes the number of jobs N and V follows, or that it fixes

the number of vacancies V and N follows as V + L− U .
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2.8 Equilibrium

In equilibrium all agents follow their optimal strategy and the steady state flow equations defined

above hold. The exogenous components of the model are the number of potential workers L, the

form of the matching function M(·, ·) as well as the arrival rate of shocks δ, the job destruction

rate ξ, the search intensities for the unemployed s0 and employed workers s1, the discount rate r,

the value of leisure b(x), the cost of posting a vacancy c, bargaining power β, and the production

function f(x, y). The distribution of worker types, of productivities and of the shocks have all

been normalized to uniform [0, 1], without loss of generality. Appendix B provides a simple

iterative algorithm that uses these equations and that of the surplus to compute the equilibrium

objects.

3 Estimation Methodology

In this section, we first present the estimation procedure, then the data. Then we discuss

the issue of measurement error on wages that comes with these data. We end this section by

describing the parametric specification of the model and the moments used in estimation. An

informal discussion of identification will also be provided.

3.1 Estimation method

Constructing the likelihood function for this model is intractable; so to estimate the model we

use the Simulated Method of Moments (SMM).

The SMM approach works as follows. The data sample allows to calculate a vector of mo-

ments m̂N = 1
N

∑N
i=1mi, where for example, m̂N may be the mean wage for a given experience

or the probability of being employed, or wage change after t periods for job movers, etc. Given

a value θ for the vector of structural parameters one can simulate S alternative samples of wage

trajectories yielding average simulated moments m̂M
S (θ) = 1

S

∑S
s=1m

M
s (θ), where the superscript

M denotes a model generated quantity. The SMM aims at finding a value θ̂ maximizing

LN (θ) = −
1

2

(
m̂N − m̂

M
S (θ)

)T
Ŵ−1

N

(
m̂N − m̂

M
S (θ)

)
,

where ŴN is taken to be the diagonal of the estimated of the covariance matrix of m̂N . To
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compute the variance of mi in the actual sample we use the bootstrap.

Because the simulated moments are not necessarily a smooth function of the parameters we

use a method developed by Chernozhukov and Hong (2003), which does not require derivatives of

the criterion function. Chernozhukov and Hong do not maximize LN (θ). Instead, they construct

a Markov chain which converges to a stationary process which ergodic distribution has a mode

that is asymptotically equivalent to the SMM estimator. Appendix C describes this procedure

in detail.

3.2 The data

We use the 1979 to 2002 waves of the National Longitudinal Survey of Youth 1979 (NLSY) to

construct all moments used in estimation. The NLSY consists of 12,686 individuals who were

14 to 21 years of age as of January, 1979. It contains a nationally representative core random

sample, as well as an over-sample of black, Hispanic, the military, and poor white individuals.

For our analysis, we keep only white males from the core sample. Since the schooling decision

is exogenous to the model, we only include data for individuals once they have completed their

education. We also drop individuals who have served in the military, or have identified their

labor force status as out of the labor force. The majority of individuals who are not in the labor

force report being disabled and are clearly not searching for employment. We subdivide the

data into three education groups: less than high school education, high school degree or some

college, and college graduate. The model is estimated separately on each of these subgroups.

Individuals are interviewed once a year and provide retrospective information on their labor

market transitions and their earnings. From this it is possible to construct a detailed weekly

labor market history. However, we choose to work at at monthly frequency aggregating the data

as follows: we define a worker as employed in a given week if he worked more than 35 hours

in the week. We define a worker’s employment status in a month as the the activity he was

engaged in for the majority of the month. In other words, we treat unemployment spells of two

weeks or less as job-to-job transitions. After sample selection, we are left with an unbalanced

panel of 2,022 individuals (325,462 person months).

We remove aggregate growth from wages in the NLSY, using estimates from the CPS data

1978-2008.6 We select white men in the CPS and regress the log wage on a full set of year

6The trend cannot be estimated from the NLSY, which is a cohort and has an aging structure.
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dummies and age dummies, separately for our three education groups. To remove aggregate

growth from the NLSY79 data, we subtract the coefficient on the corresponding year dummy

from log wage. Our definition of wage in the NLSY is weekly earnings. We trim the data to

remove a very small number of outliers when calculating wage changes. When calculating month

to month wage changes, we exclude observations where the wage changes by more than a factor

of two. This results in variances of wage changes at the annual level that are broadly consistent

with PSID estimates (see e.g. Meghir and Pistaferri, 2004).

3.3 Measurement error

Wages are likely to be measured with error. Indeed if we do not take this into account we will

distort both the variance of the shocks to productivity and the transitions, both of which drive

the variance of wage growth. We use the monthly records of wages in the NLSY. Thus, while

it may be reasonable to assume that measurement error is independent from one year to the

next it may not be so within the year, as all records are reported at the same interview with

recall. Having experimented with a number of alternatives, including a common equicorrelated

component across all months, we settled on a measurement error structure that is AR(1) within

year and independent across years. The serial correlation coefficient together with the variance

of measurement error is estimated alongside the other parameters of the model.

3.4 Parametric specification

Estimating the model involves first parameterizing the production and the matching functions.

For the production function we have chosen a CES specification that allows us to estimate the

degree of sorting in the data. Thus we have

f(x, y) = f0

([
exp

(
f1Φ

−1(x)
)]f3 +

[
exp

(
f2Φ

−1(y)
)]f3)1/f3

,

where Φ is the standard normal CDF, f1 is the standard deviation of x and f2 is the standard

deviation of productivity y. Thus we take the uniformly distributed characteristics and transform

them to log normally distributed variables with variances to be estimated. The parameter f0

determines the scale of wages. Finally the parameter f3 determines the degree of substitutability

between x and y with 1/(1−f3) being the elasticity of substitution. When f3 = 1 the production
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function becomes additive and there are no complementarities between the inputs.

The matching function requires macroeconomic data on vacancies and unemployment to be

fully identified. We thus specify an elasticity of 0.5 for the meeting function:

M(U + s1 (L− U) , V ) = α
√
[U + s1 (L− U)]V ,

where the search intensity for the unemployed has been normalized to one (Blanchard and

Diamond, 1991, Petrongolo and Pissarides, 2001). The matching function allows the number of

matches to adapt to the number of vacancies and the unemployed and as such is important for

evaluating counterfactual policies.

3.5 Choice of moments

While using the likelihood function would have made use of all information in the data and the

specification or use of the method of moments requires a careful choice of moments to ensure

that our parameters are identified. We explain our choice in this subsection and we try to

justify it by identification considerations. Unfortunately, given the complexity of the model and

inference, we can only offer a heuristic argument for identification.

The moments we choose are calculated separately for each year in the labor force (year since

leaving school). We choose to match moments related to the transitions between employment

states and between jobs; the level of wages and their cross sectional variance; and wage growth

and its variance within and between jobs. Additionally we match the mean vacancy to unem-

ployment rate (based on the mean and standard deviation from Hagedorn and Manovskii, 2008).

All moments are calculated as unconditional and defined as follows. Let Ei,t be the employment

status of individual i in period t since entering the labor force, equal to one if employed and zero

if unemployed. Let Ji,t indicating that the worker is employed in t and t − 1, yet in different

jobs. Finally, define wit as the log wage of individual i in period t and Eitwit is equal to zero if

the worker does not work at t. We list the exact moments used in estimation in Table 1, and

plot the moments computed on the data, along with standard error bands and the simulated

moments from the model in Figures 1, 2, and 3 below (we comment these plots in the section

on the fit).

