
HAL Id: hal-01114776
https://sciencespo.hal.science/hal-01114776

Preprint submitted on 9 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Two-way models for gravity
Koen Jochmans

To cite this version:

Koen Jochmans. Two-way models for gravity. 2015. �hal-01114776�

https://sciencespo.hal.science/hal-01114776
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


 
 
 

Discussion paper 2015-03 

 

 

 

Two-way models for gravity 

 

 
 

 

 

 

 

 
 

Koen Jochmans 
 

 
 

 

 

 
Sciences Po Economics Discussion Papers 



Two-way models for gravity

Koen Jochmans∗

Draft: February 2, 2015

Empirical models for panel data frequently feature fixed effects in both directions

of the panel. Settings where this is prevalent include student-teacher interaction,

the allocation of workers to firms, and the import-export flows between countries.

Estimation of such fixed-effect models is difficult. We derive moment conditions for

models with multiplicative unobservables and fixed effects and use them to set up

generalized method of moments estimators that have good statistical properties. We

estimate a gravity equation with multilateral resistance terms as an application of

our methods.

Introduction

A common type of data provides information on dyadic relations between two sets

of agents. For example, in the student-achievement literature (see, e.g., Aaronson,

Barrow and Sander 2007; Rivkin, Hanushek and Kain 2005), the sets of agents

could be students on the one hand, and teachers or classrooms on the other

hand. Alternatively, the data of Abowd, Kramarz and Margolis (1999) matches

workers with firms, while data on bilateral trade flows has been used to study

import/export behavior of firms or countries at least since the work of Tinbergen

(1962).

Empirical models for such linked data almost invariably contain agent-specific

fixed effects, that is, teacher and student effects, worker and firm effects, or

importer and exporter effects in the applications just mentioned. The inclusion of

such effects can capture unobserved characteristics that are heterogeneous across

agents. In our examples these could be student quality and teacher ability or

∗ Address: Sciences Po, Département d’économie, 28 rue des Saints Pères, 75007 Paris, France;
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dedication, worker and firm productivity, and openness toward international trade

or lenience toward importing and exporting goods, respectively. Furthermore,

including such effects can be seen as a parsimonious approach to capturing latent

network effects (see, e.g., Graham 2013, 2014).

Linked data of this form can be seen as panel data where each dimension of the

panel corresponds to a type of agent. A specification that includes fixed effects in

each dimension gives rise to a two-way model for panel data. While the inclusion

of such effects is intuitively attractive and widespread, there is little theoretical

work on the statistical properties of the corresponding estimators. Moreover,

pooled estimators and also fixed-effect estimators that are popular for one-way

models may lose their attractive properties. Indeed, in most linked data sets,

both dimensions of the panel tend to be reasonably large. Under such a sampling

scheme, estimators that treat the fixed effects as parameters to be estimated will,

in general, be heavily biased (see, e.g., Hahn and Newey 2004). This implies that

the usual confidence intervals and hypothesis tests have poor properties, which

may lead to erroneous policy conclusions.

In this paper we consider estimation and inference for a class of nonlinear models

with two-way fixed effects and disturbances that enter in a multiplicative manner.

A notable member of this class is the exponential-regression model. In addition

to its usefulness for analyzing count data, the exponential-regression model is

popular in the estimation of constant-elasticity models ever since Santos Silva and

Tenreyro (2006) pointed to the potentially-large bias in least-squares estimates of

log-linearized models. We derive moment conditions that difference-out the fixed

effects and use them to construct GMM estimators that have standard asymptotic

properties.

There is recent work by Fernández-Val and Weidner (2014) on likelihood-based

estimation of a class of two-way models. This class of models is different from the

one under study here, and they are not nested. An important difference between

their approach and ours is that they consider methods for reducing the order of
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the incidental-parameter bias in the maximum-likelihood estimator while we are

able to eliminate it completely. Charbonneau (2013) investigates the potential

of conditional-likelihood estimation for the binary-choice logit model as well as

for Poisson and Gamma models. The latter two models are special cases of our

model. Furthermore, the conditional-likelihood approach requires specifying the

full distribution of the data (conditional on the fixed effects) while our approach

is moment based.

A leading two-way model is a gravity model for international trade featuring

both importer and exporter fixed effects. Such a specification is arguably the

benchmark gravity equation since Anderson and van Wincoop (2003), but the

literature has not reached an agreement on how to estimate it (Anderson 2011;

Head and Mayer 2014).1 As an empirical application we estimate a version of

the Anderson and van Wincoop (2003) model for a panel of 136 countries using

the estimator developed here. This makes our estimates of the gravity equation

the first ones to be based on a sound statistical theory adapted to the presence

of multilateral resistance terms.

In the first section we describe the model of interest and gradually build our

way from a model featuring no fixed effects to a two-way model. This is useful

as it helps to illustrate the difficulties that arise with traditional techniques when

applied to two-way models. In doing so, we derive the moment conditions that will

be the basis for our estimator. The second section is dedicated to the estimator.

