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Abstract

What are the costs of inflation fluctuations and who bears those costs? In this paper,
we investigate this question by means of a quantitative incomplete-market, heterogenous-agent
model wherein households hold real and nominal assets and are subject to both idiosyncratic
labor income shocks and aggregate inflation risk. Inflation risk is found to generates significant
welfare losses for most households, i.e., between 1 and 1.5 percent of permanent consumption.
The loss is small or even negative for households at the very top of the productivity and/or wealth
distribution. A key feature of our analysis is a nonhomothetic specification for households’
preferences towards money and consumption goods. Unlike traditional specifications, ours allows
the model to reproduce the broad features of the distribution of monetary assets (in addition
to being consistent with the distribution of nonmonetary assets).
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1 Introduction

What are the costs of inflation fluctuations and who bears those costs? In this paper, we investigate

this question by means of a quantitative incomplete-market, heterogenous-agent model wherein

households hold real and nominal assets and are subject to both idiosyncratic labor income shocks

and aggregate inflation risk. To be more specific, the model incorporates the following four main

features:

First, households solve an optimal portfolio choice between money and capital claims, subject

to an occasionally binding borrowing constraint. Both assets can coexist in household portfolios

because the lower real return paid by money balances is compensated by the liquidity services that

it provides – as captured by the fact that real money balances affect current utility, in the money-

in-the-utility, or “MIU” tradition.1 This feature is in contrast with existing incomplete-market

models with aggregate shocks, which either abstract for portfolio choices (by considering a single

asset or a menu of perfectly substitutable assets), or focuses on the choice between two real assets

(so that inflation risk does not affect the relative returns of the assets).2

Second, the model is designed to match the cross-sectional distribution of money holdings, in

addition to matching the cross-section of nonliquid wealth. Because our investigation is primarily

quantitative, a prerequisite for a meaningful analysis of the impact of inflation risk on the welfare of

different types of households is that the model match the cross-sectional distribution of monetary

wealth in the first place. We show that this requirement requires departing from the functional form

commonly used to parameterize money demand in monetary models with representative agent.3 As

discussed extensively in Ragot (2014), the empirical cross-sectional distribution of money holdings

in the US is close to that of financial assets and hence very different from that of consumption.4

This property cannot follow from the usual MIU specification, which features a constant elasticity

1This tradition goes back at least to Patinkin (1956) and Sidrauski (1967). See Walsh (2010) for a survey of the
flexible-price MIU model under complete markets.

2In such models, when the borrowing constraint is not zero, private bonds are traded next to capital claims,
but the two are usually assumed to be perfect substitutes (see, e.g., Krusell and Smith, 1998). Heathcote (2005)
introduces government bonds next to the capital stock, but again makes the necessary assumptions ensuring that
the two are perfect substitutes. Krusell and Smith (1997) consider the portfolio choice between a real riskless bond
and capital claims. Krusell et al. (2011) and Challe et al. (2013) analyze the portfolio choice between real bonds
(differing by their maturity).

3See, e.g., Chari et al. (1996, 2000).
4For example, Ragot (2014) finds that in the US Gini coefficient for individual consumption levels is 0.54, while

that for money balances is 0.85. In Italy the corresponding figures are 0.30 and 0.68, respectively.
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of substitution between money and goods and hence strict proportionality between the demands for

money and consumption goods. In this where the case then inequalities in money holdings would

simply mirror inequalities in consumption, which as already mentioned is strongly against the data.

We overcome this limitation of the standard MIU specification by introducing a more general utility

function that nests the constant-elasticity case but also accommodates a non-constant elasticity of

substitution, thereby allowing individual money holdings to vary more than proportionally with

individual consumption. This utility function allows us to reproduce the broad features of the

distribution of monetary wealth in the US economyt, whilst at the same time being consistent

with the observation that, at the individual level, higher wealth is associated with greater absolute

money holdings but lower money holdings relative to total wealth.

Third, the model incorporates as part of the solution households’ rational portfolio response to

the inflation risk that they face. As far as we are aware, existing work on the effect of inflation

on welfare in heterogenous-agent models has focused either on the impact of mean inflation or

unexpected shocks to inflation, leaving aside (by construction) households portfolio response to

the expectation of future shocks.5 This dimension is crucial in the present study for at least two

reasons. First, households are likely to respond ex ante to the inflation risk they are facing, i.e., we

expect different levels of inflation risk to generate different mean holdings of nominal assets; and

second, allowing significant redistributive effects of inflation (as the evidence suggests they are) but

ignoring the ex ante portfolio response to inflation risk is likely to overestimate the welfare cost of

inflation shocks.

