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AN ADJUSTED PROFILE LIKELIHOOD FOR NON-STATIONARY PANEL DATA
MODELS WITH FIXED EFFECTS

Geert Dhaene* Koen Jochmans’
K.U. Leuven CORE

First version: March 2007; This version: March 22, 2011

Abstract: We calculate the bias of the profile score for the autoregressive parameters p and covariate
slopes § in the linear model for N x T panel data with p lags of the dependent variable, exogenous
covariates, fixed effects, and unrestricted initial observations. The bias is a vector of multivariate
polynomials in p with coefficients that depend only on 7. We center the profile score and, on integration,
obtain an adjusted profile likelihood. When p = 1, the adjusted profile likelihood coincides with
Lancaster’s (2002) marginal posterior. More generally, it is an integrated likelihood, in the sense of
Arellano and Bonhomme (2009), with fixed effects integrated out using a new data-independent prior.
It appears that p and 3 are identified as the unique point where the large N adjusted profile likelihood
reaches a local maximum (or a flat inflection point, as a limiting case) inside or on an ellipsoid centered
at the maximum likelihood estimator. We prove this when p = 1 and report numerical calculations
that support it when p > 1. The global maximum of the adjusted profile likelihood lies at infinity for
any N.

JEL classification: C13, C22, C23
Keywords: adjusted likelihood, bias correction, dynamic panel data, fixed effects, non-stationarity.

Introduction

Maximum likelihood estimates of dynamic linear fixed effect models from short panels are known
to be severely biased and inconsistent because of the incidental parameter problem first described
by Neyman and Scott (1948); see Nerlove (1967, 1971) and Nickell (1981), for example. The fail-
ure of maximum likelihood has shifted interest towards GMM-based estimation in these models.
An overview and discussion is provided by Arellano (2003, Chapter 6).

In an interesting paper, Lancaster (2002) argued for a return to likelihood-based inference
and suggested a Bayesian resolution of the incidental parameter problem in the non-stationary

AR(1) model.! The fixed effects are first orthogonalized (in the information sense) to the

*Address: K.U. Leuven, Department of Economics, Naamsestraat 69, B-3000 Leuven, Belgium. Tel. +32 16
326798; Fax +32 16 326796; E-mail: geert.dhaene®@econ.kuleuven.be.

fAddress: U.C. Louvain, Center for Operations Research and Econometrics, Voie du Roman Pays 34, B-1348
Louvain-la-Neuve, Belgium. Tel. +32 10 474329; E-mail: koen.jochmans@uclouvain.be.

IThroughout, non-stationarity will refer to initial observations being left unrestricted (and being conditioned
upon) and the possibility that the autoregressive parameter vector lies outside the stationary region. Likelihood-
based estimation of AR(1) models under restrictions on the initial observations has been considered by Kiefer
(1980), Cruddas, Reid, and Cox (1989), Hsiao, Pesaran, and Tahmiscioglu (2002), and Kruiniger (2008).
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common parameters and then integrated from the likelihood using uniform priors. The first
order condition for the posterior mode is unbiased. Unfortunately, orthogonalization is not
possible when the AR(1) model is augmented with covariates, as Lancaster showed, or when the
autoregressive order is greater than one, as we show. Lancaster noted, however, that incomplete
orthogonalization suffices in the AR(1) model with covariates. Arellano and Bonhomme (2009)
considered integrating possibly non-orthogonalized fixed effects from the likelihood using more
general priors, generalizing Lancaster (2002). Their characterization of bias-reducing priors in a
general class of models (including nonlinear ones) further shows that orthogonality is sufficient
but not necessary for being able to improve on maximum likelihood.

In this paper, we deal with the incidental parameter problem in the non-stationary AR(p)
model with covariates by adjusting the profile likelihood. Our approach is frequentist and
does not require orthogonalization or finding suitable priors. The adjustment is based on a
bias calculation, and subsequent centering, of the profile score, similar in spirit to McCullagh
and Tibshirani (1990).2 An intermediate result of our analysis is a simple unbiased estimating
equation for the AR(p) model. The adjustment term to the profile log-likelihood that results
from it is a multivariate polynomial in the autoregressive parameters with coefficients depending
only on the number of time periods. Thus, the adjustment to the profile likelihood is independent
of the data and the true parameter values.

When p = 1, the adjusted profile likelihood coincides with the marginal posterior obtained
by Lancaster (2002). Similarly, when p > 1, it coincides with the marginal posterior obtained by
integrating out suitably reparameterized fixed effects using a uniform prior. This view relates the
adjusted likelihood to Lancaster’s approach, although the transformed fixed effects are no longer
information orthogonal when p > 1 or when covariates are present. We show that the adjusted
profile likelihood is also an integrated likelihood in the sense of Arellano and Bonhomme (2009).
That is, for a specific choice of prior, the integrated likelihood coincides with the adjusted profile
likelihood. From the integrated likelihood point of view, what we find is a data-independent
prior for the AR(p) model that fully eliminates the bias from the first order condition. Such
a prior was thought not to exist when p > 1. We also show that centering the profile score is
equivalent to inverting a plug-in estimate of the probability limit of the within-group estimator,
complementing and generalizing Bun and Carree (2005).

Recently, Chamberlain and Moreira (2009) and Moreira (2009) suggested the use of in-
variance arguments to eliminate the fixed effects from the likelihood. It would be interesting
if a connection could be established between their invariant likelihood and the adjusted profile
likelihood, but we doubt that this is possible in the present model. In the simplest case, the

2Qur bias calculation is related to Alvarez and Arellano’s (2004) in the case of time series homoskedasticity.
We calculate the bias of the profile score for the regression coefficients, while they calculated the bias of the
conditional score for all common parameters given maximum likelihood estimates of the fixed effects.
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AR(1) model without covariates, Moreira’s (2009) maximal invariant likelihood differs from the
adjusted profile likelihood.

Perhaps our main (and unexpected) finding is that one should look for a local maximizer of
the adjusted likelihood /marginal posterior because the global maximum is reached at infinity.
The reason for this is that the profile log-likelihood is log-quadratic in the parameters while the
adjustment term is a polynomial, with positive coefficients, in the autoregressive parameters.
Thus, for large enough autoregressive parameter values, the adjustment term dominates, and
the adjusted profile log-likelihood must be re-increasing. This finding complements observations
by Lancaster (2002), who noticed in Monte Carlo experiments that his marginal posterior was
sometimes re-increasing. This phenomenon is not just a small sample problem or an artifact
of an unbounded parameter space. The adjusted likelihood/marginal posterior has its global
maximum at infinity for any sample size, and it may already be re-increasing in the stationary
parameter region and reach its maximum at the boundary. Consequently, identification is not
achieved by global maximization, and estimation based solely on the first order condition is
incomplete.

To examine identification, we profile out the covariate slopes, which are unique given the
autoregressive parameters, so the analysis reduces to that of the model without covariates.

In the AR(1) model, we show that the autoregressive parameter is identified as the unique
local maximizer—or flat inflection point, as a limiting case—of the (large sample) adjusted profile
likelihood in the interval where the unadjusted profile score is downward sloping. The (large
sample) maximum likelihood estimate is the midpoint of this interval. Identification as a flat
inflection point is an instance of first order lack of identification, in Sargan’s (1983) terminology.
The leading case of interest is a unit root without deterministic trends, which is identified as a
flat inflection point regardless of the number of time periods, in line with the rank deficiency of
the expected Jacobian associated with the moment conditions of Ahn and Schmidt (1995); see
Alvarez and Arellano (2004). For the unit root case the flat inflection point property has been
noted independently by Ahn and Thomas (2006).

Identification in the AR(p) model via the adjusted likelihood is a harder problem. It appears
that the autoregressive parameter vector is identified as the unique local maximizer or flat
inflection point of the adjusted profile likelihood on a region bounded by a well-identified ellipsoid
that is centered at the maximum likelihood estimate. We have no proof of this conjecture, but
we report numerical calculations that support it.

The model parameters can be estimated by the local maximizer of the adjusted likelihood
over a plug-in estimate of the ellipsoid (or, when no local maximizer exists, by the minimizer of
the norm of the adjusted profile score). When the parameters are identifed as local maximizers,
the estimator converges at the parametric rate, and its limit distribution is normal and correctly

centered.



In Section 1, we present the model and derive the bias of the profile score. The adjusted
likelihood is given in Section 2, where we also connect with Lancaster (2002), Arellano and
Bonhomme (2009), and Bun and Carree (2005). Global properties of the adjusted likelihood are
discussed in Section 3. In Section 4, we define the adjusted likelihood estimator and derive its
main asymptotic properties. Section 5 discusses some simulation results. Technical proofs are
collected in an appendix.

