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), with fixed effects integrated out using a new data-independent prior. It appears that ρ and β are identified as the unique point where the large N adjusted profile likelihood reaches a local maximum (or a flat inflection point, as a limiting case) inside or on an ellipsoid centered at the maximum likelihood estimator. We prove this when p = 1 and report numerical calculations that support it when p > 1. The global maximum of the adjusted profile likelihood lies at infinity for any N .

Introduction

Maximum likelihood estimates of dynamic linear fixed effect models from short panels are known to be severely biased and inconsistent because of the incidental parameter problem first described by [START_REF] Neyman | Consistent estimates based on partially consistent observations[END_REF]; see [START_REF] Nerlove | Experimental evidence on the estimation of dynamic economic relations from a time series of cross-sections[END_REF][START_REF] Nerlove | Further evidence on the estimation of dynamic economic relations from a time series of cross-sections[END_REF] and [START_REF] Nickell | Biases in dynamic models with fixed effects[END_REF], for example. The failure of maximum likelihood has shifted interest towards GMM-based estimation in these models. An overview and discussion is provided by Arellano (2003, Chapter 6).

In an interesting paper, [START_REF] Lancaster | Orthogonal parameters and panel data[END_REF] argued for a return to likelihood-based inference and suggested a Bayesian resolution of the incidental parameter problem in the non-stationary AR(1) model. 1 The fixed effects are first orthogonalized (in the information sense) to the AR(1) model without covariates, [START_REF] Moreira | A maximum likelihood method for the incidental parameter problem[END_REF] maximal invariant likelihood differs from the adjusted profile likelihood.

Perhaps our main (and unexpected) finding is that one should look for a local maximizer of the adjusted likelihood/marginal posterior because the global maximum is reached at infinity. The reason for this is that the profile log-likelihood is log-quadratic in the parameters while the adjustment term is a polynomial, with positive coefficients, in the autoregressive parameters. Thus, for large enough autoregressive parameter values, the adjustment term dominates, and the adjusted profile log-likelihood must be re-increasing. This finding complements observations by [START_REF] Lancaster | Orthogonal parameters and panel data[END_REF], who noticed in Monte Carlo experiments that his marginal posterior was sometimes re-increasing. This phenomenon is not just a small sample problem or an artifact of an unbounded parameter space. The adjusted likelihood/marginal posterior has its global maximum at infinity for any sample size, and it may already be re-increasing in the stationary parameter region and reach its maximum at the boundary. Consequently, identification is not achieved by global maximization, and estimation based solely on the first order condition is incomplete.

To examine identification, we profile out the covariate slopes, which are unique given the autoregressive parameters, so the analysis reduces to that of the model without covariates.

In the AR(1) model, we show that the autoregressive parameter is identified as the unique local maximizer-or flat inflection point, as a limiting case-of the (large sample) adjusted profile likelihood in the interval where the unadjusted profile score is downward sloping. The (large sample) maximum likelihood estimate is the midpoint of this interval. Identification as a flat inflection point is an instance of first order lack of identification, in [START_REF] Sargan | Identification and lack of identification[END_REF] terminology. The leading case of interest is a unit root without deterministic trends, which is identified as a flat inflection point regardless of the number of time periods, in line with the rank deficiency of the expected Jacobian associated with the moment conditions of [START_REF] Ahn | Efficient estimation of models for dynamic panel data[END_REF]; see [START_REF] Alvarez | Robust likelihood estimation of dynamic panel data models[END_REF]. For the unit root case the flat inflection point property has been noted independently by [START_REF] Ahn | Likelihood based inference for dynamic panel data models[END_REF].

Identification in the AR(p) model via the adjusted likelihood is a harder problem. It appears that the autoregressive parameter vector is identified as the unique local maximizer or flat inflection point of the adjusted profile likelihood on a region bounded by a well-identified ellipsoid that is centered at the maximum likelihood estimate. We have no proof of this conjecture, but we report numerical calculations that support it.

The model parameters can be estimated by the local maximizer of the adjusted likelihood over a plug-in estimate of the ellipsoid (or, when no local maximizer exists, by the minimizer of the norm of the adjusted profile score). When the parameters are identifed as local maximizers, the estimator converges at the parametric rate, and its limit distribution is normal and correctly centered.

[3]

In Section 1, we present the model and derive the bias of the profile score. The adjusted likelihood is given in Section 2, where we also connect with [START_REF] Lancaster | Orthogonal parameters and panel data[END_REF], [START_REF] Arellano | Robust priors in nonlinear panel data models[END_REF], and [START_REF] Bun | Bias-corrected estimation in dynamic panel data models[END_REF]. Global properties of the adjusted likelihood are discussed in Section 3. In Section 4, we define the adjusted likelihood estimator and derive its main asymptotic properties. Section 5 discusses some simulation results. Technical proofs are collected in an appendix.

1 Bias of the profile score 1.1 Model and profile likelihood Suppose we observe a scalar variable y, the first p ≥ 1 lags of y, and a q-vector of covariates x (which may include lags), for N units i and T periods t. Assume that y it is generated by

y it = y ′ it-ρ + x ′ it β + α i + ε it , i = 1, ..., N ; t = 1, ..., T, (1.1) 
where y it-= (y it-1 , ..., y it-p ) ′ and the ε it are identically distributed with mean 0 and variance σ 2 and are independent across i and t and also of x i ′ t ′ for all i ′ and t ′ . Let y 0 i = (y i(1-p) , ..., y i0 ) ′ , X i = (x i1 , ..., x iT ) ′ , and ε i = (ε i1 , ..., ε iT ) ′ . We make no assumptions about how (y 0 i , α i , X i ), i = 1, ..., N , are generated, except for the assumption that the covariates are not linearly dependent. The unknown parameters are θ = (ρ ′ , β ′ ) ′ , σ 2 , and α 1 , ..., α N . Let θ 0 and σ 2 0 be the true values of θ and σ 2 . Our interest lies in consistently estimating θ 0 under large N and fixed T asymptotics. We do not impose the stationarity condition on ρ 0 , i.e., we allow any ρ 0 ∈ R p .

Let

z it = (y ′ it-, x ′ it ) ′ , Y i-= (y i1-, ..., y iT -) ′ , Z i = (Y i-, X i )
, and y i = (y i1 , ..., y iT ) ′ , so that M y i = M Z i θ + M ε i where M = I T -T -1 ιι ′ and ι is a conformable vector of ones. We assume that N -1 N i=1 Z ′ i M Z i and its probability limit as N → ∞ are nonsingular. The Gaussian quasilog-likelihood, conditional on y 0 1 , ..., y 0 N and normalized by the number of observations, is given by

- 1 2N T N i=1 T t=1 log σ 2 + 1 σ 2 (y it -z ′ it θ -α i ) 2 + c,
where, here and later, c is a non-essential constant. Replacing the nuisance parameters α 1 , ..., α N and σ 2 with their MLE for given θ gives the (normalized) profile log-likelihood,

l(θ) = - 1 2 log 1 N N i=1 (y i -Z i θ) ′ M (y i -Z i θ) + c. [4]
The profile score, s(θ) = ∇ θ l(θ), has elements

s ρ j (θ) = N i=1 (y i -Z i θ) ′ M y i,-j N i=1 (y i -Z i θ) ′ M (y i -Z i θ) , j = 1, ..., p, s β j (θ) = N i=1 (y i -Z i θ) ′ M x i,j N i=1 (y i -Z i θ) ′ M (y i -Z i θ) , j = 1, ..., q,
where y i,-j is the jth column of Y i-and x i,j is the jth column of X i .

Bias of the profile score

It is well known that the profile score is asymptotically biased, that is,

plim N →∞ s(θ 0 ) = 0,
where, here and later, probability limits and expectations are taken conditionally, given (y 0 i , α i , X i ), i = 1, ..., N . Hence, θ 0 = arg max θ plim N →∞ l(θ) and the MLE, solving s(θ) = 0, is inconsistent.

The following calculation yields the bias of the profile score, either asymptotically or, when ε it ∼ N (0, σ 2 ), for fixed N . Rewrite (1.1) as

Dy i = Cy 0 i + X i β + ια i + ε i , i = 1, ..., N,
where D = D(ρ) and C = C(ρ) are the T × T and T × p matrices 

D =              1 0 • •
• • • 0 -ρ p • • • -ρ 1 1              , C =                ρ p • •
0 • • • • • • 0 ρ p 0 • • • • • • • • • 0 . . . . . . . . . . . . . . . 0 • • • • • • • • • 0                . Then y 0 i y i = ξ i + F ε i , ξ i = y 0 i D -1 (Cy 0 i + X i β + ια i ) , F = 0 D -1 ,
and y i,-j = S j (ξ i + F ε i ), where S j = (0 T ×(p-j) : I T : 0 T ×j ), a selection matrix. Therefore,

plim N →∞ s ρ j (θ 0 ) = plim N →∞ N -1 N i=1 ε ′ i M S j (ξ 0i + F 0 ε i ) plim N →∞ N -1 N i=1 ε ′ i M ε i = E(ε ′ i M S j F 0 ε i ) E(ε ′ i M ε i ) = trM S j F 0 T -1 , plim N →∞ s β j (θ 0 ) = 0, [5]
where ξ 0i and F 0 are ξ i and F , evaluated at θ 0 . If, in addition, ε it ∼ N (0, σ 2 ), then

