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Abstract: We calculate the bias of the profile score for the autoregressive parameters ρ and covariate
slopes β in the linear model for N × T panel data with p lags of the dependent variable, exogenous
covariates, fixed effects, and unrestricted initial observations. The bias is a vector of multivariate
polynomials in ρ with coefficients that depend only on T . We center the profile score and, on integration,
obtain an adjusted profile likelihood. When p = 1, the adjusted profile likelihood coincides with
Lancaster’s (2002) marginal posterior. More generally, it is an integrated likelihood, in the sense of
Arellano and Bonhomme (2009), with fixed effects integrated out using a new data-independent prior.
It appears that ρ and β are identified as the unique point where the large N adjusted profile likelihood
reaches a local maximum (or a flat inflection point, as a limiting case) inside or on an ellipsoid centered
at the maximum likelihood estimator. We prove this when p = 1 and report numerical calculations
that support it when p > 1. The global maximum of the adjusted profile likelihood lies at infinity for
any N .

JEL classification: C13, C22, C23
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Introduction

Maximum likelihood estimates of dynamic linear fixed effect models from short panels are known

to be severely biased and inconsistent because of the incidental parameter problem first described

by Neyman and Scott (1948); see Nerlove (1967, 1971) and Nickell (1981), for example. The fail-

ure of maximum likelihood has shifted interest towards GMM-based estimation in these models.

An overview and discussion is provided by Arellano (2003, Chapter 6).

In an interesting paper, Lancaster (2002) argued for a return to likelihood-based inference

and suggested a Bayesian resolution of the incidental parameter problem in the non-stationary

AR(1) model.1 The fixed effects are first orthogonalized (in the information sense) to the

∗Address: K.U. Leuven, Department of Economics, Naamsestraat 69, B-3000 Leuven, Belgium. Tel. +32 16
326798; Fax +32 16 326796; E-mail: geert.dhaene@econ.kuleuven.be.

†Address: U.C. Louvain, Center for Operations Research and Econometrics, Voie du Roman Pays 34, B-1348
Louvain-la-Neuve, Belgium. Tel. +32 10 474329; E-mail: koen.jochmans@uclouvain.be.

1Throughout, non-stationarity will refer to initial observations being left unrestricted (and being conditioned
upon) and the possibility that the autoregressive parameter vector lies outside the stationary region. Likelihood-
based estimation of AR(1) models under restrictions on the initial observations has been considered by Kiefer
(1980), Cruddas, Reid, and Cox (1989), Hsiao, Pesaran, and Tahmiscioglu (2002), and Kruiniger (2008).
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common parameters and then integrated from the likelihood using uniform priors. The first

order condition for the posterior mode is unbiased. Unfortunately, orthogonalization is not

possible when the AR(1) model is augmented with covariates, as Lancaster showed, or when the

autoregressive order is greater than one, as we show. Lancaster noted, however, that incomplete

orthogonalization suffices in the AR(1) model with covariates. Arellano and Bonhomme (2009)

considered integrating possibly non-orthogonalized fixed effects from the likelihood using more

general priors, generalizing Lancaster (2002). Their characterization of bias-reducing priors in a

general class of models (including nonlinear ones) further shows that orthogonality is sufficient

but not necessary for being able to improve on maximum likelihood.

In this paper, we deal with the incidental parameter problem in the non-stationary AR(p)

model with covariates by adjusting the profile likelihood. Our approach is frequentist and

does not require orthogonalization or finding suitable priors. The adjustment is based on a

bias calculation, and subsequent centering, of the profile score, similar in spirit to McCullagh

and Tibshirani (1990).2 An intermediate result of our analysis is a simple unbiased estimating

equation for the AR(p) model. The adjustment term to the profile log-likelihood that results

from it is a multivariate polynomial in the autoregressive parameters with coefficients depending

only on the number of time periods. Thus, the adjustment to the profile likelihood is independent

of the data and the true parameter values.

When p = 1, the adjusted profile likelihood coincides with the marginal posterior obtained

by Lancaster (2002). Similarly, when p > 1, it coincides with the marginal posterior obtained by

integrating out suitably reparameterized fixed effects using a uniform prior. This view relates the

adjusted likelihood to Lancaster’s approach, although the transformed fixed effects are no longer

information orthogonal when p > 1 or when covariates are present. We show that the adjusted

profile likelihood is also an integrated likelihood in the sense of Arellano and Bonhomme (2009).

That is, for a specific choice of prior, the integrated likelihood coincides with the adjusted profile

likelihood. From the integrated likelihood point of view, what we find is a data-independent

prior for the AR(p) model that fully eliminates the bias from the first order condition. Such

a prior was thought not to exist when p > 1. We also show that centering the profile score is

equivalent to inverting a plug-in estimate of the probability limit of the within-group estimator,

complementing and generalizing Bun and Carree (2005).

Recently, Chamberlain and Moreira (2009) and Moreira (2009) suggested the use of in-

variance arguments to eliminate the fixed effects from the likelihood. It would be interesting

if a connection could be established between their invariant likelihood and the adjusted profile

likelihood, but we doubt that this is possible in the present model. In the simplest case, the

2Our bias calculation is related to Alvarez and Arellano’s (2004) in the case of time series homoskedasticity.
We calculate the bias of the profile score for the regression coefficients, while they calculated the bias of the
conditional score for all common parameters given maximum likelihood estimates of the fixed effects.
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AR(1) model without covariates, Moreira’s (2009) maximal invariant likelihood differs from the

adjusted profile likelihood.

Perhaps our main (and unexpected) finding is that one should look for a local maximizer of

the adjusted likelihood/marginal posterior because the global maximum is reached at infinity.

The reason for this is that the profile log-likelihood is log-quadratic in the parameters while the

adjustment term is a polynomial, with positive coefficients, in the autoregressive parameters.

Thus, for large enough autoregressive parameter values, the adjustment term dominates, and

the adjusted profile log-likelihood must be re-increasing. This finding complements observations

by Lancaster (2002), who noticed in Monte Carlo experiments that his marginal posterior was

sometimes re-increasing. This phenomenon is not just a small sample problem or an artifact

of an unbounded parameter space. The adjusted likelihood/marginal posterior has its global

maximum at infinity for any sample size, and it may already be re-increasing in the stationary

parameter region and reach its maximum at the boundary. Consequently, identification is not

achieved by global maximization, and estimation based solely on the first order condition is

incomplete.

To examine identification, we profile out the covariate slopes, which are unique given the

autoregressive parameters, so the analysis reduces to that of the model without covariates.

In the AR(1) model, we show that the autoregressive parameter is identified as the unique

local maximizer—or flat inflection point, as a limiting case—of the (large sample) adjusted profile

likelihood in the interval where the unadjusted profile score is downward sloping. The (large

sample) maximum likelihood estimate is the midpoint of this interval. Identification as a flat

inflection point is an instance of first order lack of identification, in Sargan’s (1983) terminology.

The leading case of interest is a unit root without deterministic trends, which is identified as a

flat inflection point regardless of the number of time periods, in line with the rank deficiency of

the expected Jacobian associated with the moment conditions of Ahn and Schmidt (1995); see

Alvarez and Arellano (2004). For the unit root case the flat inflection point property has been

noted independently by Ahn and Thomas (2006).

Identification in the AR(p) model via the adjusted likelihood is a harder problem. It appears

that the autoregressive parameter vector is identified as the unique local maximizer or flat

inflection point of the adjusted profile likelihood on a region bounded by a well-identified ellipsoid

that is centered at the maximum likelihood estimate. We have no proof of this conjecture, but

we report numerical calculations that support it.

The model parameters can be estimated by the local maximizer of the adjusted likelihood

over a plug-in estimate of the ellipsoid (or, when no local maximizer exists, by the minimizer of

the norm of the adjusted profile score). When the parameters are identifed as local maximizers,

the estimator converges at the parametric rate, and its limit distribution is normal and correctly

centered.
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In Section 1, we present the model and derive the bias of the profile score. The adjusted

likelihood is given in Section 2, where we also connect with Lancaster (2002), Arellano and

Bonhomme (2009), and Bun and Carree (2005). Global properties of the adjusted likelihood are

discussed in Section 3. In Section 4, we define the adjusted likelihood estimator and derive its

main asymptotic properties. Section 5 discusses some simulation results. Technical proofs are

collected in an appendix.

1 Bias of the profile score

1.1 Model and profile likelihood

Suppose we observe a scalar variable y, the first p ≥ 1 lags of y, and a q-vector of covariates x

(which may include lags), for N units i and T periods t. Assume that yit is generated by

yit = y′it−ρ+ x′itβ + αi + εit, i = 1, ..., N ; t = 1, ..., T, (1.1)

where yit− = (yit−1, ..., yit−p)
′ and the εit are identically distributed with mean 0 and variance

σ2 and are independent across i and t and also of xi′t′ for all i′ and t′. Let y0
i = (yi(1−p), ..., yi0)

′,

Xi = (xi1, ..., xiT )′, and εi = (εi1, ..., εiT )′. We make no assumptions about how (y0
i , αi, Xi), i =

1, ..., N , are generated, except for the assumption that the covariates are not linearly dependent.

The unknown parameters are θ = (ρ′, β′)′, σ2, and α1, ..., αN . Let θ0 and σ2
0 be the true values of

θ and σ2. Our interest lies in consistently estimating θ0 under large N and fixed T asymptotics.

We do not impose the stationarity condition on ρ0, i.e., we allow any ρ0 ∈ R
p.

Let zit = (y′it−, x
′
it)

′, Yi− = (yi1−, ..., yiT−)′, Zi = (Yi−, Xi), and yi = (yi1, ..., yiT )′, so that

Myi = MZiθ +Mεi where M = IT − T−1ιι′ and ι is a conformable vector of ones. We assume

that N−1
∑N

i=1 Z
′
iMZi and its probability limit as N → ∞ are nonsingular. The Gaussian quasi-

log-likelihood, conditional on y0
1, ..., y

0
N and normalized by the number of observations, is given

by

− 1

2NT

N∑

i=1

T∑

t=1

(
log σ2 +

1

σ2
(yit − z′itθ − αi)

2

)
+ c,

where, here and later, c is a non-essential constant. Replacing the nuisance parameters α1, ..., αN

and σ2 with their MLE for given θ gives the (normalized) profile log-likelihood,

l(θ) = −1

2
log

(
1

N

N∑

i=1

(yi − Ziθ)
′M(yi − Ziθ)

)
+ c.
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The profile score, s(θ) = ∇θl(θ), has elements

sρj
(θ) =

∑N
i=1(yi − Ziθ)

′Myi,−j∑N
i=1(yi − Ziθ)′M(yi − Ziθ)

, j = 1, ..., p,

sβj
(θ) =

∑N
i=1(yi − Ziθ)

′Mxi,j∑N
i=1(yi − Ziθ)′M(yi − Ziθ)

, j = 1, ..., q,

where yi,−j is the jth column of Yi− and xi,j is the jth column of Xi.