Although it is hard to argue that some moments are informative only for some parameters,
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Table 1: Moments Used in Estimation

(a) Unemployment to Employment transitions (U2E) E [(1− Ei,t−1)Ei,t]
(b) Employment to Unemployment transitions (E2U) E [Ei,t−1 (1− Ei,t)]
(c) Job-to-Job transitions (J2J) E [Ei,t−1Ei,tJi,t]
(d) Wage levels (zero if unemployed) E [Ei,twi,t]
(e) Wage changes at the same job E [Ei,t−1Ei,t (1− Ji,t)∆wi,t]
(f) Wage changes at job change E [Ei,t−1Ei,tJi,t∆wi,t]

(g) Variability of wages E

[
Ei,tw

2
i,t

]

(h) Variability of wage changes at the same job E

[
Ei,t−1Ei,t (1− Ji,t)∆w

2
i,t

]

(i) Variability of wage changes at job change E

[
Ei,t−1Ei,tJi,t∆w

2
i,t

]

(j) Employment rate E [Ei,t]

we can provide a bit of information on how the parameters are identified with our choice of

moments. The transitions in and out of work and between jobs play a key role in identifying

the job destruction rate ξ, the intensity of on-the job search s1, and the overall level of matches

α. In particular α is identified by unemployment to employment transitions, s1 is identified

by the job changing rate (relative to transitions from unemployment) and ξ is identified by the

rate of separations into unemployment. The variance of wages is directly linked to the variance

of unobserved heterogeneity (or equivalently its weight in the production function) and hence

both f1 and f2 are directly linked to the cross-sectional variance of wages. Through its effect on

productivity shocks and job mobility, y is also linked to the variability of wage growth within

and between jobs. Hence the identification of the weight of y in output, f2, is also driven by the

variance of wage growth, conditional on all types of transition. Similarly the within and between-

job variance of wage growth is informative about the rate of arrival of productivity shocks δ.

The bargaining parameter β is primarily identified by wages following a job change. So the key

moment for this is wage growth at job change. In the current version of the model the parameter

b in b(x) = f(x, b), which reflects the income flow while out of work, is identified by the starting

wage in the new jobs following unemployment. The flow cost of vacancy posting c is identified

by matching the vacancy to unemployment ratio, which is observed from macroeconomic data.

With no search frictions any degree of complementarity (supermodularity) will lead to perfect

assortative matching. With search frictions there is a tradeoff between waiting for an improved

match and thus better taking advantage of complementarities versus matching with a potentially

inferior match. Thus, the degree of complementarity in production controls the degree of sorting
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in equilibrium. If we consider a cohort of workers who all start out unemployed and follow them

forward as they become employed and change jobs, the degree to which their wages will spread

out is directly related to the degree of sorting in equilibrium. Additionally, if sorting is an

important feature of the labor market, the expected gains to changing jobs should decline with

time in the labor market (following an unemployment spell), as workers move toward their ideal

matches. Similarly, the variance of wage changes should decline as there are fewer offers that

improve matches substantially and workers make fewer transitions. Due to search frictions,

the cohort of workers entering the labor market following a spell out of work will start off

mismatched, but through on-the-job search will become better and better matched with time

spent in the labor market. If the tendency to sort in equilibrium is strong this will result in

wages spreading out as workers sort themselves. Alternatively, if sorting is not a feature of the

equilibrium, wages will not spread out with time in the labor force as there is no tendency for

the economy to reallocate them across jobs. Thus the degree of complementarity in production

can be identified using the profile of wage growth and its variance between jobs as well as within

jobs.7

Finally the measurement error variance and persistence (σ2, ρ) are primarily identified by

the cross sectional variance of wages and variance of wage growth. Specifically any variance and

persistence not explained by the job mobility process will be interpreted as measurement error.

4 Estimation Results

The estimation results will be presented in four steps. First, we show how the model fits the

moments. Then, we present parameter estimates. In the third subsection, we discuss the im-

plications for wage dynamics. The last two sections deal with sorting. First, we characterize

the implications of the model for sorting with respect to unobservable worker and firm charac-

teristics x and y. Second, we reconsider the information on sorting contained in the correlation

between worker and firm fixed effects estimated from matched employer-employee data.
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Table 2: Model Fit

Less than High School High School College
Moments Compared Model Data Model Data Model Data

Employment to Employment 0.76 0.75 0.85 0.85 0.95 0.94
Change jobs given empl. 0.03 0.04 0.019 0.024 0.009 0.013
Within Job Wage Growth 0.001 0.0026 0.0024 0.0025 0.0021 0.0021
E(Within Job Wage Growth)2 0.0042 0.0049 0.0033 0.0038 0.003 0.003
Between Job Wage Growth 0.083 0.082 0.14 0.080 0.24 0.10
E(Between Job Wage Growth)2 0.064 0.071 0.060 0.068 0.12 0.068

Note: Unit of time is a month. Wage growth is conditional on employment in both periods.

4.1 The fit of the moments

In all cases we fit the average value of the moments very well (see Table 2). Thus, the model

captures well the cross-sectional aspects of mobility and wage variability. The tougher test,

however, is whether we fit the evolution of the moments with age. By using the age profiles of

moments we are requiring the model not to just fit the cross-sectional moments, but also the

individual level dynamics. Figures 1, 2 and 3 compare the simulated and actual moments. We

also plot plus and minus two standard errors of the data moment to give a sense of how significant

the difference between the two is and to show the weight that the moment has in estimation

— the narrower the standard error band the larger the weight. All results are presented for

the three educational groups. There is no explicit notion of age in our stationary model. We

thus measure time in the labor market from the point of the termination of an unemployment

spell, which is measured along the x-axis in these figures. From then on the individual may have

further non-work spells, but time continues to increase. For brevity we refer to this time as age.

In general, the model does not track well the pronounced linear trends characterizing the age

profiles of employment transitions. It underestimates the negative trend in the probability of

being in different employment states in two consecutive periods. This is true for U2E, E2U and

J2J transitions (subplots a, b, c). In addition, the model misses the positive trend in earnings

(subplot d). The age profiles of the other moments are better reproduced. Yet we note that the

model is more successful in fitting the profiles of college educated workers.

One obvious reason for this lack of fit is of course that we have no human capital accumu-

lation. Hence all wage growth is due to the search process and the associated counteroffers and

7The degree of complementarity will affect the variance of wages within jobs because this is in part due to
responses to outside offers. For the same reasons described above the offers that will be able to move wages will
decline in frequency with time in the labor market.
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Figure 1: Model fit: Less than high school
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Figure 2: Model fit: High school graduate

23



0
.0

0
5

.0
1

.0
1
5

0 5 10 15 20

Years in labour force

(a) E [(1− Ei,t−1)Ei,t]

0
.0

0
5

.0
1

.0
1
5

0 5 10 15 20

Years in labour force

(b) E [Ei,t−1 (1− Ei,t)]

−
.0

1
0

.0
1

.0
2

.0
3

0 5 10 15 20

Years in labour force

(c) E [Ei,t−1Ei,tJi,t]

−
.6

−
.4

−
.2

0
.2

0 5 10 15 20

Years in labour force

(d) E [Ei,twi,t]

−
.0

0
4

−
.0

0
2

0
.0

0
2

.0
0
4

.0
0
6

0 5 10 15 20

Years in labour force

(e) E [Ei,t−1Ei,t (1− Ji,t)∆wi,t]
−

.0
0
2

0
.0

0
2

.0
0
4

.0
0
6

0 5 10 15 20

Years in labour force

(f) E [Ei,t−1Ei,tJi,t∆wi,t]