E[s ρ j (θ 0 )] = E N i=1 ε ′ i M S j (ξ 0i + F 0 ε i ) N i=1 ε ′ i M ε i = E N i=1 ε ′ i M S j F 0 M ε i N i=1 ε ′ i M ε i = E(ε ′ i M S j F 0 M ε i ) E(ε ′ i M ε i ) = trM S j F 0 T -1 , (1.2) E[s β j (θ 0 )] = 0,
by well-known properties of the normal distribution and the following geometric argument, which goes back to [START_REF] Fisher | The moments of the distribution for normal samples of measures of departure from normality[END_REF] and [START_REF] Geary | A general expression for the moments of certain symmetrical functions of normal samples[END_REF]. Let v ∼ N (0, σ 2 I g ) and let Q be a g × h matrix such that Q ′ Q = I h , so QQ ′ is idempotent. Write I g -QQ ′ as P P ′ , where

P ′ P = I g-h . Transform v into m = P ′ v, the radius r = (v ′ QQ ′ v) 1/2
, and the h -1 polar angles a of Q ′ v. Then the elements of (m ′ , r, a ′ ) ′ are independent. Therefore, for any g

× g matrix W , if A = v ′ QQ ′ W QQ ′ v and B = v ′ QQ ′ v,
then the ratio A/B depends on v only through a and hence is independent of B, which implies that

E(A) = E(A/B)E(B) and E(A/B) = E(A)/E(B). 3
The transition to (1.2) now follows from applying this property to the ratio Then plim N →∞ s(θ 0 ) = b(ρ 0 ); if, in addition, ε it ∼ N (0, σ 2 0 ), then E[s(θ 0 )] = b(ρ 0 ). Two remarks are worth making. First, the bias of the profile score, b(ρ 0 ), depends only on ρ 0 and T . It is independent of the initial observations, the fixed effects, and the covariates (recall that the expectations are conditioning on these). This is in sharp contrast with the bias of the ML (the within-group) estimator, which was first derived by [START_REF] Nickell | Biases in dynamic models with fixed effects[END_REF] for the first order autoregressive model under the assumption of stationarity of the initial observations. The bias of the MLE depends on the initial observations, the fixed effects, and the covariate values; it is smaller when the initial observations are more outlying relative to the stationary distributions. Second, the Nickell bias concerns a probability limit as N → ∞ whereas here, when the errors are normal, E[s(θ 0 )] = b(ρ 0 ) is a finite sample result holding for fixed N and T and may therefore be of independent interest in a time series setting.

N i=1 ε ′ i M S j F 0 M ε i N i=1 ε ′ i M ε i = ε ′ (I N ⊗ M )(I N ⊗ S j F 0 )(I N ⊗ M )ε ε ′ (I N ⊗ M )ε with v = ε = (ε ′ 1 , ..., ε ′ N ) ′ , QQ ′ = I N ⊗ M ,
For k = (k 1 , ..., k p ) ′ ∈ N p , let ρ k = p j=1 ρ k j j , and let τ = (1, ..., p) ′ . It is shown in the Appendix that

D -1 =      1 0 • • • 0 ϕ 1 . . . . . . . . . . . . . . . . . . 0 ϕ T -1 • • • ϕ 1 1      , ϕ t = τ ′ k=t (ι ′ k)! k 1 ! • • • k p ! ρ k , (1.3)
where the summation is over all k ∈ N p satisfying τ ′ k = t. Therefore, since

S j F = 0 0 D -1 j 0 where D -1 j is the leading (T -j) × (T -j) block of D -1 , we obtain b j (ρ) = - ι ′ D -1 j ι T (T -1) = - T -j-1 t=0 T -j -t T (T -1) ϕ t , j = 1, ..., p,
where ϕ 0 = 1. Hence, for j = 1, ..., p, b j (ρ) is a multivariate polynomial of degree Tj -1 in ρ 1 , ..., ρ p with non-positive coefficients.

2 Adjusted profile likelihood 2.1 Centered profile score and adjusted profile likelihood By construction, the centered (or adjusted) profile score,

s A (θ) = s(θ) -b(ρ),
is asymptotically unbiased, i.e., plim N →∞ s A (θ 0 ) = 0. In the Appendix, we show that the differential equation ∇ θ a(ρ) = b(ρ) has a solution which, up to an arbitrary constant of integration, is

a(ρ) = S∈S a S (ρ), a S (ρ) = - T -1 t=|S| T -t T (T -1) k∈K S :τ ′ k=t (ι ′ k -1)! k 1 ! • • • k p ! ρ k S S , (2.1)
where S is the collection of the non-empty subsets of {1, ..., p}; |S| is the sum of the elements of S; K S = {k ∈ N p |k j > 0 iff j ∈ S}; and ρ S = (ρ j ) j∈S and k S = (k j ) j∈S are subvectors of ρ and k determined by S.

We call the function l A (θ) = l(θ)a(ρ), [7] which has derivative ∇ θ l A (θ) = s A (θ), an adjusted profile log-likelihood. Every subvector ρ S of ρ contributes to l A (θ) an adjustment term, -a S (ρ), which takes the form of a multivariate polynomial in ρ j , j ∈ S, with positive coefficients that are independent of p. 

(ρ) = - T -1 t=1 T -t T (T -1) ρ t-1 , a(ρ) = - T -1 t=1 T -t T (T -1)t ρ t .
With independent uniform priors on the reparameterized effects η i = α i e -(T -1)a(ρ) and on θ and log σ 2 , Lancaster's posterior density for ϑ 2l(θ) . Integrating over σ 2 gives f (θ|data) ∝ e -N (T -1)a(ρ) (Q 2 (θ)) -N (T -1)/2 and, hence,

= (θ ′ , σ 2 ) ′ is f (ϑ|data) ∝ σ -N (T -1)-2 exp -N (T -1)a(ρ) -Q 2 (θ)σ -2 /2 , where Q 2 (θ) = N i=1 (y i -Z i θ) ′ M (y i -Z i θ) ∝ e -
f (θ|data) ∝ e N (T -1)l A (θ) .
(2.2) Thus, the posterior density and the adjusted likelihood for θ are equivalent as a basis for inference. More generally, for any p and q, independent uniform priors on η 1 , ..., η N , θ, log σ 2 , with η i = α i e -(T -1)a(ρ) and a(ρ) as in (2.1), yield a posterior f (θ|data) that is related to l A (θ) as in (2.2).

Lancaster's choice of independent uniform priors on η i has its foundation in the AR(1) model without covariates, where η i is information orthogonal to ϑ and the posterior density (hence also e l A (θ) ) has an interpretation as a [START_REF] Cox | Parameter orthogonality and approximate conditional inference[END_REF] approximate conditional likelihood (see also Arellano, 2003, pp. 103-106). Information orthogonalization to a multidimensional parameter is generally not possible (see, e.g., Severini, 2000, pp. 340-342). Here, orthogonalization is not possible when the AR(1) model is augmented with covariates, as shown by Lancaster, or when the autoregressive order, p, is greater than one, as shown in the Appendix. From a bias correction perspective, however, information orthogonality is sufficient but not necessary. For any p and q, s A (θ) = 0 is an unbiased estimating equation, and the bias calculation underlying it is immune to the non-existence of orthogonalized fixed effects. [START_REF] Arellano | Robust priors in nonlinear panel data models[END_REF] approach shares the integration step with [START_REF] Lancaster | Orthogonal parameters and panel data[END_REF] but allows non-uniform priors on fixed effects or, equivalently, non-orthogonalized fixed effects. Of interest are bias-reducing priors, i.e., weighting schemes that deliver an integrated likelihood whose score equation has bias o(T -1 ) as opposed to the standard O(T -1 ). The linear dynamic model (with general p, q) illustrates an interesting result of Arellano and Bonhomme that generalizes the scope of uniform integration to situations where orthogonalization is impossible. For a given prior π i (α i |ϑ), the (normalized) log integrated likelihood is ρ) is a data-independent bias-reducing (in fact, bias-eliminating) prior in the sense of Arellano and Bonhomme. 6 Now, π i (α i |ϑ) ∝ e -(T -1)a(ρ) is equivalent to π i (η i |ϑ) ∝ 1, i.e., to a uniform prior on η i = α i e -(T -1)a(ρ) , leading to the same l I (ϑ). Arellano and Bonhomme (2009, Eq. (11)) give a necessary and sufficient condition for a uniform prior to be bias-reducing.

l I (ϑ) = 1 N T N i=1 log σ -T /2 exp - 1 2σ 2 T t=1 (y it -z ′ it θ -α i ) 2 π i (α i |ϑ) dα i + c. Choosing π i (α i |ϑ) ∝ e -(T -1)a(ρ) yields l I (ϑ) = - T -1 2T log σ 2 - T -1 T a(ρ) - Q 2 (θ) 2N T σ 2 + c. Profiling out σ 2 gives σ 2 (θ) = arg max σ 2 l I (ϑ) = Q 2 (θ)/(N (T -1)) and l I (θ) = max σ 2 l I (ϑ) = T -1 T l A (θ) + c, so l I (θ) and l A (θ) are equivalent. Because a(ρ) does not depend on true parameter values, π i (α i |ϑ) ∝ e -(T -1)a(
With ℓ i (ϑ, η i ) denoting i's log-likelihood contribution in a parametrization η i , the condition is that

plim N →∞ 1 N N i=1 ∇ η i (A -1 i B i ) = o(1) as T → ∞, (2.3) 
where

A i = A i (ϑ, η i ) = -E ϑ,η i ∇ η i η i ℓ i (ϑ, η i ), B i = B i (ϑ, η i ) = E ϑ,η i ∇ ϑη i ℓ i (ϑ, η i ), and ∇ η i (A -1 i B i
) is evaluated at the true parameter values. When η i and ϑ are information orthogonal, B i = 0 and (2.3) holds. However, condition (2.3) is considerably weaker than parameter orthogonality. In the present model, when p > 1 or q > 0, and thus no orthogonalization is possible, it follows from our analysis and Arellano and Bonhomme ( 2009) that (2.3) must hold for η i = α i e -(T -1)a(ρ) . Indeed, as we show in the Appendix,

∇ η i (A -1 i B i ) = 0 (2.4)
6 Our focus is on estimating θ 0 but, noting the degrees-of-freedom correction in σ 2 (θ), the estimating equation derived from l I (ϑ) is also unbiased for σ 2 0 .