1.2 Bias of the profile score

It is well known that the profile score is asymptotically biased, that is,

plimN→∞s(θ0) 6= 0,

where, here and later, probability limits and expectations are taken conditionally, given (y0
i , αi, Xi),

i = 1, ..., N . Hence, θ0 6= arg maxθ plimN→∞l(θ) and the MLE, solving s(θ) = 0, is inconsistent.

The following calculation yields the bias of the profile score, either asymptotically or, when

εit ∼ N (0, σ2), for fixed N . Rewrite (1.1) as

Dyi = Cy0
i +Xiβ + ιαi + εi, i = 1, ..., N,

where D = D(ρ) and C = C(ρ) are the T × T and T × p matrices

D =




1 0 · · · · · · · · · · · · 0

−ρ1
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

−ρp
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0
0 · · · 0 −ρp · · · −ρ1 1




, C =




ρp · · · · · · · · · ρ1

0
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · · · · 0 ρp

0 · · · · · · · · · 0
...

. . . . . . . . .
...

0 · · · · · · · · · 0




.

Then
(
y0

i

yi

)
= ξi + Fεi, ξi =

(
y0

i

D−1 (Cy0
i +Xiβ + ιαi)

)
, F =

(
0

D−1

)
,

and yi,−j = Sj(ξi + Fεi), where Sj = (0T×(p−j) : IT : 0T×j), a selection matrix. Therefore,

plimN→∞sρj
(θ0) =

plimN→∞N
−1
∑N

i=1 ε
′
iMSj(ξ0i + F0εi)

plimN→∞N
−1
∑N

i=1 ε
′
iMεi

=
E(ε′iMSjF0εi)

E(ε′iMεi)

=
trMSjF0

T − 1
,

plimN→∞sβj
(θ0) = 0,
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where ξ0i and F0 are ξi and F , evaluated at θ0. If, in addition, εit ∼ N (0, σ2), then

E[sρj
(θ0)] = E

(∑N
i=1 ε

′
iMSj(ξ0i + F0εi)∑N

i=1 ε
′
iMεi

)
= E

(∑N
i=1 ε

′
iMSjF0Mεi∑N

i=1 ε
′
iMεi

)

=
E(ε′iMSjF0Mεi)

E(ε′iMεi)
=

trMSjF0

T − 1
, (1.2)

E[sβj
(θ0)] = 0,

by well-known properties of the normal distribution and the following geometric argument, which

goes back to Fisher (1930) and Geary (1933). Let v ∼ N (0, σ2Ig) and let Q be a g × h matrix

such that Q′Q = Ih, so QQ′ is idempotent. Write Ig−QQ′ as PP ′, where P ′P = Ig−h. Transform

v into m = P ′v, the radius r = (v′QQ′v)1/2, and the h − 1 polar angles a of Q′v. Then the

elements of (m′, r, a′)′ are independent. Therefore, for any g×g matrix W , if A = v′QQ′WQQ′v

and B = v′QQ′v, then the ratio A/B depends on v only through a and hence is independent

of B, which implies that E(A) = E(A/B)E(B) and E(A/B) = E(A)/E(B).3 The transition to

(1.2) now follows from applying this property to the ratio

∑N
i=1 ε

′
iMSjF0Mεi∑N

i=1 ε
′
iMεi

=
ε′(IN ⊗M)(IN ⊗ SjF0)(IN ⊗M)ε

ε′(IN ⊗M)ε

with v = ε = (ε′1, ..., ε
′
N)′, QQ′ = IN ⊗M , and W = IN ⊗ SjF0.

To summarize the results so far regarding the bias of the profile score, let

b(ρ) = (b1(ρ), ..., bp+q(ρ))
′, bj(ρ) =






trMSjF

T − 1
, j = 1, ..., p;

0, j = p+ 1, ..., p+ q.

Then plimN→∞s(θ0) = b(ρ0); if, in addition, εit ∼ N (0, σ2
0), then E[s(θ0)] = b(ρ0).

Two remarks are worth making. First, the bias of the profile score, b(ρ0), depends only on ρ0

and T . It is independent of the initial observations, the fixed effects, and the covariates (recall

that the expectations are conditioning on these). This is in sharp contrast with the bias of the

ML (the within-group) estimator, which was first derived by Nickell (1981) for the first order

autoregressive model under the assumption of stationarity of the initial observations. The bias

of the MLE depends on the initial observations, the fixed effects, and the covariate values; it is

smaller when the initial observations are more outlying relative to the stationary distributions.

Second, the Nickell bias concerns a probability limit as N → ∞ whereas here, when the errors

are normal, E[s(θ0)] = b(ρ0) is a finite sample result holding for fixed N and T and may therefore

be of independent interest in a time series setting.

3For a discussion and historical perspective on this device, see Conniffe and Spencer (2001).
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For k = (k1, ..., kp)
′ ∈ N

p, let ρk =
∏p

j=1 ρ
kj

j , and let τ = (1, ..., p)′. It is shown in the

Appendix that

D−1 =




1 0 · · · 0

ϕ1
. . . . . .

...
...

. . . . . . 0
ϕT−1 · · · ϕ1 1


 , ϕt =

∑

τ ′k=t

(ι′k)!

k1! · · · kp!
ρk, (1.3)

where the summation is over all k ∈ N
p satisfying τ ′k = t. Therefore, since

SjF =

(
0 0

D−1
j 0

)

where D−1
j is the leading (T − j) × (T − j) block of D−1, we obtain

bj(ρ) = −
ι′D−1

j ι

T (T − 1)
= −

T−j−1∑

t=0

T − j − t

T (T − 1)
ϕt, j = 1, ..., p,

where ϕ0 = 1. Hence, for j = 1, ..., p, bj(ρ) is a multivariate polynomial of degree T − j − 1 in

ρ1, ..., ρp with non-positive coefficients.

2 Adjusted profile likelihood

2.1 Centered profile score and adjusted profile likelihood

By construction, the centered (or adjusted) profile score,

sA(θ) = s(θ) − b(ρ),

is asymptotically unbiased, i.e., plimN→∞sA(θ0) = 0. In the Appendix, we show that the

differential equation ∇θa(ρ) = b(ρ) has a solution which, up to an arbitrary constant of in-

tegration, is

a(ρ) =
∑

S∈S

aS(ρ), aS(ρ) = −
T−1∑

t=|S|

T − t

T (T − 1)

∑

k∈KS :τ ′k=t

(ι′k − 1)!

k1! · · · kp!
ρkS

S , (2.1)

where S is the collection of the non-empty subsets of {1, ..., p}; |S| is the sum of the elements of

S; KS = {k ∈ N
p|kj > 0 iff j ∈ S}; and ρS = (ρj)j∈S and kS = (kj)j∈S are subvectors of ρ and k

determined by S.

We call the function

lA(θ) = l(θ) − a(ρ),

[7]



which has derivative ∇θlA(θ) = sA(θ), an adjusted profile log-likelihood. Every subvector ρS

of ρ contributes to lA(θ) an adjustment term, −aS(ρ), which takes the form of a multivariate

polynomial in ρj, j ∈ S, with positive coefficients that are independent of p.4,5

2.2 Connections with the literature

Lancaster (2002) studied the AR(1) model, with and without covariates, from a Bayesian per-

spective. It turns out that elA(θ) coincides, up to a non-essential normalization, with Lancaster’s

posterior density for θ, thereby giving it a frequentist interpretation. With p = 1, we have

ϕt = ρt and

b1(ρ) = −
T−1∑

t=1

T − t

T (T − 1)
ρt−1, a(ρ) = −

T−1∑

t=1

T − t

T (T − 1)t
ρt.

With independent uniform priors on the reparameterized effects ηi = αie
−(T−1)a(ρ) and on θ and

log σ2, Lancaster’s posterior density for ϑ = (θ′, σ2)′ is

f(ϑ|data) ∝ σ−N(T−1)−2 exp
(
−N(T − 1)a(ρ) −Q2(θ)σ−2/2

)
,

where Q2(θ) =
∑N

i=1(yi − Ziθ)
′M(yi − Ziθ) ∝ e−2l(θ). Integrating over σ2 gives f(θ|data) ∝

e−N(T−1)a(ρ)(Q2(θ))−N(T−1)/2 and, hence,

f(θ|data) ∝ eN(T−1)lA(θ). (2.2)

Thus, the posterior density and the adjusted likelihood for θ are equivalent as a basis for inference.

More generally, for any p and q, independent uniform priors on η1, ..., ηN , θ, log σ2, with ηi =

αie
−(T−1)a(ρ) and a(ρ) as in (2.1), yield a posterior f(θ|data) that is related to lA(θ) as in (2.2).

Lancaster’s choice of independent uniform priors on ηi has its foundation in the AR(1) model

without covariates, where ηi is information orthogonal to ϑ and the posterior density (hence also

elA(θ)) has an interpretation as a Cox and Reid (1987) approximate conditional likelihood (see also

Arellano, 2003, pp. 103–106). Information orthogonalization to a multidimensional parameter

is generally not possible (see, e.g., Severini, 2000, pp. 340–342). Here, orthogonalization is not

possible when the AR(1) model is augmented with covariates, as shown by Lancaster, or when

the autoregressive order, p, is greater than one, as shown in the Appendix. From a bias correction

perspective, however, information orthogonality is sufficient but not necessary. For any p and q,

sA(θ) = 0 is an unbiased estimating equation, and the bias calculation underlying it is immune

to the non-existence of orthogonalized fixed effects.

4The adjustment, −a(ρ), is robust to cross-sectional heteroskedasticity (σ2
i instead of σ2, say). We investi-

gated this in an older version of this paper (Dhaene and Jochmans, 2007), where we also derived the adjustment
for the AR(1) model when there are incidental time trends. In the latter case, the adjustment is still a polynomial.

5Unbalanced panel data can be accommodated by writing l(θ) as a weighted average of K balanced subpanel
profile log-likelihoods, say lk(θ), and adjusting each lk(θ). Missing data, with observations missing completely at
random, fit into this scheme by forming complete subseries from each incomplete time series.

[8]



Arellano and Bonhomme’s (2009) approach shares the integration step with Lancaster (2002)

but allows non-uniform priors on fixed effects or, equivalently, non-orthogonalized fixed effects.

Of interest are bias-reducing priors, i.e., weighting schemes that deliver an integrated likelihood

whose score equation has bias o(T−1) as opposed to the standard O(T−1). The linear dynamic

model (with general p, q) illustrates an interesting result of Arellano and Bonhomme that gener-

alizes the scope of uniform integration to situations where orthogonalization is impossible. For

a given prior πi(αi|ϑ), the (normalized) log integrated likelihood is

lI(ϑ) =
1

NT

N∑

i=1

log

∫
σ−T/2 exp

(
− 1

2σ2

T∑

t=1

(yit − z′itθ − αi)
2

)
πi(αi|ϑ) dαi + c.