1 Bias of the profile score
1.1 Model and profile likelihood

Suppose we observe a scalar variable y, the first p > 1 lags of y, and a g-vector of covariates x
(which may include lags), for N units i and 7" periods ¢. Assume that y;; is generated by

Vit = Yiy_p + T30 + a; + €, i=1,.,N;t=1,..T, (1.1)

where yi— = (Yit—1, ..., Yir—p)" and the ¢;; are identically distributed with mean 0 and variance
o? and are independent across ¢ and ¢ and also of z;y for all ¢/ and . Let ¥ = (yia—p), ---, Yio)’,
X = (w31, ..., xi7)’, and ; = (g1, ..., &i7)’. We make no assumptions about how (v, oy, X;), i =
1,..., N, are generated, except for the assumption that the covariates are not linearly dependent.
The unknown parameters are 8 = (o', 3'), 02, and «y, ..., an. Let 6y and o2 be the true values of
0 and o2. Our interest lies in consistently estimating 6, under large N and fixed T" asymptotics.
We do not impose the stationarity condition on pg, i.e., we allow any p, € RP.

Let zit = (Y, 2h,), Yie = (Wa—, .y yir-)'s Zi = (Y-, X,), and y; = (yi1, ..., ir)’, so that
My, = MZ;0 + Me; where M = Iy — T~ '/ and ¢ is a conformable vector of ones. We assume
that N—! Zfil Z!M Z; and its probability limit as N — oo are nonsingular. The Gaussian quasi-
log-likelihood, conditional on 3, ...,4% and normalized by the number of observations, is given
by

1 K 1
“ONT Z Z (lOg o’ + ;(yit — 2yt — az’)z) +¢,
i=1 t=1
where, here and later, c is a non-essential constant. Replacing the nuisance parameters oy, ..., ay
and ¢? with their MLE for given 6 gives the (normalized) profile log-likelihood,

1(0) —% log (% S (s — Z:6) M(yi — Zﬂ)) e

=1



The profile score, s(6) = Vyl(6), has elements

SN (i — Zi0) My,
Zz‘]\;(% — Z;0)M(y; — Z:9)
N
— P ZZG /MZL‘Z‘ i .
sp;(0) = NZPl(y ) L ji=1,..4q,
>oict (Wi — Z:0) M (y; — Z:9)

where y; _; is the jth column of ¥;_ and z; ; is the jth column of X;.

Spj(e) jzla“'apa

1.2 Bias of the profile score
It is well known that the profile score is asymptotically biased, that is,
pth—m)os(eO) 7£ 07

where, here and later, probability limits and expectations are taken conditionally, given (32, o;, X;),
i=1,...,N. Hence, 6y # arg maxy plimy_, . [(¢) and the MLE, solving s(f) = 0, is inconsistent.

The following calculation yields the bias of the profile score, either asymptotically or, when
gir ~ N(0,0?), for fixed N. Rewrite (1.1) as

DyZ:CyS+XZB+LaZ+€Z7 7::]-7-"7N7

where D = D(p) and C' = C(p) are the T'x T and T' x p matrices

1 [0 Y Pp = o 1
o 0
D=| _, . . .. .. .. ], Cc=
Pr ‘ ‘ ' _ ' ' 0 -« - 0 pp
0 T s s IR 0 oo «ov oo 0
O - 0 —pp - —pr 1 0 -+« «or wev 0

Then

Y7 y; 0
(yz):&‘FF&a glz(Dl(Cy?—f—Xzﬁ—f-LOtZ))’ F:(Dl)’

and y; _; = S;(& + Fe;), where S; = (Orx(p—j) : L7 : Ory;), a selection matrix. Therefore,

pth_)ooN_l Zf\il 6/'MSj (501 + Fogi) o E(Z‘:;MS]FQSJ

7

pth—»ooSPj (00) =

plimy_ N~ Zf\il eiMe; - E(Me)
. tI'MS]FO
- T-=1"

pthHooSﬁJ(eO) = 07



where &; and Fy are & and F, evaluated at . If, in addition, e; ~ N(0, 0?), then

E[s, (6)] = E <ZZ LEMS; (502+F0€i)> & (Zl LEiMS; FOMQ)

SV el Me; SV el Me,
_ E(elMS;FyMe;) _ trMS;Fy (12)
E(elMe;) T—-1"
Elsg; (6o)] = 0,

by well-known properties of the normal distribution and the following geometric argument, which
goes back to Fisher (1930) and Geary (1933). Let v ~ N(0,0%I,) and let Q be a g x h matrix
such that Q'Q = I, so Q' is idempotent. Write I, —QQ" as PP’, where P'P = I,_;,. Transform
v into m = P'v, the radius r = (v'QQ'v)'/2, and the h — 1 polar angles a of Q'v. Then the
elements of (m/,r,a’)" are independent. Therefore, for any g x g matrix W, if A = v'QQ'WQQ"v
and B = v'QQ'v, then the ratio A/B depends on v only through a and hence is independent
of B, which implies that E(A) = E(A/B)E(B) and E(A/B) = E(A)/E(B).* The transition to
(1.2) now follows from applying this property to the ratio
Zl 1 lMS FOM& - 8/(]]\/ ®M)(IN ®SjF0)(IN ® M)é?

Zz 1 zMgl éJ(IN@M)g

with v =¢ = (e}, ...,ey), QQ' = Iy @M, and W = Iy ® S; F.
To summarize the results so far regarding the bias of the profile score, let

tl"MSjF

— i=1,..p
b(p) = (B1(p)s s bpralp))s  bip)=4q T-1 "7 b
0, J=p+1,..p+q

Then plimy_, . s(fy) = b(po); if, in addition, e, ~ N(0,07), then E[s(6y)] = b(po).

Two remarks are worth making. First, the bias of the profile score, b(py), depends only on pg
and T'. Tt is independent of the initial observations, the fixed effects, and the covariates (recall
that the expectations are conditioning on these). This is in sharp contrast with the bias of the
ML (the within-group) estimator, which was first derived by Nickell (1981) for the first order
autoregressive model under the assumption of stationarity of the initial observations. The bias
of the MLE depends on the initial observations, the fixed effects, and the covariate values; it is
smaller when the initial observations are more outlying relative to the stationary distributions.
Second, the Nickell bias concerns a probability limit as N — oo whereas here, when the errors
are normal, E[s(6y)] = b(po) is a finite sample result holding for fixed N and T" and may therefore
be of independent interest in a time series setting.

3For a discussion and historical perspective on this device, see Conniffe and Spencer (2001).
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For k = (ky,....k,) € NP, let p* = ?lefj, and let 7 = (1,...,p). It is shown in the
Appendix that

1 0 0
SRR k)|
pi_| @ S R o G (1.3)
: U T;t/ﬁ!...kp[
SOT—l P 801 1

where the summation is over all k € N? satisfying 7'k = t. Therefore, since

0 0
SjF:(Dﬁ 0)

where D! is the leading (T — j) x (T — j) block of D™, we obtain

/DY T Tt
J(p) T(T— 1) ;_0 T(T— l)gpta J ) » Dy

where ¢y = 1. Hence, for j = 1,...,p, b;(p) is a multivariate polynomial of degree T'— j — 1 in
pP1, --., Pp With non-positive coefficients.

2 Adjusted profile likelihood

2.1 Centered profile score and adjusted profile likelihood

By construction, the centered (or adjusted) profile score,
sa(0) = s(0) — b(p),

is asymptotically unbiased, i.e., plimy_ . sa(6p) = 0. In the Appendix, we show that the
differential equation Vya(p) = b(p) has a solution which, up to an arbitrary constant of in-

tegration, is

S

-1

o) = Yaslo) s == qrmm O gy 21

Ses \ kekg:r' k=t

o~
n

where S is the collection of the non-empty subsets of {1,...,p}; |S]| is the sum of the elements of
S; Ks ={k e NP|k; > 0iff j € S}; and pg = (p;)jes and ks = (k;),es are subvectors of p and k
determined by S.

We call the function



which has derivative Vyla(0) = sa(f), an adjusted profile log-likelihood. Every subvector pg
of p contributes to [(f) an adjustment term, —ag(p), which takes the form of a multivariate
polynomial in p;, j € S, with positive coefficients that are independent of p.*:

2.2 Connections with the literature

Lancaster (2002) studied the AR(1) model, with and without covariates, from a Bayesian per-
spective. It turns out that e!2(®) coincides, up to a non-essential normalization, with Lancaster’s
posterior density for 6, thereby giving it a frequentist interpretation. With p = 1, we have

¢y = p' and
T-1 T-1
T—1 T—1
b = — S = — - —
t=1 t=1

With independent uniform priors on the reparameterized effects n; = aze=T=%() and on # and
log 0%, Lancaster’s posterior density for ¥ = (#',02)' is

f(W|data) o< o™ NT"D"2exp (=N(T = 1)a(p) — Q*(A)o~?/2),

where Q2(0) = SN (yi — Zi0)' M (y; — Z:8) o e 2. Integrating over o gives f(f|data) o
e~ N(T=1)alp) (92(9))~N(T=1/2 and, hence,

f(f|data) oc N T=DIA®), (2.2)

Thus, the posterior density and the adjusted likelihood for 6 are equivalent as a basis for inference.
More generally, for any p and ¢, independent uniform priors on 71, ..., 7y, 0, log 0%, with 1, =
a;e”(T=1alP) and a(p) as in (2.1), yield a posterior f(f|data) that is related to (5 (6) as in (2.2).