[9]

because A -1 i B i is free of η i . Finally, the centered profile score relates directly to [START_REF] Bun | Bias-corrected estimation in dynamic panel data models[END_REF]

. Observe that s(θ) = N i=1 Z ′ i M (y i -Z i θ)/Q 2 (θ). Further, M y i = M Z i θ + M ε i where θ is the within-group estimator, with residuals ε i satisfying N i=1 Z ′ i M ε i = 0. Therefore, solving s A (θ) = 0 is equivalent to solving θ -θ = N i=1 Z ′ i M Z i -1 b(ρ)Q 2 (θ).
(2.5)

In the AR(1) model, (2.5) corresponds to [START_REF] Bun | Bias-corrected estimation in dynamic panel data models[END_REF] proposal for bias-correcting the within-group estimator.

3 Global properties of the adjusted profile likelihood when N is large

At this point it is tempting to anticipate that θ 0 maximizes plim N →∞ l A (θ). However, as the following analysis shows, -a(ρ) dominates plim N →∞ l(θ) as ρ → ∞ in almost all directions and, as a result, plim

N →∞ l A (θ) is unbounded from above. Let h(θ) = ∇ θ ′ s(θ), c(ρ) = ∇ θ ′ b(ρ), and 
L A (θ) = L(θ) -a(ρ), L(θ) = plim N →∞ l(θ), S A (θ) = S(θ) -b(ρ), S(θ) = plim N →∞ s(θ), H A (θ) = H(θ) -c(ρ), H(θ) = plim N →∞ h(θ). Using M (y i -Z i θ) = -M Z i (θ -θ 0 ) + M ε i , we have L(θ) = - 1 2 log plim N →∞ 1 N N i=1 (ε ′ i M ε i -2(θ -θ 0 ) ′ Z ′ i M ε i + (θ -θ 0 ) ′ Z ′ i M Z i (θ -θ 0 )) + c. Let b 0 = b(ρ 0 ) = S(θ 0 ) and note that plim N →∞ 1 N N i=1 Z ′ i M ε i = plim N →∞ 1 N N i=1 ε ′ i M ε i b 0 = σ 2 0 (T -1) b 0 . Hence, defining V 0 = V (θ 0 ) by plim N →∞ 1 N N i=1 Z ′ i M Z i = plim N →∞ 1 N N i=1 ε ′ i M ε i V 0 = σ 2 0 (T -1) V 0 , we can write L(θ) = - 1 2 log (1 -2(θ -θ 0 ) ′ b 0 + (θ -θ 0 ) ′ V 0 (θ -θ 0 )) + c by absorbing the term -1 2 log (σ 2 0 (T -1)) into c. As N → ∞, the ML estimator of θ converges in probability to θ M L = arg max θ L(θ) = θ 0 +V -1 0 b 0 and has asymptotic bias V -1 0 b 0 . This expression [10]
generalizes the bias calculations in [START_REF] Nickell | Biases in dynamic models with fixed effects[END_REF]. Note that (θ

0 -θ M L ) ′ V 0 (θ 0 -θ M L ) = b ′ 0 V -1 0 b 0 . Furthermore, L(θ) = - 1 2 log 1 -b ′ 0 V -1 0 b 0 + (θ -θ M L ) ′ V 0 (θ -θ M L ) + c, S(θ) = - V 0 (θ -θ M L ) 1 -b ′ 0 V -1 0 b 0 + (θ -θ M L ) ′ V 0 (θ -θ M L ) , H(θ) = - V 0 1 -b ′ 0 V -1 0 b 0 + (θ -θ M L ) ′ V 0 (θ -θ M L ) + 2S(θ)S(θ) ′ .
Note that L(•) and H(•) are even and S(•) is odd about θ M L and that

H(θ 0 ) = 2b 0 b ′ 0 -V 0 and H A (θ 0 ) = 2b 0 b ′ 0 -V 0 -c 0 , where c 0 = c(ρ 0 ). Since L(θ) is log-quadratic in θ and a(ρ) is a multivariate polynomial with negative coefficients, L A (θ) = L(θ) -a(ρ) is unbounded from above.
For example, if we put ρ = kr with r in the positive orthant of R p and let k → ∞, then the term -a(ρ) dominates and L A (θ) → ∞. 7 Hence, θ 0 = arg max θ L A (θ) and θ 0 has to be identified as a functional of L A (θ) other than its maximizer. Because S A (θ 0 ) = 0, we need to select θ 0 from the set of stationary points of L A (θ), that is, from the set of zeros of S A (θ). In general, this set is not a singleton. Indeed, whenever θ 0 is a local maximizer of L A (θ) (which will often be the case), L A (θ), being smooth and unbounded, must also have at least one local minimum. A moment-based estimation strategy based solely on solving s A (θ) = 0 is, therefore, incomplete.

AR(1) without covariates

Consider the AR(1) model without covariates, i.e., p = 1 and q = 0. Let

ζ 2 0 = (V 0 -b 2 0 ) /V 2 0 . Then, L(ρ) = - 1 2 log ζ 2 0 + (ρ -ρ M L ) 2 + c, S(ρ) = - ρ -ρ M L ζ 2 0 + (ρ -ρ M L ) 2 , H(ρ) = - ζ 2 0 -(ρ -ρ M L ) 2 (ζ 2 0 + (ρ -ρ M L ) 2 ) 2 , by absorbing -1 2 log V 0 into c. Note that ζ 2 0 = -1/H(ρ M L ). Recall that S(ρ) is odd about ρ M L = ρ 0 + b 0 /V 0 . The zeros of H(ρ) are ρ = ρ M L -ζ 0 and ρ = ρ M L + ζ 0 , so S(ρ) decreases on [ρ, ρ]
and increases elsewhere. Note that all of ρ, ρ, ρ M L , and ζ 0 are identified by S(•). Further, ρ M L and ζ 0 act as location and scale parameters of S(•). For any given ρ 0 , ρ M L and ζ 0 are determined by V 0 . As V 0 increases, |b 0 /V 0 | and ζ 0 decrease, that is, the bias of ρ M L decreases in absolute value, the length of [ρ, ρ] shrinks, and S(ρ) becomes steeper on (ρ, ρ).

7 It has already been observed that, in finite samples, a bias-adjusted likelihood may be re-increasing. Moreover, [START_REF] Lancaster | Orthogonal parameters and panel data[END_REF] presented graphs of a re-increasing marginal posterior log-density for ρ in an AR(1) model with time dummies. [START_REF] Arellano | Robust priors in nonlinear panel data models[END_REF], using a slightly different prior, presented a graph of a re-increasing integrated likelihood for an AR(1) model. Because l(θ) is log-quadratic for any N ≥ 1 and a(ρ) does not depend on the data, l A (θ) is re-increasing regardless of the sample size. [11] There is a sharp lower bound on V 0 . From y i,-1 = S 1 (ξ 0i + F 0 ε i ) and the independence between ξ 0i and ε i , we obtain

V 0 = plim N →∞ 1 N N i=1 y ′ i,-1 M y i,-1 σ 2 0 (T -1) = V LB 0 + V ξξ ,
where

V LB 0 = trF ′ 0 S ′ 1 M S 1 F 0 T -1 , V ξξ = plim N →∞ 1 N N i=1 ξ ′ 0i S ′ 1 M S 1 ξ 0i σ 2 0 (T -1)
.

So V 0 ≥ V LB 0
and this lower bound implies an upper bound on |b 0 /V 0 | and on the length of [ρ, ρ], and a lower bound on the steepness of S(ρ) on (ρ, ρ).

Lemma 1. V LB 0 is given by

V LB 0 = 1 T -1   T -2 j=0 (T -j -1) ρ 2j 0 - 1 T T -2 j=0 j k=0 ρ k 0 2   and satisfies (i) V LB 0 ≥ 2b 2 0 ; (ii) V LB 0 ≥ 2b 2 0 -c 0 with equality if and only if T = 2 or ρ 0 = 1. By Lemma 1, H(ρ 0 ) = 2b 2 0 -V 0 ≤ 0 and, hence, (ρ -ρ M L ) 2 = V 0 -b 2 0 V 2 0 ≥ b 2 0 V 2 0 = (ρ 0 -ρ M L ) 2 .
Therefore, ρ 0 ∈ [ρ, ρ]. Since S(ρ) is a rational function that vanishes at ±∞ and b(ρ) is a polynomial, S A (ρ) has finitely many zeros. Thus, because S A (ρ 0 ) = 0 and, by Lemma 1, H A (ρ 0 ) = 2b 2 0 -V 0c 0 ≤ 0, it follows that L A (ρ) has a local maximum or a flat inflection point at ρ 0 . Our main result for the AR(1) model without covariates is the uniqueness of such a point in [ρ, ρ], thereby identifying ρ 0 as a functional of L A (ρ).