Choosing πi(αi|ϑ) ∝ e−(T−1)a(ρ) yields

lI(ϑ) = −T − 1

2T
log σ2 − T − 1

T
a(ρ) − Q2(θ)

2NTσ2
+ c.

Profiling out σ2 gives σ2(θ) = arg maxσ2 lI(ϑ) = Q2(θ)/(N(T − 1)) and

lI(θ) = max
σ2

lI(ϑ) =
T − 1

T
lA(θ) + c,

so lI(θ) and lA(θ) are equivalent. Because a(ρ) does not depend on true parameter values,

πi(αi|ϑ) ∝ e−(T−1)a(ρ) is a data-independent bias-reducing (in fact, bias-eliminating) prior in the

sense of Arellano and Bonhomme.6 Now, πi(αi|ϑ) ∝ e−(T−1)a(ρ) is equivalent to πi(ηi|ϑ) ∝ 1, i.e.,

to a uniform prior on ηi = αie
−(T−1)a(ρ), leading to the same lI(ϑ). Arellano and Bonhomme

(2009, Eq. (11)) give a necessary and sufficient condition for a uniform prior to be bias-reducing.

With ℓi(ϑ, ηi) denoting i’s log-likelihood contribution in a parametrization ηi, the condition is

that

plimN→∞

1

N

N∑

i=1

∇ηi
(A−1

i Bi) = o(1) as T → ∞, (2.3)

where Ai = Ai(ϑ, ηi) = −Eϑ,ηi
∇ηiηi

ℓi(ϑ, ηi), Bi = Bi(ϑ, ηi) = Eϑ,ηi
∇ϑηi

ℓi(ϑ, ηi), and ∇ηi
(A−1

i Bi)

is evaluated at the true parameter values. When ηi and ϑ are information orthogonal, Bi = 0

and (2.3) holds. However, condition (2.3) is considerably weaker than parameter orthogonality.

In the present model, when p > 1 or q > 0, and thus no orthogonalization is possible, it follows

from our analysis and Arellano and Bonhomme (2009) that (2.3) must hold for ηi = αie
−(T−1)a(ρ).

Indeed, as we show in the Appendix,

∇ηi
(A−1

i Bi) = 0 (2.4)

6Our focus is on estimating θ0 but, noting the degrees-of-freedom correction in σ2(θ), the estimating equation
derived from lI(ϑ) is also unbiased for σ2

0 .
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because A−1
i Bi is free of ηi.

Finally, the centered profile score relates directly to Bun and Carree (2005). Observe that

s(θ) =
∑N

i=1 Z
′
iM(yi − Ziθ)/Q

2(θ). Further, Myi = MZiθ̂ + Mε̂i where θ̂ is the within-group

estimator, with residuals ε̂i satisfying
∑N

i=1 Z
′
iMε̂i = 0. Therefore, solving sA(θ) = 0 is equivalent

to solving

θ̂ − θ =

(
N∑

i=1

Z ′
iMZi

)−1

b(ρ)Q2(θ). (2.5)

In the AR(1) model, (2.5) corresponds to Bun and Carree’s (2005) proposal for bias-correcting

the within-group estimator.

3 Global properties of the adjusted profile likelihood when N is large

At this point it is tempting to anticipate that θ0 maximizes plimN→∞lA(θ). However, as the

following analysis shows, −a(ρ) dominates plimN→∞l(θ) as ‖ρ‖ → ∞ in almost all directions

and, as a result, plimN→∞lA(θ) is unbounded from above.

Let h(θ) = ∇θ′s(θ), c(ρ) = ∇θ′b(ρ), and

LA(θ) = L(θ) − a(ρ), L(θ) = plimN→∞l(θ),

SA(θ) = S(θ) − b(ρ), S(θ) = plimN→∞s(θ),

HA(θ) = H(θ) − c(ρ), H(θ) = plimN→∞h(θ).

Using M(yi − Ziθ) = −MZi(θ − θ0) +Mεi, we have

L(θ) = −1

2
log

(
plimN→∞

1

N

N∑

i=1

(ε′iMεi − 2(θ − θ0)
′Z ′

iMεi + (θ − θ0)
′Z ′

iMZi(θ − θ0))

)
+ c.

Let b0 = b(ρ0) = S(θ0) and note that

plimN→∞

1

N

N∑

i=1

Z ′
iMεi =

(
plimN→∞

1

N

N∑

i=1

ε′iMεi

)
b0 = σ2

0 (T − 1) b0.

Hence, defining V0 = V (θ0) by

plimN→∞

1

N

N∑

i=1

Z ′
iMZi =

(
plimN→∞

1

N

N∑

i=1

ε′iMεi

)
V0 = σ2

0 (T − 1)V0,

we can write

L(θ) = −1

2
log (1 − 2(θ − θ0)

′b0 + (θ − θ0)
′V0(θ − θ0)) + c

by absorbing the term −1
2
log (σ2

0 (T − 1)) into c. As N → ∞, the ML estimator of θ converges in

probability to θML = arg maxθ L(θ) = θ0+V
−1
0 b0 and has asymptotic bias V −1

0 b0. This expression

[10]



generalizes the bias calculations in Nickell (1981). Note that (θ0−θML)′V0(θ0−θML) = b′0V
−1
0 b0.

Furthermore,

L(θ) = −1

2
log
(
1 − b′0V

−1
0 b0 + (θ − θML)′V0(θ − θML)

)
+ c,

S(θ) = − V0(θ − θML)

1 − b′0V
−1
0 b0 + (θ − θML)′V0(θ − θML)

,

H(θ) = − V0

1 − b′0V
−1
0 b0 + (θ − θML)′V0(θ − θML)

+ 2S(θ)S(θ)′.

Note that L(·) and H(·) are even and S(·) is odd about θML and that H(θ0) = 2b0b
′
0 − V0

and HA(θ0) = 2b0b
′
0 − V0 − c0, where c0 = c(ρ0). Since L(θ) is log-quadratic in θ and a(ρ) is

a multivariate polynomial with negative coefficients, LA(θ) = L(θ) − a(ρ) is unbounded from

above. For example, if we put ρ = kr with r in the positive orthant of R
p and let k → ∞,

then the term −a(ρ) dominates and LA(θ) → ∞.7 Hence, θ0 6= arg maxθ LA(θ) and θ0 has to

be identified as a functional of LA(θ) other than its maximizer. Because SA(θ0) = 0, we need

to select θ0 from the set of stationary points of LA(θ), that is, from the set of zeros of SA(θ).

In general, this set is not a singleton. Indeed, whenever θ0 is a local maximizer of LA(θ) (which

will often be the case), LA(θ), being smooth and unbounded, must also have at least one local

minimum. A moment-based estimation strategy based solely on solving sA(θ) = 0 is, therefore,

incomplete.

3.1 AR(1) without covariates

Consider the AR(1) model without covariates, i.e., p = 1 and q = 0. Let ζ2
0 = (V0 − b20) /V

2
0 .

Then,

L(ρ) = −1

2
log
(
ζ2
0 + (ρ− ρML)2

)
+ c,

S(ρ) = − ρ− ρML

ζ2
0 + (ρ− ρML)2

, H(ρ) = − ζ2
0 − (ρ− ρML)2

(ζ2
0 + (ρ− ρML)2)

2 ,

by absorbing −1
2
log V0 into c. Note that ζ2

0 = −1/H(ρML). Recall that S(ρ) is odd about

ρML = ρ0 + b0/V0. The zeros of H(ρ) are ρ = ρML − ζ0 and ρ = ρML + ζ0, so S(ρ) decreases on

[ρ, ρ] and increases elsewhere. Note that all of ρ, ρ, ρML, and ζ0 are identified by S(·). Further,

ρML and ζ0 act as location and scale parameters of S(·). For any given ρ0, ρML and ζ0 are

determined by V0. As V0 increases, |b0/V0| and ζ0 decrease, that is, the bias of ρML decreases in

absolute value, the length of [ρ, ρ] shrinks, and S(ρ) becomes steeper on (ρ, ρ).

7It has already been observed that, in finite samples, a bias-adjusted likelihood may be re-increasing. More-
over, Lancaster (2002) presented graphs of a re-increasing marginal posterior log-density for ρ in an AR(1) model
with time dummies. Arellano and Bonhomme (2009), using a slightly different prior, presented a graph of a
re-increasing integrated likelihood for an AR(1) model. Because l(θ) is log-quadratic for any N ≥ 1 and a(ρ)
does not depend on the data, lA(θ) is re-increasing regardless of the sample size.

[11]



There is a sharp lower bound on V0. From yi,−1 = S1(ξ0i + F0εi) and the independence

between ξ0i and εi, we obtain

V0 =
plimN→∞

1
N

∑N
i=1 y

′
i,−1Myi,−1

σ2
0 (T − 1)

= V LB
0 + Vξξ,

where

V LB
0 =

trF ′
0S

′
1MS1F0

T − 1
, Vξξ =

plimN→∞
1
N

∑N
i=1 ξ

′
0iS

′
1MS1ξ0i

σ2
0 (T − 1)

.

So V0 ≥ V LB
0 and this lower bound implies an upper bound on |b0/V0| and on the length of [ρ, ρ],

and a lower bound on the steepness of S(ρ) on (ρ, ρ).

Lemma 1. V LB
0 is given by

V LB
0 =

1

T − 1




T−2∑

j=0

(T − j − 1) ρ2j
0 − 1

T

T−2∑

j=0

(
j∑

k=0

ρk
0

)2




and satisfies (i) V LB
0 ≥ 2b20; (ii) V LB

0 ≥ 2b20 − c0 with equality if and only if T = 2 or ρ0 = 1.

By Lemma 1, H(ρ0) = 2b20 − V0 ≤ 0 and, hence,

(ρ− ρML)2 =
V0 − b20
V 2

0

≥ b20
V 2

0

= (ρ0 − ρML)2.

Therefore, ρ0 ∈ [ρ, ρ]. Since S(ρ) is a rational function that vanishes at ±∞ and b(ρ) is a

polynomial, SA(ρ) has finitely many zeros. Thus, because SA(ρ0) = 0 and, by Lemma 1,

HA(ρ0) = 2b20 − V0 − c0 ≤ 0, it follows that LA(ρ) has a local maximum or a flat inflection

point at ρ0. Our main result for the AR(1) model without covariates is the uniqueness of such

a point in [ρ, ρ], thereby identifying ρ0 as a functional of LA(ρ).

Theorem 1. ρ0 is the unique point in [ρ, ρ] where LA(ρ) has a local maximum or a flat inflection

point.

Equivalently, ρ0 is the unique point in [ρ, ρ] where b(ρ) approaches S(ρ) from below.

