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A constructive proof of identification of multilinear decompositions of
multiway arrays is presented. It can be applied to show identification in
a variety of multivariate latent structures. Examples are finite-mixture
models and hidden Markov models. The key step to show identification is
the joint diagonalization of a set of matrices in the same non-orthogonal
basis. An estimator of the latent-structure model may then be based on
a sample version of this simultaneous-diagonalization problem. Simple
algorithms are available for computation. Asymptotic theory is derived
for this joint approximate-diagonalization estimator.

1. Introduction. Latent structures are a popular tool for modeling the

dependency structure in multivariate data. Two important examples are

finite-mixture models (see McLachlan and Peel 2000) and hidden Markov

models (see Cappé, Moulines and Rydén 2005). Although these models arise

frequently in applied work, the question of their nonparametric identifiability

has attracted substantial attention only quite recently. Allman, Matias and

Rhodes [2009] used algebraic results on the uniqueness of decompositions

of multiway arrays due to Kruskal [1976; 1977] to establish identification in

a variety of multivariate latent-structure models. Their setup covers both

finite mixtures and hidden Markov models, among other models, and their

findings substantially generalize the earlier work of Green [1951], Anderson

[1954], Petrie [1969], Hettmansperger and Thomas [2000], Hall and Zhou

[2003], and Hall et al. [2005].

Despite these positive identification results, direct application of Kruskal’s

method does not provide an estimator. Taking identification as given, some

AMS 2000 subject classifications: Primary, 15A69, 62G05; secondary, 15A18, 15A23,
62G20, 62H17, 62H30.

Keywords and phrases: hidden Markov model, finite mixture model, latent structure,
multilinear restrictions, multivariate data, nonparametric estimation, simultaneous matrix
diagonalization.

1



2 S. BONHOMME, K. JOCHMANS, AND J.-M. ROBIN

authors have developed EM-type approaches to nonparametrically estimate

both multivariate finite mixtures (Benaglia, Chauveau and Hunter 2009;

Levine, Hunter and Chauveau 2011) and hidden Markov models (Gassiat,

Cleynen and Robin 2013). Numerical studies suggest that these estimators

are well-behaved. Because they are not based directly on the identification

argument, however, their statistical properties—that is, their consistency,

convergence rates, and asymptotic distribution—are difficult to establish

and are currently unknown.

There are some theoretical results on statistical inference in semi- and

nonparametric finite-mixture models and hidden Markov models in more

restrictive settings. These include location models (Bordes, Mottelet and

Vandekerkhove 2006; Hunter, Wang and Hettmansperger 2007; Gassiat and

Rousseau 2014), multivariate finite mixtures with identically distributed

outcome variables, i.e., stationary data (Hettmansperger and Thomas 2000;

Bonhomme, Jochmans and Robin 2014), and two-component mixtures and

mixture models featuring exclusion restrictions (Hall and Zhou 2003; Henry,

Jochmans and Salanié 2013). However, these models are too restrictive for

many situations of practical interest and the arguments underlying these

various methods are not easy to generalize.

In this paper we show that the multilinear structure underlying the results

of Allman, Matias and Rhodes [2009] can be used to obtain a constructive

proof of identification in a broad class of latent-structure models. We show

that the problem of decomposing a multiway array can be reformulated as

the problem of simultaneously diagonalizing a collection of matrices. This

is a least-squares problem that has received considerable attention in the

literature on independent component analysis and blind source separation

(see Comon and Jutten 2010). Moreover, algorithms exist to recover the joint

diagonalizer in a computationally-efficient manner; see Fu and Gao [2006],

Iferroudjene, Abed-Meraim and Belouchrani [2009; 2010], and Luciani and

Albera [2010; 2014].

We propose estimating the parameters of the latent-structure model by

solving a sample version of the simultaneous-diagonalization problem. We

provide distribution theory for this estimator below. Under weak conditions,

it converges at the parametric rate and is asymptotically normal. Using this

result, we obtain estimators of finite-mixture models and hidden Markov

models that have standard asymptotic properties. Moreover, the fact that

the dependency structure in the data is latent does not translate into a

decrease in the convergence rate of the estimators. As such, this paper is
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the first to derive the asymptotic behavior of nonparametric estimators of

multivariate finite mixture models of the form in Hall and Zhou [2003] for

more than two latent classes and of hidden Markov models of the form in

Gassiat, Cleynen and Robin [2013]. Furthermore, our approach can be useful

in the analysis of random graph models (Allman, Matias and Rhodes 2011)

and stochastic blockmodels (Snijders and Nowicki 1997; Rohe, Chatterjee

and Yu 2011), although we do not consider such models in detail in this

paper. In a simulation study, we further find our approach to perform well

in small samples.

There is a large literature on parallel factor analysis and canonical polyadic

decompositions of tensors building on the work of Kruskal [1976; 1977]; see,

e.g., De Lathauwer, De Moor and Vandewalle [2004], De Lathauwer [2006],

and Anandkumar et al. [2014]. Although our identification strategy has some

similarity with this literature, both our conclusions and our simultaneous-

diagonalization problem are different. In the context of multivariate finite

mixtures of identically distributed variables, Kasahara and Shimotsu [2009]

and Bonhomme, Jochmans and Robin [2014] also used joint diagonalization

to show nonparametric identification. However, the approaches taken there

are different from the one developed in this paper and cannot be applied as

generally.

We start out by motivating our approach via a discussion on the algebraic

structure of multivariate finite-mixture models and hidden Markov models.

We then present our identification strategy in a generic setting, and illustrate

its usefulness by applying it to our two motivating examples. After this we

turn to estimation and inference, and to the development of asymptotic

theory. Next, the theory is used to set up orthogonal-series estimators of

component densities in a finite-mixture model, and to show that these have

the standard univariate convergence rates of series estimators. Finally, the

orthogonal-series density estimator is put to work in a small simulation

experiment. The proofs of all the main identification arguments are given in

the text. The remaining proofs are collected in the Appendix.

2. Motivating examples. We start by introducing three examples to

motivate our subsequent developments.

2.1. Finite-mixture models for discrete measurements. Let Y1, Y2, . . . , Yq
be observable random variables that are assumed independent conditional

on realizations of a latent random variable Z. Suppose that Z has a finite

state space of known cardinality r, which we set to {1, 2, . . . , r} without loss
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of generality. Let π = (π1, π2, . . . , πr)
′ be the probability distribution of Z, so

πj > 0 and
∑r

j=1 πj = 1. Then the probability distribution of Y1, Y2, . . . , Yq
is a multivariate finite mixture with mixing proportions π1, π2, . . . , πr. The

parameters of interest are the r mixing proportions and the distributions

of Y1, Y2, . . . , Yq given Z. The Yi need not be identically distributed, so the

model involves qr such conditional distributions.

When Yi can take on any of a finite number κi of values the problem is

effectively finite-dimensional. Write pij for the probability distribution of Yi
given Z = j, which is a κi × 1 vector, and let ⊗ denote the outer (tensor)

product. The probability distribution of Y1, Y2, . . . , Yq given Z = j then is

the q-way table
q⊗
i=1

pij = p1j ⊗ p2j ⊗ · · · ⊗ pqj ,

which is of dimension κ1 × κ2 × · · · × κq. The outer-product representation

follows from the conditional-independence restriction. Hence, the marginal

probability distribution of Y1, Y2, . . . , Yq equals

(2.1) P =

r∑
j=1

πj

q⊗
i=1

pij ,

which is an r-linear decomposition of a q-way array. The parameters of

the mixture model are all the vectors making up the outer-product arrays,

{pij} and the coefficients of the linear combination, {πj}, transforming the

conditional distributions into the marginal distribution P.