Theorem 1. ρ 0 is the unique point in [ρ, ρ] where L A (ρ) has a local maximum or a flat inflection point.

Equivalently, ρ 0 is the unique point in [ρ, ρ] where b(ρ) approaches S(ρ) from below.

L A (ρ) has a flat inflection point at ρ 0 if and only if

V 0 = V LB 0 = 2b 2 0 -c 0 .
The latter equality holds if and only if T = 2 or ρ 0 = 1. The former holds if and only if V ξξ = 0, which requires M S 1 ξ 0i to be negligibly small for almost all i. The elements of S 1 ξ 0i are ρ j-1

0 y 0 i + α i j-1 k=1 ρ k-1 0 , j = 1, ..., T , so M S 1 ξ 0i = 0 if and only if y 0 i (1 -ρ 0 ) = α i .
Thus, when ρ 0 = 1 and there are no deterministic trends, i.e., α i = 0, L A (ρ) has a flat inflection point at ρ 0 for any T . When

ρ 0 = 1, V 0 = V LB 0 = 2b 2
0c 0 only when T = 2 and a very strong condition holds on the initial observations and the fixed effects, which is unlikely to hold in situations where a fixed effect modeling approach is called for. Thus, when ρ 0 = 1, except in quite special circumstances, ρ 0 is [12] the unique point in [ρ, ρ] where L A (ρ) attains a strict local maximum. Note that, when ρ 0 is a local maximizer of L A (ρ), it need not be the global maximizer on [ρ, ρ], which may instead be ρ. To see why this may happen, interpret the situation where L A (ρ) has a flat inflection point at ρ 0 as a limiting case of the property that L A (ρ) is re-increasing.

Figure 1 illustrates how ρ 0 is identified by L A (ρ) for two cases, each with T = 4. The figures on the left correspond to the case ρ 0 = .5 with V 0 = V LB 0 + V ξξ and V ξξ corresponding to stationary initial observations. Those on the right correspond to the unit root case without deterministic trends, i.e., ρ 0 = 1 and V 0 = V LB 0 . In each case, the bottom figures show S(ρ) (solid line) and b(ρ) (dashed line); the top figures show L(ρ) (solid line), -a(ρ) (dashed line), and L A (ρ) = L(ρ)a(ρ) (thick line). In all the figures, vertical lines indicate ρ, ρ 0 , and ρ, from left to right. In the case of ρ 0 = .5, ρ 0 is the unique local maximizer of L A (ρ) on [ρ, ρ]. Note that there is a second solution of S A (ρ) = 0 on [ρ, ρ], which corresponds to a local minimum of L A (ρ). In the unit root case, ρ 0 is the unique flat inflection point of L A (ρ) on [ρ, ρ]. ρ 0 + b 0 /V 0 . The proof of Theorem 1, as a by-product, shows that if T is even, then b 0 < 0; and, if T is odd, then b(ρ) decreases and has a unique zero at some point ρ u ∈ [-2, -1), so b 0 has the same sign as ρ uρ 0 .

AR(1) with covariates

In the AR(1) model with covariates, profiling out β yields a profile likelihood of ρ with essentially the same properties as in the AR(1) model without covariates. Let

β(ρ) = arg max β L A (ρ, β). Clearly, β(ρ) = arg max β L(ρ, β) = arg min β (θ -θ M L ) ′ V 0 (θ -θ M L
). Partition V 0 , V -1 0 , and b 0 as

V 0 = V 0ρρ V 0ρβ V 0βρ V 0ββ , V -1 0 = V ρρ 0 V ρβ 0 V βρ 0 V ββ 0 , b 0 = b 0ρ 0 ,
where V 0ρρ , V ρρ 0 , and b 0ρ are scalars. Using

V ρρ 0 = (V 0ρρ -V 0ρβ V -1 0ββ V 0βρ ) -1 , we have V 0ββ (β(ρ) -β M L ) = -V 0βρ (ρ -ρ M L ), min β (θ -θ M L ) ′ V 0 (θ -θ M L ) = (ρ -ρ M L ) 2 /V ρρ 0 , 1 -b ′ 0 V -1 0 b 0 = 1 -b 2 0ρ V ρρ 0 .
The first of these equations, together with V 0 (θ 0θ M L ) = -b 0 , yields β(ρ 0 ) = β 0 , so β 0 is identified whenever ρ 0 is. Profiling out β from L(ρ, β) gives the limiting profile log-likelihood of ρ as

L(ρ) = L(ρ, β(ρ)) = - 1 2 log ζ 2 0 + (ρ -ρ M L ) 2 + c
(slightly abusing notation), where ζ 2 0 is redefined as

ζ 2 0 = 1 -b 2 0ρ V ρρ 0 V ρρ 0 and 1 2 log V ρρ 0 is absorbed into c. Lemma 2. (V ρρ 0 ) -1 ≥ V LB 0 , with V LB 0
as defined earlier and given in Lemma 1.

In view of Lemma 2, we can invoke the result for the AR(1) model without covariates. If

ρ = ρ M L -ζ 0 and ρ = ρ M L + ζ 0 with ζ 0 redefined as indicated, then ρ 0 is the unique point in [ρ, ρ] where L A (ρ) = L(ρ) -a(ρ)
has a local maximum or a flat inflection point. By the proof of Lemma 2, the conditions under which ρ 0 is a flat inflection point of L A (ρ) are the same as in the AR(1) model without covariates. Note, also, that the presence of covariates does not affect the sign of the asymptotic bias of the MLE of ρ. Furthermore, it follows from the proof of Lemma 2 that the inclusion of covariates in the model cannot increase V ρρ 0 , so the magnitude of ρ M Lρ 0 = V ρρ 0 b 0ρ can only decrease relative to the model without covariates. This generalizes an observation of [START_REF] Phillips | Bias in dynamic panel estimation with fixed effects, incidental trends and cross section dependence[END_REF] in the stationary AR(1) model, and contrasts with [START_REF] Nickell | Biases in dynamic models with fixed effects[END_REF]Nickell ( , p. 1424).

[14]

AR(p)

Consider first the AR(p) model with p > 1 and without covariates, i.e., q = 0. Then

L(ρ) = - 1 2 log (1 + (ρ -ρ M L ) ′ W 0 (ρ -ρ M L )) + c, W 0 = V 0 1 -b ′ 0 V -1 0 b 0 , S(ρ) = - W 0 (ρ -ρ M L ) 1 + (ρ -ρ M L ) ′ W 0 (ρ -ρ M L ) , H(ρ) = - W 0 1 + (ρ -ρ M L ) ′ W 0 (ρ -ρ M L ) + 2S(ρ)S(ρ) ′ ,
where

-1 2 log(1 -b ′ 0 V -1 0 b 0 ) is absorbed into c. Note that W 0 = -H(ρ M L ), so W 0 is identified by L(•).
As in the AR(1) case, there is a lower bound on V 0 . Recalling that Y i-= (y i,-1 , ..., y i,-p ) and y i,-j = S j (ξ 0i + F 0 ε i ), where ξ 0i and ε i are independent, we have

V 0 = plim N →∞ 1 N N i=1 Y ′ i-M Y i- σ 2 0 (T -1) = V LB 0 + V ξξ
where V LB 0 and V ξξ have elements

V LB 0 jk = trF ′ 0 S ′ j M S k F 0 T -1 , (V ξξ ) jk = plim N →∞ 1 N N i=1 ξ ′ 0i S ′ j M S k ξ 0i σ 2 0 (T -1)
, for 1 ≤ j, k ≤ p. Hence, V 0 -V LB 0 is positive semi-definite, which we write as V 0 ≥ V LB 0 . When p ≥ T , while V 0 is nonsingular by assumption, rank(V LB 0 ) ≤ T -1 because S j F 0 = 0 for j ≥ T , which implies that V LB 0 jk = 0 whenever j ≥ T or k ≥ T . Thus, when p ≥ T , although V 0 can be arbitrarily close to V LB 0 , V 0 = V LB 0 . Further, when p ≥ T , b j (ρ) = 0 for j ≥ T because the sum defining b j (ρ) is empty, and c ij (ρ) = 0 for i + j ≥ T . Hence, when p ≥ T , V LB 0 -2b 0 b ′ 0 and V LB 0 -2b 0 b ′ 0 + c 0 have only zeros beyond their leading (T -1) × (T -1) blocks. A proof of generalizations of (i)-(ii) of Lemma 1 and Theorem 1 to the AR(p) model would be desirable but is more difficult than in the AR(1) case and our attempts failed. 8 Numerical computations, however, suggest that

V LB 0 ≥ 2b 0 b ′ 0 , V LB 0 ≥ 2b 0 b ′ 0 -c 0 , (3.1) rank(V LB 0 -2b 0 b ′ 0 + c 0 ) = min(p, T -2) if p j=1 ρ 0j = 1 or T < p + 2, p -1 else. (3.2)
8 A major difficulty is the rapidly increasing complexity of ϕ t as p increases. For example, ϕ t = ⌊t/2⌋ k=0

(t-k)! (t-2k)!k! ρ t-2k 1 ρ k 2 when p = 2.
Compare this with ϕ t = ρ t 1 when p = 1 and note that V LB 0 , b 0 , and c 0 depend in non-trivial ways on the ϕ t 's.