LA(ρ) has a flat inflection point at ρ0 if and only if V0 = V LB
0 = 2b20 − c0. The latter equality

holds if and only if T = 2 or ρ0 = 1. The former holds if and only if Vξξ = 0, which requires

MS1ξ0i to be negligibly small for almost all i. The elements of S1ξ0i are ρj−1
0 y0

i + αi

∑j−1
k=1 ρ

k−1
0 ,

j = 1, ..., T , so MS1ξ0i = 0 if and only if y0
i (1 − ρ0) = αi. Thus, when ρ0 = 1 and there are

no deterministic trends, i.e., αi = 0, LA(ρ) has a flat inflection point at ρ0 for any T . When

ρ0 6= 1, V0 = V LB
0 = 2b20 − c0 only when T = 2 and a very strong condition holds on the initial

observations and the fixed effects, which is unlikely to hold in situations where a fixed effect

modeling approach is called for. Thus, when ρ0 6= 1, except in quite special circumstances, ρ0 is

[12]



the unique point in [ρ, ρ] where LA(ρ) attains a strict local maximum. Note that, when ρ0 is a

local maximizer of LA(ρ), it need not be the global maximizer on [ρ, ρ], which may instead be

ρ. To see why this may happen, interpret the situation where LA(ρ) has a flat inflection point

at ρ0 as a limiting case of the property that LA(ρ) is re-increasing.

Figure 1 illustrates how ρ0 is identified by LA(ρ) for two cases, each with T = 4. The

figures on the left correspond to the case ρ0 = .5 with V0 = V LB
0 + Vξξ and Vξξ corresponding

to stationary initial observations. Those on the right correspond to the unit root case without

deterministic trends, i.e., ρ0 = 1 and V0 = V LB
0 . In each case, the bottom figures show S(ρ)

(solid line) and b(ρ) (dashed line); the top figures show L(ρ) (solid line), −a(ρ) (dashed line),

and LA(ρ) = L(ρ)− a(ρ) (thick line). In all the figures, vertical lines indicate ρ, ρ0, and ρ, from

left to right. In the case of ρ0 = .5, ρ0 is the unique local maximizer of LA(ρ) on [ρ, ρ]. Note

that there is a second solution of SA(ρ) = 0 on [ρ, ρ], which corresponds to a local minimum of

LA(ρ). In the unit root case, ρ0 is the unique flat inflection point of LA(ρ) on [ρ, ρ].

Figure 1: Identification
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Left: ρ0 = 0.5. Right: ρ0 = 1. Bottom: S(ρ) (solid), b(ρ) (dashed). Top: L(ρ)
(solid), −a(ρ) (dashed), LA(ρ) (thick). Vertical lines at ρ, ρ0, and ρ.

Note, finally, that the asymptotic bias of the MLE has the same sign as b0 because ρML =
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ρ0 + b0/V0. The proof of Theorem 1, as a by-product, shows that if T is even, then b0 < 0; and,

if T is odd, then b(ρ) decreases and has a unique zero at some point ρu ∈ [−2,−1), so b0 has the

same sign as ρu − ρ0.

3.2 AR(1) with covariates

In the AR(1) model with covariates, profiling out β yields a profile likelihood of ρ with essentially

the same properties as in the AR(1) model without covariates. Let β(ρ) = arg maxβ LA(ρ, β).

Clearly, β(ρ) = arg maxβ L(ρ, β) = arg minβ(θ− θML)′V0(θ− θML). Partition V0, V
−1
0 , and b0 as

V0 =

(
V0ρρ V0ρβ

V0βρ V0ββ

)
, V −1

0 =

(
V ρρ

0 V ρβ
0

V βρ
0 V ββ

0

)
, b0 =

(
b0ρ

0

)
,

where V0ρρ, V
ρρ
0 , and b0ρ are scalars. Using V ρρ

0 = (V0ρρ − V0ρβV
−1
0ββV0βρ)

−1, we have

V0ββ (β(ρ) − βML) = −V0βρ(ρ− ρML),

min
β

(θ − θML)′V0(θ − θML) = (ρ− ρML)2/V ρρ
0 ,

1 − b′0V
−1
0 b0 = 1 − b20ρV

ρρ
0 .

The first of these equations, together with V0(θ0 − θML) = −b0, yields β(ρ0) = β0, so β0 is

identified whenever ρ0 is. Profiling out β from L(ρ, β) gives the limiting profile log-likelihood of

ρ as

L(ρ) = L(ρ, β(ρ)) = −1

2
log
(
ζ2
0 + (ρ− ρML)2

)
+ c

(slightly abusing notation), where ζ2
0 is redefined as ζ2

0 =
(
1 − b20ρV

ρρ
0

)
V ρρ

0 and 1
2
log V ρρ

0 is

absorbed into c.

Lemma 2. (V ρρ
0 )−1 ≥ V LB

0 , with V LB
0 as defined earlier and given in Lemma 1.

In view of Lemma 2, we can invoke the result for the AR(1) model without covariates. If

ρ = ρML − ζ0 and ρ = ρML + ζ0 with ζ0 redefined as indicated, then ρ0 is the unique point in

[ρ, ρ] where LA(ρ) = L(ρ) − a(ρ) has a local maximum or a flat inflection point. By the proof

of Lemma 2, the conditions under which ρ0 is a flat inflection point of LA(ρ) are the same as

in the AR(1) model without covariates. Note, also, that the presence of covariates does not

affect the sign of the asymptotic bias of the MLE of ρ. Furthermore, it follows from the proof of

Lemma 2 that the inclusion of covariates in the model cannot increase V ρρ
0 , so the magnitude of

ρML − ρ0 = V ρρ
0 b0ρ can only decrease relative to the model without covariates. This generalizes

an observation of Phillips and Sul (2007) in the stationary AR(1) model, and contrasts with

Nickell (1981, p. 1424).
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3.3 AR(p)

Consider first the AR(p) model with p > 1 and without covariates, i.e., q = 0. Then

L(ρ) = −1

2
log (1 + (ρ− ρML)′W0(ρ− ρML)) + c, W0 =

V0

1 − b′0V
−1
0 b0

,

S(ρ) = − W0(ρ− ρML)

1 + (ρ− ρML)′W0(ρ− ρML)
,

H(ρ) = − W0

1 + (ρ− ρML)′W0(ρ− ρML)
+ 2S(ρ)S(ρ)′,

where −1
2
log(1− b′0V

−1
0 b0) is absorbed into c. Note that W0 = −H(ρML), so W0 is identified by

L(·).
As in the AR(1) case, there is a lower bound on V0. Recalling that Yi− = (yi,−1, ..., yi,−p) and

yi,−j = Sj(ξ0i + F0εi), where ξ0i and εi are independent, we have

V0 =
plimN→∞

1
N

∑N
i=1 Y

′
i−MYi−

σ2
0 (T − 1)

= V LB
0 + Vξξ

where V LB
0 and Vξξ have elements

(
V LB

0

)
jk

=
trF ′

0S
′
jMSkF0

T − 1
, (Vξξ)jk =

plimN→∞
1
N

∑N
i=1 ξ

′
0iS

′
jMSkξ0i

σ2
0 (T − 1)

,

for 1 ≤ j, k ≤ p. Hence, V0 − V LB
0 is positive semi-definite, which we write as V0 ≥ V LB

0 . When

p ≥ T , while V0 is nonsingular by assumption, rank(V LB
0 ) ≤ T − 1 because SjF0 = 0 for j ≥ T ,

which implies that
(
V LB

0

)
jk

= 0 whenever j ≥ T or k ≥ T . Thus, when p ≥ T , although V0 can

be arbitrarily close to V LB
0 , V0 6= V LB

0 . Further, when p ≥ T , bj(ρ) = 0 for j ≥ T because the

sum defining bj(ρ) is empty, and cij(ρ) = 0 for i+ j ≥ T . Hence, when p ≥ T , V LB
0 − 2b0b

′
0 and

V LB
0 − 2b0b

′
0 + c0 have only zeros beyond their leading (T − 1) × (T − 1) blocks.

A proof of generalizations of (i)–(ii) of Lemma 1 and Theorem 1 to the AR(p) model would

be desirable but is more difficult than in the AR(1) case and our attempts failed.8 Numerical

computations, however, suggest that

V LB
0 ≥ 2b0b

′
0, V LB

0 ≥ 2b0b
′
0 − c0, (3.1)

rank(V LB
0 − 2b0b

′
0 + c0) =

{
min(p, T − 2) if

∑p
j=1 ρ0j 6= 1 or T < p+ 2,

p− 1 else.
(3.2)

8A major difficulty is the rapidly increasing complexity of ϕt as p increases. For example, ϕt =∑⌊t/2⌋
k=0

(t−k)!
(t−2k)!k!ρ

t−2k
1 ρk

2 when p = 2. Compare this with ϕt = ρt
1 when p = 1 and note that V LB

0 , b0, and

c0 depend in non-trivial ways on the ϕt’s.
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Specifically, we computed the eigenvalues of V LB
0 − 2b0b

′
0 and V LB

0 − 2b0b
′
0 + c0 for p = 2, 3, 4;

T = 2, ..., 7; and all ρ0 in a subset of R
p chosen as follows. For p = 4, we put a square grid on

the Cartesian product of the two triangles defined by

−1 ≤ γ2 ≤ 1, γ2 − 1 ≤ γ1 ≤ 1 − γ2,
−1 ≤ γ4 ≤ 1, γ4 − 1 ≤ γ3 ≤ 1 − γ4,

(3.3)

which is the stationary region of the lag polynomial γ(L) = (1 − γ1L− γ2L
2)(1 − γ3L− γ4L

2).

For each point on this grid and for each of the values m = 1, 2, 4, ρ0 was calculated by equating

the coefficients on both sides of m − ρ01L − ρ02L
2 − ρ03L

3 − ρ04L
4 = mγ(L). For m = 1, the

stationary region is covered, while for larger m a larger region is covered, though less densely.

In addition to (3.3) we set γ4 = 0 for p = 3, and γ3 = γ4 = 0 for p = 2. The grid points on the

region defined by (3.3) were spaced at intervals of .002 when p = 2, .02 when p = 3, and .1 when

p = 4. We found that, uniformly over this numerical design, the eigenvalues of V LB
0 − 2b0b

′
0 and

V LB
0 − 2b0b

′
0 + c0 are non-negative and the rank of V LB

0 − 2b0b
′
0 + c0 is as given by (3.2). These

findings, while obviously not a proof, support (3.1) and (3.2), and we shall proceed under the

assumption that (3.1) and (3.2) hold.9

Because V0 ≥ V LB
0 , (3.1) implies that V0 ≥ 2b0b

′
0 and that HA(ρ0) = 2b0b

′
0 − V0 − c0 ≤ 0.

Pre- and postmultiplication of V0 ≥ 2b0b
′
0 by b′0V

−1
0 and V −1

0 b0 gives b′0V
−1
0 b0 ≤ 1

2
≤ 1− b′0V

−1
0 b0.