The r-linear decomposition is not restricted to the contingency table.

Indeed, any linear functional of P admits a decomposition in terms of the

same functional of the pij . Moreover, for any collection of vector-valued

transformations y 7→ χi(y) we have

(2.2) E

[
q⊗
i=1

χi(Yi)

]
=

r∑
j=1

πj

q⊗
i=1

E[χi(Yi)|Z = j],

provided the expectation exists. Equation (2.1) is recovered from (2.2) with

χi(y) = (1{y = yi1}, 1{y = yi2}, . . . , 1{y = yiκi})′ and {yik} the support

points of pij . Of course, identification of linear functionals follows from

identification of the pij . However, other choices for the χi can be useful

when turning to estimation. This idea was exploited in one way in a more

restrictive setting in Bonhomme, Jochmans and Robin [2014]. Here, we wish

to highlight another approach. To do so we turn to a model with continuous

outcomes.
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2.2. Finite-mixture models for continuous measurements. Suppose now

that the Yi are continuously-distributed random variables. Setting the χi in

(2.2) to indicators that partition their state space yields a decomposition

as in (2.1) for a discretized version of the mixture model. This can suffice

for identification (see Allman, Matias and Rhodes 2009 and Kasahara and

Shimotsu 2014) but it is not attractive for the estimation of the distributions

and of the corresponding density functions. An alternative approach based

on (2.2) is to work with a discretization in the frequency domain, which can

subsequently be used to deliver smooth estimates.

Let fij be the density of Yi given Z = j. Assume that (Y1, Y2, . . . , Yq) lives

in the q-dimensional compact set [−1, 1]q; translation to generic compact

sets is straightforward. Also, let {φk, k > 0} be a class of functions that

form a complete orthonormal system with respect to some weight function

ρ on [−1, 1]. Polynomials such as those belonging to the Jacobi class—e.g.,

Chebychev or Legendre polynomials—can serve this purpose.

Assume the fij to be square-integrable with respect to ρ. The projection

of fij onto the subspace spanned by ϕκi = (φ1, φ2, . . . , φκi)
′ is

Projκi fij = ϕ′κibij , bij =

∫ 1

−1
ϕκi(y)ρ(y)fij(y) dy = E[ϕκi(Yi)ρ(Yi)|Z = j],

for any integer κi. The vector bij collects the (generalized) Fourier coefficients

of fij . The projection converges to fij in L2
ρ-norm, that is,

‖Projκi fij − fij‖2 → 0

as κi → ∞, where ‖f‖2 =
( ∫ 1
−1 f(y)2ρ(y) dy

)1/2
. Such projections are

commonly-used tools in the approximation of functions (Powell 1981) and

underly orthogonal-series estimators of densities and conditional-expectation

functions (Efromovich 1999).

The bij are not directly observable. However, an application of (2.2) yields

(2.3) B =

r∑
j=1

πj

q⊗
i=1

bij

for B = E[
⊗q

i=1 ϕκi(Yi)ρ(Yi)]. The latter expectation is a q-way array that

can be computed directly from the data. It contains the leading Fourier

coefficients of the q-variate density function of the data. Again, the array

B factors into a linear combination of multiway arrays. In Section 6 we will

use this representation to derive orthogonal-series density estimators that

have standard large-sample properties.
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2.3. Hidden Markov models. Let {Yi, Zi}qi=1 be a stationary sequence.

Zi is a latent variable with finite state space {1, 2, . . . , r}, for known r, and

has first-order Markov dependence. Denote by π the vector of stationary

probabilities and write K for the r × r matrix of transition probabilities.

Moreover, K(z1, z2) equals the probability of moving from state z1 to z2.

The observable random variables Y1, Y2, . . . , Yq are independent conditional

on realizations of Z1, Z2, . . . , Zq, and the distribution of Yi only depends on

the realization of Zi. We write pj for the distribution of Yi given Zi = j.

Here, the parameters of interest are the emission distributions {pj}rj=1, the

stationary distribution of the Markov chain π, and the matrix of transition

probabilities K.

Suppose that Yi is discrete and that its state space contains κ points of

support. Let P = (p1, p2, . . . , pr), the κ× r matrix of emission distributions

and write Π = diag(π1, π2, . . . , πr). Then the matrix

B = PK ′ = (b1, b2, . . . , br)

contains the probability distributions of Yi given Zi−1 and, likewise, the

matrix

A = PΠKΠ−1 = (a1, a2, . . . , ar)

provides the distribution of Yi given Zi+1. To study identification it suffices

to restrict attention to q = 3. In this case, it is easy to show that the

contingency table of (Y1, Y2, Y3) factors as

(2.4) P =
r∑
j=1

πj (aj ⊗ pj ⊗ bj);

see also Allman, Matias and Rhodes [2009] and Gassiat, Cleynen and Robin

[2013]. When q > 3 we may bin several outcomes together and proceed as

before.

When the Yi are continuously distributed we may again work from a

factorization of linear functionals similar to the one considered in (2.2) and

(2.3).

3. Algebraic structure and identification. Our approach can be

applied to q-variate structures that decompose as q-ads.

Definition 1. A q-dimensional array X ∈ Rκ1×κ2×···×κq is a q-ad if it

can be decomposed as

(3.1) X =
r∑
j=1

πj

q⊗
i=1

xij
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for some integer r, non-zero weights π1, π2, . . . , πr, and vectors xij ∈ Rκi×1.

Our interest lies in nonparametrically recovering {xij} and {πj} from

knowledge of X and r. Clearly, these parameters are not unique, in general.

For example, a permutation of the xij and πj leaves X unaffected, and

a common scaling of the xij combined with an inverse scaling of the πj ,

too, does not change the q-way array. However, the work of Kruskal [1976;

1977] and Sidiropoulos and Bro [2000] gives a simple sufficient condition

for uniqueness of the decomposition up to these two indeterminacies. This

condition, which cannot be satisfied when q < 3, was further established to

be necessary by Derksen [2013].

While permutational equivalence of possible decompositions of X is a

mostly trivial and inherently unresolvable ambiguity, indeterminacy of the

scale of the vectors xij is undesirable in many situations. Indeed, in arrays

of the general form in (2.2), recovering the scale of the xij and the constants

πj is fundamental. In some cases natural scale restrictions may be present.

Indeed, in (2.1) the xij are known to be probability distributions, and so

they have non-negative entries that sum to one. Suitably combining these

restrictions with Kruskal’s theorem, Allman, Matias and Rhodes [2009] were

able to derive conditions under which the parameters in finite mixtures and

hidden Markov models are uniquely determined up to relabelling of the

latent classes.

We follow a different route to determine q-adic decompositions up to

permutational equivalence. We require that, apart from the q-way array

X, lower-dimensional submodels are also observable. By lower-dimensional

submodels we mean arrays that factor as

(3.2)

r∑
j=1

πj
⊗
i∈Q

xij

for sets Q that are subsets of the index set {1, 2, . . . , q}. This is not a strong

requirement in the models we have in mind. In the discrete multivariate

mixture model in (2.1), for example, lower-dimensional submodels are simply

the contingency tables of a subset of the outcome variables. There, going

from a q-way table down to a (q−1)-table featuring all but the ith outcome

boils down to summing the array in the ith direction. Such marginalizations

are also inherent in the work on multivariate mixtures by Hall and Zhou

[2003] and Kasahara and Shimotsu [2009]. In general settings such as (2.2),

and in the multilinear equation involving Fourier coefficients in particular,
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the advantage of working with submodels over marginalizations of the model

is apparent.

