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Abstract

We build an agent-based model to study how the interplay between low- and high-
frequency trading affects asset price dynamics. Our main goal is to investigate
whether high-frequency trading exacerbates market volatility and generates flash
crashes. In the model, low-frequency agents adopt trading rules based on chrono-
logical time and can switch between fundamentalist and chartist strategies. On
the contrary, high-frequency traders activation is event-driven and depends on price
fluctuations. High-frequency traders use directional strategies to exploit market in-
formation produced by low-frequency traders. Monte-Carlo simulations reveal that
the model replicates the main stylized facts of financial markets. Furthermore, we
find that the presence of high-frequency trading increases market volatility and plays
a fundamental role in the generation of flash crashes. The emergence of flash crashes
is explained by two salient characteristics of high-frequency traders, i.e., their ability
to i) generate high bid-ask spreads and ii) synchronize on the sell side of the limit
order book. Finally, we find that higher rates of order cancellation by high-frequency
traders increase the incidence of flash crashes but reduce their duration.
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1 Introduction

This paper builds an agent-based model to study how high-frequency trading affects asset

price volatility as well as the occurrence and the duration of flash crashes in financial

markets.

The increased frequency and severity of flash crashes and the high volatility of prices

observed in financial time series have recently been associated to the rising importance

of high-frequency trading (see, e.g., Sornette and Von der Becke, 2011, and further refer-

ences therein). However, the debate in the literature about the benefits and costs of high

frequency trading (HFT henceforth) has not been settled yet. On the one hand, some

works stress that high-frequency traders may play the role of modern market-makers,

providing an almost continuous flow of liquidity (Menkveld, 2013). Moreover, HFT re-

duces transaction costs and favors price discovery and market efficiency by strengthening

the links between different markets (Brogaard, 2010). On the other hand, many empir-

ical and theoretical studies raise concerns about the threatening effects of HFT on the

dynamics of financial markets. In particular, HFT may lead to more frequent periods

of illiquidity, possibly leading to the emergence of flash crashes (Kirilenko et al, 2011).

Furthermore, HFT may exacerbate market volatility (Zhang, 2010; Hanson, 2011) and

negatively affect market efficiency (Wah and Wellman, 2013).

This work contributes to the current debate on the impact of HFT on asset price

dynamics by developing an agent-based model of a limit-order book (LOB) market1

wherein heterogeneous high-frequency (HF) traders interact with low-frequency (LF)

ones. Our main goal is to study whether HFT helps to explain the emergence of flash

crashes and more generally periods of higher volatility in financial markets. Moreover, we

want to shed some light on which distinct features of HFT are relevant in the generation

of flash crashes and affect the process of price-recovery after a crash.

In the model, LF traders can switch between fundamentalist and chartist strategies

according to their profitability. HF traders adopt directional strategies that exploit the

price and volume-size information produced by LF traders (cf. SEC, 2010; Aloud et al,

2011). Moreover, in line with empirical evidence on HFT (see e.g., Easley et al, 2012),

LF trading strategies are based on chronological time, whereas those of HF traders are

framed in event time.2 Consequently, LF agents, who trade at exogenous and constant

1See, for instance, Farmer et al (2005) and Slanina (2008) for detailed studies of the effect of limit-
order book models on market dynamics.

2As noted by Easley et al (2012), HFT requires the adoption of algorithmic trading implemented
through computers which natively operate on internal event-based clocks. Hence, the study of HFT
cannot be reduced to its higher speed only, but it should take into account also the associated new
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frequency, co-evolve with HF agents, whose participation in the market is endogenously

triggered by price fluctuations. Finally, consistent with empirical evidence (see Kirilenko

et al, 2011), HF traders face limits in the accumulation of open positions.

So far, the few existing agent-based models dealing with HFT have mainly treated HF

as zero-intelligence agents with an exogenously-given trading frequency (e.g., Bartolozzi,

2010; Hanson, 2011). However, only few attempts have been made to account for the

interplay between HF and LF traders (see, for instance, Paddrik et al, 2011; Aloud

et al, 2013; Wah and Wellman, 2013). We improve upon this literature along several

dimensions. First, we depart from the zero-intelligent framework by considering HF

traders who hold event-based trading-activation rules, and place orders according to

observed market volumes, constantly exploiting the information provided by LF traders.

Second, we explicitly account for the interplay among many HF and LF traders. Finally,

we perform a deeper investigation of the characteristics of HFT that generate price

downturns, and of the factors explaining the fast price-recovery one typically observes

after flash crashes.

We study the model in two different scenarios. In the first scenario (“only-LFT”

case), only LF agents trade with each other. In the second scenario (our baseline),

both LF and HF traders co-exist in the market. The comparison of the simulation

results generated from these two scenarios allows us to assess the contribution of high-

frequency trading to financial market volatility and to the emergence of flash crashes.

In addition, we perform extensive Monte-Carlo experiments wherein we vary the rate of

HF traders’ order cancellation in order to study its impact on asset price dynamics.