Lancaster’s choice of independent uniform priors on 7; has its foundation in the AR(1) model
without covariates, where ; is information orthogonal to ¥ and the posterior density (hence also
e!2()) has an interpretation as a Cox and Reid (1987) approximate conditional likelihood (see also
Arellano, 2003, pp. 103-106). Information orthogonalization to a multidimensional parameter
is generally not possible (see, e.g., Severini, 2000, pp. 340-342). Here, orthogonalization is not
possible when the AR(1) model is augmented with covariates, as shown by Lancaster, or when
the autoregressive order, p, is greater than one, as shown in the Appendix. From a bias correction
perspective, however, information orthogonality is sufficient but not necessary. For any p and ¢,
sa(f) = 0 is an unbiased estimating equation, and the bias calculation underlying it is immune
to the non-existence of orthogonalized fixed effects.

4The adjustment, —a(p), is robust to cross-sectional heteroskedasticity (o2 instead of o2, say). We investi-
gated this in an older version of this paper (Dhaene and Jochmans, 2007), where we also derived the adjustment
for the AR(1) model when there are incidental time trends. In the latter case, the adjustment is still a polynomial.

SUnbalanced panel data can be accommodated by writing [(f) as a weighted average of K balanced subpanel
profile log-likelihoods, say 11 (6), and adjusting each l;(6). Missing data, with observations missing completely at
random, fit into this scheme by forming complete subseries from each incomplete time series.
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Arellano and Bonhomme’s (2009) approach shares the integration step with Lancaster (2002)
but allows non-uniform priors on fixed effects or, equivalently, non-orthogonalized fixed effects.
Of interest are bias-reducing priors, i.e., weighting schemes that deliver an integrated likelihood
whose score equation has bias o(T!) as opposed to the standard O(T~!). The linear dynamic
model (with general p, q) illustrates an interesting result of Arellano and Bonhomme that gener-
alizes the scope of uniform integration to situations where orthogonalization is impossible. For
a given prior m;(a;|), the (normalized) log integrated likelihood is

N T
1 1
HOE NT ; log / o1 exp (‘@ ;(yit — 20 — Oéi)Q) mi(u[9) do + c.
Choosing 7;(;[9) oc e~ (T=1a) yields
T-1 T-1 Q*(9)
() = - logo® — ———af(p) — .
(?) o7 1080 — a0 gy te

Profiling out o2 gives 0() = arg max,2 I/ (J) = Q*(0)/(N(T — 1)) and

1(8) = max 11 (9) = T; L1n(0) +c.

so I1(0) and [(0) are equivalent. Because a(p) does not depend on true parameter values,
mi(ag]d) oc e=(T=1alP) ig a data-independent bias-reducing (in fact, bias-eliminating) prior in the
sense of Arellano and Bonhomme.® Now, 7;(a;|0) oc e™(T=120) is equivalent to m;(n;|¥) o< 1, i.e.,
to a uniform prior on 7; = a;e”T~D) Jeading to the same [/(1). Arellano and Bonhomme
(2009, Eq. (11)) give a necessary and sufficient condition for a uniform prior to be bias-reducing,.
With ¢;(¢,n;) denoting i’s log-likelihood contribution in a parametrization 7;, the condition is
that

N
1
plimy oo - > Va(AT'B) =o0(1)  asT — oo, (2.3)
=1

where A; = A;(9,m:) = =By, Vo bi(0,m:), Bi = Bi(9,m:) = Eg.0, Vo, li(9,m:), and V,,(A;' B))
is evaluated at the true parameter values. When n; and ¢ are information orthogonal, B; = 0
and (2.3) holds. However, condition (2.3) is considerably weaker than parameter orthogonality.
In the present model, when p > 1 or ¢ > 0, and thus no orthogonalization is possible, it follows
from our analysis and Arellano and Bonhomme (2009) that (2.3) must hold for n; = a;e~(T=Ha(e),
Indeed, as we show in the Appendix,

Vi (A7'B;) =0 (2.4)

50ur focus is on estimating fy but, noting the degrees-of-freedom correction in o?(#), the estimating equation
derived from !!(¥9) is also unbiased for o2.



because Ai_lBi is free of n;.

Finally, the centered profile score relates directly to Bun and Carree (2005). Observe that
s(0) = SN, ZIM (y; — Z:0)/Q*(9). Further, My, = MZ8 + ME; where 6 is the within-group
estimator, with residuals &; satisfying 321, Z/M&; = 0. Therefore, solving s4 () = 0 is equivalent
to solving

h—0= <EN: Z{MZZ) b(p)Q(6). (2.5)

i=1
In the AR(1) model, (2.5) corresponds to Bun and Carree’s (2005) proposal for bias-correcting
the within-group estimator.

3 Global properties of the adjusted profile likelihood when N is large

At this point it is tempting to anticipate that 6, maximizes plimy_ . Is(0). However, as the
following analysis shows, —a(p) dominates plimy_ I(f) as ||p|| — oo in almost all directions
and, as a result, plimy_,_[x(f) is unbounded from above.

Let h(6) = Vas(0), c(p) = Vg b(p), and

La(6) = L(®) —alp),  L(6) = plimy_,1(0),
Sa(0) = 5(6) —b(p),  S(6) = plimy_.s(0),
Hy(6) = H(9) — c(p),  H(9) = plimy_ h(0).

Using M (y; — Z;0) = —M Z;(0 — 0y) + Me;, we have

N
1 1

1=1

Let by = b(po) = S(0y) and note that

N N
1 1
plimN_mN E ZiMe; = (plimN—woN E €;M€i> bo = og (T — 1) by.
i=1 =1

Hence, defining Vy = V(6y) by

N N
1 1
i=1 i=1

we can write

L(8) = —5 log (1~ 2(6 — )by + (0 — 60) Vol# — ) + ¢

by absorbing the term —3 log (o (T — 1)) into c. As N — oo, the ML estimator of 6 converges in
probability to 0y, = arg maxy L(0) = 90—1—1/0_1190 and has asymptotic bias Vo_lbo. This expression

[10]



generalizes the bias calculations in Nickell (1981). Note that (6p — 6ar1) Vo (6o — Oarr) = by Vy *bo.

Furthermore,

1
L(tg) = —5 log (1 — bg‘/b_lbo =+ (9 — GML)/‘/O<0 — GML)) + C,
56) = —— 0= ) |

1 —b4Vy "bo + (0 — Oprr)' V(0 — Onrr)
HO) = — Yo +25(6)S(6)".

1— b6V o + (0 — Oarr) Vo0 — Oarr)
Note that L(-) and H(:) are even and S(-) is odd about 6y, and that H(6y) = 2boby — Vo
and Ha(0y) = 2boby — Vo — co, where ¢q = ¢(pg). Since L(6) is log-quadratic in 6 and a(p) is
a multivariate polynomial with negative coefficients, Lx(0) = L(f) — a(p) is unbounded from
above. For example, if we put p = kr with r in the positive orthant of R? and let £k — oo,
then the term —a(p) dominates and LA () — o0o.” Hence, §y # argmaxy La(0) and 6y has to
be identified as a functional of La(#) other than its maximizer. Because Sa(6y) = 0, we need
to select 0y from the set of stationary points of La(#), that is, from the set of zeros of Sx(6).
In general, this set is not a singleton. Indeed, whenever 6 is a local maximizer of L (6) (which
will often be the case), La(6), being smooth and unbounded, must also have at least one local
minimum. A moment-based estimation strategy based solely on solving sa(f) = 0 is, therefore,

incomplete.

3.1 AR(1) without covariates

Consider the AR(1) model without covariates, i.e., p =1 and ¢ = 0. Let ¢ = (Vo — b3) /V{.
Then,

L(p) = —5108(G+ (o~ prr)) +e
S(p) = __ P—PML i) — @ = (p— pur)?
) G+ (p = pan)?* °) (&g + (p— pML)2>2’

by absorbing —1logVj into ¢. Note that ¢§ = —1/H(pyy). Recall that S(p) is odd about
pur = po+ bo/Vo. The zeros of H(p) are p = pyr — (o and p = pu + Co, so S(p) decreases on
[p, p] and increases elsewhere. Note that all of p, p, pasz, and (o are identified by S(-). Further,
pur and (o act as location and scale parameters of S(-). For any given po, par and ¢y are
determined by Vy. As Vj increases, |by/Vo| and (y decrease, that is, the bias of py; decreases in
absolute value, the length of [p, p] shrinks, and S(p) becomes steeper on (p, p).