[15] Specifically, we computed the eigenvalues of V LB 0 -2b 0 b ′ 0 and V LB 0 -2b 0 b ′ 0 + c 0 for p = 2, 3, 4; T = 2, ..., 7; and all ρ 0 in a subset of R p chosen as follows. For p = 4, we put a square grid on the Cartesian product of the two triangles defined by

-1 ≤ γ 2 ≤ 1, γ 2 -1 ≤ γ 1 ≤ 1 -γ 2 , -1 ≤ γ 4 ≤ 1, γ 4 -1 ≤ γ 3 ≤ 1 -γ 4 , (3.3)
which is the stationary region of the lag polynomial γ(L)

= (1 -γ 1 L -γ 2 L 2 )(1 -γ 3 L -γ 4 L 2 ).
For each point on this grid and for each of the values m = 1, 2, 4, ρ 0 was calculated by equating the coefficients on both sides of mρ 01 Lρ 02 L 2ρ 03 L 3ρ 04 L 4 = mγ(L). For m = 1, the stationary region is covered, while for larger m a larger region is covered, though less densely.

In addition to (3.3) we set γ 4 = 0 for p = 3, and γ 3 = γ 4 = 0 for p = 2. The grid points on the region defined by (3.3) were spaced at intervals of .002 when p = 2, .02 when p = 3, and .1 when p = 4. We found that, uniformly over this numerical design, the eigenvalues of

V LB 0 -2b 0 b ′ 0 and V LB 0 -2b 0 b ′ 0 + c 0 are non-negative and the rank of V LB 0 -2b 0 b ′ 0 + c 0 is
as given by (3.2). These findings, while obviously not a proof, support (3.1) and (3.2), and we shall proceed under the assumption that (3.1) and (3.2) hold. 9

Because

V 0 ≥ V LB 0 , (3.1) implies that V 0 ≥ 2b 0 b ′ 0 and that H A (ρ 0 ) = 2b 0 b ′ 0 -V 0 -c 0 ≤ 0. Pre-and postmultiplication of V 0 ≥ 2b 0 b ′ 0 by b ′ 0 V -1 0 and V -1 0 b 0 gives b ′ 0 V -1 0 b 0 ≤ 1 2 ≤ 1 -b ′ 0 V -1 0 b 0 . Recalling that (ρ 0 -ρ M L ) ′ V 0 (ρ 0 -ρ M L ) = b ′ 0 V -1 0 b 0 , we see that (ρ 0 -ρ M L ) ′ W 0 (ρ 0 -ρ M L ) ≤ 1.
Therefore, if (3.1) and (3.2) hold, ρ 0 is a point in the ellipsoidal disk E = {ρ : (ρρ M L ) ′ W 0 (ρρ M L ) ≤ 1} where L A (ρ) has a local maximum or a flat inflection point. We approached the question of uniqueness of such a point numerically. For the same numerical design as above and with V 0 = V LB 0 , we applied the Newton-Raphson algorithm to find a stationary point of L A (ρ), starting at ρ M L and using the Moore-Penrose inverse of H A (ρ) whenever H A (ρ) is singular. Uniformly over this design, the algorithm was found to converge to ρ 0 , thus supporting the conjecture that ρ 0 is the unique point in E where L A (ρ) has a local maximum or a flat inflection point. 10 In the AR(p) model with covariates, β can be profiled out of L A (θ) just as in the AR(1) model. Here, again, β 0 = β(ρ 0 ). Lemma 2 continues to hold for p > 1. Hence, if ρ 0 is identified in the model without covariates in the way we suggested, then it is identified in the model with covariates in exactly the same way, now with E defined through

W 0 = (1 -b ′ 0ρ V ρρ 0 b 0ρ ) -1 V 0ρρ
, in obvious notation. 9 The same computations but with T = 8, 9, 10 further supported the conclusions. Here, however, when m = 4 and p = 3, 4 the computations are numerically less stable because the polynomial terms may be extremely large and their sum numerically imprecise. It is natural to expect, however, that (3.1) and (3.2) hold for all T if they hold for the small values of T considered.

10 Computations with T = 8, 9, 10 gave the same results except in certain cases with m = 4 and p = 3, 4 where the algorithm failed to converge because the rank of H A (ρ) was underestimated.

[16]

Estimation

For a given ρ, we define

β AL (ρ) = arg max β l A (ρ, β) = N i=1 X ′ i M X i -1 N i=1 X ′ i M (y i -Y i-ρ)
as the adjusted likelihood (AL) estimator of β 0 . (Note that β AL (ρ) coincides with the MLE of β 0 for a given ρ.) The unadjusted and adjusted profile log-likelihoods for ρ are l(ρ) = l(ρ, β AL (ρ)) and l A (ρ) = l(ρ)a(ρ). Let s(ρ), s A (ρ), h(ρ), and h A (ρ) be the corresponding profile scores and Hessians. Let W = -h( ρ M L ), where ρ M L is the MLE of ρ 0 , and let

E = {ρ : (ρ -ρ M L ) ′ W (ρ - ρ M L ) ≤ 1}.
We define the AL estimator of ρ 0 as

ρ AL = arg min ρ∈ b E s ′ A (ρ)s A (ρ) s.t. h A (ρ) ≤ 0,
that is, as the strict local maximizer of l A (ρ) on the interior of E if such a maximizer exists and otherwise as the minimizer of the norm of s A (ρ) on E. The AL estimator of β 0 , then, is

β AL = β AL ( ρ AL ). Let N → ∞. Then, l A (ρ) converges to L A (ρ) uniformly in ρ since -a(ρ) is nonstochastic and sup ρ |l(ρ) -L(ρ)| = o p (1). Further, ρ M L p → ρ M L , W p → -H(ρ M L ) = W 0 , and E p → E in the sense that Pr[ρ ∈ E] → 1 {ρ∈E} for any ρ not on the boundary of E. It follows that θ AL = ( ρ ′ AL , β ′ AL ) ′ p → θ 0 . When H A (θ 0 ) is nonsingular,

by the usual argument involving a Taylor series expansion of s

A (θ) around θ 0 , √ N ( θ AL -θ 0 ) d → N (0, Ω) , Ω = H A (θ 0 ) -1 (V 0 -b 0 b ′ 0 )H A (θ 0 ) -1 . (4.1)
The asymptotic variance can be estimated in the usual way. We have not investigated the limit distribution of θ AL in the situation where H A (θ 0 ) is singular. Presumably this could be done along the lines of [START_REF] Rotnitzky | Likelihood-based inference with singular information matrix[END_REF].

Simulations

We used simulations to examine the finite sample properties of the AL estimator in AR(1) and AR(2) models without covariates and in an AR(1) model with a single stationary and exogenous regressor. We compared the AL with the one-step GMM estimator of [START_REF] Arellano | Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations[END_REF], which leaves the initial observations unrestricted. 11 In all the designs, we set N = 100, generated

11 For the GMM estimator we used all the moments that follow from the exogeneity of x it , i.e. E [x ij (ε itε it-1 )] = 0, j = 1, ..., T ; t = 2, ..., T ; and E [y it-j (ε itε it-1 )] = 0, j = 2, ..., t; t = 2, ..., T . It should be noted that the GMM estimator remains consistent under heteroskedasticity while the bias calculation underlying the AL estimator requires time series homoskedasticity.

[17] ε it and α i as N (0, 1) variates, 12 and chose ρ 0 in the interior of the stationary region, which implies that y it is eventually stationary as t → ∞. We varied the information content of the data through the initial observations. Let µ i = lim t→∞ E(y it-|α i ) and Σ i = lim t→∞ Var(y it-|α i ), so, if y 0 i was drawn from the stationary distribution, we would just have µ i = E(y 0 i |α i ) and Σ i = Var(y 0 i |α i ). Let G i G ′ i = Σ i be the Cholesky factorization of Σ i . We set y 0 i = µ i + ψG i ι for some chosen scalar ψ ≥ 0, which is a p-variate version of setting the initial observations ψ standard deviations away from the stationary mean. So ψ controls the outlyingness of the initial observations relative to the stationary distributions. All else being equal, V 0 increases in ψ and V 0 → V LB 0 as ψ → 0, so the data carry less information as ψ gets smaller. The effect of strong inlying observations (small ψ) on the informativeness of the data is stronger when T is small because it takes time to revert to the stationary distribution. The effect of ψ is vanishingly small as ρ 0 moves to the boundary of the stationary region. 13 We set ψ = 0, 1, 2 in the AR(1) models and ψ = .3, 1, 2 in the AR(2) model. 14 In the models without a covariate, µ i and Σ i follow immediately from α i and ρ 0 . In the AR(1) model with a covariate, x it was generated by a stationary AR(1), x it = δα i + γx it-1 + u it with u it ∼ N (0, σ 2 u ) and x i0 drawn from the stationary distribution. Here,

µ i = α i 1 -ρ 0 1 + δβ 0 1 -γ , Σ i = 1 1 -ρ 2 0 1 + β 2 0 1 -γ 2 1 + γρ 0 1 -γρ 0 σ 2 u .
We set δ = γ = σ u = .5 and β 0 = 1ρ 0 , inducing dependence between the covariate and the fixed effect, and keeping the long-run multiplier of x on y constant at unity across designs, as in [START_REF] Kiviet | On bias, inconsistency, and efficiency of various estimators in dynamic panel data models[END_REF]. We varied ψ, T , and ρ 0 . Tables 1-3 present Monte Carlo estimates, based on 10,000 replications at each design point, of the bias and standard deviation (STD) of the AL and GMM estimators and of the coverage rates of the asymptotic and bootstrap 95% confidence intervals (CI A .95 and CI B .95 ). 15 In the AR(1) model (Table 1), for all designs ρ AL has less bias and less standard deviation than ρ GMM . When ρ 0 = .5, the AL estimator is virtually unbiased except when ψ = 0 and T = 2, in which case ρ 0 is weakly identified. 16 Both estimators deliver 95% confidence intervals with broadly correct coverage, although the coverage errors are somewhat larger for ρ GMM , 12 The AL estimator is invariant with respect to the fixed effects, but the GMM estimator is not. 13 In the AR(1) model without covariates, for example,

S 1 ξ 0i = g 0 (y i0 -µ i ) + ιµ i with g 0 = (1, ρ 0 , ..., ρ T -1 0 ) ′ , hence V ξξ = g ′ 0 M g0 (1-ρ 2 0 )(T -1) ψ 2 . As ρ 0 ↑ 1, V ξξ →
0 for any fixed ψ. 14 In the AR(2) model, when ψ = 0 the weighting matrix used by GMM is singular for all T and the likelihood function does not depend on ρ 2 for T = 2. Therefore, we set ψ > 0 although it is possible to work with ψ = 0 for T ≥ 3 by dropping the earliest observation from the set of instruments.