The model features both aggregate (inflation) and idiosyncratic (labor productivity) shocks and

is calibrated accordingly. Regarding the time-series dimension, we feed the model with an exoge-

nous process for the money growth rate so that the equilibrium response of inflation matches the

volatility properties of actual inflation over the post-Volcker, pre-Great Recession period. Treating

equilibrium inflation (rather than the money supply) as the forcing term in our analysis ensures

that the inflation risk that households face in the model is consistent with the historical inflation

5Imrohoroglu (1992) and Erosa and Ventura (2002) study the impact of mean inflation on welfare in incomplete-
market environments. Cao et al. (2012) examine the redistributive and welfare effects of changes in mean inflation
within an overlapping generations model. Similarly, Doepke and Schneider (2006a, 2006b) attempt to evaluate the
redistributive and welfare effects of a moderate but persistent inflation episode in the US economy. They find these
effects to be large, due to the significant degre of heterogeneity in nominal asset positions across US households and
the large fraction of foreign holders of US assets. In the same spirit, Sterk and Teynero (2014) use an overlapping-
generation model to evaluate the impact of open market operations on durables consumption.
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risk.6 Concerning the cross-sectional dimension, we calibrate the wage income process as well as

household’s preferences towards money and consumption goods so as to match the joint cross-

sectional distributions of monetary and nonmonetary assets. Our analysis can thus be interpreted

as way to discipline preferences towards money and goods on the basis of the statistical moments

of cross-sectional data on monetary positions.

To evaluate the cost of inflation fluctuations and the way it is distributed across households,

we compute the ex ante welfare of an agent conditional on a particular idiosyncratic state and

portfolio, in economies with and without inflation risk. To summarize, we find significant welfare

costs of inflation fluctuations for all households except for those at the top end of the productivity

scale and/or the wealth distribution. For example, for a low-productivity household holding the

average portfolio of the households with similar productivity (where the “average” is computed

from the invariant distribution of the economy with aggregate risk), full elimination of inflation

risk is equivalent to a 1.5 percent increase in lifetime consumption. We find similar welfare costs

for intermediate productivity households starting with either the portfolio of the average household

with similar productivity or the average portfolio of low-productivity households. While inflation

risk generates no welfare loss (or even a small benefit) for households at the top of the produc-

tivity and/or wealth distribution, it generates an equivalent fall in permanent consumption for

the “average” household that is close to 1 percent. Such welfare losses are large: they are one

order of magnitude larger than those computed by Lucas (1987, 2003) in a representative-agent

context;7 and about five times the welfare cost of the business cycle as computed by Imrohoroglu

(1989) within a nonmonetary incomplete-market, heterogenous-agent model. The magnitude of

the welfare costs that we find is similar to that obtained in (nonmonetary) models with incomplete

insurance wherein the extent of idiosyncratic risk is systematically related to the size of aggregate

productivity shocks, a channel that is absent from our model.8

6Technically, we first estimate a two-state Markov process for inflation and then impose the constraint that the
inflation series generated by our model be consistent with the estimated process. We can then recover the underlying
process for money growth that has generated the equilibrium response of inflation. Calibrating a two state Markov
process for money growth rather than would result in inflation overshooting following regime changes and would
thereby overestimate actual inflation risk.

7Lucas’ calculations only rely on the assumption of complete market and a specification for the representative
agent’s preferences. While maintaining complete markets and suitably chosing preferences can generate large welfare
costs of the business cycle, Ostrok (2001) shows that this argument does not survive in general equilibrium wherein
households optimally choose (and effectively smooth) consumption.

8See, e.g., Storsletten et. al. (2001) and Krusell et al. (2009).
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The rest of the paper is organised as follows. Section 2 presents the model, paying specific

attention to the preference specification that underlies our analysis and its implications for the

joint cross-sectional distribution of consumption and money. Section 3 discuss our parameterization.

Section 4 presents our main results on the welfare costs of inflation fluctuations. Section 5 concludes.

2 The model

The model is a MIU, heterogenous-agent model of the type analysed by Algan and Ragot (2010),

to which it adds i) aggregate inflation shocks (driven by underlying changes in money growth),

and ii) a utility functional designed to accomodate a large amount of cross-sectional dispersion in

money wealth.