We first present its large-sample distribution, which allows for estimation and

inference. We next evaluate its small-sample performance in a set of Monte Carlo

experiments. The third section deals with our empirical application. We conclude

by showing that our approach readily generalizes to datasets with more than two

dimensions, such as data on repeated interactions between the agents or observing

agents actions on multiple markets.

1The estimators that have been put forth range from naive log-linearized least squares over nonlinear
least-squares to Gamma and Poisson pseudo maximum-likelihood estimators. However, their use is based
on cross-sectional arguments (Santos Silva and Tenreyro 2006; Head and Mayer 2014), but these do not
always carry over to the panel setting with fixed effects.
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I. Multiplicative models for panel data

Suppose our aim is to estimate the parameter vector ψ0 from a panel data set

{(y11, x11), . . . , (ynm, xnm)} in a model of the form

(1.1) yij = ϕ(xij ;ψ0)uij ,

where uij is an unobserved error term and ϕ is a function known up to ψ0.
2 For

example, one important special case is an exponential-regression model, where

ϕ(xij ;ψ) = exp(x′ijψ0). Whether or not this can be achieved depends on the

restrictions we are willing to place on the joint distribution of the regressors {xij}
and the errors {uij}.

A. Pooled models

If we assume that the errors uij are mean-independent of all regressors xij , that

is, that the regressors are strictly exogenous, and that E[uij ] = 1, we have

E [yij − ϕ(xij ;ψ0)|x11, . . . , xnm] = 0 and a GMM estimator is easily constructed.

One obvious and simple example would be the pooled estimator that solves the

empirical moment condition

(1.2)

n∑

i=1

m∑

j=1

xij(yij − ϕ(xij ;ψ)) = 0

for ψ. In the exponential-regression context, this particular estimator is known

as the Poisson pseudo maximum-likelihood estimator (Gouriéroux, Monfort and

Trognon 1984), popularized by Santos Silva and Tenreyro (2006). Alternative

unconditional moment conditions that lead to more efficient estimators can also

be constructed (Chamberlain 1987; Newey 1990; Donald, Imbens and Newey

2003).

2An extended model that can be dealt with in the same way has yij = µ(xij ; θ0)+ϕ(xij ;ψ0)uij for
known function µ and Euclidean parameter θ0.
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B. One-way models

With panel data, the validity of pooled estimators can be hard to justify. Indeed,

since the seminal work of Hausman, Hall and Griliches (1984), the importance

of controlling for fixed effects is well established. The one-way version of (1.1)

equals

(1.3) yij = ϕ(xij ;ψ0)αi εij ,

that is, uij is decomposed as uij = αi εij . Not only does the presence of αi imply

serial correlation in the series ui1, . . . , uim even if the εij are jointly independent

and independent of αi, it also implies that E[uij |x11, . . . , xnm] = 1 no longer

holds, in general. This renders pooled estimators inconsistent. For example, if

E[εij |α1, . . . , αn;x11, . . . , xnm] = 1, then

E[uij |x11, . . . , xnm] = E[αi|x11, . . . , xnm]

and, unless αi is independent of the covariates and has mean one, in which case

E[yij |x11, . . . , xnm] = ϕ(xij ;ψ0), any pooled estimator of ψ0, such as (1.2), yields

inconsistent estimates.

Estimators of ψ0 that do not restrict the relation between α1, . . . , αn and

x11, . . . , xnm have received some attention. E[εij |α1, . . . , αn;x11, . . . , xnm] = 1

implies that

E [uij |α1, . . . , αn;x11, . . . , xnm] = αi.

So in the spirit of Chamberlain (1992) and Wooldridge (1997), we obtain the

moment restrictions

(1.4) E
[
uij − uij′

∣∣x11, . . . , xnm
]
= 0

for all j, j′ ∈ {1, . . . ,m}. GMM estimators may then again be constructed. In
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analogy to (1.2) we could, for example, base estimation on

n∑

i=1

m∑

j=1

∑

j<j′

(xij − xij′)
(
uij(ψ)− uij′(ψ)

)
= 0, uij(ψ) =

yij
ϕ(xij ;ψ)

,

but, again, other unconditional moments derived from (1.4) can equally be used.

Under regularity conditions, such estimators are consistent and asymptotically

normal whether m is treated as fixed or grows with n.

A popular and seemingly different approach to estimate one-way models of the

form in (1.3) when the covariates are strictly exogenous is via the Poisson pseudo

maximum-likelihood estimator. Under regularity conditions, this estimator is

known to be consistent even when m remains fixed while n → ∞ (Wooldridge

1999). Notably, when ϕ(x;ψ) = exp(x′ψ), that is, for an exponential-regression

model with fixed effects, the score equation of the pseudo maximum-likelihood

estimator is

(1.5)
n∑

i=1

m∑

j=1

xij (yij − ϕ(xij ;ψ) α̂i(ψ)) = 0, α̂i(ψ) =

∑m
j=1 yij∑m

j=1 ϕ(xij ;ψ)
.