Monte-Carlo simulations reveal that the model replicates the main stylized facts of

financial markets (i.e., zero autocorrelation of returns, volatility clustering, fat-tailed

returns distribution) in both scenarios. However, we observe flash crashes together with

high price volatility only when HF agents are present in the market. Moreover, we find

that the emergence of flash crashes is explained by two salient characteristics of HFT,

namely the ability of HF traders (i) to grasp market liquidity leading to high bid-ask

spreads in the LOB; (ii) to synchronize on the sell-side of the limit order book, triggered

by their event-based strategies. Furthermore, we observe that sharp drops in prices

coincide with the contemporaneous concentration of LF traders’ orders on the buy-side

of the book. In addition, we find that the fast recoveries observed after price crashes

result from both a more equal distribution of HF agents on both sides of the book and

a lower persistence of HF agents’ orders in the LOB. Finally, we show that HF agents’

order cancellations have an ambiguous effect on price fluctuations. On the one hand,

trading paradigm. See also Aloud et al (2013) for a modeling attempt in the same direction.
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high rates of order cancellation imply higher volatility and more frequent flash crashes.

On the other hand, they also lead to faster price-recoveries, which reduce the duration

of flash crashes.

Overall, our results validate the hypothesis that HFT exacerbates asset price volatil-

ity, generates flash crashes and periods of market illiquidity (as measured by large bid-

ask spreads). At the same time, consistent with the recent academic and public debates

about HFT, our findings highlight the complex effects of HF traders’ order cancellation

on price dynamics.3

The rest of the paper is organized as follows. Section 2 describes the model. In

Section 3, we present and discuss the simulation results. Finally, Section 4 concludes.

2 The Model

We model a stock market populated by heterogeneous, boundedly-rational traders.

Agents trade an asset for T periods and transactions are executed through a limit-order

book (LOB) where the type, the size and the price of all agents’ orders are stored.4

Agents are classified in two groups according to their trading frequency, i.e., the av-

erage amount of time elapsed between two order placements. More specifically, the

market is populated by NL low-frequency (LF) and NH high-frequency (HF) traders

(N = NL + NH). Note that, even if the number of agents in the two groups is kept

fixed over the simulations, the proportion of low- and high-frequency traders changes

over time as some agents may not be active in each trading session. Moreover, agents in

the two groups are different not only in terms of trading frequencies, but also in terms

of strategies and activation rules. A detailed description of the behavior of LF and HF

traders is provided in Sections 2.2 and 2.3. We first present the timeline of events of a

representative trading session (cf. Section 2.1).

2.1 The Timeline of Events

At the beginning of each trading session t, active LF and HF agents know the past closing

price as well as the past and current fundamental values According to the foregoing

3See Hasbrouck and Saar (2009) for an empirical investigation of the importance of order cancellation
in current financial markets and of its determinants. See, among others, the articles in Economist (2012);
Brundsen (2012); Patterson and Ackerman (2012) for the importance of HFT order cancellation in the
public debate.

4See Maslov (2000); Zovko and Farmer (2002); Farmer et al (2005); Avellaneda and Stoikov (2008);
Pellizzari and Westerhoff (2009); Bartolozzi (2010); Cvitanic and Kirilenko (2010). For a detailed study
of the statistical properties of the limit order book cf. Bouchaud et al (2002); Luckock (2003); Smith
et al (2003).
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information set, in each session t, trading proceeds as follows:

1. Active LF traders submit their buy/sell orders to the LOB market, specifying their

size and limit price.

2. Knowing the orders of LF traders, active HF agents start trading sequentially and

submit their buy/sell orders. The size and the price of their orders are also listed

in the LOB.

3. LF and HF agents’ orders are matched and executed5 according to their price and

then arrival time. Unexecuted orders rest in the LOB for the next trading session.

4. At the end of the trading session, the closing price (P̄t) is determined. The closing

price is the maximum price of all executed transactions in the session.

5. Given P̄t, all agents compute their profits and LF agents update their strategy for

the next trading session (see Section 2.2 below).

2.2 Low-Frequency Traders

In the market, there are i = 1, . . . , NL low-frequency agents who take short or long posi-

tions on the traded asset. The trading frequency of LF agents is based on chronological

time, i.e. it is exogenous and constant over time. In particular, LF agents’ trading speed

is drawn from a truncated exponential distribution with mean θ and bounded between

θmin and θmax minutes.

In line with most heterogeneous-agent models of financial markets, LF agents deter-

mine the quantities bought or sold (i.e., their orders) according to either a fundamentalist

or a chartist (trend-following) strategy.6 More precisely, given the last closing price P̄t−1,

orders under the chartist strategy (Dc
i,t) are determined as follows:

Dc
i,t = αc(P̄t−1 − P̄t−2) + εct , (1)

where 0 < αc < 1 and εct is an i.i.d. Gaussian stochastic variable with zero mean and

σc standard deviation. If a LF agent follows a fundamentalist strategy, her orders (Df
i,t)

are equal to:

Df
i,t = αf (Ft − P̄t−1) + εft , (2)

5The price of an executed contract is the average between the matched bid and ask quotes.
6See, e.g., Chiarella (1992); Lux (1995); Lux and Marchesi (2000); Farmer (2002); Chiarella and He