Note that, throughout, we take r in (3.1) to be known. This ensures {xij}
and {πj} to be unambiguously defined. Indeed, for different r, there may

exist a different set of weights and vectors so that X factors as a q-ad. The

rank of X is the smallest integer r needed to arrive at a decomposition as in

Definition 1.

3.1. Unfolding. We can state our main identification result for three-way

arrays without loss of generality. This is so because any q-way array can be

unfolded into a (q− 1)-way array, much like any matrix can be transformed

into a vector using the vec operator. Indeed, in any direction i ∈ {1, 2, . . . , q},
a q-way array of dimension κ1×κ2×· · ·×κq is a collection of κi (q−1)-way

arrays, each of dimension κ1 × κ2 × · · ·κi−1 × κi+1 × · · ·κq . This collection

can be stacked in any of i′ ∈ {1, 2, . . . , i− 1, i+ 1, . . . . . . , q} directions—i.e.,

(q− 1) different ways—to yield a (q− 1)-way array whose dimension will be

κ1×κ2×κiκi′ ×· · ·κq. This unfolding process can be iterated until it yields

a three-way array (see, e.g., Sorensen et al. 2013).

3.2. Identification via simultaneous diagonalization. Let X be a three-

way array of dimension κ1 × κ2 × κ3 that factors as a tri-ad for known r,

that is,

X =

r∑
j=1

πj (x1j ⊗ x2j ⊗ x3j).

Let Xi = (xi1, xi2, . . . , xir) and Π = diag(π1, π2, . . . , πr). Also, for each pair

(i1, i2) with i1 < i2 in {1, 2, 3}2, let

X{i1,i2} =

p∑
j=1

πj (xi1j ⊗ xi2j).

Note that, from (3.2), X{i1,i2} is the lower-dimension submodel obtained

from X on omitting the index i3.

Our first theorem concerns identification of the Xi and is the cornerstone

result of our argument.

Theorem 1 (Columns of Xi). If Xi1 and Xi2 both have full column rank

and X{i1,i2} is observable, then Xi3 is identified up to a permutation matrix

if all its columns are different.
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Proof. Without loss of generality, fix (i1, i2, i3) = (1, 2, 3) throughout

the proof. In each direction i, the three-way array X consists of a collection

of κi matrices. Let A1, A2, . . . , Aκ3 denote these matrices for i = 3. So, the

matrix Ak is obtained from X on fixing its third index to the value k, that is,

Ak = X(:, :, k), using obvious array-indexing notation. Also, let A0 = X{1,2}.
Note that all of A0 and A1, A2, . . . , Aκ3 are observable matrices of dimension

κ1 × κ2.
By construction, the lower-dimensional submodel A0 has the structure

A0 = X1ΠX
′
2.

Because the matrices X1 and X2 both have rank r and because all πj are

non-zero by definition, the matrix A0, too, has rank r. Therefore, it has a

singular-value decomposition

A0 = USV ′

for unitary matrices U and V of dimension κ1 × r and κ2 × r, respectively,

and a non-singular r × r diagonal matrix S. Now construct W1 = S−1/2U ′

and W2 = S−1/2V ′. Then,

W1A0W
′
2 = (W1X1Π

1/2)(W2X2Π
1/2)′ = QQ−1 = Ir,

where Ir denotes the r × r identity matrix and Q = W1X1Π
1/2.

Moving on, each of A1, A2, . . . , Aκ3 has the form

Ak = X1ΠDkX
′
2, Dk = diagkX3,

where diagkX denotes the diagonal matrix whose diagonal equals the kth

row of matrixX. Applying the same transformation to A1, A2, . . . , Aκ3 yields

the collection of r × r matrices

(3.3) W1AkW
′
2 = QDkQ

−1.

So, the matrices {W1AkW
′
2} are diagonalizable in the same basis, namely,

the columns of matrix Q. The associated eigenvalues {Dk} equal the columns

of the matrix X3. These eigenvalues are unique up to a joint permutation

of the eigenvectors and eigenvalues provided there exist no k1 6= k2 so that

the vectors of eigenvalues of W1Ak1W
′
2 and W1Ak2W

′
2 are equal (see, e.g.,

De Lathauwer, De Moor and Vandewalle 2004, Theorem 6.1). Now, this is

equivalent to demanding that the columns of X3 are all distinct. As this is

true by assumption, the proof is complete.
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The proof of Theorem 1 shows that access to lower-dimensional submodels

allows to disentangle the scale of the columns of the Xi and the weights

on the diagonal of Π. This is so because the matrix Π equally shows up

in the lower-dimensional submodels, and so transforming Ak to W1AkW
′
2

absorbs the weights into the joint diagonalizer Q in (3.3). Also note that

the dimension of the matrices in (3.3) is r × r, independent of the size of

the original matrices Xi. On the other hand, larger matrices Xi could be

beneficial for identification, as it becomes easier for them to satisfy the

requirement of full column rank.

Theorem 1 can be applied to recover the tri-adic decomposition of X up

to an arbitrary joint permutation matrix. We present the result in the form

of two theorems.

Theorem 2 (Vectors). If X1, X2, and X3 have full column rank and for

each pair (i1, i2) ∈ {i1, i2 ∈ {1, 2, 3} : i1 < i2, } X{i1,i2} is observable, then

X1, X2, and X3 are all identified up to a common permutation matrix.

Proof. Theorem 1 can be applied to each direction of the three-way

array X. This yields the Xi up to permutation of their columns. However, as

each Xi is recovered from a different simultaneous-diagonalization problem,

the ordering of the columns of the Xi so obtained need not be the same.

Hence, it remains to be shown that we can unravel the orderings. More

precisely, application of Theorem 1 for each i identifies, say,

X1, X2 = X2∆2, X3 = X3∆3,

where ∆2 and ∆3 are two permutation matrices.

Now, given X1 and the lower-dimensional submodels X{1,2} and X{1,3},
we observe the projection coefficients

M2 = (X ′1X1)
−1X ′1X{1,2} = ΠX ′2 = Π∆2X2

′
,

M3 = (X ′1X1)
−1X ′1X{1,3} = ΠX ′3 = Π∆3X3

′
,

where the first transition holds by the structure of the lower-dimensional

submodels and the second transition follows from the fact that permutation

matrices are orthogonal. Also,

X{2,3} = X2ΠX
′
3 = X2∆

′
2Π∆3X

′
3 = M ′2∆3X

′
3, X′{2,3} = M ′3∆2X

′
2.

The latter two equations can be solved for the permutation matrices, yielding

∆2 = (M3M
′
3)
−1M3 X′{2,3}X2(X

′
2X2)

−1,

∆3 = (M2M
′
2)
−1M2 X{2,3}X3(X

′
3X3)

−1.
(3.4)
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This concludes the proof.

Theorem 3 (Weights). If Xi is identified up to a permutation matrix

and has full column rank, and if X{i} is observable, then π is identified up

to the same permutation matrix.