Consistency of this fixed-effect estimator follows from the remarkable feature

that E[α̂i(ψ0)|x11, . . . , xnm] = αi, and so ϕ(xij ;ψ0) α̂i(ψ0) is an unbiased (but

inconsistent, as n →∞ and m remains fixed) estimator of the conditional mean

E[yij |α1, . . . , αn, ;x11, . . . , xnm] = ϕ(xij ;ψ0)αi. A calculation shows that the

score equation can equivalently be written as

n∑

i=1

m∑

j=1

∑

j<j′

(xij − xij′)
ϕ(xij ;ψ)ϕ(xij′ ;ψ)∑m

j′=1 ϕ(xij′ ;ψ)

(
uij(ψ)− uij′(ψ)

)
= 0,

which is again the sample counterpart of a particular unconditional version of

(1.4). Thus, the pseudo maximum-likelihood approach is again nested within

the GMM framework. The existence of this formulation provides an alternative

explanation for why (pseudo) maximum likelihood is consistent in the presence
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of incidental parameters in this particular setting.

Note that, even if the full distribution of yij given xij and αi would be specified,

the fixed-effect model remains semiparametric because the distribution of the αi

is not specified (contrary to in a random-effect approach). In a semiparametric

framework, GMM is arguably the natural estimation paradigm. In the current

context, adopting the GMM framework has several advantages that we briefly

discuss next.

First, moment conditions can still be obtained when some components of xij

are endogenous but instrumental variables zij are available. Indeed, in such a

case, it is immediate that

E
[
uij − uij′

∣∣ z11, . . . , znm
]
= 0,

and so everything continues to go through as before on appropriately replacing

covariates by instruments. Similarly, flexible methods to correct for endogenous

sample selection similar to the two-step approach of Heckman (1979) are equally

available for multiplicative-error models estimated from panel data (Jochmans

2015).

Second, valid moment conditions can equally be constructed when the covariates

are not strictly exogenous. For example, when there is feedback from yij to xij+1,

like in a time-series setting, (1.4) no longer holds and pseudo maximum-likelihood

estimation is inconsistent. However, we still have

E
[
uij − uij′

∣∣x11, . . . , x1j′ , . . . , xn1 . . . , xnj′
]
= 0,

for all j′ < j (Chamberlain 1992). These sequential moment conditions can

again form the basis for GMM estimation in the usual manner. In contrast,

pseudo maximum-likelihood estimation fails in the presence of feedback because

the profile-score equation in (1.5) is now biased at ψ0.
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C. Two-way models

A two-way model for panel data allows for fixed effects in both dimensions of the

panel. In the context of (1.1), a two-way model is

(1.6) yij = ϕ(xij ;ψ0)αi γj εij ,

where, now, αi and γj represent permanent unobserved effects. The two-way

model is attractive because it gives a parsimonious way to deal with aggregate

shocks in both directions of the panel and to allow the unobservables uij = αiγjεij

to be both heteroskedastic and correlated. Further, it gives a way to control for

unobserved heterogeneity in both directions of the data. This latter observation

has been an important motivation for their use with matched employer-employee

data (Abowd, Kramarz and Margolis 1999), where αi and γj are measures of

quality, and with trade data (Harrigan 1996; Anderson and van Wincoop 2003),

where they capture so-called multilateral resistance terms. Indeed, the inclusion

of fixed effects in both directions has become standard practice in this literature

(Head and Mayer 2014).

Despite their popularity in applied work, estimators of two-way models and

their asymptotic properties are scarce, especially beyond the linear-regression

context. Of course, under asymptotics where either n or m is treated as fixed

it is straightforward to set up GMM estimators based on the moment conditions

from the previous subsection. However, the typical sampling framework where a

two-way model is called for features data where n and m are of the same order

of magnitude, calling for an asymptotic scheme where both n and m grow large

jointly.

Here we will derive moment conditions for ψ0 under the maintained assumption

of strict exogeneity of the covariates, that is, throughout the remainder we assume

(1.7) E[εij |α1, . . . , αn; γ1, . . . , γm;x11, . . . , xnm] = 1.
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This condition can be relaxed in essentially the same ways as were discussed

above. We return to this in the Monte Carlo illustrations below. Now, (1.7)

implies that

E [uij |α1, . . . , αn; γ1, . . . , γm;x11, . . . , xnm] = αi γj

for any i, j. Hence, as long as E[εijεi′j′ |α1, . . . , αn; γ1, . . . , γm;x11, . . . , xnm] = 1

for different pairs of indices i, j and i′, j′,

E
[
uij ui′j′

∣∣α1, . . . , αn; γ1, . . . , γm;x11, . . . , xnm
]
= (αi γj) (αi′ γj′) = αiαi′ γjγj′ ,