.2
.4

.6
.8

0 5 10 15 20

Years in labour force

(g) E
[
Ei,tw

2
i,t

]

0
.0

0
1

.0
0
2

.0
0
3

.0
0
4

.0
0
5

0 5 10 15 20

Years in labour force

(h) E
[
Ei,t−1Ei,t (1− Ji,t)∆w2

i,t

]

0
.0

0
1

.0
0
2

.0
0
3

0 5 10 15 20

Years in labour force

(i) E
[
Ei,t−1Ei,tJi,t∆w2

i,t

]

.8
5

.9
.9

5
1

0 5 10 15 20

Years in labour force

(j) E [Ei,t]

Figure 3: Model fit: College graduate
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Table 3: Autocovariances (autocorrelations) of within-job wage growth

Order cov corr cov corr cov corr

0 0.429 1.000 0.246 1.000 0.089 1.000
1 -0.140 -0.335 -0.075 -0.312 -0.020 -0.225
2 -0.052 -0.123 -0.032 -0.135 -0.011 -0.123
3 -0.004 -0.010 -0.005 -0.020 -0.003 -0.034
4 -0.004 -0.009 -0.003 -0.011 -0.002 -0.025
5 -0.001 -0.002 -0.001 -0.004 -0.002 -0.020
6 -0.002 -0.005 0.000 -0.001 -0.001 -0.016
7 0.000 -0.001 0.000 -0.002 -0.001 -0.011
8 -0.001 -0.002 0.000 -0.001 -0.001 -0.009
9 -0.001 -0.002 -0.001 -0.003 0.000 -0.006
10 0.000 0.001 0.000 0.000 0.000 -0.004

Note: Autocovariances (autocorrelations) of the change in residual annual income, with zero
mean by construction. The simulated moments present the reduced form dynamics of annual
income implied by the model (including measurement error).

wage mobility. A possible explanation for the fact that the fit is better for college graduates

may be that on-the-job learning is less important for this group relative to search induced wage

growth; that is, for college graduates, wage growth is better explained by on-the-job search and

the associated offers and counteroffers that it generates.8

The degree to which the model fits the entire age profile varies from moment to moment and

across the education groups, but the model always produces qualitatively the correct profiles. It

is particularly good at fitting the moments corresponding to wage growth within and between

jobs, which is important for the identification of assortative matching (subplots e, f, h, i). These

moments are flat for high school dropouts and decrease with age for skilled workers. This is

exactly what we expect if there is complementarity between worker and firm characteristics. If

there is little complementarity, there is no best match and the returns to searching remain high

longer, whereas if complementarities are important, it may require just a few job changes to find

a nearly perfect match. We shall present the estimates of the elasticity of substitution after the

next subsection.
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4.2 Fit of individual wage dynamics

One of the issues we set out to investigate is whether our model can justify and explain the

dynamics of earnings we see in reduced form analyses such as those of MaCurdy (1982), Abowd

and Card (1989) and a long series of subsequent papers. This question has also been looked

at in a simpler model by Postel-Vinay and Turon (2010), who find that their structural search

model is able to replicate the observed dynamics.

Because many of these shocks lead to permanent or in any case long-lasting wage gains or

losses, they may well lead to the dynamics we observe in the data. To see whether this dynamic

structure leads to similar patterns as those we see in the data Table 3 presents the implied

auto-covariance structure, Cov(∆ut,∆ut−s), where ut is log annual earnings from the model

with measurement error added to match the observable data. We also remove the effects of age

from growth, before constructing the autocovariances. Very much like in the results from the

actual data we find that autocovariances of order three or above are very low and effectively zero.

Moreover, assuming ut to be the sum of a random walk plus an MA(1) shock, with stationary

innovations, implies a permanent shock whose variance is 0.045, 0.032 and 0.027 for the unskilled,

the high school graduates and the college graduates respectively.9 These numbers are similar in

magnitude to those calculated from the PSID (different cohorts, different time period) by Meghir

and Pistaferri (2004), who find 0.03, 0.03 and 0.04, respectively. This confirms Postel-Vinay and

Turon’s observation that the observed autocovariances can be generated by the behavior of a

search model such as ours.

4.3 Parameter estimates

The parameters implied by our estimation are presented in Table 4. Turning first to the pro-

duction function we see that for the least skilled workers f3 = 0.72, implying approximately

an additive production function (elasticity of substitution equal to 3.6) and no real gains from

sorting in that labor market. Interestingly, because of search frictions there are still gains from

on-the-job search. Indeed, incumbent firms always try to retain employees subject to poaching

8Incorporating human capital accumulation and stochastic shocks to individual ability into this model is
clearly outside the scope of this paper. A lack of fit, confirmed by the Sargan test, is not a reason for discarding
the model. This model is a complex equilibrium models with heterogeneous agents. A lot of additional research
is likely to be necessary to find the ideal parametric specification and add all the desired features.

9We estimate the permanent variance as Var(∆u) + 2Cov(∆ut∆ut−1) + 2Cov(∆ut∆ut−2).
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Table 4: Parameter Estimates

Less than HS High school College

Production function parameters f1 3.6423 2.5111 0.4478
(0.1916) (0.0488) (0.0246)

f2 4.3058 1.6655 5.1736
(0.2340) (0.0775) (0.2972)

f3 0.7203 -0.4252 -0.6125
(0.0874) (0.0421) (0.0805)

Elasticity of substitution (1− f3)
−1 3.576 0.702 0.620

Matching function parameters α 0.2725 0.5597 0.4865
(0.0162) (0.0161) (0.0144)

Search intensity s1/s0 1.1994 0.5193 0.2499
(0.1065) (0.0251) (0.0142)

Probability of exogenous job destruction ξ 0.0280 0.0099 0.0039
(0.0008) (0.0005) (0.0001)

Probability of shock to y δ 0.0086 0.0178 0.0028
(0.0037) (0.0014) (0.0002)

Home production parameter b 0.3975 0.7102 0.1245
(0.1750) (0.0070) (0.0490)

Vacancy posting cost c 0.6701 5.0198 4.3047
(0.0756) (0.0685) (0.0769)

Worker bargaining power β 0.6690 0.0306 0.0721
(0.0340) (0.0030) (0.0030)

SD of measurement error σ 0.0490 0.0380 0.0323
(0.0036) (0.0011) (0.0019)

Autocorrelation of measurement error ρ 0.5487 0.6403 0.5413
(0.1822) (0.0857 (0.2012)

Note: standard errors in parenthesis. Rates are per month.

Table 5: More interpretable statistics

Less than High school College
high school graduate graduate

Probability of endogenous job destruction 0.0000 0.0061 0.0006
Mean separation rate conditional on shock to y 0.000 0.342 0.207

Probability of job contact when unemployed 0.102 0.223 0.182
Mean matching rate given a contact 1.000 0.461 0.648

Probability of job contact when employed 0.123 0.116 0.045
Mean matching rate given a contact 0.256 0.161 0.161

Share of total wage changes occurring
at the same job 0.4082 0.5372 0.5064
at a job change 0.5918 0.4628 0.4936

Share of wage changes at same job due to
shocks 0.2093 0.2508 0.1764
counter offers 0.7907 0.7492 0.8236

Fraction of wage changes that are positive
at the same job 0.7934 0.7558 0.828
at a job change 0.7084 0.4788 0.587
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by increasing their wages. Note that poaching may still be successful even without complemen-

tarity in the production function. This is because the surplus function is in this case roughly

constant with respect to x but increasing in y. This happens because b(x) = f(x, b) increases

with x like f(x, y), whereas the cost of a vacancy is independent of y. For the higher skill groups

the substitution elasticities are (in ascending order of skill) 0.70 and 0.62 respectively: in both

cases there are strong complementarities and gains from sorting. We look at the implications

below.