Proof. The one-dimensional submodel X{i} is the vector

X{i} = Xiπ.

Given Xi, the one-dimensional submodel yields linear restrictions on the

weight vector π. Moreover, if Xi is known and has maximal column rank,

these equations can be solved for π, giving

(3.5) π = (X ′iXi)
−1X ′i X{i},

which is the least-squares coefficient of a regression of X{i} on the columns

of Xi.

In the field of multilinear algebra, the work of Kruskal [1976; 1977] has

led to the development of parallel factor analysis, i.e., the canonical polyadic

(CP) decomposition of tensors; see, e.g., Harshman [1970] and Carroll and

Chang [1970] for early contributions. There is now a substantial literature

on computational algorithms to arrive at CP decompositions; De Lathauwer

[2006], De Lathauwer and Nion [2008], and Comon and De Lathauwer [2010]

represent recent contributions. An important difference is that, unlike CP

decompositions, our approach allows to learn the scale of the xij , which is

particularly useful in the statistical applications we have in mind, such as

those in (2.1) and (2.2).

4. Applications. Before turning to estimation we apply our approach

to obtain constructive identification results in our motivating examples from

Section 2.

4.1. Latent-class models. First reconsider the finite-mixture model with

discrete outcomes and a known number of components r in (2.1), that is,

the q-way table

P =
r∑
j=1

πj

q⊗
i=1

pij .

Let Pi = (pi1, pi2, . . . , pir) and Π = diag(π1, π2, . . . , πr). Our next theorem

concerns identification of these parameters.
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Theorem 4 (Identification of finite mixtures). The matrices {Pi} and

Π in the finite mixture model in (2.1) are all identified if rankPi = r for all

i, πj > 0 for all j, and q ≥ 3.

Proof. To show Theorem 4 it suffices again to set q = 3. The proof is

then a direct application of our identification result. Theorem 2 yields the

matrices of component distributions {Pi} and Theorem 3 yields the vector

of mixing proportions π, all up to a common permutation matrix.

Theorem 4 requires that κi ≥ r for all i = 1, 2, . . . , q, that is, that all

distributions pij have more than r points of support but applies as soon as

q = 3. The rank conditions can be weakened when q > 3. Our approach to

proving Theorem 4 is a constructive version of the proof of Theorem 4 in

Allman, Matias and Rhodes [2009].

4.2. Hidden Markov models. Now turn to the hidden Markov model in

(2.4) with a known number of latent states, r. In this model, the parameters

of interest are the κ×r matrix of emission distributions P = (p1, p2, . . . , pr),

the stationary distribution of the r latent states π, and the r × r matrix of

transition probabilities K. The next theorem gives sufficient conditions for

identification.

Theorem 5 (Identification of hidden Markov models). The matrices

P,K, and Π in the hidden Markov model are all identified if rankP = r and

rankK = r, and πj > 0 for all j provided q ≥ 3.

Proof. Set q = 3. Then the contingency table of three measurements

factors as

P =

r∑
j=1

πj (aj ⊗ pj ⊗ bj);

see (2.4). Moreover, this states that appropriate conditioning allows to write

the hidden Markov models as a finite-mixture model of the form in (2.1).

Furthermore, the rank conditions on P and K imply that both B = PK ′ and

A = PΠKΠ−1 also have full column rank r. Hence, Theorem 4 immediately

yields identification of the matrix of emission distributions P and of the

stationary distribution π.

Finally, Theorem 4 also provides the matrix B and, because the model

implies that B = PK ′,

K = B′P (P ′P )−1.
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The hidden Markov model is overidentified. Indeed, besides B we also have

the matrix A, which yields the same type of restrictions on the matrix K.

Theorem 5 states the same identification requirements as Theorem 2.1 of

Gassiat, Cleynen and Robin [2013], but the method of proof followed here

is constructive.

5. Estimation by joint approximate diagonalization. Theorem 1

shows that the key restrictions underlying our results take the form of a set of

matrices being simultaneously diagonalizable in the same basis. The problem

of simultaneous matrix diagonalization has received considerable attention

in the field of independent component analysis. Computationally-efficient

algorithms for it have been developed; see Fu and Gao [2006], Iferroudjene,

Abed-Meraim and Belouchrani [2009; 2010], and Luciani and Albera [2010;

2014]. Such algorithms can be exploited here to construct easy-to-implement

nonparametric estimators of multivariate latent-structure models. Moreover,

we recommend to use the algorithm developed in Iferroudjene, Abed-Meraim

and Belouchrani [2009; 2010], which minimizes a least-squares criterion (see

(5.4) below). The formulation of their approach as an extremum estimator

allows for easy derivation of asymptotic theory.

Thus, we propose estimating the latent-structure model in (3.1) as follows.

Given an estimate of the array X and of its lower-dimensional submodels,

first estimate all xij by solving a sample version of the joint diagonalization

problem in (3.3), possibly after unfolding if q > 3. Next, back out the weights

π1, π2, . . . , πr by solving the sample analog of the minimum-distance problem

in (3.5). Asymptotic theory for this second step follows readily by the delta

method. If desired, a consistent labelling can be recovered by estimating the

permutation matrices from a plug-in version of (3.4).

5.1. Estimator. Consider a generic situation in which a set of κ r × r
matrices C1, C2, . . . , Cκ can be jointly diagonalized by an r × r invertible

matrix Q0, that is,

(5.1) Ck = Q0DkQ
−1
0 ,

for diagonal matrices D1, D2, . . . , Dκ. Knowledge of the joint eigenvectors

implies knowledge of the eigenvalues, as

(5.2) Dk = Q−10 CkQ0.
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The matrix Q0 is not unique. Moreover, let off Q = Q − diagQ and let

‖Q‖F =
√

trace(Q′Q) denote the Frobenius norm. Then any solution to the

least-squares problem

(5.3) min
Q

κ∑
k=1

‖off(Q−1CkQ)‖2F

is a joint diagonalizer in the sense of (5.1). Each of these delivers the same

set of eigenvalues in (5.2) (up to a joint permutation).

The statistical problem of interest in this section is to perform inference on

theD1, D2, . . . , Dκ when we only observe noisy versions of the input matrices

C1, C2, . . . , Cκ, say Ĉ1, Ĉ2, . . . , Ĉκ. Sampling noise in the Ĉk prevents them

from sharing the same set of eigenvectors. Indeed, in general, there does not

exist a Q such that Q−1ĈkQ will be exactly diagonal for all k. For this, the

least-squares formulation in (5.2)–(5.3) is important as it readily suggests

using, say Q̂, any solution to

(5.4) min
Q∈Q

κ∑
k=1

‖off(Q−1ĈkQ)‖2F ,

where Q is an appropriately-specified space of matrices to search over; see

below. The estimator Q̂ is that matrix that makes all these matrices as

diagonal as possible, in the sense of minimizing the sum of their squared

off-diagonal entries. It is thus appropriate to call the estimator Q̂ the joint

approximate-diagonalizer of Ĉ1, Ĉ2, . . . , Ĉκ. An estimator of the Dk (up to

a joint permutation of their eigenvalues) then is

(5.5) D̂k = diag(Q̂−1ĈkQ̂).

Distribution theory for this estimator is not available, however, and so we

provide it here. Throughout, we work under the convention that estimates

are computed from a sample of size n.