2.1 Preferences

Households are infinitely-lived and in constant mass equal to 1. They share identical and additively

time-separable preferences over sequences of consumption, c ≡ {ct}∞t=0, and real money balances,

m ≡ {mt}∞t=0. Thus, they maximize

U (c,m) = E0

∞∑
t=0

βtu (ct,mt) , (1)

where β ∈ (0, 1) is the subjective discount factor, Et denotes expectations conditional on the

information set at date t, and u is the instant utility function. Ths function is assumed to take the

following parametric form:

u (ct,mt) =
1

1− λ

(
ωc1−ρt + (1− ω)m

θ(1−ρ)
t

) 1−λ
1−ρ

.ρ, θ, λ > 0. (2)

When θ = 1, (??) becomes a standard homothetic utility function similar to that used by Chari

et al. (1996, 2000) and Algan and Ragot (2010), among others. In this case, the interest-rate

elasticity of real money demand is 1/ρ, while the intertemporal elasticity of substitution between

consumption and real balances is (1−ρ)/(λ−ρ). As discussed above, an important limitation of the

homothethic specification is that it implies a strict proportionality between individual real money

holdings and individual consumption levels (for any given values of the nominal interest rate and

the inflation rate). This makes it impossible to reproduce the highly unequal distribution of money

holdings that is observed in US data. Our baseline calibration will thus have θ 6= 1.
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2.2 Idiosyncratic uncertainty

In every period, households are subject to idiosyncratic labor income shocks. Labor productivity

can take three different values et ∈ E, E = {el, em, eh} with el < em < eh and where eh stands for

‘high productivity’, em for ‘medium productivity’, and el for ‘low productivity’. Each household’s

productivity evolves according to a first-order Markov chain with the 3 × 3 transition matrix F .

We denote by p∗ the vector of stationary ergodic probabilities and normalize productivity levels so

that the mean of the invariant distribution is one, i.e.,
∑
p∗i ei = 1. Given a population of measure

one, we can interpret p∗ as describing the distribution of the population across productivity states.

It follows that the effective aggregate labor supply is equal to
∑
p∗i ein̄ = n̄, where n̄ stands for

labour hours per period.

2.3 Production technology

Markets are competitive. In every period t, the representative firm uses aggregate capital Kt ∈ R+

and households’ labor to produce Yt ∈ R+ units of a single good with the aggregate technology

Yt = f(Kt, n̄) = Kα
t n̄

1−α.

Capital depreciates at the constant rate δ ∈ (0, 1) and accumulates according to the law of

motion

Kt+1 = It + (1− δ)Kt. (3)

where It denotes aggregate investment. Perfect competition in the markets for the representative

firm’s inputs implies that the real interest rate, rt, and the real wage, wt, are given by:

rt = αKα−1
t n̄1−α − δ, wt = (1− α)Kα

t n̄
−α.

2.4 The household’s problem

We assume that markets are incomplete, so that households cannot write insurance contracts

contingent on their labor income. Moreover, they face borrowing constraints and are thus prevented

from using private loans to fully smooth out individual income fluctuations. Each household i

maximizes its expected lifetime utility (??) subject to the following constraints:

cit + kit+1 +mi
t = ait +

(
1− τ lt

)
wte

i
tn̄, (4)

kit+1 ≥ 0, mi
t ≥ 0, and cit ≥ 0, (5)
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where kit+1 and mi
t denote the claims to the capital stock and the real money balances held by

household i at the end of date t, and where

ait = (1 + (1− τ ct ) rt) k
i
t +

mi
t−1

1 + πt

is the household’s financial wealth at the beginning of date t. In (??) and (??), τ lt and τ ct are

proportional taxes on labor and capital, respectively. In (??), the presence of the borrowing

constraint is reflected in the fact that capital and money holdings must be nonnegative at all

times, while no other assets (i.e., private bonds) can be issued by the households.

From the households’ objective and constraints, we find that their optimal asset demands, mi
t

and kit+1, must satisfy the following first-order conditions:

• Money:

uc
(
cit,m

i
t

)
− um

(
cit,m

i
t

)
= βEt

[
uc
(
cit+1,m

i
t+1

)
1 + πt+1

]
. (6)

• Capital:

Either uc
(
cit,m

i
t

)
= βEt

[
(1 + (1− τ ct ) rt+1)uc

(
cit+1,m

i
t+1

)]
and kit+1 > 0, (7)

or uc
(
cit,m

i
t

)
> βEt

[
(1 + (1− τ ct ) rt+1)uc

(
cit+1,m

i
t+1

)]
and kit+1 = 0.