Recalling that (ρ0 − ρML)′V0(ρ0 − ρML) = b′0V
−1
0 b0, we see that

(ρ0 − ρML)′W0(ρ0 − ρML) ≤ 1.

Therefore, if (3.1) and (3.2) hold, ρ0 is a point in the ellipsoidal disk E = {ρ : (ρ− ρML)′W0(ρ−
ρML) ≤ 1} where LA(ρ) has a local maximum or a flat inflection point. We approached the

question of uniqueness of such a point numerically. For the same numerical design as above and

with V0 = V LB
0 , we applied the Newton-Raphson algorithm to find a stationary point of LA(ρ),

starting at ρML and using the Moore-Penrose inverse of HA(ρ) whenever HA(ρ) is singular.

Uniformly over this design, the algorithm was found to converge to ρ0, thus supporting the

conjecture that ρ0 is the unique point in E where LA(ρ) has a local maximum or a flat inflection

point.10

In the AR(p) model with covariates, β can be profiled out of LA(θ) just as in the AR(1)

model. Here, again, β0 = β(ρ0). Lemma 2 continues to hold for p > 1. Hence, if ρ0 is identified

in the model without covariates in the way we suggested, then it is identified in the model with

covariates in exactly the same way, now with E defined through W0 = (1 − b′0ρV
ρρ
0 b0ρ)

−1V0ρρ, in

obvious notation.
9The same computations but with T = 8, 9, 10 further supported the conclusions. Here, however, when m = 4

and p = 3, 4 the computations are numerically less stable because the polynomial terms may be extremely large
and their sum numerically imprecise. It is natural to expect, however, that (3.1) and (3.2) hold for all T if they
hold for the small values of T considered.

10Computations with T = 8, 9, 10 gave the same results except in certain cases with m = 4 and p = 3, 4 where
the algorithm failed to converge because the rank of HA(ρ) was underestimated.
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4 Estimation

For a given ρ, we define

β̂AL(ρ) = arg max
β

lA(ρ, β) =

(
N∑

i=1

X ′
iMXi

)−1 N∑

i=1

X ′
iM (yi − Yi−ρ)

as the adjusted likelihood (AL) estimator of β0. (Note that β̂AL(ρ) coincides with the MLE of β0

for a given ρ.) The unadjusted and adjusted profile log-likelihoods for ρ are l(ρ) = l(ρ, β̂AL(ρ))

and lA(ρ) = l(ρ)−a(ρ). Let s(ρ), sA(ρ), h(ρ), and hA(ρ) be the corresponding profile scores and

Hessians. Let Ŵ = −h(ρ̂ML), where ρ̂ML is the MLE of ρ0, and let Ê = {ρ : (ρ − ρ̂ML)′Ŵ (ρ −
ρ̂ML) ≤ 1}. We define the AL estimator of ρ0 as

ρ̂AL = arg min
ρ∈bE

s′A(ρ)sA(ρ) s.t. hA(ρ) ≤ 0,

that is, as the strict local maximizer of lA(ρ) on the interior of Ê if such a maximizer exists

and otherwise as the minimizer of the norm of sA(ρ) on Ê . The AL estimator of β0, then, is

β̂AL = β̂AL(ρ̂AL).

Let N → ∞. Then, lA(ρ) converges to LA(ρ) uniformly in ρ since −a(ρ) is nonstochastic

and supρ |l(ρ) − L(ρ)| = op(1). Further, ρ̂ML
p→ ρML, Ŵ

p→ −H(ρML) = W0, and Ê p→ E
in the sense that Pr[ρ ∈ Ê ] → 1{ρ∈E} for any ρ not on the boundary of E . It follows that

θ̂AL = (ρ̂′AL, β̂
′
AL)′

p→ θ0. When HA(θ0) is nonsingular, by the usual argument involving a Taylor

series expansion of sA(θ) around θ0,

√
N(θ̂AL − θ0)

d→ N (0,Ω) , Ω = HA(θ0)
−1(V0 − b0b

′
0)HA(θ0)

−1. (4.1)

The asymptotic variance can be estimated in the usual way. We have not investigated the limit

distribution of θ̂AL in the situation where HA(θ0) is singular. Presumably this could be done

along the lines of Rotnitzky, Cox, Bottai, and Robins (2000).

5 Simulations

We used simulations to examine the finite sample properties of the AL estimator in AR(1) and

AR(2) models without covariates and in an AR(1) model with a single stationary and exogenous

regressor. We compared the AL with the one-step GMM estimator of Arellano and Bond (1991),

which leaves the initial observations unrestricted.11 In all the designs, we set N = 100, generated

11For the GMM estimator we used all the moments that follow from the exogeneity of xit,
i.e. E [xij(εit − εit−1)] = 0, j = 1, ..., T ; t = 2, ..., T ; and E [yit−j(εit − εit−1)] = 0, j = 2, ..., t; t = 2, ..., T . It
should be noted that the GMM estimator remains consistent under heteroskedasticity while the bias calculation
underlying the AL estimator requires time series homoskedasticity.
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εit and αi as N (0, 1) variates,12 and chose ρ0 in the interior of the stationary region, which implies

that yit is eventually stationary as t→ ∞. We varied the information content of the data through

the initial observations. Let µi = limt→∞ E(yit−|αi) and Σi = limt→∞ Var(yit−|αi), so, if y0
i was

drawn from the stationary distribution, we would just have µi = E(y0
i |αi) and Σi = Var(y0

i |αi).

Let GiG
′
i = Σi be the Cholesky factorization of Σi. We set y0

i = µi +ψGiι for some chosen scalar

ψ ≥ 0, which is a p-variate version of setting the initial observations ψ standard deviations away

from the stationary mean. So ψ controls the outlyingness of the initial observations relative to

the stationary distributions. All else being equal, V0 increases in ψ and V0 → V LB
0 as ψ → 0,

so the data carry less information as ψ gets smaller. The effect of strong inlying observations

(small ψ) on the informativeness of the data is stronger when T is small because it takes time

to revert to the stationary distribution. The effect of ψ is vanishingly small as ρ0 moves to the

boundary of the stationary region.13 We set ψ = 0, 1, 2 in the AR(1) models and ψ = .3, 1, 2 in

the AR(2) model.14

In the models without a covariate, µi and Σi follow immediately from αi and ρ0. In the

AR(1) model with a covariate, xit was generated by a stationary AR(1), xit = δαi + γxit−1 + uit

with uit ∼ N (0, σ2
u) and xi0 drawn from the stationary distribution. Here,

µi =
αi

1 − ρ0

(
1 +

δβ0

1 − γ

)
, Σi =

1

1 − ρ2
0

(
1 +

β2
0

1 − γ2

(
1 + γρ0

1 − γρ0

)
σ2

u

)
.

We set δ = γ = σu = .5 and β0 = 1 − ρ0, inducing dependence between the covariate and the

fixed effect, and keeping the long-run multiplier of x on y constant at unity across designs, as in

Kiviet (1995).

We varied ψ, T , and ρ0. Tables 1–3 present Monte Carlo estimates, based on 10,000 repli-

cations at each design point, of the bias and standard deviation (STD) of the AL and GMM

estimators and of the coverage rates of the asymptotic and bootstrap 95% confidence intervals

(CIA.95 and CIB.95).
15

In the AR(1) model (Table 1), for all designs ρ̂AL has less bias and less standard deviation

than ρ̂GMM. When ρ0 = .5, the AL estimator is virtually unbiased except when ψ = 0 and

T = 2, in which case ρ0 is weakly identified.16 Both estimators deliver 95% confidence intervals

with broadly correct coverage, although the coverage errors are somewhat larger for ρ̂GMM,

12The AL estimator is invariant with respect to the fixed effects, but the GMM estimator is not.
13In the AR(1) model without covariates, for example, S1ξ0i = g0 (yi0 − µi) + ιµi with g0 = (1, ρ0, ..., ρ

T−1
0 )′,

hence Vξξ =
g′

0
Mg0

(1−ρ2

0
)(T−1)

ψ2. As ρ0 ↑ 1, Vξξ → 0 for any fixed ψ.
14In the AR(2) model, when ψ = 0 the weighting matrix used by GMM is singular for all T and the likelihood

function does not depend on ρ2 for T = 2. Therefore, we set ψ > 0 although it is possible to work with ψ = 0
for T ≥ 3 by dropping the earliest observation from the set of instruments.

15To compute CIB.95, we used the bootstrap percentile method with 39 bootstrap samples formed by randomly
drawing N units i with replacement from {1, ..., N}. A small number of bootstrap draws suffices for studying
coverage rates via simulation.

16When ψ = 0 and T = 2, l(ρ) depends on ρ0 and ρ only through ρ0 − ρ, so the distribution of ρ̂AL is
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Table 1: Simulations for the AR(1) model, N = 100

bias STD CIA.95 CIB.95
ψ T ρ0 ρ̂AL ρ̂GMM ρ̂AL ρ̂GMM ρ̂AL ρ̂GMM ρ̂AL ρ̂GMM

0 2 .5 −.146 − .267 − .880 .916 .924 .976
1 2 .5 .032 − .269 − .944 .934 .944 .965
2 2 .5 .029 − .173 − .967 .941 .942 .944
0 4 .5 .006 −.043 .142 .150 .954 .921 .947 .911
1 4 .5 .014 −.057 .124 .163 .965 .927 .944 .906
2 4 .5 .002 −.015 .064 .083 .968 .940 .943 .934
0 8 .5 .000 −.028 .056 .058 .966 .914 .946 .860
1 8 .5 .000 −.039 .048 .070 .960 .906 .944 .842
2 8 .5 −.001 −.022 .036 .052 .953 .925 .946 .887
0 24 .5 .000 −.018 .021 .022 .944 .871 .944 .726
1 24 .5 −.001 −.022 .020 .025 .946 .859 .945 .700
2 24 .5 .000 −.020 .018 .023 .950 .868 .947 .721
0 2 .95 −.144 − .266 − .883 .919 .927 .978
1 2 .95 −.118 − .268 − .888 .924 .933 .979
2 2 .95 −.055 − .267 − .913 .928 .942 .979
0 4 .95 −.087 −.680 .124 .465 .894 .667 .903 .615
1 4 .95 −.063 −.696 .124 .464 .907 .688 .933 .627
2 4 .95 −.016 −.389 .123 .426 .936 .815 .946 .756
0 8 .95 −.043 −.345 .064 .176 .888 .438 .902 .155
1 8 .95 −.025 −.398 .063 .192 .914 .403 .942 .141
2 8 .95 .003 −.225 .063 .156 .952 .655 .948 .350
0 24 .95 −.006 −.090 .024 .033 .923 .157 .940 .006
1 24 .95 .000 −.127 .024 .042 .941 .063 .940 .004
2 24 .95 .001 −.091 .018 .038 .961 .166 .940 .022