15 To compute CI B .95 , we used the bootstrap percentile method with 39 bootstrap samples formed by randomly drawing N units i with replacement from {1, ..., N }. A small number of bootstrap draws suffices for studying coverage rates via simulation.

16 When ψ = 0 and T = 2, l(ρ) depends on ρ 0 and ρ only through ρ 0ρ, so the distribution of ρ AL is

[18] [20] [21]

ψ T ρ 0 ρ AL ρ GMM ρ AL ρ GMM ρ AL ρ GMM ρ AL ρ GMM 0 2 .5 -.
where they increase in T . When ρ 0 is increased to .95, ρ GMM has a large negative bias and its standard deviation increases considerably. The AL estimator also deteriorates, but much less.

The confidence intervals based on ρ AL continue to provide good coverage, with the bootstrap being slightly superior, while those based on ρ GMM have large coverage errors for all ψ, especially when T ≥ 8. Turning to the AR(2) model (Table 2), the AL and GMM estimators perform well in terms of bias (for the chosen values of ρ 0 ), although there is a non-negligible bias when T = 2 and also when T = 4 and the initial observations are strong inlyers. As N = 100, the probability that the adjusted likelihood has no local maximum in the relevant region is fairly large when both T and ψ are small. In most designs, ρ AL has smaller standard deviation than ρ GMM , with the difference decreasing in T and ψ. For both estimators, the confidence intervals have very reasonable coverage, with those based on ρ AL being slightly more accurate in most designs.

The results for the AR(1) model with a covariate (Table 3) follow a similar pattern as in the AR(1) model without covariates. The coefficient on the exogenous variable, β 0 , is generally estimated with small bias by both estimators. When (ρ 0 , β 0 ) = (.5, .5), the biases and standard deviations are fairly small and, here, the AL estimator does not uniformly dominate GMM. When T = 2, θ GMM is less biased than θ AL while the opposite holds when T ≥ 4. When (ρ 0 , β 0 ) is changed to (.95, .05), the bias of β GMM increases only moderately, but ρ GMM is now heavily biased. As a result, GMM-based confidence intervals for ρ 0 tend to have poor coverage while those for β 0 have broadly correct coverage. Compared to GMM, the AL estimator is much less biased and yields confidence intervals with approximately correct coverage, especially when computed by bootstrapping.

Appendix

Proof of equations (1.3). For arbitrary ρ 1 , ..., ρ T -1 , D and its inverse are

D =      1 0 • • • 0 -ρ 1 . . . . . . . . . . . . . . . . . . 0 -ρ T -1 • • • -ρ 1 1      , D -1 =      1 0 • • • 0 φ 1 . . . . . . . . . . . . . . . . . . 0 φ T -1 • • • φ 1 1      ,
where φ 1 , ..., φ T -1 are recursively obtained as φ 1 = ρ 1 and φ j = ρ j + j-1 k=1 φ k ρ j-k , j = 2, ..., T -1. Recursive substitution gives

φ j = k 1 +2k 2 +•••+jk j =j (k 1 + ... + k p )! k 1 ! • • • k p ! ρ k 1 1 ρ k 2 2 • • • ρ k j j .
equivariant under translations of ρ 0 and, hence, the bias, standard deviation, and coverage rates are independent of ρ 0 .

[22]

Putting

ρ p+1 = • • • = ρ T -1 = 0 gives φ j = ϕ j .
Proof of equations (2.1). For j = 1, ..., p, let S j = {S ∈ S|j ∈ S}. Group terms by S ∈ S j to write b j (ρ)dρ j = S∈S j B j,S (ρ) + c, where

B j,S (ρ) = - T -j-1 t=0 T -j -t T (T -1) k∈K j,S :τ ′ k=t (ι ′ k)! k 1 ! • • • (k j + 1)! • • • k p ! ρ j ρ k S S and K j,S = {k ∈ N p | for all j ′ = j, k j ′ > 0 iff j ′ ∈ S} ⊃ K S . A change of variable from k j + 1 to k j gives B j,S (ρ) = - T -j-1 t=|S|-j T -j -t T (T -1) k∈K S :τ ′ k=t+j (ι ′ k -1)! k 1 ! • • • k p ! ρ k S S ,
where the lower limit in the first sum changed from 0 to |S|j because, when t < |S|j, no k ∈ K S satisfies τ ′ k = t + j. A further change of variable from t + j to t gives B j,S (ρ) = a S (ρ), with a S (ρ) as defined in (2.1). Therefore,

b j (ρ) = ∇ ρ j S∈S j a S (ρ) = ∇ ρ j S∈S a S (ρ) = ∇ ρ j a(ρ)
which completes the proof.

Proof of (2.4). In the parameterization η i = α i e -(T -1)a(ρ) , we have

ℓ i (ϑ, η i ) = - 1 2 log σ 2 - 1 2T σ 2 T t=1 (y it -z ′ it θ -η i e (T -1)a(ρ) ) 2 + c, ∇ η i ℓ i (ϑ, η i ) = e (T -1)a(ρ) T σ 2 (y i -Z i θ -η i e (T -1)a(ρ) ι) ′ ι, and 
E ϑ,η i ∇ η i η i ℓ i (ϑ, η i ) = -σ -2 e 2(T -1)a(ρ) , E ϑ,η i ∇ σ 2 η i ℓ i (ϑ, η i ) = 0, E ϑ,η i ∇ θη i ℓ i (ϑ, η i ) = -σ -2 e (T -1)a(ρ) η i (T -1)b(ρ)e (T -1)a(ρ) + E ϑ,η i Z ′ i ι/T . The jth column of Y i-is y i,-j = S j (ξ i + F ε i ) , so the jth element of E ϑ,η i Y ′ i-ι is E ϑ,η i y ′ i,-j ι = ι ′ S j ξ i = ι ′ D -1 j ιη i e (T -1)a(ρ) + m j , m j = ι ′ S j y 0 i D -1 (Cy 0 i + X i β) . Hence, E ϑ,η i Z ′ i-ι/T = -η i (T -1)b(ρ)e (T -1)a(ρ) + m, [23]
where m = (m 1 , ..., m p , ι ′ X i /T ) ′ is free of η i . Consequently,

A -1 i B i = -e -(T -1)a(ρ) m 0 and ∇ η i (A -1 i B i ) = 0.
Proof that no orthogonalization exists when p > 1. In the original parameterization, if l i (ϑ, α i ) is i's log-likelihood contribution, we have

E ϑ,α i ∇ α i α i l i (ϑ, α i ) = -σ -2 , E ϑ,α i ∇ σ 2 α i l i (ϑ, α i ) = 0, E ϑ,α i ∇ θα i l i (ϑ, α i ) = -σ -2 E ϑ,α i Z ′ i ι/T,
and so, by the preceeding proof,

A -1 i B i = - E ϑ,α i Z ′ i ι/T 0 = - -(T -1)b(ρ)α i + m 0 .
Suppose some reparameterized fixed effect, say ζ i , is information orthogonal to ϑ. Then

α i = α i (ϑ, ζ i ) must satisfy the differential equation ∇ ϑ α i = A -1 i B i , that is, ∇ ρ j α i = (T -1)b j (ρ)α i -m j , j = 1, . . . , p, (A.1) ∇ β j α i = -m p+j , j = 1, . . . , q, (A.2)
and ∇ σ 2 α i = 0. We show that these equations are inconsistent. Suppose q > 0. Then (A.1) implies ∇ ρ j β j ′ α i = -∇ β j ′ m j , which is generally non-zero, while (A.2) implies ∇ ρ j β j ′ α i = 0, so the equations are inconsistent. Suppose q = 0. Then

m j = ι ′ S j I p D -1 C y 0 i , j = 1, . . . , p,
and, because ∇ ρ j ′ b j (ρ) = ∇ ρ j ′ ρ j a(ρ) = ∇ ρ j b j ′ (ρ), (A.1) will be inconsistent if ∇ ρ j ′ m j = ∇ ρ j m j ′ for some j, j ′ . Take j = p and j ′ = p -1. The first element of y 0 i appears in m p and m p-1 with coefficients γ p = 1 + ρ p T -p-1 t=0 ϕ t and γ p-1 = ρ p T -p t=0 ϕ t , respectively. Differentiating gives

∇ ρ p-1 γ p = ρ p T -p-1 t=0 ∇ ρ p-1 ϕ t = ρ p T -p t=1 ∇ ρp ϕ t , ∇ ρp γ p-1 = ρ p T -p t=1 ∇ ρp ϕ t + T -p k=0 ϕ t ,
using ϕ 0 = 1 and ∇ ρ p-1 ϕ t = ∇ ρp ϕ t+1 . The latter follows from differentiating ϕ t and a change of variable from k p-1 -1 to k p-1 , giving

∇ ρ p-1 ϕ t = τ ′ k=t-p+1 (ι ′ k + 1)! k 1 ! • • • k p ! ρ k ,
which is invariant under a unit shift of p and t. Therefore, ∇ ρ p-1 γ p = ∇ ρp γ p-1 , and (A.1) is inconsistent.