(2003); Hommes et al (2005); Chiarella et al (2006); Westerhoff (2008).
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where 0 < αf < 1 and εft is an i.i.d. normal random variable with zero mean and

σf standard deviation. The fundamental value of the asset Ft evolves according to a

geometric random walk:

Ft = Ft−1(1 + δ)(1 + yt), (3)

with i.i.d. yt ∼ N(0, σy) and a constant term δ > 0. After γL periods, unexecuted orders

expire, i.e. they are automatically withdrawn from the LOB. Finally, the limit-order

price of each LF trader is determined by:

Pi,t = P̄t−1(1 + δ)(1 + zi,t), (4)

where zi,t measures the number of ticks away from the last closing price P̄t−1 and it is

drawn from a Gaussian distribution with zero mean and σz standard deviation.

In each period, low-frequency traders can switch their strategies according to their

profitability. At the end of each trading session t, once the closing price P̄t is determined,

LF agent i computes her profits (πsti,t) under chartist (st = c) and fundamentalist (st = f)

trading strategies as follows:

πsti,t = (P̄t − Pi,t)D
st
i,t. (5)

Following Brock and Hommes (1998), Westerhoff (2008), and Pellizzari and Westerhoff

(2009), the probability that a LF trader will follow a chartist rule in the next period

(Φc
i,t) is given by:

Φc
i,t =

eπ
c
i,t/ζ

eπ
c
i,t/ζ + eπ

f
i,t/ζ

, (6)

with a positive intensity of switching parameter ζ. Accordingly, the probability that LF

agent i will use a fundamentalist strategy is equal to Φf
i,t = 1 − Φc

i,t.

2.3 High-Frequency Traders

As mentioned above, the market is also populated by j = 1, . . . , NH high-frequency

agents who buy and sell the asset.7

HF agents differ from LF ones not only in terms of trade speed, but also in terms of

activation and trading rules. In particular, contrary to LF strategies, which are based

on chronological time, the algorithmic trading underlying the implementation of HFT

naturally leads HF agents to adopt trading rules framed in event time (see e.g., Easley

7We assume that NH < NL. The proportion of HF agents vis-à-vis LF ones is in line with empirical
evidence (Kirilenko et al, 2011; Paddrik et al, 2011).
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et al, 2012).8 More precisely, we assume that the activation of HF agents depends on

the extent of price fluctuations observed in the market. As a consequence, HF agents’

trading speed is endogenous. Each HF trader has a fixed price threshold ∆xj , drawn from

a uniform distribution with support bounded between ηmin and ηmax. This determines

whether she will participate or not in the trading session t:9∣∣∣∣∣ P̄t−1 − P̄t−2
P̄t−2

∣∣∣∣∣ > ∆xj . (7)

Active HF agents submit buy or sell limit orders with equal probability p = 0.5 (Maslov,

2000; Farmer et al, 2005).

Furthermore, HF traders adopt directional strategies that try to profit from the

anticipation of price movements (see SEC, 2010; Aloud et al, 2011). To do this, HF

agents exploit the price and order information released by LF agents.

First, HF traders determine their buy (sell) order size, Dj,t, according to the volumes

available in the opposite side of the LOB. More specifically, HF traders’ order size is

drawn from a truncated Poisson distribution whose mean depends on volumes available

in the sell(buy)-side of the LOB if the order is a buy (sell) order.10 As HF traders adjust

the volumes of their orders to the ones available in the LOB, they manage to absorb LF

agents’ orders.

Second, in each trading session t, HF agents trade near the best ask (P askt ) and

bid (P bidt ) prices available in the LOB (see e.g., Paddrik et al, 2011). This assumption

is consistent with empirical evidence on HF agents’ behavior which suggest that most

of their orders are placed very close to the last best prices (CFTC and SEC, 2010).

Accordingly, HF buyers and sellers’ limit prices are formed as follows:

Pj,t = P askt (1 + κj) Pj,t = P bidt (1 − κj), (8)

where κj is drawn from a uniform distribution with support (κmin, κmax).

A key characteristic of empirically-observed high-frequency trading is the high order

8On the case for moving away from chronological time in modeling financial series see Mandelbrot
and Taylor (1967); Clark (1973); Ané and Geman (2000).

9See Aloud et al (2013) for a similar attempt in this direction.
10In the computation of this mean, the relevant market volumes are weighted by the parameter 0 <

λ < 1. This link between market volumes and HF traders’ order size is motivated by the empirical
evidence which suggests that HF traders typically submit large orders (Kirilenko et al, 2011). Moreover,
empirical works also indicate that HF traders do not accumulate large net positions. Thus, we introduce
two additional constraints to HF order size. First, HF traders’ net position is bounded between +/-3,000.
Second, HF traders’ buy (sell) orders are smaller than one quarter of the total volume present in the sell
(buy) side of the LOB (see, for instance, Kirilenko et al, 2011; Bartolozzi, 2010; Paddrik et al, 2011).
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cancellation rate (CFTC and SEC, 2010; Kirilenko et al, 2011). We introduce such a

feature in the model by assuming that HF agents’ unexecuted orders are automatically

removed from the LOB after a period of time γH , which is shorter than LF agents’ one,

i.e. γH < γL. Finally, at the end of each trading session, HF traders’ profits (πj,t) are

computed as follows:11

πj,t = (P̄t − Pj,t)Dj,t. (9)

where Dj,t is the HF agent’s order size, Pj,t is her limit price and P̄t is the market closing

price.