It has already been observed that, in finite samples, a bias-adjusted likelihood may be re-increasing. More-
over, Lancaster (2002) presented graphs of a re-increasing marginal posterior log-density for p in an AR(1) model
with time dummies. Arellano and Bonhomme (2009), using a slightly different prior, presented a graph of a
re-increasing integrated likelihood for an AR(1) model. Because [(6) is log-quadratic for any N > 1 and a(p)
does not depend on the data, la () is re-increasing regardless of the sample size.
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There is a sharp lower bound on Vp. From y; -1 = S1(0; + Foe;) and the independence

between &y; and ¢;, we obtain

. N
phimy oo iy Ui 1 Myi

= =VEIB LV,
0 o2 (T —1) o T Ve

where N
trFéS{MSlFO Ve — pllmN_)OO;, Zz 1 g(l)ZSiMSl&)Z
T-1 € o2 (T —1) '

So Vo > ViEB and this lower bound implies an upper bound on |by/Vy| and on the length of [p, Pl

LB __
Vb =

and a lower bound on the steepness of S(p) on (p,p).
Lemma 1. VB is given by
T—2 (T2 ) 2
V' ; —j=1)p ?jzo (ch))
and satisfies (i) ViFP > 2b2; (i1) Vi > 208 — cq with equality if and only if T =2 or py = 1.
By Lemma 1, H(py) = 203 — Vi < 0 and, hence,

_ Vo — 62 bQ
(P — pur) = OVOQ > — Ve = (po — pur)’.

Therefore, py € [p,p]. Since S(p) is a rational function that vanishes at foo and b(p) is a
polynomial, Sa(p) has finitely many zeros. Thus, because Sx(po) = 0 and, by Lemma 1,
Ha(po) = 262 — Vo — ¢g < 0, it follows that La(p) has a local maximum or a flat inflection
point at pp. Our main result for the AR(1) model without covariates is the uniqueness of such
a point in [p, p], thereby identifying py as a functional of L (p).

Theorem 1. py is the unique point in [p, p| where La(p) has a local mazimum or a flat inflection

point.

Equivalently, po is the unique point in [p, p] where b(p) approaches S(p) from below.

L(p) has a flat inflection point at py if and only if Vy = VEZ = 2b2 — ¢y. The latter equality
holds if and only if 7" = 2 or py = 1. The former holds if and only if V¢ = 0, which requlres
M S1&y; to be negligibly small for almost all 2. The elements of S1&y; are p% ! Y+ ay Zk 1 Po ,
j=1,..,T, so MSi&; = 0 if and only if y?(1 — py) = a;. Thus, when py = 1 and there are
no deterministic trends, i.e., oy = 0, La(p) has a flat inflection point at py for any 7. When
po # 1, Vo = ViEB = 262 — ¢ only when T = 2 and a very strong condition holds on the initial
observations and the fixed effects, which is unlikely to hold in situations where a fixed effect

modeling approach is called for. Thus, when pg # 1, except in quite special circumstances, pq is
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the unique point in [p, p] where Ly (p) attains a strict local maximum. Note that, when py is a
local maximizer of La(p), it need not be the global maximizer on [p, p], which may instead be
p. To see why this may happen, interpret the situation where L (p) has a flat inflection point
at pp as a limiting case of the property that La(p) is re-increasing.

Figure 1 illustrates how pg is identified by La(p) for two cases, each with 7' = 4. The
figures on the left correspond to the case py = .5 with Vi = VJ#Z + Vi and V¢ corresponding
to stationary initial observations. Those on the right correspond to the unit root case without
deterministic trends, i.e., pg = 1 and Vi = V'B. In each case, the bottom figures show S(p)
(solid line) and b(p) (dashed line); the top figures show L(p) (solid line), —a(p) (dashed line),
and La(p) = L(p) — a(p) (thick line). In all the figures, vertical lines indicate p, po, and p, from
left to right. In the case of py = .5, po is the unique local maximizer of Ls(p) on [p,p]. Note
that there is a second solution of Sa(p) = 0 on [p, p], which corresponds to a local minimum of

La(p). In the unit root case, pg is the unique flat inflection point of La(p) on [p,p].

Figure 1: Identification
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Left: pp = 0.5. Right: py = 1. Bottom: S(p) (solid), b(p) (dashed). Top: L(p)
(solid), —a(p) (dashed), La(p) (thick). Vertical lines at p, po, and p.

Note, finally, that the asymptotic bias of the MLE has the same sign as by because pyp =
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po + bo/Vy. The proof of Theorem 1, as a by-product, shows that if 7" is even, then by < 0; and,
if T is odd, then b(p) decreases and has a unique zero at some point p, € [—2,—1), so by has the

same sign as p, — Po-

3.2 AR(1) with covariates

In the AR(1) model with covariates, profiling out (3 yields a profile likelihood of p with essentially
the same properties as in the AR(1) model without covariates. Let 3(p) = argmaxg La(p, ).
Clearly, 3(p) = argmaxg L(p, 8) = arg ming(6 — 0r1)'Vo(6 — Opr1). Partition Vo, V!, and by as

%:(‘/Opp pr,@) Vlz(‘/opp Vopﬁ> bO:(bOP)
Voge Voss ) 0 v vy ) 0 )’

where Vp,,, V§’, and by, are scalars. Using Vi = (Vo,, — %Pﬁx/()%é%ﬂf))_l? we have

Vosa (B(p) = Pur) = —Voso(p = pur),
min(8 — Oare) Vol# — barz) = (p = pars)*/ V"
L=0Vythy = 1—1b5, V.

The first of these equations, together with V5(6p — 0pr) = —bo, yields 5(po) = o, so (o is
identified whenever p, is. Profiling out 5 from L(p, 3) gives the limiting profile log-likelihood of

p as
L(p) = Lip, 8(0)) = 3 log (GG + (o — par)?) +c

(slightly abusing notation), where (§ is redefined as (¢ = (1—b3,V{”) Vi’ and 3log V{* is
absorbed into c.

Lemma 2. (VJ*)~' > VB, with VB as defined earlier and given in Lemma 1.

In view of Lemma 2, we can invoke the result for the AR(1) model without covariates. If
p = pur — G and p = pyr + (o with (o redefined as indicated, then py is the unique point in
lp, p|] where Lx(p) = L(p) — a(p) has a local maximum or a flat inflection point. By the proof
of Lemma 2, the conditions under which p, is a flat inflection point of La(p) are the same as
in the AR(1) model without covariates. Note, also, that the presence of covariates does not
affect the sign of the asymptotic bias of the MLE of p. Furthermore, it follows from the proof of
Lemma 2 that the inclusion of covariates in the model cannot increase V§”, so the magnitude of
pmr — po = V§’ by, can only decrease relative to the model without covariates. This generalizes
an observation of Phillips and Sul (2007) in the stationary AR(1) model, and contrasts with
Nickell (1981, p. 1424).
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3.3 AR(p)

Consider first the AR(p) model with p > 1 and without covariates, i.e., ¢ = 0. Then

1 Vo
L(p) = —=log(1+ (p— pars) Wolp — Wy—— 0
(p) 5 108 (1+ (p = parr) Wolp = par)) + ¢, TV T
Wolp — pur)
S(p) = — ,
(°) L+ (p— par)Wolp — pur)
W )
H(p) = - : +25(p)S(p),

L+ (p— par)Wolp — pur)

where —2log(1 — byV; 'bo) is absorbed into c. Note that Wy = —H (parz), so Wy is identified by
L().

As in the AR(1) case, there is a lower bound on V4. Recalling that Y;— = (y; 1, ..., ¥i—p) and
Yi—;j = 9;(&oi + Foe;), where &y and ¢; are independent, we have

pth—u)o% Ziv | YL MY,

° oo (T —1) o F Ve
where Vi“® and V¢ have elements
(VLB) - W (Vee)., = plimy Zf\[ﬁ(l)z S’ M Sk&os
0 Jk T -1 ’ &8k UO(T—l) y

for 1 < j,k < p. Hence, Vy — ViFB is positive semi-definite, which we write as Vo > V"%, When
p > T, while Vj is nonsingular by assumption, rank(Vj*?) < T — 1 because S;Fy = 0 for j > T,
which implies that (V" )jk = 0 whenever j > T or k > T. Thus, when p > T, although Vj can
be arbitrarily close to ViF2, Vi # VEB. Further, when p > T bj(p) = 0 for j > T because the
sum defining b;(p) is empty, and ¢;;(p) = 0 for i + j > T. Hence, when p > T, VFB — 2byb), and
ViEB — 2bgbly + cp have only zeros beyond their leading (7" — 1) x (T — 1) blocks.