‘−’ indicates non-existence of the corresponding population moment.
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Table 2: Simulations for the AR(2) model, N = 100

bias STD CIA.95 CIB.95
ψ T ρ0 ρ̂AL ρ̂GMM ρ̂AL ρ̂GMM ρ̂AL ρ̂GMM ρ̂AL ρ̂GMM

.3 2 .6 −.141 − .267 − .882 .920 .930 .977
.2 −.129 − .748 − .959 .945 .940 .983

1 2 .6 −.141 − .267 − .881 .916 .930 .977
.2 −.124 − .316 − .909 .920 .920 .977

2 2 .6 −.147 − .266 − .880 .916 .927 .977
.2 −.130 − .258 − .890 .918 .922 .978

.3 4 .6 −.071 −.279 .123 .280 .900 .782 .914 .698
.2 −.033 −.125 .098 .133 .936 .808 .932 .763

1 4 .6 −.001 −.043 .123 .120 .945 .921 .945 .895
.2 −.002 −.023 .094 .089 .959 .931 .950 .925

2 4 .6 .008 −.011 .082 .064 .967 .939 .946 .933
.2 .003 −.007 .072 .064 .965 .943 .949 .942

.3 8 .6 −.016 −.102 .065 .088 .941 .773 .941 .536
.2 −.009 −.053 .056 .056 .949 .833 .943 .695

1 8 .6 .006 −.033 .063 .055 .965 .897 .948 .816
.2 .002 −.015 .052 .045 .963 .929 .947 .910

2 8 .6 .000 −.011 .037 .037 .953 .932 .947 .913
.2 .000 −.003 .037 .036 .944 .943 .945 .942

.3 24 .6 .000 −.028 .024 .025 .956 .795 .949 .607
.2 .000 −.018 .024 .023 .950 .869 .945 .755

1 24 .6 .000 −.020 .022 .023 .951 .859 .950 .732
.2 .000 −.011 .022 .022 .945 .914 .946 .865

2 24 .6 .000 −.011 .020 .020 .950 .913 .951 .856
.2 .000 −.003 .019 .019 .946 .944 .948 .939

.3 2 1 −.144 − .265 − .882 .918 .934 .977
−.2 −.083 − .640 − .969 .968 .945 .992

1 2 1 −.145 − .265 − .880 .913 .927 .979
−.2 −.073 − .234 − .928 .921 .931 .978

2 2 1 −.147 − .266 − .881 .918 .930 .977
−.2 −.078 − .165 − .901 .918 .919 .979

.3 4 1 −.070 −.235 .118 .256 .902 .808 .906 .721
−.2 .004 −.021 .087 .084 .966 .934 .945 .937

1 4 1 .009 −.030 .115 .098 .951 .930 .947 .908
−.2 .006 −.006 .081 .078 .965 .939 .944 .943

2 4 1 .003 −.008 .059 .051 .966 .940 .945 .936
−.2 .001 −.003 .060 .059 .949 .941 .945 .943

.3 8 1 −.009 −.068 .059 .072 .953 .830 .945 .653
−.2 .002 −.015 .051 .045 .965 .926 .945 .911

1 8 1 .002 −.024 .051 .048 .966 .916 .947 .856
−.2 .001 −.001 .042 .041 .950 .945 .944 .946

2 8 1 −.001 −.009 .033 .034 .948 .936 .946 .922
−.2 .001 .002 .033 .034 .944 .945 .947 .947

.3 24 1 −.001 −.018 .022 .023 .950 .872 .950 .770
−.2 .000 −.008 .022 .022 .947 .927 .946 .906

1 24 1 −.001 −.015 .021 .022 .948 .898 .948 .818
−.2 .000 −.004 .021 .021 .947 .940 .947 .935

2 24 1 −.001 −.010 .019 .020 .950 .920 .947 .879
−.2 .000 .000 .019 .019 .946 .947 .948 .949

‘−’ indicates non-existence of the corresponding population moment.
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Table 3: Simulations for the AR(1) model with a covariate, N = 100

bias STD CIA.95 CIB.95
ψ T θ0 θ̂AL θ̂GMM θ̂AL θ̂GMM θ̂AL θ̂GMM θ̂AL θ̂GMM

0 2 .5 −.092 −.051 .266 − .900 .882 .943 .945
.5 −.027 −.015 .249 − .965 .943 .945 .962

1 2 .5 .019 .001 .269 − .939 .910 .947 .945
.5 −.001 .000 .258 − .968 .950 .939 .949

2 2 .5 .030 .002 .182 − .966 .940 .949 .945
.5 −.010 −.002 .261 − .949 .941 .942 .941

0 4 .5 .014 −.093 .141 .119 .957 .845 .945 .737
.5 .004 −.008 .127 .124 .959 .941 .947 .946

1 4 .5 .012 −.069 .119 .102 .968 .883 .948 .802
.5 −.001 .010 .126 .123 .951 .943 .949 .947

2 4 .5 .001 −.024 .063 .062 .968 .921 .944 .890
.5 .000 .009 .129 .128 .944 .940 .941 .941

0 8 .5 −.001 −.053 .051 .050 .965 .813 .948 .582
.5 .001 .004 .074 .075 .943 .943 .946 .945

1 8 .5 −.001 −.047 .045 .047 .959 .837 .945 .627
.5 .001 .011 .075 .076 .940 .938 .943 .937

2 8 .5 −.001 −.026 .035 .036 .950 .884 .939 .754
.5 .001 .011 .075 .075 .948 .945 .949 .943

0 24 .5 −.001 −.032 .020 .020 .948 .646 .943 .323
.5 .000 .007 .038 .038 .950 .945 .950 .941

1 24 .5 .000 −.031 .019 .020 .946 .652 .945 .343
.5 .000 .009 .038 .038 .950 .942 .952 .937

2 24 .5 .000 −.026 .017 .018 .947 .700 .948 .416
.5 .000 .009 .038 .038 .949 .943 .952 .935

0 2 .95 −.145 −.904 .266 − .879 .809 .930 .926
.05 −.007 −.030 .234 − .974 .977 .947 .991

1 2 .95 −.124 −.975 .266 − .891 .811 .937 .923
.05 .004 .046 .240 − .974 .977 .941 .989

2 2 .95 −.068 −.534 .264 − .910 .842 .948 .936
.05 .007 .063 .246 − .972 .968 .943 .980

0 4 .95 −.086 −.641 .124 .253 .892 .267 .906 .123
.05 −.002 −.013 .121 .115 .973 .944 .948 .955

1 4 .95 −.067 −.595 .123 .252 .906 .312 .930 .148
.05 .004 .041 .122 .114 .973 .938 .948 .943

2 4 .95 −.020 −.338 .122 .207 .939 .561 .950 .346
.05 .003 .056 .128 .120 .971 .916 .945 .917

0 8 .95 −.043 −.347 .064 .100 .888 .036 .903 .001
.05 .000 −.006 .073 .075 .970 .943 .948 .946

1 8 .95 −.026 −.306 .064 .098 .911 .067 .942 .004
.05 .003 .028 .075 .074 .972 .926 .944 .933

2 8 .95 .003 −.155 .064 .068 .947 .317 .939 .056
.05 .000 .032 .075 .072 .967 .928 .951 .918

0 24 .95 −.007 −.116 .024 .022 .920 .000 .943 .000
.05 .000 −.001 .038 .039 .970 .946 .950 .949

1 24 .95 .000 −.101 .024 .021 .942 .000 .944 .000
.05 .000 .009 .038 .039 .964 .942 .950 .942

2 24 .95 .001 −.055 .017 .015 .963 .024 .946 .000
.05 .000 .010 .038 .038 .950 .941 .951 .937

‘−’ indicates non-existence of the corresponding population moment.
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where they increase in T . When ρ0 is increased to .95, ρ̂GMM has a large negative bias and its

standard deviation increases considerably. The AL estimator also deteriorates, but much less.

The confidence intervals based on ρ̂AL continue to provide good coverage, with the bootstrap

being slightly superior, while those based on ρ̂GMM have large coverage errors for all ψ, especially

when T ≥ 8.

Turning to the AR(2) model (Table 2), the AL and GMM estimators perform well in terms

of bias (for the chosen values of ρ0), although there is a non-negligible bias when T = 2 and

also when T = 4 and the initial observations are strong inlyers. As N = 100, the probability

that the adjusted likelihood has no local maximum in the relevant region is fairly large when

both T and ψ are small. In most designs, ρ̂AL has smaller standard deviation than ρ̂GMM, with

the difference decreasing in T and ψ. For both estimators, the confidence intervals have very

reasonable coverage, with those based on ρ̂AL being slightly more accurate in most designs.

The results for the AR(1) model with a covariate (Table 3) follow a similar pattern as in

the AR(1) model without covariates. The coefficient on the exogenous variable, β0, is generally

estimated with small bias by both estimators. When (ρ0, β0) = (.5, .5), the biases and standard

deviations are fairly small and, here, the AL estimator does not uniformly dominate GMM.

When T = 2, θ̂GMM is less biased than θ̂AL while the opposite holds when T ≥ 4. When (ρ0, β0)

is changed to (.95, .05), the bias of β̂GMM increases only moderately, but ρ̂GMM is now heavily

biased. As a result, GMM-based confidence intervals for ρ0 tend to have poor coverage while

those for β0 have broadly correct coverage. Compared to GMM, the AL estimator is much

less biased and yields confidence intervals with approximately correct coverage, especially when

computed by bootstrapping.

Appendix

Proof of equations (1.3). For arbitrary ρ1, ..., ρT−1, D and its inverse are

D =




1 0 · · · 0

−ρ1
. . . . . .

...
...

. . . . . . 0
−ρT−1 · · · −ρ1 1


 , D−1 =




1 0 · · · 0

φ1
. . . . . .

...
...

. . . . . . 0
φT−1 · · · φ1 1


 ,

where φ1, ..., φT−1 are recursively obtained as φ1 = ρ1 and φj = ρj +
∑j−1

k=1 φkρj−k, j = 2, ..., T−1.

Recursive substitution gives

φj =
∑

k1+2k2+···+jkj=j

(k1 + ...+ kp)!

k1! · · · kp!
ρk1

1 ρ
k2

2 · · · ρkj

j .

equivariant under translations of ρ0 and, hence, the bias, standard deviation, and coverage rates are independent
of ρ0.
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Putting ρp+1 = · · · = ρT−1 = 0 gives φj = ϕj.