E
[
uij′ ui′j

∣∣α1, . . . , αn; γ1, . . . , γm;x11, . . . , xnm
]
= (αi γj′) (αi′ γj) = αiαi′ γjγj′ ,

and so the conditional moment condition

(1.8) E[uij ui′j′ − uij′ ui′j |x11, . . . , xnm] = 0

holds. This condition is the two-way counterpart to (1.4). The need to involve

pairs of variables in both dimensions, that is, pairs (i, i′) and pairs (j, j′) arises

from the presence of nuisance parameters in both dimensions. More precisely,

an appropriate comparison of data pairs effectively differences-out the nuisance

parameters in each dimension, and thus paves the way for the construction of

GMM estimators.

To give an example, the two-way version of (1.2) would be

n∑

i=1

m∑

j=1

∑

i<i′

∑

j<j′

{
(xij − xij′)− (xi′j − xi′j′)

}{
uij(ψ)ui′j′(ψ)− uij′(ψ)ui′j(ψ)

}
= 0.

We will turn to the construction of more general GMM estimators and their

statistical properties in the next section.

In independent work, Charbonneau (2013) obtained a particular unconditional

version of the moment in (1.8) for the static exponential-regression model using
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a somewhat different argument, but did not pursue the idea further. Rather, she

focused on constructing conditional maximum-likelihood estimators (Andersen

1970; Chamberlain 1980; Hausman, Hall and Griliches 1984) for Poisson, negbin1,

and Gamma models. Presumably, the statistical properties of these estimators

can be derived using similar methods as the ones developed in the next section. Of

course, for each of these models, the outcome variable can be written as in (1.6),

and so the conditional-mean parameters can be estimated without the need for

full distributional assumptions by GMM estimators constructed from the moment

condition in (1.8) above.

While in the one-way case it is known that the conditional maximum-likelihood

estimator of ψ0 in the Poisson model co-incides with the fixed-effect maximum

likelihood estimator (see, e.g., Lancaster 2002), this is no longer the case in the

two-way model.3 Thus, these conditional maximum-likelihood estimators will

generally not have a pseudo maximum-likelihood interpretation, and so they need

not be consistent under misspecification. Indeed, Charbonneau (2013) shows that

the score equation of the Poisson maximum-likelihood estimator in the two-way

model is biased, in general.

This implies that, contrary to in the one-way case, the estimating equations

of the maximum-likelihood estimator are not nested in the GMM framework.

Fernández-Val and Weidner (2014) showed that, under sampling and regularity

conditions, in a correctly-specified static Poisson model, the bias in the score is

asymptotically-negligible under asymptotics where n,m → ∞ at the same rate.

However, this is not the case for other non-negative limited dependent-variable

models, and need not apply to the corresponding pseudo maximum-likelihood

estimator.

A related difficulty with the fixed-effect estimator in the two-way model is that

its score equation is no longer available in closed form. This makes computating

3The same does not hold for negative-binomial models and other models, where maximum likelihood
is subject to the incidental-parameter problem; see Dhaene and Jochmans (2011) for bias calculations
and corrections for one-way models.
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the point estimates complicated, as all of {αi}, {γj}, and ψ0 need to be estimated

jointly. First, a normalization on the effects is needed. Indeed, if uij = αiγjεij ,

then uij = α̃iγ̃jεij with α̃i = αi c and γ̃j = γj c
−1 is an equivalent representation.

This ambiguity can be fixed by, for example, forcing
∏
i αi =

∏
j γj or setting

α1 = 1. Guimarães and Portugal (2009) propose a zig-zag estimation routine to

update parameter estimates sequentially (a similar algorithm featured earlier in

Heckman and MaCurdy 1980). Apart from the obvious computational burden,

such an approach has the severe disadvantage that it is not guaranteed to converge

to the maximum-likelihood estimator. Furthermore, it does not yield correct

standard errors, as the Hessian matrix is not block diagonal. See Greene (2004)

for a discussion on these issues.

D. Estimation of fixed effects

In some cases, one may wish to estimate the parameters {αi} and {γj}. Although
the GMM approach yields moment conditions for ψ0 that do not involve {αi} and
{γj}, these effects can still be estimated. However, it should be recalled that they

may not represent good estimates of the true effects, as they will be based on few

observations.

The fact that the αi and γj cannot be estimated precisely has implications

for the estimation of functionals of the distribution of {αi, γj}, such as their

means and correlation (Andrews et al. 2008; Fernández-Val and Lee 2013), and

also for the performance of conditional-variance specification tests along the lines

suggested by Manning and Mullahy (2001) and Santos Silva and Tenreyro (2006).

Of course, given that our model places restrictions on the conditional mean of the

outcome only, and that identification is not driven by parametric assumptions on

the conditional variance or on the relation between the covariates and the fixed

effects, one could argue that such tests serve little purpose to begin with in the

current setting.