5.2. Asymptotic theory. For our problem to be well-defined we assume

that the matrix of joint eigenvectors is bounded. In (5.4), we may therefore

restrict attention to the set of r × r matrices Q = (q1, q2, . . . , qr) defined as

Q = {Q : detQ = 1, ‖qj‖F = c for j = 1, 2, . . . , r and c ≤ m <∞}

for some m > 0. The restrictions on the determinant and the column norms

are without loss of generality and only reduce the space of matrices to be
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searched over when solving (5.4). Let Q∗ be any solution to (5.3) on Q and

let Q0 ⊂ Q be the set of all matrices Q∗∆Θ for permutation matrices ∆

and diagonal matrices Θ whose diagonal entries are equal to 1 and −1 and

have det Θ = 1. Then Q0 is the set of solutions to (5.3) on Q.

Construct the r × rκ matrix C = (C1, C2, . . . , Cκ) by concatenation and

define Ĉ similarly.

Theorem 6 (Consistency). If the set Q0 belongs to the interior of Q,

Ĉ = C + op(1), and Q̂ ∈ Q satisfies

κ∑
k=1

‖off(Q̂−1ĈkQ̂)‖2F = inf
Q∈Q

{
κ∑
k=1

‖off(Q−1ĈkQ)‖2F

}
+ op(1),

then limn→∞ Pr(Q̂ ∈ O) = 1 for any open subset O of Q containing Q0.

Each Q ∈ Q0 has associated with it a permutation matrix ∆ and a

diagonal matrix Θ as just defined so that Q = Q∗∆Θ. Theorem 6 states

that (up to a subsequence) we have that Q̂
p→ Q∗∆0Θ0 for well-defined ∆0

and Θ0. We may then set Q0 = Q∗∆0Θ0 in (5.1). It then equally follows

that

D̂k
p→ Dk = ∆′0D

∗
k∆0,

where Dk is as in (5.2) and D∗k = Q−1∗ CkQ∗, both of which are equal up

to a permutation. Thus, the consistency of the eigenvalues (up to a joint

permutation) essentially follows from the consistency of the estimator of the

input matrices C.

To provide distribution theory, let

Dk1 	Dk2 = (Dk1 ⊗ IdimDk2
)− (IdimDk1

⊗Dk2)

be the Kronecker difference between square matricesDk1 andDk2 . Construct

the r2 × r2κ matrix

T = ((D1 	D1), (D2 	D2), . . . , (Dκ 	Dκ))

by concatenation and let

G = (Ir ⊗Q0)

(
κ∑
k=1

(Dk 	Dk)
2

)+

T (Iκ⊗Q′0 ⊗Q−10 ),

where Q+ is the Moore-Penrose pseudo inverse of Q. Theorem 7 contains

distribution theory for our estimator of the matrix of joint eigenvectors Q̂

in (5.4).
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Theorem 7 (Asymptotic distribution). If ‖Ĉ−C‖F = Op(n
−1/2), then

√
n vec(Q̂−Q0) = G

√
n vec(Ĉ − C) + op(1)

as n→∞.

If, further,
√
n vec(Ĉ − C)

d→ N (0, V ) for some covariance matrix V ,

Theorem 7 implies that

√
n vec(Q̂−Q0)

d→ N (0, GV G′)

as n→∞. In our context,
√
n-consistency and asymptotic normality of the

input matrices is not a strong requirement. Indeed, the proof of Theorem 1

showed that the input matrices are of the form Ck = W1AkW
′
2, where W1

and W2 follow from a singular-value decomposition of A0. An estimator of

Ck can thus be constructed using a sample analog of A0 to estimate W1

and W2, together with a sample analog of Ak. If the estimators of A0 and

Ak are
√
n-consistent and asymptotically normal and all non-zero singular

values of A0 are simple, then
√
n vec(Ĉ − C)

d→ N (0, V ) holds. A detailed

derivation of V is readily obtained from the argument on the estimation of

eigendecompositions of normal matrices in the supplementary material to

Bonhomme, Jochmans and Robin [2014, Lemma S.2].

We next present the asymptotic behavior of D̂ = (D̂1, D̂2, . . . , D̂κ), our

estimator of the eigenvalues D = (D1, D2, . . . , Dκ). To state it, let Sr =

diag(vec Ir) be an r2×r2 selection matrix; note that Sr vecQ = vec(diagQ).

Let

H = (Iκ⊗Sr) (Iκ⊗Q′0 ⊗Q−10 ).

Theorem 8 follows.

Theorem 8 (Asymptotic distribution). If ‖Ĉ−C‖F = Op(n
−1/2), then

√
n vec(D̂ −D) = H

√
n vec(Ĉ − C) + op(1)

as n→∞.

Again, if
√
n vec(Ĉ − C)

d→ N (0, V ), then

√
n vec(D̂ −D)

d→ N (0, H V H ′)

as n→∞.
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6. Application to finite mixtures of continuous measures. With

discrete outcomes, both the finite-mixture model in (2.1) and the hidden

Markov model in (2.4) are finite dimensional. Further, the input matrices

to be simultaneously diagonalized are contingency tables. These tables can

be estimated by simple empirical cell probabilities and are
√
n-consistent

and asymptotically normal. Hence, the theory from the previous section can

directly be applied to deduce the large-sample behavior of the parameter

estimates.

Now consider a mixture model with continuous outcomes. Here we derive

convergence rates for an orthogonal-series estimator of the densities in the

mixture model based on (2.3). The results readily extend to a hidden Markov

model with continuous emission distributions.

The q-variate finite-mixture model with r latent classes implies that the

joint density of the outcomes Y1, Y2, . . . , Yq factors as

r∑
j=1

πj

q⊗
i=1

fij

for mixing proportions πj and conditional densities fij . With the density

supported on the compact set [−1, 1]q and the fij square-integrable with

respect to a weight function ρ on [−1, 1], the orthogonal-series approximation

Projκi fij = ϕ′κibij

yields the multilinear restrictions

B = E[

q⊗
i=1

ϕκi(Yi)ρ(Yi)] =

r∑
j=1

πj

q⊗
i=1

E[ϕκi(Yi)ρ(Yi)|Z = j] =

r∑
j=1

πj

q⊗
i=1

bij ,

where, recall, ϕκi is the vector containing the κi leading polynomials from

{φk, k > 0}.
The entries of the array B can be estimated as simple sample averages

over the orthogonal polynomials, weighted by ρ. Moreover, its sample analog

is

(6.1) B̂ ≡ n−1
n∑

m=1

q⊗
i=1

ϕκi(Yim)ρ(Yim),

where {Y1m, Y2m, . . . , Yqm}nm=1 is a size-n sample drawn at random from

the mixture model. Simultaneous diagonalization of B̂ as in (3.3) above
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then yields estimators b̂ij of the Fourier coefficients, and the nonparametric

density estimator

(6.2) f̂ij = ϕ′κi b̂ij .

This nonparametric problem is not directly covered by the arguments from

the previous section. Consistency of the estimator in (6.2) requires that

κi →∞ as n→∞. The remaining κi′ (i′ 6= i) only show up in the estimator

of the Fourier coefficients, via the dimension of the q-way array in (6.1).

This means that, to estimate the Fourier coefficients of fij , we solve a joint

diagonalization system where the number of matrices to be diagonalized, κi,

diverges, but the size of the matrices remains fixed. That is, in the notation

of the proof of Theorem 1, the size of each matrix Ak is fixed but the number

of such matrices diverges with the sample size. So, throughout this section,

κi′ for i′ 6= i is treated as fixed.