3 Simulation Results

We investigate the properties of the model presented in the previous section via extensive

Monte-Carlo simulations. More precisely, we carry out MC = 50 Monte-Carlo iterations,

each one composed of T = 1, 200 trading sessions using the baseline parametrization,

described in Table 4. As a first step in our analysis of simulation results, we check

whether the model is able to account for the main stylized facts of financial markets (see

Section 3.1). We then assess whether the model can generate flash crashes characterized

by empirical properties close to the ones observed in real data (cf. Section 3.2) and

we investigate the determinants of flash crashes (cf. Section 3.3). Finally, we study

post flash-crash recoveries by investigating the consequences of different degrees of HF

traders’ order cancellation on model dynamics (see Section 3.4).

3.1 Stylized Facts of Financial Markets

How does the model fare in terms of its ability to replicate the main statistical properties

of financial markets? First, in line with the empirical evidence of zero autocorrelation

detected in price returns (e.g., Fama, 1970; Pagan, 1996; Chakraborti et al, 2011, and

references therein), we find that model-generated autocorrelation values of price-returns

(calculated as logarithmic differences) do not reveal any significant pattern and are

always not significantly different from zero (see the box-whisker plots in Figure 1).12

Moreover, in contrast to price returns, the autocorrelation functions of both absolute

11Simulation exercises in the baseline scenario reveal that the strategies adopted by HF traders are
able to generate positive profits, thus justifying their adoption by HF agents in the model. In particular,
simulation results reveal that the distribution of HF traders’ profits is skewed to the right and has a
positive mean.

12More precisely, the confidence interval of the values at each lag (measured by the extent of the
whiskers) always includes the zero. Notice that each whiskers’ length in the plot corresponds to 99.3%
data coverage under the assumption that autocorrelation values are drawn from a Normal distribution.
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Figure 1: Box-Whisker plots of price-returns autocorrelations. Each plot relates to auto-correlation
values for a given lag across independent 50 Monte-Carlo runs.
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Figure 2: Sample autocorrelation functions of absolute price returns (solid line) and squared price returns
(dashed line). Values are averages across independent 50 Monte-Carlo runs.
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Table 1: Volatility and flash-crash statistics across different scenarios. Values are averages across 50
independent Monte-Carlo runs. Monte-Carlo standard errors in parentheses.

Scenario σP Number of Avg. duration of

flash crashes flash crashes

Baseline scenario 0.020 8.800 14.069

(0.001) (0.578) (0.430)

Only-LFT scenario 0.005 - -

(0.001) - -

and squared returns display a slow decaying pattern, which is more pronounced in the

case of absolute returns (cf. Figure 2). This indicates the presence of volatility clustering

in our simulated data (Mandelbrot, 1963; Cont et al, 1997; Lo and MacKinlay, 1999).

Note also that such autocorrelation values are very similar to empirically-observed ones

(see, for instance, Cont, 2001).

Another robust statistical property of financial markets is the existence of fat tails in

the distribution of price returns. To investigate the presence of such a property in our

simulated data, we plot in Figure 3 the density of pooled returns across Monte-Carlo

runs (stars) together with a normal density (solid line) fitted on the pooled sample.

As the figure shows quite starkly, the distribution of price returns significantly departs

from the Gaussian benchmark (Mandelbrot, 1963; Cont, 2001). The departure from

normality is particularly evident in the tails (see Figure 4), which are well approximated

by a power-law density (in line with Lux, 2006).

3.2 Stylized Facts of Flash Crashes

Our model appears to be quite successful in replicating the “standard” stylized facts

about financial markets. However, is it able to account for the emergence of flash crashes

(CFTC and SEC, 2010; Kirilenko et al, 2011)? Simulations results provide a positive

answer. In line with the evidence presented in Kirilenko et al (2011) about the flash

crash of May 6th, 2010, we identify flash crashes as drops in the asset price of at least

5% followed by a sudden recovery of 30 minutes at maximum (corresponding to thirty

trading sessions in each simulation run). Applying such a definition, we find that the

model is able to endogenously generate flash crashes and their frequency is significantly

higher than one (see the third column of Table 1).
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Table 2: Correlation values between price returns and different types of orders volumes. Values are
averages across 50 independent Monte-Carlo runs. Monte-Carlo standard errors in parentheses.