Turning now to the remaining parameters of the production function it is interesting to

note that for the college group job heterogeneity is much more important for production than

individual heterogeneity as shown by the relative size of f1 and f2. These parameters reflect

both the extent of heterogeneity among workers and jobs as well as the relative importance

of such characteristics in production. For the lowest skill group the contribution of jobs and

individual characteristics are about the same, while for the high school graduates individual

characteristics are more important, but job heterogeneity plays an important role. For college

graduates however, job heterogeneity seems to be the dominant factor by far in determining

output, relative to individual heterogeneity x.

The exogenous monthly job destruction rate ξ is higher for the lower skill groups and implies

exogenous separations every 3, 8, and 21 years for the high school dropouts, high school graduates

and college graduates respectively. Endogenous separation can occur following a productivity

shock if the surplus becomes negative. This can occur either because of a resulting mismatch

(when sorting is important) or because the productivity shock is so negative that the job cannot

pay the worker their non-work value and still cover it own outside option. However, given the

CES production function, f(x, b) < f(x, y) if and only b < y whatever x: the second source of

sorting is therefore not expected to be important. In Table 5 we have calculated the probability of

an endogenous separation and the separation rate after a productivity shock. For the unskilled,

since sorting plays no role, we are not surprised to find that separations into unemployment can

only occur through exogenous job destruction. The role of such exogenous job destruction is

much reduced for the higher skill groups both because the overall transition into unemployment

is lower and because endogenous separations are more important at least for the high school

graduates: based on the estimate of δ, the jobs they work for receive a shock every 4.7 years
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and in 34% of cases this leads to a transition into unemployment. Hence they are hit by an

endogenous job destruction shock every 13.7 years. For the low skill and the the college groups

the shocks are rare, which means they are not an important source of either transitions or of

wage renegotiations.

The flow value of home time (or home production) b(x) is estimated to be equivalent to

production with a firm between the 12th and 71st percentile, with no monotonic relation to

education group. The monthly cost of posting a vacancy is much lower for recruiting unskilled

workers than for the other two groups. The other key parameter for our model is the bargaining

parameter β, with the results implying that unskilled workers obtain 67% of the surplus, while

the two higher skill groups only obtain 3.1% and 7.25% respectively. In other words their

pay is determined mainly from the sequential auction process. There is no evidence that an

additional rent sharing mechanism, besides Bertrand competition, is required to explain wage

determination for skilled workers.

The parameter estimates for the search technology (α and s1/s0) are better understood by

calculating the probabilities of job contact when employed and unemployed, displayed in Table

5. The contact rates for the unskilled when unemployed are substantially lower (10.2% a month)

than for the other higher skill groups (22% and 18%). However the unskilled accept all offers

when unemployed. Both the contact rate when working and the rate at which alternative offers

are accepted declines with skill.

The sources of wage dynamics are shocks to productivity y such that wage renegotiation is

triggered, and outside offers leading to a response of the employer and/or job-to-job mobility.

Table 5 decomposes these different sources over and above measurement error. For the unskilled

59% happen at job change. For the high school and college graduates these are split roughly

evenly. For all groups the predominant reason for a wage change at the same job is in response

to an outside offer: 79%, 75% and 82% percent for the low, medium and high educated groups

respectively.

The last two parameters relate to measurement error. The standard deviation of monthly

measurement error is low for all groups, between 0.03 and 0.05. The correlation between any

two months within a reporting year is estimated to be between 0.54 and 0.64, although without

much precision.
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4.4 Sorting with respect to unobserved characteristics

The key feature of our model is that it allows for the possibility of sorting. We have already

demonstrated that our estimates imply production complementarities at least for the two higher

skill groups. This in itself would imply perfect assortative matching in a first best world without

search frictions. We now show the extent of actual sorting in steady state, which in turn allows

us to quantify an important welfare loss component in the presence of search frictions.

In Figure 4 we plot the set of possible matches for the three skill groups. As is evident any

firm will match with any worker in the unskilled market: the small gains from matching with

someone of a similar rank are not enough to make it worthwhile waiting for a better match.

However, in the higher skill groups, matching between high type workers and low type firms

and between low type workers and high type firms never occur, which is a manifestation of

sorting: when worker and job pairs in that region meet they prefer to wait. Of course, even if

all matches are possible there can be positive sorting if the density of matches is concentrated

on the diagonal from the origin to the top right; this can occur even when all matches out of

unemployment are acceptable through the process of on-the-job-search. We now look at sorting

in greater detail.

In Figure 5 we illustrate the implication of complementarity by presenting information on

the joint distribution of matches. For each education group, the graphs on the left represent the

cumulative distribution for firm type conditional on various quantiles of the worker types; on

the right we show the cumulative distribution of worker type conditional on various quantiles of

the distribution of firm productivity.

For the unskilled the distributions of worker skills conditional on firm type and those of firm

type conditional on worker skills are quite close to each other, and closer to the 45 degree line (the

uniform distribution), reflecting what we expect from the parameter estimates, i.e. that there

is not much sorting in that market because of the high levels of substitutability between worker

skills and job productivity. However, there is some sorting, because the production function is

not quite additive.

For the two higher skill groups sorting is much stronger, as conditional CDFs are clearly

ordered. Many matches also never happen: for example the lowest skill worker among those

with college degrees do not work in firms above the median. On the other hand, matching is
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(c) College graduate

Figure 4: Matching sets: Decentralized, constrained planner, frictionless
Notes: Here we plot the set of matches that are formed between unemployed workers and vacant jobs. The green

shaded area represents the decentralized matching set, the dashed lines are the boundaries of the constrained

social planner’s matching set, approximated by MSP (x, y) =
{
x, y|x >

∑I

i=1 τiy
i−1, y >

∑J

j=1 τjx
j−1

}
.
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imperfect and there is plenty of mismatch in this economy. If sorting were perfect each line

would be a step function with vertical portion corresponding to the quantile. There is even

some evidence that there is little or no sorting at the bottom of the productivity distribution

for the intermediate education category of workers, and at the bottom of the distribution of

worker types for college graduates. This can be seen in the fact that some conditional CDFs are

superimposed.

The other feature of these graphs is that as we move between the education groups they tend

to spread out more, particularly the distribution of firm types conditional on worker types. This

reflects increasing amounts of sorting at the higher education level. Moreover, the shift of the

the shape of the cumulative distribution functions of workers (right hand panels) from concave

to convex as we move from low productivity firms to higher ones is again the result of sorting,

as lower productivity jobs have a higher concentration of lower skill (x) workers.

In conclusion, there is a lot of sorting in the economy and plenty of mismatch, which leads to

important welfare losses relative to a world with no search frictions or no congestion externalities.

We characterize this below.

4.5 Measuring sorting with wage data only

The availability of matched employer employee data has motivated empirical research on the

distribution of wages across workers and firms. Indeed the availability of such data allows to

identify worker and firm fixed effects in a standard Mincer wage equation. Abowd, Kramarz,

and Margolis (1999) and a few other studies (see the introduction for references) implemented

this idea and concluded that there is very little evidence of sorting, based on the small estimated

correlation between worker and firm effects. However, this approach to measuring sorting was

recently disputed first theoretically (Eeckhout and Kircher, 2011) and then empirically (de Melo,

2009 and Bagger and Lentz, 2012).