Under mild regularity conditions, the estimator in (6.2) exhibits standard

large-sample behavior.

Let ‖·‖∞ denote the supremum norm.

Assumption 1 (Regularity). The sequence {φk, k > 0} is dominated by

a function ψ that is continuous on (−1, 1) and positive almost everywhere on

[−1, 1]. ρ, ψρ, and ψ2ρ are integrable. There exists a sequence of constants

{ζκ, κ > 0} so that ‖
√
ϕ′κϕκ‖∞ ≤ ζκ.

These conditions are rather weak. They are satisfied for the class of Jacobi

polynomials, for example, which are orthogonal to weight functions of the

form ρ(y) ∝ (1 − y)ϑ1(1 + y)ϑ2 , where ϑ1, ϑ2 > −1, and are dominated by

ψ(y) ∝ (1 − y)−ϑ
′
1(1 + y)−ϑ

′
2 , where ϑ′i ≡ max{ϑi,−1/2}/2 + 1/4. Further,

with ϑ ≡ 1/2 + max{ϑ1, ϑ2,−1/2}, ‖φk‖∞ = kϑ, and so one can take ζκ =

κ(1+ϑ)/2; see, e.g., Viollaz [1989]. Notable members of the Jacobi class are

Chebychev polynomials of the first kind (ϑ1 = ϑ2 = −1/2), Chebychev

polynomials of the second kind (ϑ1 = ϑ2 = 1/2), and Legendre polynomials

(ϑ1 = ϑ2 = 0).

Assumption 2 (Smoothness). The fij are continuous, the (ψρ)2fij are

integrable, and ‖Projκi fij − fij‖∞ = O(κ−βi ) for some constant β ≥ 1.

Convergence in L2
ρ-norm implies that limκi→∞‖bij‖F is finite, and so that

the Fourier coefficient associated with φk shrinks to zero as k → ∞. The

constant β in Assumption 2 is a measure of how fast the Fourier coefficients
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shrink. In general, β is larger the smoother the underlying function that is

being approximated.

Under these conditions we obtain integrated squared-error and uniform

convergence rates.

Theorem 9 (Convergence rates). Let Assumptions 1–2 hold. Then∥∥f̂ij − fij∥∥22 = Op(κi/n+ κ−2βi ),
∥∥f̂ij − fij∥∥∞ = Op(ζκi

√
κi/n+ κ−βi ),

for all i, j.

The rates in Theorem 9 equal the conventional univariate rates of series

estimators; see, e.g., Schwartz [1967] and Newey [1997]. Thus, the fact that Z

is latent does not affect the convergence speed of the density estimates. The

integrated squared-error result is further known to be optimal, in the sense

that it achieves the bound established by Stone [1982]. It may be possible

to improve on the uniform-convergence rate using recent results by Belloni

et al. [2013] but we do not pursue such a refinement here for reasons of

conciseness. Indeed, our series estimator differs from the standard estimator

only in the way the Fourier coefficients are estimated. Once we have shown

that ‖b̂ij − bij‖F = Op(
√
κi/n), standard series arguments can be applied

in the usual way.

The orthogonal-series estimator requires choosing the number of Fourier

coefficients—κ1, κ2 . . . , κq—to include in (6.1). This is a more complicated

problem than in the conventional univariate context, where one only needs

to select κi to estimate fij ; see Diggle and Hall [1986], among others. It

would be interesting to see how these approaches can be modified to the

current setting.

7. Monte Carlo illustration. The orthogonal-series estimator was

applied to simulated data from a three-variate two-component mixture of

beta distributions on the interval [−1, 1]. The family of Beta densities on

[−1, 1] has members

f(y;ϑ1, ϑ2) =
1

2ϑ1+ϑ2−1
1

B(ϑ1, ϑ2)
(1 + y)ϑ1−1(1− y)ϑ2−1,

where B(ϑ1, ϑ2) ≡
∫ 1
0 z

ϑ1−1(1 − z)ϑ2−1 dz, and ϑ1 and ϑ2 are positive real

scale parameters. We generated n = 500 observations from a mixture with

components
f11(y) = f(y; 5, 2), f12(y) = f(y; 2, 4),
f21(y) = f(y; 6, 3), f22(y) = f(y; 3, 4),
f31(y) = f(y; 6, 3), f32(y) = f(y; 2, 6),
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Fig 1. Component densities and distributions
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and mixing proportions π1 = π2 = 1/2. For each i, fi1 is skewed to the left

and fi2 is skewed to the right but all component densities vary with i. We

estimated the densities by means of our joint approximate-diagonalization

estimator using the five leading Chebychev polynomials of the first kind

as basis functions for each i on data sets of size n = 500. Experimentation

with different choices yielded similar results. After estimating the component

densities we used Clenshaw-Curtis quadrature to construct an estimator of

µij(y) =
∫ y
−1 fij(z) dz.

The solid lines in the left plots of Figure 1 represent the densities fij . The

solid lines in the right plots are the corresponding distribution functions µij .

In each plot, dashed lines are given for the mean and for the upper and lower

envelopes of 1, 000 replications of our estimation procedure. The plots show

our approach is effective at recovering the component densities as well as

the component distributions.
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APPENDIX A: TECHNICAL PROOFS

Proof of Theorem 6. For generic r×rκmatrixM = (M1,M2, . . . ,Mκ)

denote the objective function as

L(Q,M) =
κ∑
k=1

‖off(Q−1MkQ)‖2F .

Write Q−i,−j for the principal minors of Q. Because for any Q ∈ Q we have

[Q−1]i,j = (−1)i+j detQ−i,−j

and detA is a polynomial function of A, the function L(Q,M) is continuous

in each of its arguments. Let

L0(Q) = L(Q,C), Ln(Q) = L(Q, Ĉ).

Note that Q0 = arg infQ∈Q L0(Q) is the equivalence class containing all

Q ∈ Q that are equal to Q0 up to a permutation and direction of their

columns.

Because ‖Ĉ−C‖F = op(1) and L(Q,M) is continuous in M , for all Q ∈ Q,

Ln(Q)
p→ L0(Q)

by the continuous-mapping theorem. Further, by the same argument, for all

Q,Q′ ∈ Q,

|Ln(Q)− Ln(Q′)| ≤ Op(1) ‖Q−Q′‖F ,

because Ln(Q) is polynomial in Q, and thus Lipschitz continuous. With

Q compact it follows that Ln(Q) is stochastically equicontinuous (see, for

example, Newey and McFadden 1994, Lemma 2.9), and so

sup
Q∈Q
|Ln(Q)− L0(Q)| = op(1).

Then, for any open subset O of Q containing Q0, with complement Oc, it

holds that

L0(Q̂) < inf
Q∈Oc

L0(Q)

with probability approaching one. Hence, we have limn→∞ Pr(Q̂ ∈ O) = 1

(Newey and McFadden 1994, Theorem 2.1).



MULTIVARIATE LATENT-STRUCTURE MODELS 25

Proof of Theorem 7. For the proof of Theorem 7 it is convenient to

work with a different yet equivalent normalization on Q0. More precisely,

the set

Q = {Q : detQ = 1, ‖qj‖F = c for j = 1, 2, . . . , r and c ≤ m <∞}

is in a simple one-to-one correspondence with the set

Q′ = {Q : detQ = c−r, ‖qj‖F = 1 for j = 1, 2, . . . , r and c ≤ m <∞}.