A proof of generalizations of (i)—(ii) of Lemma 1 and Theorem 1 to the AR(p) model would
be desirable but is more difficult than in the AR(1) case and our attempts failed.® Numerical

computations, however, suggest that
Vi > 2b0b), Vi > 2bob) — co, (3.1)

min(p, T —2) if 30 py;#Llor T <p+2,
p—1 else.

rank(VE2 — 2bob) + o) = { (3.2)

8A major difficulty is the rapidly increasing complexity of ¢; as p increases. For example Yy =
Z,Et/gj (t%lf),'k,p’i 2kpk when p = 2. Compare this with ¢, = p¢ when p = 1 and note that V2, by, and

co depend in non- tr1V1a1 ways on the p;’s.
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Specifically, we computed the eigenvalues of V"2 — 2bob), and VB — 2bob), + ¢y for p = 2,3, 4;
T =2,...,7; and all py in a subset of R? chosen as follows. For p = 4, we put a square grid on
the Cartesian product of the two triangles defined by

—1 < <1, Yo—1< v <1—7,

-1 <y <1, Ya—1<v3 <1 — 1y, (33)

which is the stationary region of the lag polynomial v(L) = (1 — v L — % L?)(1 — 3L — 14 L?).
For each point on this grid and for each of the values m = 1,2, 4, py was calculated by equating
the coefficients on both sides of m — poy L — poaL? — posL® — poul* = m~y(L). For m = 1, the
stationary region is covered, while for larger m a larger region is covered, though less densely.
In addition to (3.3) we set 74 = 0 for p = 3, and v3 = 4 = 0 for p = 2. The grid points on the
region defined by (3.3) were spaced at intervals of .002 when p = 2, .02 when p = 3, and .1 when
p = 4. We found that, uniformly over this numerical design, the eigenvalues of V“Z — 2bobf, and
ViEB — 2bobfy + ¢ are non-negative and the rank of VI8 — 2bb), + ¢y is as given by (3.2). These
findings, while obviously not a proof, support (3.1) and (3.2), and we shall proceed under the
assumption that (3.1) and (3.2) hold.?

Because Vo > VB, (3.1) implies that Vy > 2bobj and that Ha(pg) = 2beby — Vo — co < 0.
Pre- and postmultiplication of Vo > 2boby by byVy ' and Vg gives byVy by < 3 < 1—b(V; "bo.
Recalling that (po — parr) Vo(po — parr) = byVy 'bo, we see that

(po — parr) Wolpo — parr) < 1.

Therefore, if (3.1) and (3.2) hold, pg is a point in the ellipsoidal disk € = {p : (p — par) Wo(p —
pmr) < 1} where La(p) has a local maximum or a flat inflection point. We approached the
question of uniqueness of such a point numerically. For the same numerical design as above and
with Vo = VB, we applied the Newton-Raphson algorithm to find a stationary point of La(p),
starting at pp;; and using the Moore-Penrose inverse of Ha(p) whenever Ha(p) is singular.
Uniformly over this design, the algorithm was found to converge to pg, thus supporting the
conjecture that pg is the unique point in €& where Lj(p) has a local maximum or a flat inflection
point.1?

In the AR(p) model with covariates, 8 can be profiled out of La(6) just as in the AR(1)
model. Here, again, By = #(pg). Lemma 2 continues to hold for p > 1. Hence, if py is identified
in the model without covariates in the way we suggested, then it is identified in the model with
covariates in exactly the same way, now with £ defined through Wy = (1 — bgp‘/oppbop)*l%pp, in

obvious notation.

9The same computations but with 7= 8,9, 10 further supported the conclusions. Here, however, when m = 4
and p = 3,4 the computations are numerically less stable because the polynomial terms may be extremely large
and their sum numerically imprecise. It is natural to expect, however, that (3.1) and (3.2) hold for all T if they
hold for the small values of T' considered.

10Computations with T = 8,9, 10 gave the same results except in certain cases with m = 4 and p = 3,4 where
the algorithm failed to converge because the rank of Ha (p) was underestimated.
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4 Estimation

For a given p, we define

N
Bar(p) = arg mex Ia(p, B) = (Z Xz{MXi> > XIM (yi — Yiep)
i=1 =1

as the adjusted likelihood (AL) estimator of . (Note that 3ar,(p) coincides with the MLE of 3,
for a given p.) The unadjusted and adjusted profile log-likelihoods for p are (p) = I(p, EAL(p))
and la(p) = U(p) —a(p). Let s(p), sa(p), h(p), and ha(p) be the corresponding profile scores and
Hessians. Let W = —h(parr), where pyrp is the MLE of pg, and let £ = {p:(p— ﬁML)’/W(p —
pur) < 1}. We define the AL estimator of pg as

PAL = arg rpneig sa(p)salp) st. ha(p) <0,
that is, as the strict local maximizer of s (p) on the interior of € if such a maximizer exists
and otherwise as the minimizer of the norm of sx(p) on £. The AL estimator of (o, then, is
Bar = Bar(Pav).
Let N — o0o. Then, ls(p) converges to La(p) uniformly in p since —a(p) is nonstochastic
and sup,, |I(p) — L(p)| = 0,(1). Further, pyr, L onip, W B —H(puy) = Wy, and € 5 &

in the sense that Pr[p € éA’] — 1ypeey for any p not on the boundary of £. It follows that
Oar = (Phr, Fh) = 6. When Hy (6,) is nonsingular, by the usual argument involving a Taylor

series expansion of s (6) around 6,
VN(Bar, — 0) SN (0,Q), Q= Ha(6) (Vo — bobly) Ha(6) . (4.1)

The asymptotic variance can be estimated in the usual way. We have not investigated the limit
distribution of 4y, in the situation where Hx(6p) is singular. Presumably this could be done
along the lines of Rotnitzky, Cox, Bottai, and Robins (2000).

5 Simulations

We used simulations to examine the finite sample properties of the AL estimator in AR(1) and
AR(2) models without covariates and in an AR(1) model with a single stationary and exogenous
regressor. We compared the AL with the one-step GMM estimator of Arellano and Bond (1991),
which leaves the initial observations unrestricted.!’ In all the designs, we set N = 100, generated

UFor the GMM estimator we used all the moments that follow from the exogeneity of
ie. Elzij(eir —ei—1)] = 0,5 = 1,...,T5t = 2,..,T; and E[y;—;(cit —€i—1)] = 0,5 = 2,..,t;t = 2,..,T. It
should be noted that the GMM estimator remains consistent under heteroskedasticity while the bias calculation
underlying the AL estimator requires time series homoskedasticity.
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ei and a; as N'(0, 1) variates,'? and chose py in the interior of the stationary region, which implies
that y;; is eventually stationary as ¢ — oo. We varied the information content of the data through
the initial observations. Let p; = limy o E(yir_|a;) and X; = limy_o Var(yy_|a;), so, if ¢ was
drawn from the stationary distribution, we would just have p; = E(y?|a;) and 2; = Var(y?| ;).
Let G;G = %; be the Cholesky factorization of ;. We set y? = u; +1G;e for some chosen scalar
1 > 0, which is a p-variate version of setting the initial observations v standard deviations away
from the stationary mean. So ¢/ controls the outlyingness of the initial observations relative to
the stationary distributions. All else being equal, V; increases in ¢ and Vi — VB as ¢ — 0,
so the data carry less information as 1 gets smaller. The effect of strong inlying observations
(small ¢) on the informativeness of the data is stronger when T is small because it takes time
to revert to the stationary distribution. The effect of ¢/ is vanishingly small as py moves to the
boundary of the stationary region.!> We set 1) = 0,1,2 in the AR(1) models and ¢ = .3,1,2 in
the AR(2) model.'

In the models without a covariate, u; and >; follow immediately from «; and pg. In the
AR(1) model with a covariate, z; was generated by a stationary AR(1), x;; = doy; + yTi—1 + uy
with u;; ~ N (0,02) and x;o drawn from the stationary distribution. Here,

i ) 1 2 1
P (1+ 50)’ 5 = 2(1+ ﬁo2< +%00)03)'
L= po L=~ L= pg L=~ \1-="2p0

We set 6 = v =0, = .5 and By = 1 — pg, inducing dependence between the covariate and the

fixed effect, and keeping the long-run multiplier of x on y constant at unity across designs, as in
Kiviet (1995).

We varied v, T, and py. Tables 1-3 present Monte Carlo estimates, based on 10,000 repli-
cations at each design point, of the bias and standard deviation (STD) of the AL and GMM
estimators and of the coverage rates of the asymptotic and bootstrap 95% confidence intervals
(CI45 and CI%;).°

In the AR(1) model (Table 1), for all designs par, has less bias and less standard deviation
than poy. When py = .5, the AL estimator is virtually unbiased except when ¢ = 0 and
T = 2, in which case pg is weakly identified.!® Both estimators deliver 95% confidence intervals

with broadly correct coverage, although the coverage errors are somewhat larger for panm,

12The AL estimator is invariant with respect to the fixed effects, but the GMM estimator is not.

13Tn the AR(1) model without covariates, for example, S1&0; = go (yi0 — s) + tpi With go = (1, po, ...,pOT*I)’,
hence V¢ = %1{12. As po 11, Vege — 0 for any fixed .
0

1410 the AR(2) model, when 1 = 0 the weighting matrix used by GMM is singular for all 7' and the likelihood
function does not depend on py for T' = 2. Therefore, we set b > 0 although it is possible to work with ¥ = 0
for T' > 3 by dropping the earliest observation from the set of instruments.

15To compute CI5;, we used the bootstrap percentile method with 39 bootstrap samples formed by randomly
drawing N units ¢ with replacement from {1,..., N}. A small number of bootstrap draws suffices for studying
coverage rates via simulation.