The key difficulty lies in the fact that in the presence of productive complementarities there

is a non-monotonic relationship, in general, between match surplus and the firm type. Since

the maximum possible wage a worker can earn in a match is directly controlled by the match

surplus, this implies that there will also be a non-monotonic relationship between wages and

the firm type when production complementarities are important. This theoretical point was
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(c) College graduate

Figure 5: CDF of match distribution conditional on type
Note: The left hand panels plot the CDF of firm type conditional on percentile of worker type
Hy (y|x = Xq). The right hand panels plot the CDF of worker type, conditional on percentile
of firm type Hx (x|y = Yq). The percentiles used are 1 (dark solid line), 20 (dark dashed), 40
(faint dotted), 60 (faint solid), 80 (dark dashed), and 100 (faint solid).
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made by Eeckhout and Kircher (2011) and illustrated using a simple search model. In the model

we estimate, there are additional forces at work that may amplify or mute this effect, such as

on-the-job search, shocks to the productivity of the job, and the fact that wages reflect both the

surplus in the current match and the surplus at the worker’s outside option.

To illustrate the relationship between wages, surplus, and firm types we calculate the range

of potential wage paid to a worker in each possible (x, y) match. The highest possible wage is

the wage that gives the entire match surplus to the worker and is implicitly defined by

W1(w, x, y)−W0(x) = S(x, y). (17)

The lowest possible wage paid to a worker in an (x, y) match gives the worker a share β of the

match surplus and is implicitly defined by

W1(w, x, y)−W0(x) = βS(x, y). (18)

In Figure 6 we present information on wage setting by worker and firm characteristics.

We plot, separately by decile of the worker type distribution, the maximum wage against the

match surplus (left had panels) and against the firm type in the match (right hand panel).10

While maximum wages are strictly increasing in match surplus for all education groups, the

non-monotonicity of wages by firm type is clear for the two higher eduction groups.

It is then clear that any empirical strategy designed to measure the degree of sorting of

workers across firms that relies on a monotonic relation between wages and firm types is likely

to do poorly in this environment. As an illustration, we apply the fixed effects estimation

strategy of Abowd, Kramarz, and Margolis (1999) to data simulated from our model at our

estimated parameters. Specifically, we simulate panel data and for each worker we keep track

of their wage, their id, and the id of the firm they are employed at. To construct a firm id we

assign them the firm type at the start of the match. We estimate the following wage equation:

wijt = φi + ψj(i,t) + uijt, (19)

10To keep the figures as clear as possible we do not plot the minimum possible wage. For for two highest
eduction groups β is estimated to be close to zero, implying that the lowest possible wage is approximately
constant across all firms for a given worker type, and equal to the maximum possible wage at the match where
S(x, y) = 0. For the lowest education group the lowest possible wage is approximately a shift down from the
maximum possible wage.
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Figure 6: Maximum wage by decile of worker type, plotted against firm type (left had panels)
and against match surplus (right hand panels)
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Table 6: Actual and estimated sorting patterns

Corr(x, y) Corr(φ̂i, ψ̂j)
(i) (ii)

Less than high school 0.338 -0.008 0.007
High school graduate 0.846 -0.236 -0.248
College graduate 0.858 0.644 0.315

Note: The column labeled Corr(x, y) presents the correlation between worker type and firm type based

on the equilibrium distribution of matches in the model, h(x, y). The columns under Corr(φ̂i, ψ̂j) present

the correlations between estimated worker and firm fixed effects, based on two different samples: (i) is

based on a simulation from the stationary version of the model; (ii) is based on the first 10 years of labor

market experience for a cohort who start unemployed.

where the subscript j(i, t) denotes the firm j in which individual (i) is working in period t. The

reduced form sorting measure is the the correlation between the estimated worker fixed effect φi

and the firm fixed effect ψj(i,t) of the firms at which they worked. This can be compared to the

actual correlation impede by solving the model

Table 6 presents results from this comparison. The correlations between worker and firm

types implied by the model are positive for all education groups. It is a moderate 0.34 for the

high school dropouts, and strong for both high school and college graduates at 0.85 and 0.86

respectively. We present different estimates for the correlation of estimated fixed effects. The

first (i) uses a ten year sample drawn from the stationary equilibrium of the model. The second

(ii) uses a sample of with a lot of mobility, corresponding to the first 10 years in the labor force

for a given cohort. The correlation between estimated fixed effects is effectively zero for the

low education group, despite the model correlation of 0.34. For the high school graduates, the

correlation in estimated fixed effects is −0.24 compared to the model correlation of 0.85. We do

not even obtain the correct sign for the correlation. Finally, the correlation between estimated

fixed effects for the college graduates is 0.64 compared to that of 0.86 implied by the model.

The correlation between estimated fixed effects is clearly not a useful measure for the degree

or sorting or the degree of complementary in this environment. Indeed, while the true model

correlations are almost equal for high school and college graduates at 0.85 and 0.86, the fixed

effect correlations are of opposite sign -0.24 and 0.64. This difference can be traced to several

other important differences between labor markets for the high school and college workers.

Considering again the parameter estimates in Table 4, we see that there is somewhat more

job turnover among the high school graduates; the exogenous job destruction rate is 2.5 times
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as high as for college graduates, and the probability of a shock to the match productivity is

six times as likely. The implication is that college graduates tend to have a relatively stable

career, moving to better matches when the opportunity arises, with very little variability in the

quality for any given match. High school graduates on the other hand tend to be separated to

unemployment much more often, restarting the process of finding a good match. In addition,

the productivity at their current match is subject to relatively high variability. A second big

difference between these two labor markets are the estimates for the relative importance of firm

to worker heterogeneity, measured as the ratio of f2/f1, which is 0.66 for high school graduates

and 11.6 for college graduates. College graduates face much larger differences in productivity

across jobs than high school graduates. The effect of mobility on the correlation of estimated

fixed effects can be seen in column (ii) of Table 6, where the estimates are based on a sample of

workers in their first 10 years in the labor force. Where the correlation does not change much

for the high school graduates, the correlation falls from 0.64 to 0.32 for the college graduates,

reflecting the fact that for this sample we observe workers moving from originally mismatches

jobs (which could have high y) to better jobs (possibly at lower y).

Finally, note that recent work by Lentz (2010) and Bagger and Lentz (2012) also builds

on the sequential auction model with bargaining that they extend to allow for endogenous

search intensity. There, sorting stems both from the value of a job being not necessarily greater

than the value of unemployment and also because more able workers search more intensely.