The instant utility function (??) implies that um
(
cit, 0

)
= ∞, so the demand for real balances

is always interior. In contrast, the demand for capital may be corner (i.e., kit+1 = 0), in which

case the household would like to raise current consumption by borrowing against future income

but is prevented from doing so by a binding borrowing constraint. The solution to the households’

problem provides sequences of functions mt (a, e), kt (a, e) and ct (a, e), (a, e) ∈ R+ × {e1, e2, e3},

where a and e denote individual beginning-of-period asset wealth and productivity, respectively.

To better understand the implications of our assumed period utility function with non-constant

elasticity of substitution (i.e., (??)), consider the optimal trade-off between consumption and real

money holdings by an unconstrained household (so that kit+1 > 0 in (??)) and abstract from

aggregate shocks momentarily. From (??)–(??), we find the relation between money holdings and

consumption to be:

mi
t = A ((1− τ ct ) rt+1, πt+1)

(
cit
) ρ

1−θ(1−ρ) , (8)
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where A ((1− τ ct ) rt+1, πt+1) is a coefficient whose value depends on the returns on the two assets

and the deep parameters of the utility function. In the constant-elasticity case (i.e., θ = 1), we have

mi
t = A ((1− τ ct ) rt+1, πt+1) c

i
t, that is, real money demand is strictly proportional to consumption,

so that cross-sectional inequalities in these two variables mirror each other. For individual money

holdings to increase more than proportionally following an increase in individual consumption, so

that money be more unequally distributed than consumption (as is observed in the data), one needs

ρ/ (1− θ (1− ρ)) > 1 (whether θ must lie above or below 1 for this inequality to hold depends on

the value of ρ.)

2.5 Market clearing

Define µt : R+×
{
eh, em, el

}
→ R+ as the joint cross-sectional distribution of wealth and individual

productivity at the beginning of period t. The market-clearing conditions for real balances and

capital claims are given by: ∫
mi
t(at, et)dµ (at, et) = Ωs

t , (9)

and ∫
kt(at, et)dµ (at, et) = Kt+1, (10)

where Ωs
t the total quantity of real balances at date t. By Walras law, the goods market clear when

both the money and the capital markets clear.

2.6 Fiscal and monetary policy

Fiscal and monetary policies interact here because monetary policy generates segniorage revenues

that determine government income jointly with tax collections. We specify both as follows.

First, we assume that inflation follows a two-state Markov chain: the inflation rate transit

between πL and πH > πL according to the transition matrix T . Since inflation is endogenously

determined in equilibrium, we must reverse-ingeneer the process for the money growth rate that

produces this inflation process as an equilibrium outcome. The two inflation levels as well as the

transition probabilities between the two can then be calibrated according to historical data. This

ensures that the amount of inflation risk faced by the households in the model is consistent with

its historical counterpart.9

9Feeding the model with a two-state Markov chain for the money growth rate instead of the inflation rate generates
inflation overshooting following regime changes. This specification would greatly misrepresent historical inflation risk.
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For a given inflation process, the growth rate of the quantity of money γt is determined as

follows. Let ∆t denote the quantity of newly issued money at date t (relative to the stock of money

at the end of date t−1) and by Πt = Pt/Pt−1 = 1 +πt ∈ {ΠL,ΠH} the gross inflation rate between

date t− 1 and date t. In real term, the quantity of newly issued money can be expressed as:

∆t/Pt = γtPt−1Ω
s
t−1/Pt = γtΩ

s
t−1/Πt, (11)

and the dynamics of total real money balances by:

Ωs
t = (1 + γt) Ωs

t−1/Πt. (12)

Given Ωs
t−1 and current gross inflation Πt (∈ {ΠL,ΠH}) we determine γt so that Ωs

t clears the

money market (i.e., so that (??) holds) given aggregate money demand (which is a function of the

aggregate state including Πt, but not of γt).

We assume for simplicity that the budget is balanced in every period. The government budget

constaint is thus given by:

Gt = γtΩ
s
t−1/Πt + τ ltwtn̄+ τ ct rtKt,

We assume that Gt = G > 0 is constant over time and then let the tax rates on capital and labor

adjust to satisfy the government budget constraint in every period. This ensures that inflation risk

does not generate wealth effects “in the aggregate” (which would somewhat artificially amplify the

welfare cost of inflation fluctuations). For simplicity we assume that the ratio of the two taxes

ψ = τ ct /τ
l
t is constant over time, so that the taxes on labor and capital are given by, respectively:

τ lt =
G− γtΩs

t−1/Πt

wtL+ ψrtKt
, τ ct = ψτ lt .