6When ¢y = 0 and T = 2, I(p) depends on py and p only through pg — p, so the distribution of par, is
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Table 1: Simulations for the AR(1) model, N = 100

24 95 —-.006 —.090 .024 033 .923 157 940 .006
24 .95 .000 —.127 .024 042 941 063 .940 .004
24 .95 .001 —-.091 .018 .038 .961 166 .940 .022

bias STD CIgs C1%,

Y T po PAL  PGMM _ PAL _PGMM _PAL _PGMM _ PAL _PGMM
0 2 5 -—.146 - .267 — .880 916 .924 976
1 2 5 .032 - .269 — 944 934 944 .965
2 2 5 .029 - 173 - .967 941 1942 944
0 4 5 .006 —.043 .142 150 .954 921 .947 911
1 4 5 014  —.057 124 163 .965 927 944 .906
2 4 5 .002 —.015 .064 .083  .968 940 943 934
0 8 5 .000 —.028 .056 .058 .966 914 946 .860
1 8 5 .000 —.039 .048 .070  .960 906 .944 .842
2 8 5 —.001 -—.022 .036 052 .953 925 .946 .887
0 24 5 .000 —.018 .021 022 944 871 944 726
1 24 b5 =001 —-.022 .020 025 .946 .859  .945 .700
2 24 5 .000 —.020 .018 .023  .950 868 .947 721
0 2 .95 -—-.144 —  .266 - .883 919 927 978
1 2 95 -—-.118 - .268 — .888 924 933 979
2 2 95 —.055 - 267 - .913 928 942 979
0 4 95 —-.087 —.680 .124 465 .894 667 .903 .615
1 4 95 —-.063 —.696 .124 464 907 688 .933 627
2 4 95 -—-.016 -—.389 .123 426 936 815 .946 756
0 8 95 —.043 —.345 .064 176 .888 438 .902 155
1 8 95 —.025 —.398 .063 192 914 403 942 141
2 8 .9 .003 —.225 .063 156 .952 655 .948 .350
0

1

2

‘—’ indicates non-existence of the corresponding population moment.
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Table 2: Simulations for the AR(2) model, N = 100

bias STD 0135 CIE5
v T po PAL PGMM PAL PGMM  PAL PGMM  PAL PGMM
3 2 6 —.141 —  .267 —  .882 920  .930 977
2 =129 —  .748 —  .959 945 .940 983
1 2 6 —.141 —  .267 —  .881 916  .930 977
2 =124 —  .316 —  .909 920  .920 977
2 2 6 —.147 —  .266 —  .880 916 .927 977
2 —.130 —  .258 —  .890 918 922 978
3 4 6 —-.071 -.279 .123 280 .900 782 914 .698
2 =033 —.125 .098 133 .936 808 .932 763
1 4 6 —.001 -—-.043 .123 120 945 921 945 .895
2 —.002 —.023 .094 .089 .959 931 .950 925
2 4 .6 008 —.011 .082 064 .967 939  .946 .933
2 .003 —.007 .072 .064 .965 943 .949 .942
3 8 6 —.016 —-.102 .065 088 .941 773941 .536
2 —.009 —.053 .056 .056  .949 833 .943 .695
1 8 .6 .006 —.033 .063 .055  .965 897 948 .816
2 002 —.015 .052 .045  .963 929  .947 910
2 8 .6 .000 —.011 .037 037  .953 932 947 913
2 .000 —.003 .037 036  .944 943 .945 .942
3 24 .6 .000 —.028 .024 025 .956 795 .949 .607
2 .000 —.018 .024 .023  .950 869 .945 755
1 24 .6 .000 —.020 .022 023  .951 859  .950 732
2 .000 —.011 .022 022  .945 914  .946 .865
2 24 .6 .000 —.011 .020 .020 .950 913 951 .856
2 .000 —.003 .019 .019 .946 944 948 .939
3 2 1 —-.144 —  .265 —  .882 918  .934 977
-2 —.083 —  .640 —  .969 968  .945 .992
1 2 1 —.145 —  .265 —  .880 913 927 979
-2 —=.073 — 234 —  .928 921 931 978
2 2 1 —.147 —  .266 —  .881 918  .930 977
-2 =078 —  .165 —  .901 918  .919 .979
3 4 1 —-.070 —.235 .118 256 .902 808  .906 721
-2 .004 —.021 .087 .084  .966 934 .945 937
1 4 1 009 —.030 .115 098 .951 930  .947 908
—.2 .006 —.006 .081 078  .965 939 944 .943
2 4 1 .003 —.008 .059 .051 .966 940 .945 .936
-2 .001 —.003 .060 .059 .949 941 945 .943
3 8 1 —.009 —-.068 .059 072 .953 830  .945 .653
-2 002 —.015 .051 .045  .965 926 .945 911
1 8 1 .002 —.024 .051 .048  .966 916 .947 .856
-2 .001 —.001 .042 .041  .950 945  .944 .946
2 8 1 —-.001 -—.009 .033 034 .948 936 .946 922
-2 .001 .002  .033 034 944 945 .947 947
3 24 1 —.001 -—.018 .022 023 .950 872 .950 770
-2 .000 —.008 .022 022 .947 927 .946 .906
1 24 1 —-.001 -.015 .021 022 948 898  .948 818
-2 .000 —.004 .021 021 .947 940 .947 .935
2 24 1 —-.001 -.010 .019 .020 .950 920  .947 .879
-2 .000 .000 .019 019 .946 947 948 .949

‘—” indicates non-existence of the corresponding population moment.
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Table 3: Simulations for the AR(1) model with a covariate, N = 100

bias STD Clgs CI%,
v T Oy Oar fomm Oar fomm Oar fOoavmm Oar fomvwm
0 2 DS —.092 —.051 .266 —  .900 882 .943 .945
b —.027  —.015 .249 —  .965 943 945 .962
1 2 D .019 .001 .269 —  .939 910  .947 .945
b5 —.001 .000 .258 —  .968 950  .939 .949
2 2 D .030 002 182 —  .966 940 .949 .945
b5 —.010 —.002 .261 —  .949 941 942 941
0 4 . 014 —-.093 .141 119 957 845 .945 737
.5 004 —-.008 .127 124 959 941 947 .946
1 4 .5 012 —.069 .119 102 .968 883 .948 .802
5 —.001 010 .126 123 951 943 949 947
2 4 D 001 —.024 .063 062 .968 921 944 .890
D .000 .009 .129 128 .944 940  .941 941
0 8 b5 —.001 —.053 .051 .050 .965 813 .948 .H82
.5 .001 004 .074 075 .943 943 .946 .945
1 8 b5 —.001 —.047 .045 047  .959 837  .945 627
D .001 011 .075 076 .940 938 .943 937
2 8 b5 —.001 —.026 .035 .036  .950 884 .939 754
. .001 011  .075 075 .948 945 .949 .943
0 24 b5 —.001 —-.032 .020 020 .948 .646 .943 323
.5 .000 007 .038 .038  .950 945 .950 941
1 24 D .000 —-.031 .019 020 .946 652  .945 .343
D .000 .009 .038 .038  .950 942 952 937
2 24 .5 .000 —-.026 .017 018 .947 700 .948 416
.5 .000 .009 .038 038 .949 943 .952 935
0 2 .95 —.145 —-.904 .266 —  .879 .809  .930 .926
.05 —.007 —-.030 .234 — 974 977 947 991
1 2 95 —.124 —975 .266 —  .891 811 .937 923
.05 .004 046  .240 — 974 977 941 1989
2 2 .95 —.068 —.b34 .264 —  .910 842 948 .936
.05 .007 063 .246 — 972 968 .943 .980

0 4 95 -—-.086 —.641 .124 253 .892 267 906 123
05 —-.002 -.013 .121 115 .973 944 948 955
1 4 95 —-.067 —.595 .123 252 .906 312 .930 .148
.05 .004 041 122 114 .973 938 .948 943
2 4 95 —-.020 -.338 .122 207 939 561 .950 .346
.05 .003 056 128 120 971 916 .945 917
0 8 .95 —.043 —-.347 .064 .100  .888 036 .903 .001
.05 .000 —.006 .073 075 .970 943 948 .946
1 8 95 —-.026 -—-.306 .064 .098 911 067 .942 .004
.05 .003 028 .075 074 972 926 944 933
2 8 .95 003 —.155 .064 068 .947 317939 .056
.05 .000 032 .075 072 .967 928 951 918
0 24 95 -—-.007 -—-.116 .024 022 .920 .000 .943 .000
.05 .000 —.001 .038 .039 .970 946 .950 .949
1 24 .95 .000 —-.101 .024 021  .942 .000 .944 .000
.05 .000 .009 .038 039  .964 942 .950 942
2 24 .95 001 —.055 .017 015 .963 024 .946 .000
.05 .000 .010 .038 .038 .950 941 951 937

‘—’ indicates non-existence of the corresponding population moment.
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where they increase in T. When pq is increased to .95, paum has a large negative bias and its
standard deviation increases considerably. The AL estimator also deteriorates, but much less.
The confidence intervals based on pap, continue to provide good coverage, with the bootstrap
being slightly superior, while those based on pgyw have large coverage errors for all ¥, especially
when 71" > 8.