Proof of equations (2.1). For j = 1, ..., p, let Sj = {S ∈ S|j ∈ S}. Group terms by S ∈ Sj

to write ∫
bj(ρ)dρj =

∑

S∈Sj

Bj,S(ρ) + c,

where

Bj,S(ρ) = −
T−j−1∑

t=0

T − j − t

T (T − 1)

∑

k∈Kj,S :τ ′k=t

(ι′k)!

k1! · · · (kj + 1)! · · · kp!
ρjρ

kS

S

and Kj,S = {k ∈ N
p| for all j′ 6= j, kj′ > 0 iff j′ ∈ S} ⊃ KS. A change of variable from kj + 1 to

kj gives

Bj,S(ρ) = −
T−j−1∑

t=|S|−j

T − j − t

T (T − 1)

∑

k∈KS :τ ′k=t+j

(ι′k − 1)!

k1! · · · kp!
ρkS

S ,

where the lower limit in the first sum changed from 0 to |S| − j because, when t < |S| − j, no

k ∈ KS satisfies τ ′k = t+ j. A further change of variable from t+ j to t gives Bj,S(ρ) = aS(ρ),

with aS(ρ) as defined in (2.1). Therefore,

bj(ρ) = ∇ρj

∑

S∈Sj

aS(ρ) = ∇ρj

∑

S∈S

aS(ρ) = ∇ρj
a(ρ)

which completes the proof.

Proof of (2.4). In the parameterization ηi = αie
−(T−1)a(ρ), we have

ℓi(ϑ, ηi) = −1

2
log σ2 − 1

2Tσ2

T∑

t=1

(yit − z′itθ − ηie
(T−1)a(ρ))2 + c,

∇ηi
ℓi(ϑ, ηi) =

e(T−1)a(ρ)

Tσ2
(yi − Ziθ − ηie

(T−1)a(ρ)ι)′ι,

and

Eϑ,ηi
∇ηiηi

ℓi(ϑ, ηi) = −σ−2e2(T−1)a(ρ), Eϑ,ηi
∇σ2ηi

ℓi(ϑ, ηi) = 0,

Eϑ,ηi
∇θηi

ℓi(ϑ, ηi) = −σ−2e(T−1)a(ρ)
(
ηi(T − 1)b(ρ)e(T−1)a(ρ) + Eϑ,ηi

Z ′
iι/T

)
.

The jth column of Yi− is yi,−j = Sj(ξi + Fεi) , so the jth element of Eϑ,ηi
Y ′

i−ι is

Eϑ,ηi
y′i,−jι = ι′Sjξi = ι′D−1

j ιηie
(T−1)a(ρ) +mj, mj = ι′Sj

(
y0

i

D−1 (Cy0
i +Xiβ)

)
.

Hence,

Eϑ,ηi
Z ′

i−ι/T = −ηi(T − 1)b(ρ)e(T−1)a(ρ) +m,
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where m = (m1, ...,mp, ι
′Xi/T )′ is free of ηi. Consequently,

A−1
i Bi = −e−(T−1)a(ρ)

(
m
0

)

and ∇ηi
(A−1

i Bi) = 0.

Proof that no orthogonalization exists when p > 1. In the original parameterization, if

li(ϑ, αi) is i’s log-likelihood contribution, we have

Eϑ,αi
∇αiαi

li(ϑ, αi) = −σ−2, Eϑ,αi
∇σ2αi

li(ϑ, αi) = 0,

Eϑ,αi
∇θαi

li(ϑ, αi) = −σ−2
Eϑ,αi

Z ′
iι/T,

and so, by the preceeding proof,

A−1
i Bi = −

(
Eϑ,αi

Z ′
iι/T

0

)
= −

(
−(T − 1)b(ρ)αi +m

0

)
.

Suppose some reparameterized fixed effect, say ζi, is information orthogonal to ϑ. Then αi =

αi(ϑ, ζi) must satisfy the differential equation ∇ϑαi = A−1
i Bi, that is,

∇ρj
αi = (T − 1)bj(ρ)αi −mj, j = 1, . . . , p, (A.1)

∇βj
αi = −mp+j, j = 1, . . . , q, (A.2)

and ∇σ2αi = 0. We show that these equations are inconsistent. Suppose q > 0. Then (A.1)

implies ∇ρjβj′
αi = −∇βj′

mj, which is generally non-zero, while (A.2) implies ∇ρjβj′
αi = 0, so

the equations are inconsistent. Suppose q = 0. Then

mj = ι′Sj

(
Ip

D−1C

)
y0

i , j = 1, . . . , p,

and, because ∇ρj′
bj(ρ) = ∇ρj′ρj

a(ρ) = ∇ρj
bj′(ρ), (A.1) will be inconsistent if ∇ρj′

mj 6= ∇ρj
mj′

for some j, j′. Take j = p and j′ = p− 1. The first element of y0
i appears in mp and mp−1 with

coefficients γp = 1 + ρp

∑T−p−1
t=0 ϕt and γp−1 = ρp

∑T−p
t=0 ϕt, respectively. Differentiating gives

∇ρp−1
γp = ρp

T−p−1∑

t=0

∇ρp−1
ϕt = ρp

T−p∑

t=1

∇ρp
ϕt, ∇ρp

γp−1 = ρp

T−p∑

t=1

∇ρp
ϕt +

T−p∑

k=0

ϕt,

using ϕ0 = 1 and ∇ρp−1
ϕt = ∇ρp

ϕt+1. The latter follows from differentiating ϕt and a change of

variable from kp−1 − 1 to kp−1, giving

∇ρp−1
ϕt =

∑

τ ′k=t−p+1

(ι′k + 1)!

k1! · · · kp!
ρk,

which is invariant under a unit shift of p and t. Therefore, ∇ρp−1
γp 6= ∇ρp

γp−1, and (A.1) is

inconsistent.
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Proof of Lemma 1. Let A = S1F0 and B = ∇ρ0
A. Then

b0 = − ι′Aι

T (T − 1)
, c0 = − ι′Bι

T (T − 1)
, V LB

0 =
trA′MA

T − 1
=
T trAA′ − ι′AA′ι

T (T − 1)
.

Hence, V LB
0 ≥ 2b20 and V LB

0 ≥ 2b20 − c0 if and only if

T trAA′ − ι′AA′ι− 2 (ι′Aι)2

T (T − 1)
≥ 0, (A.3)

T trAA′ − ι′AA′ι− 2 (ι′Aι)2

T (T − 1)
− ι′Bι ≥ 0. (A.4)

The matrix A = AT is

A =

(
0 0
1 0

)
, T = 2,

A =

(
AT−1 0
a′T 0

)
, aT = (ρT−2, ρT−3, ..., 1)′, T > 2,

where the subscript on ρ is omitted. By recursion, it can be deduced that

ι′Aι =
T−2∑

j=0

(T − j − 1) ρj, ι′Bι =
T−2∑

j=1

j (T − j − 1) ρj−1,

trAA′ =
T−2∑

j=0

(T − j − 1) ρ2j, ι′AA′ι =
T−2∑

j=0

(
j∑

k=0

ρk

)2

,

yielding V LB
0 as stated in the lemma. Now let r > 0 and use the equalities just obtained to see

that if (A.4) holds for ρ = r, then (A.3) holds for ρ = r and (A.3) and (A.4) hold for ρ = −r,
with strict inequalities for T ≥ 3. Hence, we only need to show that (A.4) holds for ρ ≥ 0, with

equality if and only if T = 2 or ρ = 1. Write (A.4) as QT ≥ 0. Because Q2 = 0, to show that

(A.4) holds, it suffices to show that ∆QT ≥ 0 for T ≥ 2, where ∆ (·)T = (·)T+1 − (·)T . Write

∆QT as

∆QT = ∆

(
T trAA′ − ι′AA′ι− 2

(ι′Aι)2

T (T − 1)
− ι′Bι

)

T

=

{
(trAA′)T+1 − 2

(ι′Aι)2
T+1

T (T + 1)

}
+

{
2

(ι′Aι)2
T

T (T − 1)
− ∆ (ι′Bι)T

}

+
{
T∆ (trAA′)T − ∆ (ι′AA′ι)T

}
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and denote the quantities in braces as τ1, τ2, and τ3. Using T (T + 1) /2 =
∑T−1

i=0 (T − i), we

have

τ1 =
T−1∑

j=0

(T − j) ρ2j − 2

T (T + 1)

(
T−1∑

j=0

(T − j) ρj

)2

=
2

T (T + 1)

(
T−1∑

i=0

T−1∑

j=0

(T − i) (T − j) ρ2j −
T−1∑

i=0

T−1∑

j=0

(T − i) (T − j) ρi+j

)

=
2

T (T + 1)
u′Ru,

where u = (T, T − 1, ..., 1)′ and

R =




1 1 · · · 1
ρ2 ρ2 · · · ρ2

...
...

. . .
...

ρ2T−2 ρ2T−2 · · · ρ2T−2


−




1 ρ · · · ρT−1

ρ ρ2 · · · ρT

...
...

. . .
...

ρT−1 ρT · · · ρ2T−2


 .

Consider the principal minors of R. Those of order 1 are 0; those of order 2 are

det

(
0 ρ2i − ρi+j

ρ2j − ρi+j 0

)
= ρi+j

(
ρj − ρi

)2 ≥ 0, 0 < i < j < T,

given ρ ≥ 0; and those of order greater than 2 are 0 because R is the sum of two matrices of rank

1 and, hence, rank (R) ≤ 2. Therefore, R is positive semi-definite and τ1 ≥ 0. Furthermore,

τ3 = T
T−1∑

j=0

ρ2j −
(

T−1∑

j=0

ρj

)2

=
T−1∑

i=0

T−1∑

j=0

ρ2j −
T−1∑

i=0

T−1∑

j=0

ρi+j = ι′Rι ≥ 0.

Use

∆ (ι′Bι)T =
T−1∑

j=1

j (T − j) ρj−1 −
T−2∑

j=1

j (T − j − 1) ρj−1 =
T−2∑

j=0

(j + 1) ρj

=
2

T (T − 1)

T−2∑

i=0

T−2∑

j=0

(T − i− 1) (j + 1) ρj

to write

τ2 = d

(
T−2∑

i=0

T−2∑

j=0

(T − i− 1) (T − j − 1) ρi+j −
T−2∑

i=0

T−2∑

j=0

(T − i− 1) (j + 1) ρj

)
,

where d = 2
T (T−1)

. Note that τ2 is a polynomial of degree 2T − 4 in ρ. When T = 2 or ρ = 1,

τ2 = 0. When ρ 6= 1,

(ι′Aι)T =
T − 1 − Tρ+ ρT

(1 − ρ)2 , ∆ (ι′Bι)T =
1 − ρT − TρT−1 + TρT

(1 − ρ)2 ,
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and so

τ2 =
d
(
T − 1 − Tρ+ ρT

)2

(1 − ρ)4 − 1 − ρT − TρT−1 + TρT

(1 − ρ)2 .