Total volume HFT volume LFT volume

Unconditional 0.018 0.012 0.096

(0.007) (0.007) (0.005)

Flash crashes -0.112 -0.113 0.030

(0.028) (0.028) (0.031)

Normal times 0.023 0.016 0.103

(0.006) (0.006) (0.005)

Furthermore, the model is also able to account for another relevant and recent styl-

ized fact observed during flash crashes, namely the negative correlation between price

and volumes (see Kirilenko et al, 2011). To illustrate this, we report in Table 2 un-

conditional correlations between price returns and total volumes as well as correlation

values conditioned on two distinct market phases: “flash crashes” (which includes price

crashes and subsequent recoveries) and “normal times” (where we excluded all observa-

tions regarding flash crashes). Normal times are characterized by a weak but positive

correlation between returns and volumes, which is also reflected in the low value of the

unconditional correlations. In contrast, correlations turns out to be negative and much

more significant during flash crashes. HF traders do appear to be responsible for this

result: HFT volume displays a significant negative correlation with returns during flash

crashes, whereas LFT volumes are always positively correlated with price returns (see

the second and third columns of Table 2).

The above findings suggest a significant role of HF traders during flash crashes.

However, how relevant is high-frequency trading for the emergence of the aforementioned

stylized facts, and more generally of flash crashes? To check this, we carry out a Monte-

Carlo exercise in a scenario wherein only low-frequency traders are present (“only-LFT”

scenario). The comparison between such a scenario and the baseline one reveals that the

main stylized facts observed in financial markets are reproduced also when we remove HF

agents.13 In contrast, when the market is populated only by LF traders, flash crashes do

not emerge (cf. Table 1). Moreover, price returns volatility significantly drops providing

further evidence on the destabilizing role of high-frequency trading.

13The plots and statistics concerning the analysis of stylized facts in the “only-LFT” scenario are
available from the authors upon request.
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Figure 5: Evolution of asset price (solid line) and bid-ask spread (dashed line) in a single Monte-Carlo
run.

To sum up, our results confirm that the model is able to reproduce the main stylized

facts of financial markets. Furthermore, they indicate that the emergence of flash crashes

is strongly related to the presence of HF traders in the market. In the next section, we

further spotlight flash crashes, studying which features of high-frequency trading are

more responsible for their emergence.

3.3 The Anatomy of Flash Crashes

Let us begin considering the evolution of the asset price and bid-ask spread in a single

simulation run (cf. Figure 5). The plot reveals that sharp drops in the asset price tend to

be associated with periods of large bid-ask spreads (see Farmer et al, 2004, for empirical

evidence on the relation between liquidity fluctuations and large price changes). This

piece of evidence suggests that flash crashes emerge when market liquidity is very low.

To shed more light on the relation between flash crashes and market liquidity, we

compute the distributions of bid-ask spreads conditioned on different market phases.

More precisely, we construct the pooled samples (across Monte-Carlo runs) of bid-ask

spread values singling out “normal times” phases (see also Section 3.2) and decomposing

“flash-crash” periods in “crash” phases (i.e. periods of sharp drops in the asset price)

and the subsequent “recovery” phases (periods when the price grows back to its pre-

crisis level). Next, we estimate the complementary cumulative distributions of bid-ask
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Figure 6: Complementary cumulative distributions of bid-ask spreads in different market phases. Pooled
sample from 50 independent Monte-Carlo runs.

spreads in each market phase using a kernel-density estimator. The distributions plotted

in Figure 6 confirm what we have learned from the visual inspection of price and bid-

ask spread dynamics in a single simulation run. Indeed, the mass of the distribution of

bid-ask spreads is significantly shifted to the right during flash crashes vis-à-vis normal

times.

The aforementioned switches between periods of high and low market liquidity (i.e.,

between periods of low and high bid-ask spreads) are explained by the different strategies

employed by high- and low-frequency traders in our model. Active LF traders set their

order prices “around” the closing price of the last trading session. This behavior tends

to fill the gap existing between the best bid and ask prices at the beginning of a given

trading section. Instead, active HF traders send their orders after LF agents and place

large buy (sell) orders just few ticks above (below) the best ask (bid). Such a pricing

behavior widens the difference between bid and ask prices in the LOB. As a consequence,

the directional strategies of HF traders can lead to wide bid-ask spreads, setting the

premises for the emergence of flash crashes. However, large spreads are not enough to

generate significant drops in the closing price if LF and HF agents’ orders are evenly

distributed in the LOB between the buy and sell sides. Accordingly, as the closing price
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is the maximum price of all executed transactions in the book, an even distribution of

orders should lead to small fluctuations in the closing price. In contrast, extreme price

fluctuations require concentration of orders on one side of the book.

To further explore such conjecture, we analyze the distributions of shares of sell

order volumes in the book made by each type of agent (HF or LF traders) over the total

volume within the same category. This ratio captures the concentration of the orders

on the sell side of the LOB disaggregated for agents’ type. In particular, the more the

sell concentration ratio is close to one, the more a given category of agents (e.g., HF

traders) is filling the LOB with sell orders. Figures 7 and 8 compare kernel densities of

the foregoing sell concentration ratios for HF and LF agents in normal times and crashes,

respectively. Let us start examining the latter. First, Figure 8 shows that during crashes

the supports of the LF and HF traders’ distributions do not overlap. This hints to a

very different behavior of LF and HF agents during flash crashes. Second, during crash

times, LF and HF traders’ orders are concentrated on opposite sides of the LOB. More

specifically, the mass of the distribution of LF agents’ orders is concentrated on the buy

side of the book, whereas the mass of the HF traders’ distribution is found on very high

values of the sell concentration ratio (see Figure 8). These extreme behaviors are not

observed during normal times (cf. Figure 7). Indeed, in tranquil market phases, the

supports of the LFT and HFT densities overlap and they encompass the whole support

of the sell concentration statistic.