In nonlinear panel models the presence of fixed effects generally complicates the
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estimation of average marginal effects rather substantially for the same reason as

just described above (Dhaene and Jochmans 2014; Fernández-Val and Weidner

2014). Our multiplicative model presents an interesting exception. The average

marginal effect for continuous xij , for example, equals

lim
n,m→∞

1

nm

∑

i

∑

j

∂E[yij |αi, γj , xij ]
∂xij

= lim
n,m→∞

1

nm

∑

i

∑

j

xij
∂ϕ(xij ;ψ0)

∂xij
αi γj ,

which clearly involves all fixed effects. Hence, a naive plug-in estimator of this

quantity will perform poorly, even if ψ0 would be known. However, given ψ0, we

observe the errors

uij =
yij

ϕ(xij ;ψ0)
= αiγj εij .

This suggests estimating the average marginal effect by

1

nm

∑

i

∑

j

xij
∂ϕ(xij ;ψnm)

∂xij
uij(ψnm).

Under conventional smoothness and dominance conditions, this estimator has

standard asymptotic properties.

II. GMM estimation of the two-way model

A. Choice of moments and implementation

Let ρ = n(n−1)m(m−1)/4 denote the number of distinct quads in the data and

write wij = (yij , xij). For a function p(xij , xij′ , xi′j , xi′j′ ;ψ) that is antisymmetric

in both (i, i′) and (j, j′), let

h(wij , wij′ , wi′j , wi′j′ ;ψ)=p(xij , xij′ , xi′j , xi′j′ ;ψ)
{
uij(ψ)ui′j′(ψ)−ui′j(ψ)uij′(ψ)

}
.
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Then

(2.1) s(ψ) = ρ−1
n∑

i=1

m∑

j=1

∑

i<i′

∑

j<j′

h(wij , wij′ , wi′j , wi′j′ ;ψ)

can serve as the basis for a GMM estimator of ψ0 that minimizes the quadratic

form

s(ψ)′Ws(ψ),

for some chosen positive-definite weight matrix W .

Antisymmetry of p is without loss of generality. It is useful as it makes h, the

kernel of s(ψ), permutation invariant in both dimensions of the panel. Our simple

example from the previous section, for example, had

(2.2) p(xij , xij′ , xi′j , xi′j′ ;ψ) = (xij − xij′)− (xi′j − xi′j′).

This is just a symmetrized version of the unconditional moment condition using

xij as an instrument, i.e., of E[xij{uij(ψ)ui′j′(ψ) − ui′j(ψ)uij′(ψ)}] = 0. More

general choices for p can be useful for efficiency considerations, however, when

turning conditional moments into unconditional ones (Chamberlain 1987). One

practical and simple choice of unconditional moment conditions that generalizes

(2.2) follows from arguments of Newey (1990) and Donald, Imbens and Newey

(2003) and has

(2.3) p(xij , xij′ , xi′j , xi′j′ ;ψ) = (r(xij) + r(xi′j′))− (r(xi′j) + r(xij′))

for a vector of approximating functions x 7→ r(x). In the simplest case, r(x) would

just be a power series.4 Often, a relatively small set of moment conditions is used

and, indeed, much information can already be contained in these. With power

4 Under appropriate conditions and i.i.d. sampling, letting the dimension of r(x) increase with the
sample size implies that the optimally-weighted GMM estimator attains the semiparametric efficiency
bound of Chamberlain (1987); see Donald, Imbens and Newey (2003).
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series, this means that r(x) will consist of low-order polynomials and interaction

terms. The resulting estimator is a nonlinear version of a two-stage least-squares

estimator where the first stage consists of a regression of the endogenous variables

on low-order polynomials in the instruments (see Kelejian 1971), which is very

popular in applied work.

In any case, the GMM estimator we are interested in here has the generic form

(2.4) ψnm = argmin
ψ
s(ψ)′Ws(ψ),

where s(ψ) is constructed as in (2.1). W may depend on the data. In particular,

the optimally-weighted estimator is the two-step estimator that sets W = V −1

where V is a full-rank matrix such that

V −1/2
√
nms(ψ0)

d→ N(0, I)

as n,m→∞, where I denotes the identity matrix of suitable dimension. Rather

than the two-step estimator we could also work with the continuously-updating

GMM estimator of Hansen, Heaton and Yaron (1996), defined as a minimizer of

s(ψ)′ V (ψ)−1s(ψ),

in obvious notation.

B. Estimation and inference

Under a set of regularity conditions, ψnm is consistent and asymptotically normal.