In their model, however, there is no productivity shocks, vacancy creation is not modeled and

the value of a vacancy is always zero, which makes welfare analysis and policy evaluation less

pertinent. Yet their work is rich of interesting results. Confirming Atakan’s (2006) insight,11 they

show that positive (negative) sorting holds if the match production function is supermodular

(submodular).; using Danish matched employer-employee data they find evidence of modest

positive sorting between worker skill and firm technology; lastly, they confirm Eeckhout and

Kircher’s point about the non-identification of sorting from wage data only. The correlation

between wage equation worker and firm fixed effects can be positive when the production function

is submodular if workers’ bargaining power is weak. They also show that the estimators of sorting

proposed by de Melo (2009) and Eeckhout and Kircher (2011) also do not work as they are always

11Shimer and Smith show that complementarity in production is not a sufficient condition for assortative
matching in equilibrium. Atakan shows that it is in presence of search costs.
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positive whether the production function is sub- or supermodular.12 Bagger and Lentz identify

sorting from the correlation between unemployment duration and wages for workers hired by

the most productive firms; most productive firms can be identified because they are the most

likely to successfully poach.13

5 Welfare Analysis

5.1 The impact of search frictions

The potential for labor market regulation arises from the job search frictions and the externalities

they cause during the job allocation process. These externalities arise both from the classic issue

of “overcrowding” among job seekers, i.e. when an extra person seeks a job it reduces the arrival

rate for others, or among vacancies, as implied by the matching function. An extra dimension

arises in our model because of heterogeneity and sorting: by having low quality jobs compete

for workers they lengthen the time it takes to fill higher productivity ones, without adding much

when they are filled (because they have zero or near zero surplus). This implies that because of

complementarity, cutting some low productivity jobs may increase welfare, even if this means

that some very low productivity workers never work. An additional inefficiency comes from the

fact that workers can seek outside offers to increase their share of the match surplus. As a result,

workers are willing to form matches even when the current output of the match is below what

they could produce at home, allowing also for the cost of the vacancy: f(x, y) < b(x)− c. Even

though the worker and firm are producing less together than they would separately, the fact

that the firm has monopsony power up front means it is willing to hire the worker and extract

most of the match surplus during the early periods of the match. The worker is willing to be in

the match as it provides a better outside option so as to extract surplus via poaching firms.

Any regulatory intervention in the labor market will improve welfare only to the extent that

it can address the externalities discussed above, and to the extent to which they are significant.

Thus, to provide a measure of the potential welfare gains from labor market regulation (such

12De Melo proposes to use the correlation between the worker fixed effect and the average worker fixed effect
of the co-workers within the firm. Eeckhout and Kircher suggest to use the population variance relative to the
average within firm worker fixed effect variance.

13Another set of studies use firm data to estimate firm-specific total factor productivity (TFP) and correlate
it with the distribution of skills or wages within the firms. See Haltiwanger, Lane, and Spletzer (1999), Abowd,
Haltiwanger, Lane, McKinney, and Sandusky (2007), van den Berg and van Vuuren (2010), Mendes, van den
Berg, and Lindeboom (2010).
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as in work benefits, unemployment insurance, minimum wages, severance pay etc.) we solve

the planners problem respecting the constraints arising from search frictions. Specifically the

planner maximizes total output and home production subject to the flow constraints implied

implied by the frictions and the costs of increasing the number of jobs in the economy, i.e.

max
hSP ,uSP ,V SP

∫
f(x, y)hSP (x, y) dx dy +

∫
b(x)uSP (x) dx− cV SP (20)

subject to the equations (13), (14), (15), (16) and V =
∫
v(y)dy. In the above the superscript SP

is used to distinguish the endogenous objects chosen by the planner as opposed to those arising

in a decentralized economy. An equivalent formulation to directly choosing the distribution

of matches is to have the planner choose the set of admissible matches MSP(x, y) and the

measure of jobs NSP satisfying the free entry condition. We approximate the solution to the

planner’s problem by specifying the boundaries of the matching set as polynomials: MSP (x, y) =
{
x, y|x >

∑I
i=1 τiy

i−1, y >
∑J

j=1 τjx
j−1

}
. We find that polynomials of order I, J = 4 provide

a good approximation as no increase in steady state output is found by further increasing the

degree of polynomial.

Table 7 shows the breakdown of contributions to total welfare under different scenarios. The

first column relates to the fully decentralized economy we observe from the data. The second

column shows the results of the planner maximizing welfare as in (20). For the lowest education

group the constrained planner is not able to improve on the decentralized outcome. For the

two higher education groups the planner can attain an increase in welfare of 9.7% and 1.9%

respectively. The planner wants to improve match quality, increase unemployment and reduce

the number of jobs at the same time. This is more dramatically true for high school graduates.

To understand what is going on, note that increased match efficiency contributes very little to

the welfare increase. Output per worker increases by moderate 2.0% and 1.1%, respectively,

for the two skilled groups. Hence, the main source of inefficiency is that vacancy costs are too

big. With less jobs, there are less vacancies. This creates unemployment, but for high school

graduates this is acceptable because they are very good at producing at home. For college

graduates, b is estimated much lower, so the job reduction is much smaller.

For the lowest education group the constrained planner is not able to improve on the de-

centralized outcome. This has a key implication: we cannot justify any type of labor market
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Table 7: Output and Employment Effects of Policy

Decentralized Constrained Frictionless Frictionless Optimal
Frictional Planner with Actual with Full Unemployment

Employment Employment Insurance
(1) (2) (3) (4) (5)

Less than high school

Welfare 100.00 100.00 108.91 140.79 100.00
Match Output 108.17 108.17 117.08 140.78 108.17
Home Production 5.22 5.22 5.22 0.01 5.22
Recruiting Costs -13.39 -13.39 -13.39 0.00 -13.39

E/L 78.52 78.52 78.52 94.87 78.52
N/L 94.87 94.87 94.87 94.87 94.87
V/U 76.13 76.13 76.13 0.00 76.13
Corr(x, y) 0.32 0.32 1.00 1.00 0.32

High school graduate

Welfare 100.00 109.71 124.06 164.02 105.92
Match Output 115.69 92.27 139.75 163.98 88.46
Home Production 12.83 29.71 12.83 0.04 33.69
Recruiting Costs -28.52 -12.27 -28.52 0.00 -16.23

E/L 86.57 67.67 86.57 95.85 66.30
N/L 95.85 71.66 95.85 95.85 71.58
V/U 69.10 12.36 69.10 0.00 15.67
Corr(x, y) 0.81 0.82 1.00 1.00 0.80

College graduate

Welfare 100.00 101.92 107.75 125.24 100.00
Match Output 114.98 112.40 122.74 125.24 114.98
Home Production 0.02 0.03 0.02 0.00 0.02
Recruiting Costs -15.00 -10.51 -15.00 0.00 -15.00

E/L 96.35 93.16 96.35 100.00 96.35
N/L 100.22 95.88 100.22 100.22 100.22
V/U 106.01 0.40 106.01 . 106.01
Corr(x, y) 0.83 0.85 1.00 1.00 0.83

Notes: Column (1) is the estimated economy. In column (2) the constrained planner chooses admissible matches

to maximize steady state output. Here we restrict the planner to choosing a reservation type for x and y,

approximated by a fourth order polynomial: MSP (x, y) =
{
x, y|x >

∑4
i=1 τiy

i−1, y >
∑4

j=1 τjx
j−1

}
, and the

measure of firms active in the market N . The frictionless benchmarks of columns (3) and (4) hold N/L at

the estimated decentralized level and force the positive assortative allocation {x, y(x)}. Column (3) keeps the

same unemployment and vacancy distributions u(x) and v(y) as in the benchmark. In column (4) we optimally

reallocate workers across firms and employment states, filling all possible jobs with a worker. In column (5),

optimal unemployment insurance policy is modeled as proportional to home production: b0b(x) and we impose

the balanced budget b0
∫
b(x)u(x) dx = τ

∫
f(x, y)h(x, y) dx dy. The implied policy parameters are less than high

school: τ = 0, b0 = 0; high school: τ = 0.09, b0 = 0.24; and college: τ = 0, b0 = 0.
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regulation for the lowest skill group on the basis that it is welfare improving. Some corrective

policy could be designed for the other groups but this is rarely the focus of policy.14 Thus labor

market regulation cannot be effective as an antipoverty measure. In particular the minimum

wage here will be welfare reducing; severance pay on its own would be neutral or welfare re-

ducing if combined with minimum wages. Of course, different individual weights in the welfare

function, or a different way of valuing inequality, could obviously change that result.