We further study the above differences in order behavior, analyzing the complemen-

tary cumulative distributions of the sell concentration statistic for the same type of

agent and across different market phases (cf. Figures 9 and 10). The complementary

cumulative distributions confirm that flash crashes are generated by the concentration

of HF and LF orders on opposite sides of the LOB. Indeed, during flash crashes, the

distribution of HF orders significantly shifts to the sell side of LOB, whereas the one of

LF orders moves to the left, revealing a strong concentration on buy orders.

The above discussion shows that flash crashes are a true emergent property of the

model generated by the joint occurrence of three distinct events: i) the presence of a

large bid-ask spread; ii) a strong concentration of HF traders’ orders on the sell side of

the LOB; iii) a strong concentration of LF traders’ orders on the buy side of the LOB.

In particular, the first two elements are in line with the empirical evidence about the

market dynamics observed during the flash crash of May 6th, 2010 (CFTC and SEC,

2010; Kirilenko et al, 2011) and confirm the key role played by high-frequency trading in

generating such extreme events in financial markets. Indeed, the emergence of periods

of high market illiquidity is intimately related to the pricing strategies of HF traders
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Figure 9: Complementary cumulative distribution of shares of sell order volume over total orders volume
of the same agent type for different market phases. HFT orders.
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(see Eq. 8). Moreover, and in line with previous agent-based models in the literature

(e.g., Brock and Hommes, 1998; Westerhoff, 2008; Pellizzari and Westerhoff, 2009), the

synchronization of LF traders on the buy side of the LOB can be explained on the

grounds of profitability-based switching behavior by such type of agents (see Section

2.2).

The concentration of HF traders’ orders on the sell side of the book is at first glance

more puzzling, given that the choice of each HF agent between selling or buying is a

Bernoulli distributed variable with probability p = 0.5. However, the spontaneous syn-

chronization of orders becomes possible once we consider that HF agents adopt event-

time trading strategies, which lead to the emergence of price-dependent activation pro-

cesses (cf. Eq. 7). Indeed, the fact that the type of order choice is Bernoulli-distributed

implies that the total number of sell orders placed by active HF traders in any given

session is a binomially-distributed random variable dependent on the number of active

HF agents. More precisely, let n be the number of active HF traders at time t, the

probability that a fraction k of these agents place a sell order is:(
n

nk

)
pnk(1 − p)n(1−k),

and it is inversely related to n. Hence, the endogenous activation of HF traders coupled

with heterogeneous price activation thresholds can considerably shrink the sample of

active HF agents in a trading session. The smaller sample size increases the probability

of observing a concentration of HF agents’ orders on the sell side of the LOB which can

be conducive to the emergence of a flash crash.

3.4 Accounting for Post-Crash Recoveries

A hallmark of flash crash episodes is the fast recoveries that follow the initial huge

price drop. Which factors are responsible for such rapid switches in price dynamics?

Figures 6 and 9 provide insightful information on the characteristics of the post flash-

crash recoveries. First, the distribution of the bid-ask spreads in a recovery is not

statistically different from the one observed in normal times (see Figure 6). This shows

that high spreads are not persistent and the market is able to quickly restore good

liquidity conditions after a crash. Moreover, the high concentration of HF traders on

the sell side of the book disappears after the crash (cf. Figure 9). Indeed, the distribution

of the concentration ratios during recoveries is not different from the one observed in

normal times.

Two particular features of the model explain the characteristics of the recovery phases

18



Table 3: HF traders’ order cancellation rates, price volatility and flash crash statistics. Values are
averages across 50 independent Monte-Carlo runs. Monte-Carlo standard errors in parentheses.

γH σP Number of Avg. duration of

flash crashes flash crashes

1 0.020 8.800 14.069

(0.001) (0.578) (0.430)

5 0.013 3.095 17.376

(0.001) (0.231) (0.729)

10 0.010 2.138 20.076

(0.001) (0.155) (0.809)

15 0.009 1.667 18.952

(0.001) (0.137) (1.091)

20 0.007 1.000 24.000

(0.001) (0.001) (1.259)

depicted above. The first is the surge in the order volumes of HF agents in the aftermath

of a crash. Wide variations in the asset prices indeed trigger the activation of a large

number of high-frequency traders. Accordingly, their orders will tend to be equally split

between the sell and buy sides of the LOB (see the discussion in Section 3.3 above), as

it is also shown by the leftward shift of the distribution of the sell concentration ratio

during recoveries (cf. Figure 9). This fast increase of the order volumes of HF agents

contributes to explain the quick recovery of the closing price, as now more and more

contracts will be executed at prices close to both the best bid and ask. The second

element supporting the rapid price recovery is the order-cancellation rate of HF traders.