Turning to the AR(2) model (Table 2), the AL and GMM estimators perform well in terms
of bias (for the chosen values of pg), although there is a non-negligible bias when 7' = 2 and
also when T" = 4 and the initial observations are strong inlyers. As N = 100, the probability
that the adjusted likelihood has no local maximum in the relevant region is fairly large when
both 7" and ¢ are small. In most designs, pa;, has smaller standard deviation than pgyn, with
the difference decreasing in 7" and . For both estimators, the confidence intervals have very
reasonable coverage, with those based on par, being slightly more accurate in most designs.

The results for the AR(1) model with a covariate (Table 3) follow a similar pattern as in
the AR(1) model without covariates. The coefficient on the exogenous variable, [y, is generally
estimated with small bias by both estimators. When (pg, 3y) = (.5,.5), the biases and standard
deviations are fairly small and, here, the AL estimator does not uniformly dominate GMM.
When T' = 2, §GMM is less biased than 6y, while the opposite holds when T > 4. When (py, 3)
is changed to (.95,.05), the bias of B\GMM increases only moderately, but payvy is now heavily
biased. As a result, GMM-based confidence intervals for py tend to have poor coverage while
those for 3y have broadly correct coverage. Compared to GMM, the AL estimator is much
less biased and yields confidence intervals with approximately correct coverage, especially when
computed by bootstrapping.

Appendix

Proof of equations (1.3). For arbitrary py, ..., pr_1, D and its inverse are

1 o --- 0 1 o --- 0

D: _pl 7 Dilz qbl :
: 0 : L0
—pr—1 -+ —p1 1 Gr—1 - ¢ 1

where ¢1, ..., o1 are recursively obtained as ¢1 = p; and ¢; = pj—i-Zi;ll Orpj—k, ] =2,..,T—1.
Recursive substitution gives

' ' kfl'kp' pl p2 pj .
k1 42k 4tk =3

equivariant under translations of py and, hence, the bias, standard deviation, and coverage rates are independent
of Po-
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Putting ppy1 =+ = pr_1 = 0 gives ¢; = ;. =

Proof of equations (2.1). For j =1,...,p, let S; = {S € S|j € S}. Group terms by S € S;

to write
/b] )dp; = Z Bjs(p
Ses;
where —
N S o s
- 1) kek okt kylee(ky + 1) k)

and IC; s = {k € N?| for all ' # j, k; > 0iff j/ € S} D Kgs. A change of variable from k; + 1 to

k; gives
T—j-1

T—j5—t Uk —1)!
Bjs(p) = — Z T(T—J—l) Z 'ﬁpgﬂ
t=|S|—j keKgir k=t+j
where the lower limit in the first sum changed from 0 to |S| — j because, when t < |S| — 7, no
k € Kg satisfies 7'k =t + j. A further change of variable from ¢ + j to t gives B; s(p) = as(p),
with ag(p) as defined in (2.1). Therefore,

bip) =V, 3 as(p) = V,, 3 as(p) = V,alp)
5es; Ses

which completes the proof. O]

Proof of (2.4). In the parameterization n; = a;e™ ("= we have

T
1 2 1 / (T=1)a(p)\2
G,m) = —5logo® — oo ;(yit — 20 — me DAY 4 ¢
(T—1)a(p)
€ —1)a
Vo li(0,m:) = W(Zﬁ — Z;0 — me T D)y
and
B, Vo li(0,m;) = —o 22T=1al) By, Vo2 Li(0,m:) = 0,
Eﬁ,m‘vemgi (19, 772) = _J_QG(T_l)a(p) (nZ(T - 1)b(p)€(T_1) alp) + Eﬂ,m Z;L/T) .

The jth column of Y;_ is y; _; = 5;(&§ + Fe;) , so the jth element of Ey,, Y/ ¢ is

0
Eonyi_jt = VS;& = VD e ™0 fomy my =18 < p-1 ((336 + Xif3) ) '

Hence,



where m = (my, ..., m,, ' X;/T)" is free of n;. Consequently,

A1 By = — e~ (T=al) ( " >

and V,.(A;'B;) = 0. O
Proof that no orthogonalization exists when p > 1. In the original parameterization, if
1;(Y, ;) is i’s log-likelihood contribution, we have

Eﬂ,aivaiaili(ﬁa ai) = _0_27 Eﬂ,aiva2aili (19’ ai) = 07

Eﬂ,ai vHai lz(ﬁ: ai) = _0'72E19,ai Z:L/Ta

and so, by the preceeding proof,

AT'B, = — ( Eﬁ,aigﬂ/T ) o ( —(T — 1)(6(/))% +m ) |

Suppose some reparameterized fixed effect, say (;, is information orthogonal to . Then «; =
;i (¥, ¢;) must satisfy the differential equation Vyo; = A; ' B;, that is,

Va0 = (T =1)bj(p)a; —my, j=1,...,p, (A.1)
Ve, = —myy, ji=1,...,q, (A.2)
and V,2a; = 0. We show that these equations are inconsistent. Suppose ¢ > 0. Then (A.1)
implies ijﬁj,oz,- = —Vﬁj,mj, which is generally non-zero, while (A.2) implies ijﬁj, a; = 0, so

the equations are inconsistent. Suppose ¢ = 0. Then

I )
mj_L/Sj(ch>y?7 jzla"'7p7

and, because V, ,b;(p) =V, ,.a(p) = Vb5 (p), (A.1) will be inconsistent if V, ,m; # V,my
for some j, j/. Take j = p and j/ = p — 1. The first element of ) appears in m, and m,_; with
coefficients v, = 1+ p, tT:_Op 1y, and Vp—1 = Pp ZtT:_Op vy, respectively. Differentiating gives

T—p—1

T—p T—p T—p
Vpp—l% = Pp Z Vpp—l(lpt = Pp Z vpp()ph Vppfypfl = Pp Z vppﬁpt + Z Pt
t=1 t=1 k=0

t=0
using o = 1 and V¢ =V, ©iy1. The latter follows from differentiating ¢; and a change of

variable from k,_; — 1 to k,_;, giving
(E+ 1),
Vopatr= PRI
T'k=t—p+1 L p*
p

which is invariant under a unit shift of p and ¢. Therefore, V, v, # V, 7p—1, and (A.1) is
inconsistent. L
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Proof of Lemma 1. Let A= S5,F, and B =V, A. Then

b AL VB g WAMA  TtrAA —J/AA.
— _ cHn = ———— — =
T T(T-1) T T(T-1) 0 T-1 T(T -1
Hence, ViFB > 262 and ViFP > 262 — ¢y if and only if
2 (1 Ar)®
TtrAA" — JAA"L — ——— >
r VAN = T—1 - 0,
2 (¢ Au)?
TtrAA — JAA L — % —J/B. > 0.

The matrix A = Ar is

/
ap 0

where the subscript on p is omitted. By recursion, it can be deduced that

T2
AL = (T—5—1)p, /B = Z] T—57-1)p
=0
T2 j
trAA" = (T —j5—1)p%, L'AA’L—Z<Zp> ,
J=0 J=0 \k=0

yielding ViF? as stated in the lemma. Now let r > 0 and use the equalities just obtained to see
that if (A.4) holds for p = r, then (A.3) holds for p = r and (A.3) and (A.4) hold for p = —r,
with strict inequalities for 7" > 3. Hence, we only need to show that (A.4) holds for p > 0, with
equality if and only if "= 2 or p = 1. Write (A.4) as Q7 > 0. Because Q) = 0, to show that

(A.4) holds, it suffices to show that AQr > 0 for T > 2, where A (-), = (-)r 4 — ()p

. Write

AQr as
/ 2
AQr = A (TtrAA' —JJAAL — 2% - L'BL) )
B , (VA)T (VAL)] :
= {(tl"AA )T—H_QT'(T——}—E)}—'—{QT’(T——I;[)_A(L BL)T

n {TA (trAA), —

A (L'AA'L)T}



and denote the quantities in braces as 71, 75, and 73. Using T(T +1) /2 = S (T — i), we

have

o= (T—j)PQj—ﬁ(' (T—j)ﬂj>

Jj=0 j=0
9 T-17T-1 T-17T-1
= T —i) (T —j) p* — T —i)(T —j)p™
T(T+1)< (T =) (T =J)p (T =) (T =J)p )
=0 j=0 =0 7=0
2 :
= R
T+
where u = (T,T — 1 ) and
1 1 1 1 p pl=t
2 2 2 2 T
n_ P P P B p P p
T2 272 T2 pT=1 T P22

Consider the principal minors of R. Those of order 1 are 0; those of order 2 are
— oitJ o )
da(pﬁfﬁﬂ " >:¢ﬂ0ﬂ—ﬁf2Q 0<i<j<T,

given p > 0; and those of order greater than 2 are 0 because R is the sum of two matrices of rank
1 and, hence, rank (R) < 2. Therefore, R is positive semi-definite and 7 > 0. Furthermore,