The latter is easier to work with here because constraining columns to have

unit norm is easier than requiring the determinant of the matrix to equal

unity. In any case, the asymptotic distribution of Q̂ turns out not to depend

on the choice of column norm.

We first derive the first-order conditions to the constrained minimization

problem that defines Q̂. Given these, we can then proceed using standard

arguments to derive the asymptotic distribution of the joint approximate

diagonalizer.

Lagrangian and first-order conditions. It is useful to reformulate the joint

approximate-diagonalization problem as

min
Q,R

κ∑
k=1

∥∥ off(R ĈkQ)
∥∥2
F
, s.t. RQ = Ir, ‖qj‖F = 1 ∀j.

With [Q]i,j and [R]i,j denoting the (i, j)th entries of matrices Q and R,

respectively, the Lagrangian for this constrained minimization problem with

respect to (Q,R) is

L(Q,R) =
κ∑
k=1

∥∥ off(R ĈkQ)
∥∥2
F

+
r∑

i,j=1

λij

(
r∑
`=1

[R]i,`[Q]`,j − δij

)
+

r∑
j=1

γj(q
′
jqj − 1),

for Lagrange multipliers [Λ]i,j = λij and γ = (γ1, γ2, . . . , γr)
′ associated with

each of the constraints, and δij denoting Kronecker’s delta.

Application of the chain rule readily gives

∂L(Q,R)

∂Q
= 2

κ∑
k=1

Ĉ ′kR
′ off(R ĈkQ) +R′Λ + 2QΓ,(A.1)

∂L(Q,R)

∂R
= 2

κ∑
k=1

off(R ĈkQ)Q′Ĉ ′k + ΛQ′,(A.2)
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with Γ = diag(γ). Substitute R = Q−1 in (A.2) and solve ∂L(Q,R)
∂R = 0 for Λ

to get

Λ = −2

κ∑
k=1

off(Q−1ĈkQ) (Q−1ĈkQ)′.

Next, substitute this value for Λ and R = Q−1 in (A.1) and premultiply

with Q′ to get

κ∑
k=1

(Q−1ĈkQ)′ off(Q−1ĈkQ)− off(Q−1ĈkQ)(Q−1ĈkQ)′ +Q′QΓ = 0.

Force the columns of Q to have unit Euclidean norm, so that diag(Q′Q) = Ir,

to see that

Γ = −diag

(
κ∑
k=1

(Q−1ĈkQ)′ off(Q−1ĈkQ)− off(Q−1ĈkQ)(Q−1ĈkQ)′

)
,

as Γ = diag(Q′QΓ) because Γ is diagonal. Then the first-order condition

for Q of our constrained minimization problem is obtained on plugging this

expression back in to (A.1). To write it compactly, let

∆(M) = M ′ off(M)− off(M)M ′

for any matrix M and

S(Q,M) =

κ∑
k=1

(Q′)−1∆(Q−1MkQ)−Qdiag(∆(Q−1MkQ))

for any M = (M1,M2, . . . ,Mκ). Then

S(Q, Ĉ) = 0

is the score equation defining Q̂.

Expansion of first-order conditions. With S(Q,M) polynomial in each of

its arguments, an expansion around Q0 and C gives

(A.3)
dS(Q0,M)

dM

∣∣∣∣
M=C

vec(M̂−M)+
dS(Q,C)

dQ

∣∣∣∣
Q=Q0

vec(Q̂−Q0) = op(n
−1/2),

where

dS(Q,M)

dM
=
∂ vecS(Q,M)

∂ vec(M)′
,

dS(Q,M)

dQ
=
∂ vecS(Q,M)

∂ vec(Q)′
.
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To derive the asymptotic distribution of Q̂ we need to calculate both these

derivatives, and evaluate at true values.

Start with the derivative with respect to Q. First observe that

(A.4)
dQ−1MQ

dQ
=
(
Ir ⊗Q−1M

)
−
(
(Q−1MQ)′ ⊗Q−1

)
.

Furthermore, vec(off M) = vec(M − diagM) = (Ir2 −Sr) vec(M) and, by

an application of the chain rule,

d∆(Q−1MQ)

dQ
=
{

off(Q−1MQ)′ 	 off(Q−1MQ)
} dQ−1MQ

dQ

−
{

(Q−1MQ)	 (Q−1MQ)′
}
{Ir2 −Sr}

dQ−1MQ

dQ
.

(A.5)

Therefore, combining (A.4) and (A.5), and using that Dk = Q−10 CkQ0 and

off(Dk) = 0, we have

d∆(Q−1CkQ)

dQ

∣∣∣∣
Q=Q0

= (Dk 	Dk) (Ir2 −Sr) (Dk 	Dk)
(
Ir ⊗Q−10

)
= (Dk 	Dk)

2 (Ir ⊗Q−10

)
for all k, where the last transition follows from the fact that Sr(Dk	Dk) = 0

because Sr selects only the {(ir+(i+1), ir+(i+1))}r−1i=0 entries of the r2×r2
matrix Dk 	Dk, and these are equal to zero. Then

dS(Q,C)

dQ

∣∣∣∣
Q=Q0

=
(
Ir ⊗Q−10

)′{ κ∑
k=1

(Dk 	Dk)
2

}(
Ir ⊗Q−10

)
(A.6)

follows readily.

Now turn to the derivative with respect to M . Proceeding in the same

way as before, now using that

dQ−1MQ

dM
= Q′ ⊗Q−1,

we obtain

d∆(Q−10 MQ0)

dM

∣∣∣∣
M=Ck

= −(Dk 	Dk) (Q′0 ⊗Q−10 ),

which yields

dS(Q0,M)

dMk

∣∣∣∣
Mk=Ck

= −(Ir ⊗Q−10 )′(Dk 	Dk)(Q
′
0 ⊗ Ir)(Ir ⊗Q−10 )
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for each k, and so concatenating these matrices finally gives

(A.7)
dS(Q0,M)

dM

∣∣∣∣
M=C

= −(Ir ⊗Q−10 )′ T (Iκ⊗Q′0 ⊗Q−10 ).

Combining (A.3) with (A.6) and (A.7) then yields

vec(Q̂−Q0) = G vec(Ĉ − C) + op(n
−1/2),

with matrix G as defined in the main text. This completes the proof of the

theorem.

Proof of Theorem 8. Because we have ‖Ĉk − Ck‖ = Op(n
−1/2) and

‖Q̂−Q0‖ = Op(n
−1/2), a linearization of

D̂k −Dk = diag(Q̂−1ĈkQ̂−Q−10 CkQ0)

up to op(n
−1/2) will yield the result. Moreover, the term inside the diagonal

operator equals

(Q̂−Q0)
−1CkQ0 +Q−10 (Ĉk − Ck)Q0 +Q−10 Ck(Q̂−Q0) + op(n

−1/2).

Because matrix inversion is a continuous transformation, the delta method

can further be applied to yield

vec
(
(Q̂−Q0)

−1CkQ0

)
= −

(
Dk ⊗Q−10

)
vec
(
Q̂−Q0

)
+ op(n

−1/2).

The remaining right-hand side terms are already linear in the estimators

Q̂ and Ĉk. Then, using that Q−10 Ck = DkQ
−1
0 , vec(Q̂−1Ĉk Q̂ − Q−10 CkQ0)

equals

(Q′0 ⊗Q−10 ) vec(Ĉk − Ck)− (Dk 	Dk)(Ir ⊗Q−10 ) vec(Q̂−Q0) + op(n
−1/2).