In line with empirical evidence (see e.g., Hasbrouck and Saar, 2009), order cancellation

of HF agents is very high in the baseline scenario, as all unexecuted orders are withdrawn

at the end of each trading session (see also Table 4). Such “extreme” order-cancellation

behavior of HF traders implies that their bid and ask quotes always reflect current market

conditions (we call it order-memory effect, which in this case is low). This explains the

low time persistence of high bid-ask spreads after a crash and contributes to the quick

recovery of market liquidity and price.

The foregoing considerations point to a positive role played by fast HF traders’ order

cancellation in restoring good market conditions thus explaining the low duration of

flash crashes. However, high order cancellation rates also indicate high aggressiveness of
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HF traders in exploiting the orders placed by LF agents in the LOB (we call it liquidity-

fishing effect). This favors the emergence of high bid-ask spreads in the market thus

increasing the probability of observing a large fall in the asset price.

To further explore the role of HF traders’ order cancellation on price fluctuations, we

perform a Monte-Carlo experiment where we vary the number of periods an unexecuted

HFT order stays in the book (measured by the parameter γH), while keeping all the

other parameters at their baseline values. The results of this experiment are reported in

Table 3. We find that a reduction in the order cancellation rate (higher γH , see Table

3) decreases market volatility and the number of flash-crash episodes.14 This outcome

stems from the lower aggressiveness of HF traders’ strategies as order cancellation rates

decrease, i.e. the liquidity-fishing effect becomes weaker. In contrast, the duration of

flash crashes is inversely related to the order cancellation rate (cf. fourth column of

Table 3). This outcome can be explained by the order-memory effect. As γH increases,

the bid and ask quotes posted by HF agents stay longer in the LOB thus raising the

number of contracts traded at prices close to the crash one. In turn, this hinders the

recovery of the market price.

4 Concluding Remarks

We developed an agent-based model of a limit-order book (LOB) market to study how

the interplay between low- and high-frequency traders shapes asset price dynamics and

eventually leads to flash crashes. In the model, low-frequency traders can switch between

fundamentalist and chartist strategies. High-frequency (HF) traders employ directional

strategies to exploit the order book information released by low-frequency (LF) agents.

In addition, LF trading rules are based on chronological time, whereas HF ones are

framed in event time, i.e. the activation of HF traders endogenously depends on past

price fluctuations.

We showed that the model is able to replicate the main stylized facts of financial

markets. Moreover, the presence of HF traders generates periods of high market volatil-

ity and sharp price drops with statistical properties akin to the ones observed in the

empirical literature. In particular, the emergence of flash crashes is explained by the

interplay of three factors: i) HF traders causing periods of high illiquidity represented

by large bid-ask spreads; ii) the synchronization of HF traders’ orders on the sell-side of

the LOB; iii) the concentration of LF traders on the buy side of the book.

14We also carried out simulations for γH > 20. The above patterns are confirmed. Interestingly, flash
crashes completely disappear when the order cancellation rate is very low.

20



Finally, we have investigated the recovery phases that follow price-crash events, find-

ing that HF traders’ order cancellations play a key role in shaping asset price volatility

and the frequency as well as the duration of flash crashes. Indeed, higher order can-

cellation rates imply higher market volatility and a higher occurrence of flash crashes.

However, we establish that they speed up the recovery of market price after a crash.

Our results suggest that order cancellation strategies of HF traders cast more complex

effects than thought so far, and that regulatory policies aimed at curbing such practices

(e.g., the imposition of cancellation fees, see also Ait-Sahalia and Saglam, 2013) should

take such effects into account.

Our model could be extended in at least three ways. First, we have made several

departures from the zero-intelligence framework, which has been so far the standard

in agent-based models of HFT. However, one can play with agents’ strategic repertoires

even further. For example, one could allow HF traders to switch between sets of different

strategies with increasing degrees of sophistication. Second, we have considered only one

asset market in the model. However, taking into account more than one market would

allow one to consider other relevant aspects of HFT and flash crashes such as the possible

emergence of systemic crashes triggered by sudden and huge price drops in one market

(see CFTC and SEC, 2010). In addition, another salient feature of HF traders is the

ability to rapidly process and profit from the information coming from different markets

i.e., latency arbitrage strategies (e.g., Wah and Wellman, 2013). Third, and finally,

one could employ the model as a test-bed for a number of policy interventions directed

to affect high-frequency trading and therefore mitigating the effects of flash crashes.