For T > 2,

lim
ρ→1

τ2 (1 − ρ)−2 =
1

72
T (T − 1) (T − 2) (T + 1) > 0

and, therefore, τ2 = (1 − ρ)2 P (T, ρ), where P (T, ρ) is a polynomial of degree 2T − 6. If

all coefficients of P (T, ρ) =
∑2T−6

j=0 pjρ
j are positive, we conclude that τ2 ≥ 0. Write τ2 =∑2T−4

j=0 qjρ
j, where qj is found as

qj =

{
d
6
{(j + 1) (j (j − 1) + 6 (T − 1) (T − j − 1)) − 3jT (T − 1)} , j ≤ T − 2,

d
6
(2T − j − 1) (2T − j − 2) (2T − j − 3) , T − 1 ≤ j.

Equating the coefficients of τ2 and (1 − ρ)2 P (T, ρ) gives pk =
∑k

j=0 (k + 1 − j) qj. To show that

pk > 0 for 0 ≤ k ≤ 2T −6, we only need to show that pk > 0 for k up to T −2 because for larger

k, qk > 0 and so pk increases in k. For k up to min(T − 2, 2T − 6), we obtain

pk =
d

12
(k + 1) (k + 2) (k + 3)

(
(T − 1) (2T − k − 2) +

k

10
(k − 1) − T (T − 1)

)

and, hence, pk > 0 because either k < T − 2, implying 2T − k − 2 > T , or k = T − 2 ≤ 2T − 6,

implying T ≥ 4 and k ≥ 2. Therefore, τ2 ≥ 0. This establishes QT ≥ 0, that is, (A.4). Recall

that Q2 = 0 and note that ρ = 1 implies τ1 = τ2 = τ3 = 0 and, hence, QT = 0. Therefore,

QT = 0 if T = 2 or ρ = 1. If T ≥ 2 and ρ 6= 1, then ∆QT > 0 because τ3 > 0 when T = 2 and

τ2 > 0 when T > 2. Therefore, QT = 0 only if T = 2 or ρ = 1.

Proof of Theorem 1. LA(ρ) having a local maximum or a flat inflection point at ρ0 is

equivalent to b(ρ) approaching S(ρ) from below as ρ approaches ρ0 from the left. We will write

this as b(ρ) ↑ S(ρ) at ρ0, and show that b(ρ) ↑ S(ρ) on [ρ, ρ] at most once. From

∇ρH(ρ) =
2(ρ− ρML) (3ζ2

0 − (ρ− ρML)2)

(ζ2
0 + (ρ− ρML)2)

3

it follows that S(ρ) is strictly concave on [ρ, ρML] and strictly convex on [ρML, ρ]. Because

ϕt = ρt, b(ρ) and its first two derivatives are

b(ρ) = −
T−2∑

t=0

T − 1 − t

T (T − 1)
ρt,

c(ρ) = −
T−2∑

t=1

t (T − 1 − t)

T (T − 1)
ρt−1, d(ρ) = −

T−2∑

t=2

t (t− 1) (T − 1 − t)

T (T − 1)
ρt−2.
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For ρ 6= 1,

b(ρ) = − T − 1 − Tρ+ ρT

T (T − 1) (1 − ρ)2 , c(ρ) = −T − 2 − Tρ+ TρT−1 − (T − 2) ρT

T (T − 1) (1 − ρ)3 ,

d(ρ) = −2T − 6 − 2Tρ+ T (T − 1) ρT−2 − 2T (T − 3) ρT−1 + (T − 2) (T − 3) ρT

T (T − 1) (1 − ρ)4 .

When T ≤ 3, b(ρ) is linear and so, given that S(ρ) is concave-convex on [ρ, ρ], b(ρ) ↑ S(ρ) on

[ρ, ρ] at most once. Suppose T ≥ 4. Then, b(ρ) is a polynomial of degree 2 or higher with

negative coefficients, so b(ρ) is negative, decreasing, and strictly concave, on R+. Further, by

Descartes’ rule of signs, c(ρ) has one zero on R− when T is even and none when T is odd, and

d(ρ) has no zeros on R− when T is even and one when T is odd. Suppose T is even. Then

c(−1) = 0 and b(−1) = − 1
2(T−1)

< 0, so b(ρ) is negative and strictly concave on R, and, hence,

its intersection with S(ρ) on [ρ, ρ] can only be on (ρML, ρ], where S(ρ) is strictly convex and is

approached from below by b(ρ) at most once. Now suppose T is odd and T ≥ 5. Then,

d(−1) =
T − 3

4T
> 0, d(−1

2
) = −24−T (T − 2)

(
2T − 3T + 1

)

27T (T − 1)
< 0,

so b(ρ) is strictly convex on (−∞, ρv] and strictly concave on [ρv,∞) for some ρv ∈ (−1,−1
2
)

and decreases on R. Define ρu by b(ρu) = 0, that is, by T (1 − ρu) = 1 − ρT
u , ρu ∈ R−. Since

T ≥ 5, we have −2 < ρu < −1. Thus, b(ρ) is negative and strictly convex on (ρu, ρv], with

−2 < ρu < −1 < ρv < −1
2
. Let R = [ρu, ρv] ∩ [ρML, ρ]. If R is empty, then ρv < ρML or

ρ < ρu; in either case, by the concavity-convexity of S(ρ), b(ρ) ↑ S(ρ) on [ρ, ρ] at most once.

If R is non-empty, to show that b(ρ) ↑ S(ρ) on [ρ, ρ] at most once, it suffices to show that

S(ρ) decreases faster than b(ρ) on R, i.e., H(ρ) < c(ρ) for ρ ∈ R. We will show below that (i)

V LB
0 ≥ T−1

T
if ρ0 ≤ 0; (ii) V LB

0 ≥ 1
2

if ρ0 > 0. By (ii), ρML = ρ0 + b0/V0 ≥ ρ0 + 2b0 > −1
2

if

0 < ρ0 ≤ 1 because b(0) = − 1
T
, b(1) = −1

2
, and b(ρ) is concave on [0, 1]. Further, ρML > 0

if ρ0 > 1 because, then, b0
V0
> 1

2b0
> −1. Hence, R is empty if ρ0 > 0. Now suppose ρ0 ≤ 0.

Define ρw by S(ρw) = b(ρv), ρw ∈ [ρML, ρ]; and ρ′w by S(ρ′w) = b(0) = − 1
T
, ρ′w ∈ [ρML, ρ]. Then

ρw − ρML < ρ′w − ρML = 1
2
(T −

√
T 2 − 4ζ2

0 ). By (i), ζ2
0 =

V0−b2
0

V 2
0

≤ 1
V0

≤ T
T−1

≤ 5
4
. Since H(ρ)

increases on [ρML, ρ] and H(ρ′w) decreases in T and increases in ζ2
0 ,

H(ρw) = − ζ2
0(

ζ2
0 + (ρw − ρML)2)2 + 2S2(ρw) < − ζ2

0(
ζ2
0 + (ρ′w − ρML)2)2 +

2

T 2

≤ − 5/4
(

5
4

+ 1
4

(
5 −

√
20
)2)2 +

2

25
< −1

2
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and so, H(ρ) < −1
2

for ρ ∈ [ρML, ρw]. On the other hand, T (1 − ρu) = 1 − ρT
u implies 1−ρu

ρu
=

1−ρT−1
u

T−1
and, therefore,

c(ρu) = − −T + TρT−1
u

T (T − 1) (1 − ρu)
2 =

1

ρu (1 − ρu)
> −1

2
.

So, c(ρ) > −1
2

for ρ ∈ [ρu, ρv] and H(ρ) < c(ρ) for ρ ∈ R. We conclude that b(ρ) ↑ S(ρ) on [ρ, ρ]

at most once, provided (i) and (ii) hold, which we now show. Write V LB
0 = 1

T (T−1)

∑2T−4
j=0 vjρ

j
0,

where

v2j = T (T − j − 1)

−
{
(2j + 1) (T − j − 1) − j(j + 1) + (2j − T + 1) (2j − T + 2) 1{2j≥T}

}
,

v2j+1 = −
{
(2j + 2) (T − j − 2) − j(j + 1) + (2j − T + 2) (2j − T + 3) 1{2j+1≥T}

}
,

using (
∑j

k=0 ρ
k)2 =

∑j
k=0 (k + 1) ρk+

∑j
k=1 (j − k + 1) ρj+k. Clearly, v2j+1 < 0. Further, v2j > 0

because

v2j =

{
(T − 2j − 1) (T − j − 1) + j(j + 1) if 0 ≤ 2j < T,
(T − j − 1) (j + 1) if T ≤ 2j ≤ 2T − 4.

Hence, V LB
0 decreases in ρ0 on R− and (i) follows because V LB

0 = T−1
T

when ρ0 = 0. When

0 < ρ0 < 1, a sufficient condition for V LB
0 ≥ 1

2
is that dk ≥ 0 for 0 ≤ k ≤ T − 2, where

dk =
∑k

j=0 (v2j + v2j+1) − T (T−1)
2

. We have

v2j + v2j+1 =

{
(T − 2j − 1) (T − j − 1) − (T − 2j − 2) (2j + 2) if 2j + 1 < T,
(2j − T + 3) (T − j − 1) if 2j + 1 ≥ T.

Only when 2j + 1 < T is it possible that v2j + v2j+1 < 0, so it suffices to show that dk ≥ 0 for

2k + 1 < T . We obtain, for 2k + 1 < T ,

dk =
1

2
(k + 1)

(
2T 2 − 5Tk + 4k2 − 8T + 13k + 10

)
− T (T − 1)

2
.

Define fk by dk = 1
2
(k + 1) fk. Then, f0 = (T − 2) (T − 5) ≥ 0, f1 = 1

2
(3T 2 − 25T + 54) > 0,

and, for k ≥ 2,

fk >
5

3
T 2 − 5Tk + 4k2 − 8T + 13k + 10

=
1

3
((T − 2k − 2) (5T − 6k − 16) + k (T − 5) + 2 (T − 1)) > 0.

Hence, V LB
0 ≥ 1

2
when 0 < ρ0 < 1. When ρ0 ≥ 1, it also holds that V LB

0 ≥ 1
2

because then

b0 < b(1) = −1
2

and V LB
0 ≥ 2b20. Therefore, (ii) holds.

[29]



Proof of Lemma 2. Use yi,−1 = S1(ξ0i + F0εi) to write Zi = (yi,−1, Xi) = (S1F0εi, 0) + Ξi,

where Ξi = (S1ξ0i, Xi) is independent of εi. Proceeding as above, we have

V0 =
plimN→∞

1
N

∑N
i=1 Z

′
iMZi

σ2
0 (T − 1)

=

(
V LB

0 0
0 0

)
+ VΞ,

where

VΞ =

(
Vξξ VξX

VXξ VXX

)
=

plimN→∞
1
N

∑N
i=1 Ξ′

iMΞi

σ2
0 (T − 1)

is positive semi-definite and VXX is positive definite by assumption. Therefore, Vξξ−VξXV
−1
XXVXξ ≥

0 and (V ρρ
0 )−1 = V LB

0 + Vξξ − VξXV
−1
XXVXξ ≥ V LB

0 .
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