[24]

Proof of Lemma 1.

Let A = S 1 F 0 and B = ∇ ρ 0 A. Then b 0 = - ι ′ Aι T (T -1) , c 0 = - ι ′ Bι T (T -1) , V LB 0 = trA ′ M A T -1 = T trAA ′ -ι ′ AA ′ ι T (T -1) . Hence, V LB 0 ≥ 2b 2 0 and V LB 0 ≥ 2b 2 0 -c 0 if and only if T trAA ′ -ι ′ AA ′ ι - 2 (ι ′ Aι) 2 T (T -1) ≥ 0, (A.3) T trAA ′ -ι ′ AA ′ ι - 2 (ι ′ Aι) 2 T (T -1) -ι ′ Bι ≥ 0.
(A.4)

The matrix A = A T is

A = 0 0 1 0 , T = 2, A = A T -1 0 a ′ T 0 , a T = (ρ T -2 , ρ T -3 , ..., 1) ′ , T > 2,
where the subscript on ρ is omitted. By recursion, it can be deduced that as stated in the lemma. Now let r > 0 and use the equalities just obtained to see that if (A.4) holds for ρ = r, then (A.3) holds for ρ = r and (A.3) and (A.4) hold for ρ = -r, with strict inequalities for T ≥ 3. Hence, we only need to show that (A.4) holds for ρ ≥ 0, with equality if and only if T = 2 or ρ = 1. Write (A.4) as Q T ≥ 0. Because Q 2 = 0, to show that (A.4) holds, it suffices to show that ∆Q T ≥ 0 for T ≥ 2, where ∆ (•) T = (•) T +1 -(•) T . Write ∆Q T as

ι ′ Aι =
∆Q T = ∆ T trAA ′ -ι ′ AA ′ ι -2 (ι ′ Aι) 2 T (T -1) -ι ′ Bι T = (trAA ′ ) T +1 -2 (ι ′ Aι) 2 T +1 T (T + 1) + 2 (ι ′ Aι) 2 T T (T -1) -∆ (ι ′ Bι) T + T ∆ (trAA ′ ) T -∆ (ι ′ AA ′ ι) T [25]
and denote the quantities in braces as τ 1 , τ 2 , and τ 3 . Using T (T + 1) /2 = T -1 i=0 (Ti), we have 

R =      1 1 • • • 1 ρ 2 ρ 2 • • • ρ 2 . . . . . . . . . . . . ρ 2T -2 ρ 2T -2 • • • ρ 2T -2      -      1 ρ • • • ρ T -1 ρ ρ 2 • • • ρ T . . . . . . . . . . . . ρ T -1 ρ T • • • ρ 2T -2      .
Consider the principal minors of R. Those of order 1 are 0; those of order 2 are det 0 ρ 2iρ i+j ρ 2jρ i+j 0 = ρ i+j ρ jρ i 2 ≥ 0, 0 < i < j < T, given ρ ≥ 0; and those of order greater than 2 are 0 because R is the sum of two matrices of rank 1 and, hence, rank (R) ≤ 2. Therefore, R is positive semi-definite and τ 1 ≥ 0. Furthermore, T (T -1) . Note that τ 2 is a polynomial of degree 2T -4 in ρ. When T = 2 or ρ = 1, τ 2 = 0. When ρ = 1,

τ
(ι ′ Aι) T = T -1 -T ρ + ρ T (1 -ρ) 2 , ∆ (ι ′ Bι) T = 1 -ρ T -T ρ T -1 + T ρ T (1 -ρ) 2 , [26]
and so

τ 2 = d T -1 -T ρ + ρ T 2 (1 -ρ) 4 - 1 -ρ T -T ρ T -1 + T ρ T (1 -ρ) 2 .
For T > 2, lim ρ→1 τ 2 (1ρ) -2 = 1 72 T (T -1) (T -2) (T + 1) > 0 and, therefore, τ 2 = (1ρ) 2 P (T, ρ), where P (T, ρ) is a polynomial of degree 2T -6. If all coefficients of P (T, ρ) =

2T -6 j=0 p j ρ j are positive, we conclude that τ 2 ≥ 0. Write τ 2 =

2T -4 j=0 q j ρ j , where q j is found as Equating the coefficients of τ 2 and (1ρ) 2 P (T, ρ) gives p k = k j=0 (k + 1j) q j . To show that p k > 0 for 0 ≤ k ≤ 2T -6, we only need to show that p k > 0 for k up to T -2 because for larger k, q k > 0 and so p k increases in k. For k up to min(T -2, 2T -6), we obtain

q j =
p k = d 12 (k + 1) (k + 2) (k + 3) (T -1) (2T -k -2) + k 10 (k -1) -T (T -1)
and, hence, p k > 0 because either k < T -2, implying 2Tk -2 > T , or k = T -2 ≤ 2T -6, implying T ≥ 4 and k ≥ 2. Therefore, τ 2 ≥ 0. This establishes Q T ≥ 0, that is, (A.4). Recall that Q 2 = 0 and note that ρ = 1 implies τ 1 = τ 2 = τ 3 = 0 and, hence, Q T = 0. Therefore, Q T = 0 if T = 2 or ρ = 1. If T ≥ 2 and ρ = 1, then ∆Q T > 0 because τ 3 > 0 when T = 2 and τ 2 > 0 when T > 2. Therefore, Q T = 0 only if T = 2 or ρ = 1.

Proof of Theorem 1. L A (ρ) having a local maximum or a flat inflection point at ρ 0 is equivalent to b(ρ) approaching S(ρ) from below as ρ approaches ρ 0 from the left. We will write this as b(ρ) ↑ S(ρ) at ρ 0 , and show that b(ρ) ↑ S(ρ) on [ρ, ρ] at most once. From [27]

∇ ρ H(ρ) = 2(ρ -ρ M L ) (3ζ 2 0 -(ρ -ρ M L ) 2 ) (ζ 2 0 + (ρ -ρ M L ) 2 )

  and W = I N ⊗ S j F 0 . To summarize the results so far regarding the bias of the profile score, let b(ρ) = (b 1 (ρ), ..., b p+q (ρ)) + 1, ..., p + q.

Figure!

  Figure 1: Identification

  where u = (T, T -1, ..., 1) ′ and

  i -1) (Tj -1) ρ i+ji -1) (j + 1) ρ j , where d = 2

d 6 {

 6 (j + 1) (j (j -1) + 6 (T -1) (Tj -1)) -3jT (T -1)} , j ≤ T -2, d 6 (2Tj -1) (2Tj -2) (2Tj -3) ,T -1 ≤ j.

3t

  it follows that S(ρ) is strictly concave on [ρ, ρ M L ] and strictly convex on [ρ M L , ρ]. Because ϕ t = ρ t , b(ρ) and its first two derivatives are b(ρ) = -(T -1t) T (T -1) ρ t-1 , d(ρ) = -T -2 t=2 t (t -1) (T -1t) T (T -1) ρ t-2 .

Table 1 :

 1 Simulations for the AR(1) model, N = 100

	bias	STD	CI A .95	CI B .95

Table 2 :