T-1 T-1 T-1T7T-1 T-1T-1

= §=0 i=0 j=0 i=0 j=0
Use
T-2
AW&M:=§: (T—j)p " = Z} —Jj=Dp =) (G+1)/
Jj=1 Jj=0
9 T-2T-2
= — T—i—1D(+1)
=0 7=0
to write
T—2T-2 T—2T-2
72:d<2 <T—z'—1><T—j—1>pl+ﬂ—ZZ(T—z’—l)ml)pﬂ),
i=0 j=0 i=0 j=0

where d = (T 0 Note that 7, is a polynomial of degree 27" — 4 in p. When T"=2 or p = 1,
7o = 0. When p # 1,

1— T T T—1 T T
(L/AL)T = ) ) A (L/BL>T = P 2 2 P J
(1—p) (L—p)




and so )
d(T—-1-Tp+p")" 1-p" —Tp' 1+Tp

(1—p)" (1-p)°

Ty =

For T' > 2,

1
/l)iiri72(1—p)_2:ET(T—l)(T—Z)(TJrl)>O

and, therefore, 7, = (1 — p)* P (T, p), where P (T,p) is a polynomial of degree 2T — 6. If
all coefficients of P (T,p) = Z?Toﬁpjﬁ are positive, we conclude that 5 > 0. Write 7, =

23T04 gjp’, where g; is found as

|

Equating the coefficients of 7, and (1 — p)* P (T, p) gives pj, = Z?:o (k+1—7)q;. Toshow that
pr > 0 for 0 < k < 27T — 6, we only need to show that pp > 0 for k£ up to T'— 2 because for larger

{+D)GE-D+6(T-1)(T—-j-1)-3T(T -1}, j<T-2,
27 —j—1)(2T —j—2) (2T —j — 3), T-1<j.

olas ol

k, g > 0 and so py increases in k. For k up to min(7 — 2,27 — 6), we obtain

Pk =

%(k+1)(k+2)(k¢+3) ((T—1)(2T—k—2)+%(k—1)—T(T—1)>

and, hence, p, > 0 because either £k <T' — 2, implying 2T'— k —2>T,or k=T — 2 < 2T — 6,
implying 7' > 4 and k > 2. Therefore, 7, > 0. This establishes Q7 > 0, that is, (A.4). Recall
that Q)2 = 0 and note that p = 1 implies m; = 7 = 73 = 0 and, hence, Q7 = 0. Therefore,
Qr=0ifT=2o0rp=1. If T > 2 and p # 1, then AQr > 0 because 73 > 0 when 7" = 2 and
T9 > 0 when 7" > 2. Therefore, Q7 =0 only if ' =2 or p = 1. O]

Proof of Theorem 1. L,(p) having a local maximum or a flat inflection point at po is
equivalent to b(p) approaching S(p) from below as p approaches py from the left. We will write
this as b(p) T S(p) at po, and show that b(p) T S(p) on [p, p] at most once. From

2(p — pur) (365 = (p — pur)?)
(@G + (p—pur)?)’

it follows that S(p) is strictly concave on [p, pasz] and strictly convex on [pyr,p]. Because

V,H(p) =

o = p', b(p) and its first two derivatives are

H
M

bo) = - %pa
olp) = — - Mpt—17 i) = St -1-1)

2 TT(T - 1) T(T —1)



bp) — T-1-Tp+p" C()__T—2—Tp—|—TpT_1—(T—2)pT
7T Tro—ya-pr T T(T—1)(1—p)
2T —6-2Tp+T(T-1)p" 2> -2T (T =3)p" '+ (T =2)(T =3)p"

T(T—1)(1-p)

9

When T' < 3, b(p) is linear and so, given that S(p) is concave-convex on [p, ], b(p) T S(p) on
[p,p] at most once. Suppose T > 4. Then, b(p) is a polynomial of degree 2 or higher with
negative coefficients, so b(p) is negative, decreasing, and strictly concave, on R,. Further, by
Descartes’ rule of signs, ¢(p) has one zero on R_ when 7' is even and none when 7' is odd, and
d(p) has no zeros on R_ when 7' is even and one when 7" is odd. Suppose T is even. Then
c(—=1)=0and b(—1) = —ﬁ < 0, so b(p) is negative and strictly concave on R, and, hence,
its intersection with S(p) on [p, p] can only be on (parz, p|, where S(p) is strictly convex and is
approached from below by b(p) at most once. Now suppose T' is odd and T > 5. Then,
20T(T —2) (27 = 3T + 1)

d(—1) = —— >0, d(-3) =— T (T 1) <0,

so b(p) is strictly convex on (—oo, p,] and strictly concave on [p,,o0) for some p, € (—1,—3)
and decreases on R. Define p, by b(p,) = 0, that is, by T'(1 — p,) = 1 — pL, p, € R_. Since
T > 5, we have —2 < p, < —1. Thus, b(p) is negative and strictly convex on (p,, p,], with
-2 < p, < =1 < py < —3. Let R = [py, pu] N [par, ). If R is empty, then p, < pyp or
P < py; in either case, by the concavity-convexity of S(p), b(p) T S(p) on [p,p] at most once.
If R is non-empty, to show that b(p) T S(p) on [p,p] at most once, it suffices to show that
S(p) decreases faster than b(p) on R, i.e., H(p) < ¢(p) for p € R. We will show below that (i)
VB > Tt py < 0; (i) VoLB > 5 if pg > 0. By (i), pur = po + bo/Vo = po + 2by > —3 if
0 < po < 1 because b(0) = T, b(l) = —1, and b(p) is concave on [0,1]. Further, pyp > 0
if pg > 1 because, then, 70 > —— > —1. Hence, R is empty if pg > 0. Now suppose py < 0.
Define p,, by S(pw) = b(p, ),p [pML, pl; and pl, by S(pw) = b(0) = —7. /), € [psr,p). Then
pu = pain < ply — pur = (T = /TP =4Q). By (i), ¢ = Y58 < & < 775 < 3. Since H(p)

(T
increases on [pyr, p| and H(pl,) decreases in 1" and increases in e,

% 2 G 2
(G + (pu = par)’)’ @+ (o —parn)?)” 17
5/4 3 1

IA
|
_l’_
A
|
|

28]



and so, H(p) < —3 for p € [pmr, pw). On the other hand, T (1 — p,) = 1 — pI implies % =

1_,T-1
—£4— and, therefore,

—T + Tpr—t 1 1
5 = > ——.

C(pu) - -

So, ¢(p) > —3 for p € [pu, p] and H(p) < c(p) for p € R. We conclude that b(p) T S(p) on [p, ]
at most once, provided (i) and (ii) hold, which we now show. Write VFZ = ﬁ ija Y00,
where

vy = T(T—j—1)
@+ )T —j—1)—jG+1)+ 2 —T+1) (2 — T +2) Lgjor} }
voje1 = —{(27+2)(T—j—2)—j(i+1)+ (2 —T+2) (2 — T +3) Lgjr157} } »

using (37 _o pF)2 =300 (k+ 1) pF+377_ (j — k + 1) pi**. Clearly, vy;41 < 0. Further, vy; > 0
because

vor — (T-2-1)T=j-1)+G+1) H0<2)<T,

TN -5-1)(G+1) if T <2j <2T — 4.
Hence, V{“? decreases in py on R_ and (i) follows because ViF# = I=1 when py = 0. When
0 < pp < 1, a sufficient condition for VF8 > % is that d, > 0 for 0 < k < T — 2, where
dk = Z?:O <v2j + Ugj+1) — @ We have

ot 2 [ (T=2 =T == 1) = (T=2j=2) (2 +2) i2j+1<T.

A (2 —T+3)(T—j—1) if2j+1>T.

Only when 25 +1 < T'is it possible that vy; + v9j11 < 0, so it suffices to show that dj, > 0 for
2k +1 < T. We obtain, for 2k +1 < T,

T(T —1)

1
di =5 (k+1) (277 — 5Tk + 4k* — 8T + 13k + 10) — 5

Define f;, by d, = 3 (k+1) fi. Then, fo = (T —2) (T =5) >0, fi = 3 (37?% — 25T + 54) > 0,
and, for k > 2,

fr > =T?—5Tk+4k* — 8T + 13k + 10

Wl — W] ot

(T — 2k — 2) (5T — 6k — 16) + k (T —5) + 2 (T — 1)) > 0.

Hence, VOLB > % when 0 < py < 1. When pg > 1, it also holds that VOLB > % because then

by < b(1) = —3 and Vi# > 2b3. Therefore, (i) holds. O



Proof of Lemma 2. Use y; 1 = S1(0i + Foe;) to write Z; = (yi—1, X;) = (S1F0€i,0) + =4,
where Z; = (51&0i, X;) is independent of ;. Proceeding as above, we have

plimy_ & Yy ZIM Z; VEE 0
Vo= 2 g - + Vg,
o5 (T —1) 0 0
where .
ve = (Ve Vex ) _ Plimy ooy i, SME
T\ Ve W o3 (T —1)
is positive semi-definite and Vy y is positive definite by assumption. Therefore, Vee—Vex Vi x Ve >
0 and (V)™ = VOLB Ve — VgXV)Z)l(V)(g > VE)LB‘ -
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