Anti poverty measures need to address search frictions: for the lowest skill group policies

that improve search technology could improve welfare by up to 46%. Part of this increase comes

from reducing unemployment. But part also comes from improving sorting since the elasticity

of substitution, albeit large is not infinite (it is 3.6). This can be seen from the fourth column

of Table 7 where unemployment is kept equal to the level in the benchmark economy.

5.2 Measuring assortative matching

In Figure 5, we have indicated by dotted lines the location of the planner’s matching set. The

planner wants to restrict matching with low productive firms for all workers with x greater than

50%, whereas it is only for the percentiles above 80% that this happens for college graduates.

Because of search frictions more high school graduates are effectively mismatched than college

graduates. Looking at the matching sets in Figure 5, it is hard to say if there is more sorting

in the second case or the third case. The aggregate output-per-worker differential that we have

calculated in the previous paragraph is a simple and natural index of assortative matching in

an economy subject to search frictions (i.e. 0%, 2.0% and 1.1%).

An alternative way of calculating an index of assortative matching consists in comparing

the estimated economy to a perfect-sorting benchmark. Column (3) runs the counterfactual

experiment where u(x) and v(y) are kept the same as estimated but h(x, y) is changed into

[L − u(x)]1{y = y(x)}, which is the distribution of matches that is obtained by imposing the

optimal job match to each employed worker (y(x) = argmaxy S(x, y)). Welfare increases by 8.91

percentage points for unskilled workers and by 24.06 and 7.75, respectively, for the two skilled

groups. One can see that the ordering implied by the other index is maintained.

In column (4), we run a similar counterfactual in which we assign all jobs to workers. Unem-

ployment is drastically reduced and welfare increases a lot, surely because there are no recruiting

14Notwithstanding the suspicious aim of the policy: reducing the number of jobs.
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costs, but not necessarily because of reduced unemployment, as some workers may be better off

unemployed (and equivalently match with a firm y = b) than employed and match with y(x)

(see also the discussion in Subsection 6.2).

6 Optimal Unemployment Insurance

The final column of Table 7 presents the welfare (output) gains from an optimal unemployment

insurance policy. We approximate unemployment insurance as a payment proportional to home

production, which is positively related to permanent income: (1 + b0) b(x). Benefits are funded

by a proportional tax on match output: b0
∫
b(x)u(x) dx = τ

∫
f(x, y)h(x, y) dx dy.

6.1 Overall efficiency gains

Since the constrained planner is unable to improve over the decentralized outcome for the lowest

education group it is optimal to have no unemployment insurance for this group. In interpreting

this result note that utility here is linear and workers are thus assumed risk neutral; hence

UI has no insurance benefit per se but could improve welfare by altering the job acceptance

probabilities and indirectly eliminating very low value matches. Allowing for risk aversion and/or

for liquidity constraints would tend to make UI welfare improving. We also find that it is optimal

to have no unemployment insurance for the college graduates, despite the potential gain of 1.9

percent obtained by the constrained planner. For this group the relatively crude policy tool of

unemployment insurance is too far from what the planner would do to produce any benefits.

Finally, for the high school graduates, we find that optimal unemployment insurance can deliver

5.9% of improved welfare, corresponding to 60 percent of the potential gains attainable by the

constrained planner. This involves increasing the baseline flow utility of being out of work (home

production) for each individual by 24 percent and taxing output at 9 percent.

It is worth noting again that the improvement in steady state output comes from very

different sources when comparing the elimination or frictions to the constrained planner or

optimal unemployment insurance scheme. With the removal of frictions there is a direct increase

in market production and a gain when netting out the costs of vacancy creation from home

production. For the groups where the constrained planner can improve steady state output,

this is implemented largely by raising unemployment and reducing the number of vacancies,
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resulting in lower vacancy creation costs, high levels of home production, and improving the

average quality of productive matches.

6.2 The redistributive effects of the policy

As discussed above, we find that there is a potential gain from an optimal unemployment in-

surance scheme for the high school graduates, but not for either the lower or higher education

groups. For the high school drop-outs there are simply no efficiency gains to realize (short of

eliminating frictions) while for the college graduates the cost of increasing the duration of unem-

ployment spells outweighs the benefit from improved matches. In addition to overall efficiency

gains, we are also interested in the redistributive effects of policy. In an environment with het-

erogeneous workers it is not necessarily the case that an increase in steady state output will

benefit all workers the same, indeed it may harm some. In Figure 7 we plot the difference in

value, by worker type x, between being unemployed in an economy with and without the opti-

mal unemployment insurance scheme. While the value of unemployment is higher for all worker

types above the first quintile in the environment with UI, the value of unemployment is sub-

stantially lower for the bottom twenty percent of worker types. The increase in unemployment

duration that improves match quality is born disproportionately by the low type workers; they

also receive lower wages when employed due to the tax on output, and are not fully compensated

by the marginal increase in benefits when unemployed. The unemployment insurance scheme,

while improving overall steady state output, also has the side effect of transfer from the lowest

skilled to the higher skilled. As a result the group that is usually the target of such policies ends

up worse off.

7 Conclusion and Further Work

We develop an equilibrium model of employment and wage determination, which builds on the

work of Postel-Vinay and Robin (2002) and Shimer and Smith (2000). In our model both workers

and firms are heterogeneous, their productivity characteristics are potentially complementary in

production creating the possibility of sorting. However, firms are subject to productivity shocks.

Workers can search both on and off the job. This creates an environment where there may be

potential for welfare improving labor market regulation. Moreover our framework is well suited
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Figure 7: Welfare difference in value of unemployment by worker type
Note: We calculate the distributional impact for the high school educated group, where the optimal unemployment

insurance scheme implies a five percent gain in steady state output. This is calculated as 100×
WUI

0
(x)−W0(x)

W0(x)
.

to consider the redistributive (as well as efficiency) implications of policy. The scope for and

impact of policy is thus an empirical issue in our model.

We estimate the model based on NLSY data and find strong evidence of sorting among

all but the labor market for the lowest education workers For the higher educational groups

these complementarities imply large efficiency losses due to mismatch between job and worker

productivities caused by search frictions.

Mismatch is a source of inefficiency that labor market regulation cannot correct; this would

require changing the job search technology improving job finding rates and enabling more mo-

bility following shocks. Policies such as unemployment insurance can improve efficiency to the

extent that they address the externalities induced by search frictions. We established that these

are very small. We then show that the optimal unemployment insurance benefits are zero for

the lowest and highest education group, and moderate for the high school graduates. Moreover

we show that even for this group where there are efficiency gains, the policy would redistribute

wealth from low skilled workers to workers above the first quintile of the skill distribution.

Our model opens up an empirical research agenda on which to build and address important

issues. We have demonstrated the importance of heterogeneity, sorting and search frictions.