 2 Simulations for the AR(2) model, N = 100 AL ρ GMM ρ AL ρ GMM ρ AL ρ GMM ρ AL ρ GMM

	bias	STD	CI A .95	CI B .95
	ψ ρ .3 T ρ 0 2 .6 -.141 .2 -.129 1 2 .6 -.141 .2 -.124 2 2 .6 -.147 .2 -.130 .3 4 .6 -.071 -.279 .123 -.267 -.748 -.267 -.316 -.266 -.258 .2 -.033 -.125 .098 1 4 .6 -.001 -.043 .123 .2 -.002 -.023 .094 2 4 .6 .008 -.011 .082 .2 .003 -.007 .072 .3 8 .6 -.016 -.102 .065 .2 -.009 -.053 .056 1 8 .6 .006 -.033 .063 .2 .002 -.015 .052 2 8 .6 .000 -.011 .037 .2 .000 -.003 .037 .3 24 .6 .000 -.028 .024 .2 .000 -.018 .024 1 24 .6 .000 -.020 .022 .2 .000 -.011 .022 2 24 .6 .000 -.011 .020 .2 .000 -.003 .019 .3 2 1 -.144 -.265 -.2 -.083 -.640 1 2 1 -.145 -.265 -.2 -.073 -.234 2 2 1 -.147 -.266 -.2 -.078 -.165 .3 4 1 -.070 -.235 .118 -.2 .004 -.021 .087 1 4 1 .009 -.030 .115 -.2 .006 -.006 .081 2 4 1 .003 -.008 .059 -.2 .001 -.003 .060 .3 8 1 -.009 -.068 .059 -.2 .002 -.015 .051 1 8 1 .002 -.024 .051 -.2 .001 -.001 .042 2 8 1 -.001 -.009 .033 .001 .002 .033 -.2 .3 24 1 -.001 -.018 .022 -.2 .000 -.008 .022 1 24 1 -.001 -.015 .021 -.2 .000 -.004 .021 2 24 1 -.001 -.010 .019 -.2 .000 .000 .019		-.882 -.959 -.881 -.909 -.880 -.890 .280 .900 .133 .936 .120 .945 .089 .959 .064 .967 .064 .965 .088 .941 .056 .949 .055 .965 .045 .963 .037 .953 .036 .944 .025 .956 .023 .950 .023 .951 .022 .945 .020 .950 .019 .946 -.882 -.969 -.880 -.928 -.881 -.901 .256 .902 .084 .966 .098 .951 .078 .965 .051 .966 .059 .949 .072 .953 .045 .965 .048 .966 .041 .950 .034 .948 .034 .944 .023 .950 .022 .947 .022 .948 .021 .947 .020 .950 .019 .946	.920 .930 .945 .940 .916 .930 .920 .920 .916 .927 .918 .922 .782 .914 .808 .932 .921 .945 .931 .950 .939 .946 .943 .949 .773 .941 .833 .943 .897 .948 .929 .947 .932 .947 .943 .945 .795 .949 .869 .945 .859 .950 .914 .946 .913 .951 .944 .948 .918 .934 .968 .945 .913 .927 .921 .931 .918 .930 .918 .919 .808 .906 .934 .945 .930 .947 .939 .944 .940 .945 .941 .945 .830 .945 .926 .945 .916 .947 .945 .944 .936 .946 .945 .947 .872 .950 .927 .946 .898 .948 .940 .947 .920 .947 .947 .948	.977 .983 .977 .977 .977 .978 .698 .763 .895 .925 .933 .942 .536 .695 .816 .910 .913 .942 .607 .755 .732 .865 .856 .939 .977 .992 .979 .978 .977 .979 .721 .937 .908 .943 .936 .943 .653 .911 .856 .946 .922 .947 .770 .906 .818 .935 .879 .949
	'-' indicates non-existence of the corresponding population moment.

Table 3 :

 3 Simulations for the AR(1) model with a covariate, N = 100 GMM θ AL θ GMM θ AL θ GMM θ AL θ GMM

				bias	STD	CI A .95	CI B .95
	ψ T θ 0 θ 0 θ AL 2 .5 -.092 -.051 .266 .5 -.027 -.015 .249 1 2 .5 .019 .001 .269 .5 -.001 .000 .258 2 2 .5 .030 .002 .182 .5 -.010 -.002 .261 0 4 .5 .014 -.093 .141 .5 .004 -.008 .127 1 4 .5 .012 -.069 .119 .010 .126 .5 -.001 2 4 .5 .001 -.024 .063 .5 .000 .009 .129	-.900 -.965 -.939 -.968 -.966 -.949 .119 .957 .124 .959 .102 .968 .123 .951 .062 .968 .128 .944	.882 .943 .943 .945 .910 .947 .950 .939 .940 .949 .941 .942 .845 .945 .941 .947 .883 .948 .943 .949 .921 .944 .940 .941	.945 .962 .945 .949 .945 .941 .737 .946 .802 .947 .890 .941
	0	8	.5 -.001 -.053 .051 .5 .001 .004 .074	.050 .965 .075 .943	.813 .948 .943 .946	.582 .945
	1	8	.5 -.001 -.047 .045 .5 .001 .011 .075	.047 .959 .076 .940	.837 .945 .938 .943	.627 .937
	2	8	.5 -.001 -.026 .035 .5 .001 .011 .075	.036 .950 .075 .948	.884 .939 .945 .949	.754 .943
	0 24	.5 -.001 -.032 .020 .5 .000 .007 .038	.020 .948 .038 .950	.646 .943 .945 .950	.323 .941
	1 24	.5 .5	.000 -.031 .019 .000 .009 .038	.020 .946 .038 .950	.652 .945 .942 .952	.343 .937
	2 24	.5 .5	.000 -.026 .017 .000 .009 .038	.018 .947 .038 .949	.700 .948 .943 .952	.416 .935
	0 1 2 0 1	2 .95 -.145 -.904 .266 .05 -.007 -.030 .234 2 .95 -.124 -.975 .266 .05 .004 .046 .240 2 .95 -.068 -.534 .264 .05 .007 .063 .246 4 .95 -.086 -.641 .124 .05 -.002 -.013 .121 4 .95 -.067 -.595 .123 .05 .004 .041 .122	-.879 -.974 -.891 -.974 -.910 -.972 .253 .892 .115 .973 .252 .906 .114 .973	.809 .930 .977 .947 .811 .937 .977 .941 .842 .948 .968 .943 .267 .906 .944 .948 .312 .930 .938 .948	.926 .991 .923 .989 .936 .980 .123 .955 .148 .943
	2	4 .95 -.020 -.338 .122 .05 .003 .056 .128	.207 .939 .120 .971	.561 .950 .916 .945	.346 .917
	0 1	8 .95 -.043 -.347 .064 .05 .000 -.006 .073 8 .95 -.026 -.306 .064 .05 .003 .028 .075	.100 .888 .075 .970 .098 .911 .074 .972	.036 .903 .943 .948 .067 .942 .926 .944	.001 .946 .004 .933
	2	8 .95 .05	.003 -.155 .064 .000 .032 .075	.068 .947 .072 .967	.317 .939 .928 .951	.056 .918
	0 24 .95 -.007 -.116 .024 .05 .000 -.001 .038 1 24 .95 .000 -.101 .024 .05 .000 .009 .038	.022 .920 .039 .970 .021 .942 .039 .964	.000 .943 .946 .950 .000 .944 .942 .950	.000 .949 .000 .942
	2 24 .95 .05	.001 -.055 .017 .000 .010 .038	.015 .963 .038 .950	.024 .946 .941 .951	.000 .937
		'-' indicates non-existence of the corresponding population moment.

Our bias calculation is related to[START_REF] Alvarez | Robust likelihood estimation of dynamic panel data models[END_REF] in the case of time series homoskedasticity. We calculate the bias of the profile score for the regression coefficients, while they calculated the bias of the conditional score for all common parameters given maximum likelihood estimates of the fixed effects.

For a discussion and historical perspective on this device, see[START_REF] Conniffe | When moments of ratios are ratios of moments[END_REF].[6] 

The adjustment, -a(ρ), is robust to cross-sectional heteroskedasticity (σ 2 i instead of σ 2 , say). We investigated this in an older version of this paper[START_REF] Dhaene | An adjusted profile likelihood for non-stationary panel data models with incidental parameters[END_REF], where we also derived the adjustment for the AR(1) model when there are incidental time trends. In the latter case, the adjustment is still a polynomial.

 5 Unbalanced panel data can be accommodated by writing l(θ) as a weighted average of K balanced subpanel profile log-likelihoods, say l k (θ), and adjusting each l k (θ). Missing data, with observations missing completely at random, fit into this scheme by forming complete subseries from each incomplete time series.[8] 

When T ≤ 3, b(ρ) is linear and so, given that S(ρ) is concave-convex on [ρ, ρ], b(ρ) ↑ S(ρ) on [ρ, ρ] at most once. Suppose T ≥ 4. Then, b(ρ) is a polynomial of degree 2 or higher with negative coefficients, so b(ρ) is negative, decreasing, and strictly concave, on R + . Further, by Descartes' rule of signs, c(ρ) has one zero on R -when T is even and none when T is odd, and d(ρ) has no zeros on R -when T is even and one when T is odd. Suppose T is even. Then c(-1) = 0 and b(-1) = -1 2(T -1) < 0, so b(ρ) is negative and strictly concave on R, and, hence, its intersection with S(ρ) on [ρ, ρ] can only be on (ρ M L , ρ], where S(ρ) is strictly convex and is approached from below by b(ρ) at most once. Now suppose T is odd and T ≥ 5. Then,

If R is non-empty, to show that b(ρ) ↑ S(ρ) on [ρ, ρ] at most once, it suffices to show that S(ρ) decreases faster than b(ρ) on R, i.e., H(ρ) < c(ρ) for ρ ∈ R. We will show below that (i)

and so, H(ρ) < -1 2 for ρ ∈ [ρ M L , ρ w ]. On the other hand, T (1

So, c(ρ) > -1 2 for ρ ∈ [ρ u , ρ v ] and H(ρ) < c(ρ) for ρ ∈ R. We conclude that b(ρ) ↑ S(ρ) on [ρ, ρ] at most once, provided (i) and (ii) hold, which we now show. Write

2T -4 j=0 v j ρ j 0 , where

2

. We have

Only when 2j + 1 < T is it possible that v 2j + v 2j+1 < 0, so it suffices to show that d k ≥ 0 for 2k + 1 < T . We obtain, for 2k + 1 < T ,

Therefore, (ii) holds.

[29]

Proof of Lemma 2. Use y

where Ξ i = (S 1 ξ 0i , X i ) is independent of ε i . Proceeding as above, we have

where

) is positive semi-definite and V XX is positive definite by assumption. Therefore, V ξξ -V ξX V -1 XX V Xξ ≥ 0 and (V ρρ 0