The asymptotic distribution depends on whether both n,m → ∞ or only one

of the indices diverges. Because the most relevant asymptotic scheme for our

purposes is the joint divergence of n and m, that is, double asymptotics, we

consider only that case here.
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To perform statistical inference, let

υij =
4

(n− 1)(m− 1)

∑

i′ 6=i

∑

j′ 6=j

h(wij , wij′ , wi′j , wi′j′ ;ψnm),

and construct

V =
1

nm

n∑

i=1

m∑

j=1

υij υ
′
ij , Υ = ρ−1

n∑

i=1

∑

i<i′

m∑

j=1

∑

j<j′

∂h(wij , wij′ , wi′j , wi′j′ ;ψnm)

∂ψ
.

Then, under a set of standard regularity conditions we have that, as n,m → ∞
so that n/m→ c for some constant c,

(2.5) Ω−1/2
√
nm (ψnm − ψ0)

d→ N(0, I)

for Ω = (Υ′WΥ)−1(Υ′WVWΥ)(Υ′WΥ)−1.

Furthermore, for the optimally-weighted criterion we have

(2.6) nms(ψnm)V
−1s(ψnm)

p→ χ2
o

where o is the number of overidentifying restrictions and χ2
o is the chi-squared

distribution with o degrees of freedom. The result in (2.6) can be used to test

overidentifying restrictions.

The assumptions used to validate (2.5) include the existence of moments of

the data of suitable order and rule out dependence in the outcome variables

conditional on the fixed effects and the covariates but do not require them to

be identically distributed. The errors can be heteroskedastic but are taken to

be serially uncorrelated (conditional on the fixed effects). This is a reasonable

assumption in many instances. The convergence result in (2.5) can be extended

to deal with correlated errors but the form of the asymptotic-variance matrix, Ω,

will change as a result of this correlation. However note that, while we require

the shocks εij to be uncorrelated, the disturbances uij = αiγjεij are correlated
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at the (i, j) level due to the presence of the fixed effects, and that no clustering

is necessary to obtain valid standard errors for ψnm.

The distribution theory readily extends to the case where xij is endogenous

but one has instruments zij , requiring only to replace p(xij , xij′ , xi′j , xi′j′ ;ψ) by

p(zij , zij′ , zi′j , zi′j′ ;ψ).

C. Numerical illustrations

A prime example of the models covered by the approach in this paper is the

exponential-regression model with fixed effects. Hence, it is useful to consider the

performance of the GMM estimator by means of a Monte Carlo experiment set

up around the specification

(2.7) yij = exp(xijψ0)αi γj εij .

Throughout we fix ψ0 = 1. We report results for panels of dimension n = m = 50.

Different sample sizes gave similar results.

In each Monte Carlo replication we generated

xij ∼ N(0, 1), αi ∼ logN(0, 1), γj ∼ logN(0, 1).

We then drew

εij ∼ logN
(
−log

√
1 + σ2ij , log

(
1 + σ2ij

))

for five different choices of σij . Similar to Santos Silva and Tenreyro (2006), the

designs considered are

Design 1: σ2ij = 1,

Design 2: σ2ij = (exp(xijψ0)αi γj)
−1 ,

Design 3: σ2ij = (exp(xijψ0)αi γj) ,

Design 4: σ2ij = (exp(xijψ0)αi γj)
−2 ,

Design 5: σ2ij = (exp(xijψ0)αi γj)
2 .
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Then var(εij) = σ2ij and E[εij ] = 1. Moreover, εij is mean-independent of xij ,

but conditionally heteroskedastic in all but the first design.

We estimated ψ0 using the GMM estimator developed here with r(x) = x that

is, with (2.1) combined with (2.2). This is the simplest possible choice. We also

report results for the fixed-effect Poisson pseudo maximum-likelihood estimator

(PMLE) and the fixed-effect least-squares estimator (OLS) of the log-linearized

equation

log yij = xijψ0 + logαi + log γj + log εij .

The latter two are included because they are popular in the trade literature.

Pseudo maximum-likelihood estimation based on negative-binomial and other

models has also been discussed in this literature (see, e.g., Head and Mayer 2014).

We do not consider such estimators here because, in models with fixed effects,

most of these estimators are subject to incidental-parameter bias (Dhaene and

Jochmans 2011). Hence, they are not appropriate to estimate gravity equations

from panel data.

Table 1 gives the mean and standard deviation for these three estimators, as

obtained over 1, 000 Monte Carlo replications. For GMM, we also provide the

empirical coverage rate of 95% confidence intervals (ci).