Among these are the welfare and labor market effects of risk and the role of assets in determining

the wage offer distribution and the role of investment in human capital. Similarly, an important

44



extension of such a model is considering investment decisions by forms and how this can affect

productivity y which we took as given. Finally, this kind of model is well suited to interpreting

matched employer employee data. Indeed such data could aid identification by providing direct

information on firm level productivity. However, when we move to such data new, important and

difficult questions arise when defining wage setting in an environment with sorting and multiple

workers per firm. This is of course an important future research area.
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A Mathematical Appendix

A.1 The Continuation value and the equation for the surplus

Let P (x, y) be the value of joint production of an (x, y) match. Then the surplus is defined by P (x, y)−

W0(x)−Π0(y) = S(x, y). Assume jobs can also be destroyed at an exogenous rate ξ. Then we have that

rP (x, y) = f(x, y) + ξ [W0(x) + Π0(y)− P (x, y)]

+s1κ

∫
[max {P (x, y),Π0(y) +W0(x) + S(x, y) + β [S(x, y′)− S(x, y)]} − P (x, y)] v(y′) dy′

+δ

∫
[max {P (x, y′),W0(x) + Π0(y

′)} − P (x, y)] dy′

= f(x, y)− ξS(x, y)

+s1κ

∫
[max {0, β [S(x, y′)− S(x, y)]}] v(y′) dy′

+δ

∫
[max {P (x, y′)−W0(x)−Π0(y

′), 0} − P (x, y) +W0(x) + Π0(y
′)] dy′

= f(x, y)− ξS(x, y)

+s1κβ

∫
[S(x, y′)− S(x, y)]

+
v(y′) dy′

+δ

∫
S(x, y′)+ dy′ − δS(x, y) + δ

∫
[Π0(y

′)−Π0(y)] dy
′

Then, substituting out rW0(x) and rΠ0(y), we have S(x, y) defined by the fixed point

(r + ξ + δ)S(x, y) = f(x, y)− b(x) + c

− s0κβ

∫
S(x, y)+v(y) dy − s0κ (1− β)

∫
S(x, y)+u(x) dx

− s1κ (1− β)

∫∫
[S(x, y)− S(x, y′)]

+
h(x, y′) dx dy

+ s1κβ

∫
[S(x, y′)− S(x, y)]

+
v(y′) dy′ + δ

∫
S(x, y′)+ dy′. (21)

Note that
[
r + δ + ξ + s1κv(B(x, y))

] ∂S(x, y)
∂y

=
∂f(x, y)

∂y
− (r + δ)Π′

0(y), (22)

where

B(x, y) = {y′ : S(x, y′) ≥ S(x, y)},

and µ (A) =
∫
A
µ(y) dy, for any set A and any measure density µ. Therefore, for any x, the set of y’s

maximizing the surplus S(x, y) is the set of y’s maximizing the surplus flow f(x, y)− rW0(x)− rΠ0(y).
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A.2 The expected profits of a vacant job increase with productivity

From the previous expression note also that

(r + δ)Π′
0(y) = s0κ (1− β)

∫

S(x,y)≥0

∂S(x, y)

∂y
u(x) dx

+ s1κ (1− β)

∫
h(x,B(x, y))

∂S(x, y)

∂y
dx, (23)

where B(x, y) is the set of jobs with a productivity y′ leading to a lower surplus than the pair (x, y),

B(x, y) = {y′ : S(x, y) ≥ S(x, y′)} .

Hence, plugging the above expression for ∂S(x, y)/∂y in equation (23) shows that Π′
0(y) is positive if

∂f(x, y)/∂y is positive.

B Computing the Equilibrium

The equilibrium is characterized by knowledge of the number of jobs N , the labor market tightness

κ(U, V ), the joint distribution of active matches h(x, y), and the surplus function S(x, y). A fixed point

iterative algorithm operating on (κ, h, S) can be constructed as follows.

First, with inputs κ, h(x, y) and S(x, y),

1. Calculate u(x) using (15) and calculate U =
∫
u(x) dx.

2. Solve for V in equation

κ =
M (s0U + s1(L− U), V )

[s0U + s1(L− U)]V
.

3. Calculate N = V + L− U and calculate v(y) with equation (16).

Second,

1. Update h using equation (14) as

h(x, y)←
δ
∫
h(x, y′) dy′ + [s0u(x) + s1h (x,B(x, y))]κv(y)

δ + ξ + s1κv
(
B(x, y)

) 1{S(x, y) ≥ 0}. (24)

2. Update S using equation (12).

3. Update κ using the free entry equation (10)

κ←
(c− δΠ0)/(1− β)

s0
∫
S (x, 0)

+
u(x) dx+ s1

∫
[S (x, 0)− S(x, y′)]

+
h(x, y′) dx dy′

. (25)
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Alternatively, one can solve for (h, S) for a given κ and search for the κ that satisfies the free entry

condition. The full iterative fixed point algorithm does not indeed guaranty positive updates for κ.

C Chernozhukov and Hong’s Algorithm for SMM

The estimation procedure of Chernozhukov and Hong (2003) consists of simulating a chain of parameters

that (once converged) has the quasi-posterior density

p (θ) =
eLN (θ)π (θ)∫
eLN (θ)π (θ) dθ

.

A point estimate for the parameters is obtained as the average of the NS elements of the converged

MCMC chain:

θ̂MCMC =
1

NS

NS∑

j=1

θj ,

and standard errors are computed as the standard deviation of the sequence of θj . To simulate a chain

that converges to the quasi posterior, we use the Metropolis-Hastings algorithm. The algorithm generates

a chain
(
θ0, θ1, ..., θNS

)
as follows. First, choose a starting value θ0. Next, generate ψ from a proposal

density q(ψ|θj) and update θj+1 from θj for j = 1, 2, ... using

θj+1 =





ψ with probability d(θj , ψ)

θj with probability 1− d(θj , ψ),

where

d (θ, ψ) = min

(
eLN (ψ)π(ψ)q(θ|ψ)

eLN (θ)π(θ)q(ψ|θ)
, 1

)
.

This procedure is repeated many times to obtain a chain of length NS that represents the ergodic

distribution of θ. Choosing the prior π(θ) to be uniform and the proposal density to be a random walk

(q(θ|ψ) = q(ψ|θ)), results in the simple rule

d(θ, ψ) = min
(
eLN (ψ)−LN (θ), 1

)
.

The main advantage of this estimation strategy is that it only requires function evaluations, and thus

discontinuous jumps do not cause the same problems that would occur with a gradient based extremum

estimator. Additionally, the converged chain provides a direct way to construct valid confidence intervals

or standard errors for the parameter estimates if the optimal weighting matrix is used.15 The drawback

15To avoid the problem similar to that pointed out by Altonji and Segal (1996) we decided against using
the optimal weight matrix. Indeed using it did not give sensible results. In this case the chain converges to
a stationary process which variance is a consistent estimator of the inverse of the Hessian J−1 (Theorem 1 of
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of the procedure is that it requires a very long chain, and consequently a very large number of function

evaluations, each requiring the model to be solved and simulated. In practice, we simulate 100 chains in

parallel, each of length 10,000, and use the last 1,000 elements (pooled over the 100 chains) to obtain

parameter estimates and standard errors.16

Chernozhukov and Hong, 2003) and the sandwich estimator (J−1IJ−1) has to be used to calculate standard errors
appropriately. Because of the lack of precision in the numerical approximation of the gradient G(θ) = ∇θm̂

M
S (θ)

(with Î = G(θ̂)TŴ−1
N G(θ̂)), we report the variance of the MC chain (Ĵ−1). This is still informative. (Discussions

with Han Hong and Ron Gallant helped us to understand this.)
16Details pertaining to tuning the MCMC algorithm, a parallel implementation, and related methods in statis-

tics can be found in Robert and Casella (2004), Vrugt, ter Braak, Diks, Higdon, Robinson, and Hyman (2009),
Sisson and Fan (2011).
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