Besides the aforementioned example of order cancellation fees, the possible policy list

could include measures such as the provision of different types of trading halt facilities

and the introduction of a tax on high-frequency transactions.
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Table 4: Parameters values in the baseline scenario

Description Symbol Value

Monte Carlo replications MC 50

Number of trading sessions T 1, 200

Number of low-frequency traders NL 10, 000

Number of high-frequency traders NH 100

LF traders’ trading frequency mean θ 20

LF traders’ min and max trading frequency [θmin, θmax] [10,40]

Chartists’ order size parameter αc 0.04

Chartists’ shock standard deviation σc 0.05

Fundamentalists’ order size parameter αf 0.04

Fundamentalists’ shock standard deviation σf 0.01

Fundamental value shock standard deviation σy 0.01

Price drift parameter δ 0.0001

LF traders’ price tick standard deviation σz 0.01

LF traders’ intensity of switching ζ 1

LF traders’ resting order periods γL 20

HF traders’ resting order periods γH 1

HF traders’ activation threshold distribution support [ηmin, ηmax] [0,0.2]

Market volumes weight in HF traders’ order λ 0.625

size distribution

HF traders’ order price distribution support [κmin, κmax] [0,0.01]
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Easley D, López de Prado M, O’Hara M (2012) The volume clock: Insights into the high frequency
paradigm. Journal of Portfolio Management 39(1):19–29

Economist T (2012) The fast and the furious. The Economist, february 25th, 2012

Fama E (1970) Efficient capital markets: A review of theory and empirical work. Journal of Finance
25(2):383–417

Farmer JD (2002) Market force, ecology and evolution. Industrial and Corporate Change 11(5):895–953

Farmer JD, Gillemot L, Lillo F, Szabolcs M, Sen A (2004) What really causes large price changes?
Quantitative Finance 4(4):383–397

Farmer JD, Patelli P, Zovko II (2005) The predictive power of zero intelligence in financial markets.
PNAS 102(6)

Hanson TA (2011) The effects of high frequency traders in a simulated market. Available at SSRN
1918570

Hasbrouck J, Saar G (2009) Technology and liquidity provision: The blurring of traditional definitions.
J Finan Mark 12(2):143–172

Hommes C, Huang H, Wang D (2005) A robust rational route to randomness in a simple asset pricing
model. Journal of Economic Dynamics and Control 29(6):1043–1072

Kirilenko A, Kyle A, Samadi M, Tuzun T (2011) The flash crash: The impact of high frequency trading
on an electronic market. Available at SSRN 1686004

Lo AW, MacKinlay AC (1999) A Non-Random Walk Down Wall Street. Princeton University Press

Luckock H (2003) A steady-state model of the continuous double auction. Quantitative Finance 3(5):385–
404

Lux T (1995) Herd behaviour, bubbles and crashes. Economic Journal 105(431):881–896

Lux T (2006) Financial power laws: Empirical evidence, models, and mechanism. Economics Working
Papers 2006,12, Christian-Albrechts-University of Kiel, Department of Economics

Lux T, Marchesi M (2000) Volatility clustering in financial markets: A microsimulation of interacting
agents. International Journal of Theoretical and Applied Finance 3(4):675–702

Mandelbrot B (1963) The variation of certain speculative prices. Journal of Business 36(4):394–419

Mandelbrot B, Taylor M (1967) On the distribution of stock price differences. Operations Research
15:1057–162

Maslov S (2000) Simple model of a limit order-driven market. Physica A: Statistical Mechanics and its
Applications 278(3):571–578

Menkveld AJ (2013) High frequency trading and the new-market makers. Quarterly Journal of Economics
128(1):249–85

Paddrik ME, Hayes RL, Todd A, Yang SY, Scherer W, Beling P (2011) An agent based model of the
e-mini s&p 500 and the flash crash. Available at SSRN 1932152

Pagan A (1996) The econometrics of financial markets. Journal of Empirical Finance 3(1):15–102

24



Patterson S, Ackerman A (2012) Sec may ticket speeding traders. Wall Street Journal, february 23rd,
2012

Pellizzari P, Westerhoff F (2009) Some effects of transaction taxes under different microstructures. Jour-
nal of Economic Behavior and Organization 72(3):850–863

SEC (2010) Concept release on equity market structure. Release No. 34-61358, january 14, 2010. Avail-
able at: http://www.sec.gov/rules/concept/2010/34-61358.pdf

Slanina F (2008) Critical comparison of several order-book models for stock-market fluctuations. Euro-
pean Physical Journal B: Condensed Matter Physics 61(2):225–240

Smith E, Farmer JD, Gillemot Ls, Krishnamurthy S (2003) Statistical theory of the continuous double
auction. Quantitative Finance 3(6):481–514

Sornette D, Von der Becke S (2011) Crashes and high frequency trading. Swiss Finance Institute Research
Paper (11-63)

Wah E, Wellman MP (2013) Latency arbitrage, market fragmentation, and efficiency: a two-market
model. In: Proceedings of the fourteenth ACM conference on Electronic commerce, ACM, pp 855–872

Westerhoff FH (2008) The use of agent-based financial market models to test the effectiveness of regu-
latory policies. Jahr Nationaloekon Statist 228(2):195

Zhang F (2010) High-frequency trading, stock volatility, and price discovery. Available at SSRN 1691679

Zovko I, Farmer JD (2002) The power of patience: a behavioural regularity in limit-order placement.
Quantitative Finance 2(5):387–392

25


	Rock_around_the_clock_WP.pdf
	Introduction
	The Model
	The Timeline of Events
	Low-Frequency Traders
	High-Frequency Traders

	Simulation Results
	Stylized Facts of Financial Markets
	Stylized Facts of Flash Crashes
	The Anatomy of Flash Crashes
	Accounting for Post-Crash Recoveries

	Concluding Remarks