The table replicates the usual finding that log-linearization induces endogeneity

bias when errors are not independent of covariates. Indeed, except for Design 1,

OLS is inconsistent and heavily biased. In contrast for all designs, GMM has small

bias. Furthermore, its confidence intervals display good coverage. Interestingly,

joint maximization of the Poisson pseudo log-likelihood over ψ and all fixed effects

yields estimates with finite-sample behavior close to that of GMM. This suggests

that the favorable robustness properties of this estimator in the one-way model

(Wooldridge 1999) may carry over to the two-way case. Theoretical results on

this would be a nice addition to the literature.
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Table 1—Simulation results for an exponential-regression model

mean sd ci
Design OLS PMLE GMM OLS PMLE GMM GMM

1 1.001 1.000 1.003 .017 .061 .043 .962
2 1.249 1.000 1.001 .028 .011 .021 .951
3 .749 .948 .974 .028 .190 .136 .879
4 1.501 1.000 1.002 .053 .008 .028 .912
5 .499 .862 .903 .028 .167 .094 .832

We also experimented with an instrumental-variable specification of (2.7) where

(
log εij
ηij

)
∼ N





 − log

√
2

0





 log 2 ̺

√
log 2

̺
√
log 2 1





 ,

for |̺| < 1, and the covariate is generated as

xij = zij + ηij , zij ∼ N
(
0, (1− ̺2) log 2

)
.

Here, the errors satisfy E[εij ] = 1 and var(εij) = 1, and ηij ∼ N(0, 1), but xij is

endogenous unless ̺ = 0. Indeed,

xij =
√

(1− ̺2) log 2 ǫ1ij +
√
(1− ̺2) log 2 ǫ2ij +

√
̺2log 2 (log εij + log

√
2)

for independent standard-normal variates ǫ1ij and ǫ2ij . The first right-hand side

term is the impact of the instrument zij on xij . The second right-hand side term

is a random shock, which contributed to xij in the same way as does zij . The

third right-hand side term, finally, is the impact of εij on xij . The effect of this

term is linear in ̺. We consider five designs that differ only in the value that ̺

takes. The remainder of the data generating process is as before, and so is the

sample size.

Table 2, which has the same layout as Table 1, contains the results. Besides

results for the GMM estimator, results for least squares and pseudo maximum
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Table 2—Simulation results for an exponential instrumental-variable model

mean sd ci
̺ OLS PMLE GMM OLS PMLE GMM GMM
0 1.000 .997 1.001 .015 .058 .053 .957

−.50 .714 .712 1.001 .015 .047 .063 .950
−.25 .871 .869 1.002 .014 .052 .055 .959
.25 1.129 1.125 .997 .014 .056 .054 .964
.50 1.285 1.282 .999 .014 .062 .061 .967

likelihood are also given. The latter two are, however, not designed to handle

endogeneity. They are reported as a means to appreciate the degreee of bias

endogeneity induces in our data generating process. The table shows this bias

is substantial, ranging up to nearly 30%. GMM has negligible bias (relative to

its standard deviation) for all designs considered. Furthermore, the associated

confidence intervals enjoy excellent coverage.

III. Gravity estimates

As an empirical application we estimated the Anderson and van Wincoop (2003)

gravity model. This model is essentially an exponential-regression model as in

(2.7) that links trade flows from country i to country j to a linear index of distance

measures, x′ijψ, and multilateral resistance terms or exporter and importer effects,

αi and γj , respectively.

Table 3—Trade data: descriptive statistics

full sample positive-trade sample
mean std mean std

trade decision 0.5236 0.4995 — —
trade volume 172130 1829058 328752 2517607
log distance 8.7855 0.7418 8.6950 0.7728
common border 0.0196 0.1387 0.0236 0.1519
common language 0.2097 0.4071 0.2128 0.4093
colonial past 0.1705 0.3761 0.1689 0.3747
free trade agreement 0.0155 0.1234 0.0262 0.1598
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We use the data of Santos Silva and Tenreyro (2006). These data contain

information on 136 countries, giving a total of 136× 135 = 18, 360 directed trade

flows. About 52% of these bilateral flows are positive. As outcome variable we

use bilateral trade, measured in 1, 000 dollars. As distance measures we use an

actual geographical distance together with a set of dummies that aim to capture

other factors of relatedness. Moreover, we include dummies that indicate whether

or not countries i and j share a border, speak the same language, have a colonial

past, and fall under a joint free-trade agreement. Table 3 contains summary

statistics for all variables. A more detailed presentation of the data is given in

Santos Silva and Tenreyro (2006).

A peculiar feature of trade data is that all regressors take on only non-negative

values. With ϕ(x;ψ) = exp(x′ψ), this means that

‖s(ψ)‖ → 0 as ‖ψ‖ → +∞

if s(ψ) is set as in (2.1). At the same time, the Jacobian matrix will converge

to zero. This makes (2.1) unattractive to work with for this type of data. To

circumvent this issue we work with

(3.1) ρ−1
n∑

i=1

∑

j 6=i

∑

i<i′

i′ 6=j

∑

j<j′

j′ 6=i,i′

h(wij , wij′ , wi′j , wi′j′ ;ψ),

where we set h(wij , wij′ , wi′j , wi′j′ ;ψ) equal to

{(xij+xi′j′)−(xi′j+xij′)}{yijyi′j′ ϕ(xi′j ;ψ)ϕ(xij′ ;ψ)−yi′jyij′ ϕ(xij ;ψ)ϕ(xi′j′ ;ψ)}.