Now, vec(D̂k − Dk) = Sr vec(Q̂−1Ĉk Q̂ − Q−10 CkQ0), implying asymptotic

linearity of the estimated eigenvalues for each k. Further, concatenating the

influence functions gives

vec(D̂ −D) =
(

Iκ⊗(Sr(Q
′
0 ⊗Q−10 ))

)
vec(Ĉ − C) + op(n

−1/2).

This proves the theorem because

Iκ⊗ (Sr(Q
′
0 ⊗Q−10 )) = (Iκ⊗Sr) (Iκ⊗Q′0 ⊗Q−10 ) = H,

as claimed.



MULTIVARIATE LATENT-STRUCTURE MODELS 29

Proof of Theorem 9. For the proof it suffices to consider the case

with q = 3. Without loss of generality we fix i = 3 throughout. As in the

proof to Theorem 1,

A0 = B1ΠB
′
2, Ak = B1ΠDkB

′
2, Dk = diagk B3.

The Fourier coefficients are then estimated by solving the sample version of

Ck = W1AkW
′
2 = QDkQ

−1.

The proof consists of two steps. We first derive integrated squared-error and

uniform convergence rates for the infeasible estimator that assumes that

the matrices Q and W1,W2 are observable without noise. That is, for the

estimator

f̃ij = ϕ′κi b̃ij ,

where the b̃ij are constructed from D̃k = diag[(Q−1W1) Âk (W ′2Q)]. We then

show that the additional noise in the feasible estimator

f̂ij = ϕ′κi b̂ij ,

that is, the one that uses D̂k = diag[(Q̂−1Ŵ1) Âk (Ŵ ′2Q̂)], is asymptotically

negligible.

We begin by showing that ‖b̃ij − bij‖F = Op(
√
κi/n). The convergence

rates for f̃ij will then follow easily. Write ak1k2k for the (k1, k2)th entry of

Ak and let âk1k2k be its estimator. Note that

âk1k2k =
1

n

n∑
m=1

φk1(Y1m)ρ(Y1m)φk2(Y2m)ρ(Y2m)φk(Y3m)ρ(Y3m)

is an unbiased estimator of ak1k2k. Hence, for any k,

E
∥∥Âk −Ak∥∥2F =

κ1∑
k1=1

κ2∑
k2=1

E
[
(âk1k2k − ak1k2k)2

]
=

κ1∑
k1=1

κ2∑
k2=1

E
[
φk1(Y1)

2ρ(Y1)
2φk2(Y2)

2ρ(Y2)
2φk(Y3)

2ρ(Y3)
2
]
− a2k1k2k

n

≤
κ1∑
k1=1

κ2∑
k2=1

∏q
i′=1

∑r
j=1 πj

( ∫ 1
−1 ψ(y)2ρ(y)2fi′j(y) dy

)
− a2k1k2k

n
.
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As the ψ2ρ2fi′j are integrable and the Fourier coefficients ak1k2k3 are square

summable, we have that E‖Âk − Ak‖2F = O(1/n) uniformly in k. Hence,∑κi
k=1‖Âk −Ak‖2F = Op(κi/n) follows from Markov’s inequality, and also

‖b̃ij − bij‖2F ≤
κi∑
k=1

∥∥D̃k −Dk

∥∥2
F

≤
∥∥Q−1W1 ⊗Q′W2

∥∥2
F

κi∑
k=1

∥∥Âk −Ak∥∥2F = Op(κi/n)

follows by the Cauchy-Schwarz inequality. This establishes the rate result

on the Fourier coefficients sought for. Now turn to the convergence rates for

f̃ij . By orthonormality of the φk,∥∥f̃ij − fij∥∥22 =
∥∥f̃ij − Projκi fij

∥∥2
2

+
∥∥Projκi fij − fij

∥∥2
2

= ‖b̃ij − bij‖2F +
∥∥Projκi fij − fij

∥∥2
2
.

The first right-hand side term is known to be Op(κi/n) from above. For the

second right-hand side term, by Assumption 2,

∥∥Projκi fij − fij
∥∥2
2
≤
∫ 1

−1

∥∥Projκi fij − fij
∥∥2
∞ ρ(y) dy = O(κ−2βi )

because ρ is integrable. This establishes the integrated squared-error rate

for f̃ij . To obtain the uniform convergence rate, use the triangle inequality

to see that∥∥f̃ij − fij∥∥∞ ≤ ∥∥f̃ij − Projκi fij
∥∥
∞ +

∥∥Projκi fij − fij
∥∥
∞.

By the Cauchy-Schwarz inequality in the first step and by the uniform bound

on the norm of the basis functions and the convergence rate of ‖b̃ij − bij‖F
in the second, the first right-hand side term satisfies∥∥f̃ij − Projκi fij

∥∥
∞ ≤

∥∥√ϕ′κiϕκi∥∥∞ ‖b̃ij − bij‖F = O
(
ζκi
)
Op
(√

κi/n
)
.

By Assumption 2, ‖Projκi fij − fij‖∞ = O(κi
−β). This yields the uniform

convergence rate.

To extend the results to the feasible density estimator we first show that

the presence of estimation noise in Q and (W1,W2) implies that

(A.8) ‖b̂ij − b̃ij‖F = Op(n
−1/2) +Op(

√
κi/n).
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By the Cauchy-Schwarz inequality,∥∥b̂ij − b̃ij∥∥2F ≤ κi∑
k=1

∥∥D̂k − D̃k

∥∥2
F

≤
∥∥Q̂−1Ŵ1 ⊗ Q̂′Ŵ2 −Q−1W1 ⊗Q′W2

∥∥2
F

κi∑
k=1

∥∥Âk∥∥2F .
Because both Q̂ and (Ŵ1, Ŵ2) are

√
n-consistent,∥∥Q̂−1Ŵ1 ⊗ Q̂′Ŵ2 −Q−1W1 ⊗Q′W2

∥∥2
F

= Op(1/n).

Also, from above, we have that
κi∑
k=1

∥∥Âk∥∥2F ≤ 2

κi∑
k=1

∥∥Ak∥∥2F + 2

κi∑
k=1

∥∥Âk −Ak∥∥2F = O(1) +Op(κi/n).

Together, these results imply (A.8). Next,

‖f̂ij − fij‖22 ≤ 2‖b̂ij − b̃ij‖2F + 2‖f̃ij − fij‖22.

From above, the first right-hand side term is Op(1/n) +Op(κi/n
2) while the

second right-hand side term is Op(κi/n + κ−2βi ). Therefore, the difference

between b̂ij and b̃ij has an asymptotically-negligible impact on the density

estimator, and

‖f̂ij − fij‖22 = Op(κi/n+ κ−2βi ).

For the uniform convergence, similarly, the triangle inequality gives the

bound

‖f̂ij − fij‖∞ ≤ ‖f̂ij − f̃ij‖∞ + ‖f̃ij − fij‖∞.
Again,

‖f̂ij − f̃ij‖∞ ≤
∥∥√ϕ′κiϕκi∥∥∞ ∥∥b̂ij − b̃ij∥∥F = Op(ζκi/

√
n) +Op(ζκi

√
κi/n),

which is of a smaller stochastic order than is ‖f̃ij − fij‖∞. This concludes

the proof.
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