This amounts to multiplying (2.1) with ϕ(xij ;ψ)ϕ(xij′ ;ψ)ϕ(xi′j ;ψ)ϕ(xi′j′ ;ψ).
5

We also adjust the summations in (3.1) relative to (2.1) to take into account that

5One may note that s(ψ) in (3.1) converges to zero as ‖ψ‖ → −∞. However, the Jacobian matrix,
H(ψ) = ∂s(ψ)/∂ψ′, diverges to +∞ at the same rate in this case. Hence, the first-order condition of the
GMM minimization problem, which is H(ψ)′Ws(ψ) = 0, remains well behaved.
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each country shows up in the data as both exporter and importer, and because

countries do not trade with themselves.

We report estimates based on GMM and on pseudo maximum likelihood. The

latter were taken from Santos Silva and Tenreyro (2006). Within-group estimates

of the log-linearized model or (fixed-effect) nonlinear least-squares estimates of the

model in levels are not reported here (see Santos Silva and Tenreyro 2006, Table

5). Within-groups requires an assumption of full independence on the random

disturbances while its nonlinear version is asymptotically biased in a panel setting

with importer/exporter effects.

Table 4—Trade flows: gravity estimates

outcome variable: trade flows (in 1, 000 US dollars)
all flows positive flows

GMM PMLE GMM PMLE
log distance −.781 −.750 −.799 −.770

(.096) (.041) (.103) (.042)
common border .125 .370 .109 .352

(.095) (.091) (.099) (.090)
common language .521 .383 .534 .418

(.089) (.093) (.087) (.094)
colonial past .206 .079 .190 .038

(.168) (.134) (.176) (.134)
free trade agreement .253 .376 .256 .374

(.153) (.077) (.155) (.076)

The first columns (“all flows”) in Table 4 provides the estimation results based

on the full sample (including zero trade flows), together with standard errors in

brackets. The sign of all estimated coefficients is in accordance with expectations.

An increase in geographical distance has a negative ceteris paribus impact on

the size of expected trade flows. The magnitude of this effect is similar to that

found by Santos Silva and Tenreyro (2006), and is strongly statistically significant.

Sharing a border or spoken language, having a colonial past, or being in a free

trade agreement all tend to increase the magnitude of trade flows. As compared
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to Santos Silva and Tenreyro (2006), our estimates give less economic importance

to the impact on trade of having a border in common (conditional on the other

regressors, and geographical distance in particular). With a p-value of .1895,

the common-border effect is further also statically not distinguishable from zero

at all conventional significance levels. In contrast, speaking the same language

has a large and strongly significant impact on trade. Colonial heritage seems to

contribute very little in determining current trade flows, and we find no statistical

evidence for it in the data used here. Finally, we find a positive impact of free

trade agreements on trade intensity. This effect is statically significant only at

the 10% level.

A considerable part of country pairs in the data do not trade. Zero trade

flows are difficult to explain within the traditional gravity framework. While

exponential-regression models have no technical difficulty in dealing with zeros,

the discrepancy between stylized facts and theory suggests the gravity model to

be incorrectly specified. An alternative and very simple explanation for zero trade

would be a measurement issue. That is, small but non-zero trade flows show up

as exact zeros in the data. However, even if so, the assumption that such trade

flows are missing at random is very difficult to support. For completeness, the

second set of columns (“positive flows”) in Table 4 contains the estimation results

based on the subsample of positive trade flows only, thus excluding all zero trade

flows. The results change very little.

Work by Chaney (2008) and Helpman, Melitz and Rubinstein (2008) models

trading as a two-stage process, where the first stage is a decision of whether or

not to initiate trade and the second-stage is a choice of trade intensity. With

importer and exporter fixed effects, such a system of equations is difficult to

estimate. Indeed, even in a fully parametric setting (as in Helpman, Melitz and

Rubinstein 2008), maximum likelihood suffers from large bias. An interesting

agenda for future research would be to derive estimators with good theoretical

properties for such extended gravity models, building on the theoretical results
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presented here.

Concluding remarks

We have introduced a differencing strategy to construct GMM estimators for a

class of nonlinear panel models with two-way fixed effects. The approach can be

seen as an intuitive extension to the well-known first-differencing strategy that is

conventional in standard (one-way) fixed-effect models. More generally, it can be

extended to multiway models. For example, if agents are observed over multiple

time periods or in different markets k = 1, . . . , l we have three-dimensional data.

The model

yijk = ϕ(xijk;ψ0)uijk, uijk = αiγjδk εijk,

in obvious notation, allows for heterogeneity in each of the three dimensions. A

mean-independence assumption implies that

E[(uijk ui′j′k′ ui′′j′′k′′)− (uij′k′′ ui′j′′k ui′′jk′)|x111, . . . , xnml] = 0.

GMM estimators follow in the same way as before. Their asymptotic behavior

can be deduced from (2.5).
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