2.7 Recursive problem and equilibrium

We are considering a recursive equilibrium in which the aggregate state, which includes the ag-

gregate stock of capital, changes over time. Note that the way we have specified monetary policy

implies that households need not keep track of the aggregate money supply, because inflation (the

inverse of the return on money holdings) enters as an exogenous forcing term here (with the rate of

money growth adjusting to make a particular inflation path happen). It follows that the recursive

problem of a household can be written as:

v (at, et;πt,Kt) = max
mt,ct,kt+1

u (ct,mt) + βEt [v (at+1, et+1;πt+1,Kt+1) |et, πt] , (13)
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subject to (??)–(??). Following Krusell and Smith (1998) and much of the subsequent literature,

we posit that households are able to successfully forecast the dynamics of the endogenous aggregate

state Kt by means of (log-) linear laws of motion (one per value of the exogenous aggregate state

πt) involving only the mean of Kt:

ln (Kt+1) = b1(πt) + b2(πt) ln (Kt) + b3(πt) ln (Ωs
t ) . (14)

The solution to (??) produces individual decision rules for consumption as well as holdings of

real balances and claims to the capital stock, which we denote by gc(at, et;πt,Kt), gm(at, et;πt,Kt)

and gk(at, et;πt,Kt), respectively. The law of motion of the distribution for beginning-of period

total wealth is denoted by H. For a given set of individual policy rules, this law of motion can be

written as

µt = H(µt−1, πt),

i.e., the cross-sectional distribution of wealth µt depends on its value in the previous period µt as

well as the current realization of the exogenous aggregate state πt.

Definition of the recursive equilibrium. A recursive equilibrium is defined by a law of motion

H, a set of optimal individual policy and value functions {gc, gm, gk, v}, a set of price functions

{π, r, w}, and a set of law of motion for K such that:

1. Given {π, r, w}, the law of motion for Kt and the transition matrices F and T , the policy

functions {gc, gm, gk} solve the household’s problem;

2. The money and capital markets clear;

3. The law of motion of H is generated by the optimal decisions {gc, gm, gk}, and the transition

matrices F and T .

We solve for the recursive equilibrium using the same approach as in Krusell and Smith (1997,

1998). However, rather than using Monte Carlo simulations to generate an updated cross-sectional

distribution, we use the grid-based simulation procedure proposed by Young (2010), which keeps

track of the mass of households at a fine grid of wealth levels. This allows us to get rid of the cross-

sectional sampling variations in the Monte Carlo simulation procedure. A detailed description of

the algorithm is provided in the Appendix.
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3 Parameterization

Table 1: Parameter values and simulation targets common across economies

Parameter set outside the model
Preferences λ 1.00 Production α 0.360

β 0.99 δ 0.025
ρ 20.00 n̄ 0.300
ω 0.06
θ 0.21

Productivity el 3.940
em 0.849
eh 0.213
πl,l 0.975
πm,m 0.992

Table ?? reports the parameters of the model. The time period is a quarter. Following Chari et

al. (2000), our benchmark value for the utility parameter λ is 1. The capital share is set to α = 0.36,

and the depreciation rate to 0.025. Finally, labor supply is constant for all households and set to

0.3.10 The individual productivity states and the transition probabilities across states are calibrated

as follows. Following Domjei and Heathcote (2004), we use a Markov chain with three states, zero

probabilities to transit between extreme states (i.e., Fh,l = Fl,h = 0), and an equal probability to

reach any of the extreme states when in the intermediate state (i.e., Fm,h = Fm,l). The transition

matrix is then fully identified once Fl,l, Fm,m and Fh,h are set, and we set Fl,l = Fh,h = 0.9750,

Fm,m = 0.9925. Finally, the ratios of productivity are set to eh/em = 4.64 and em/el = 3.99. This

process yields an autocorrelation of the real wage equal to 0.91 and a standard deviation of the

innovation term equal to 0.22 at annual frequency, in line with the data.

Table ?? also provides the preference parameters that best match key targets such as the Gini

of the money distribution; the money to GDP ratio; the interest rate elasticity of money; and the

capital-output ratio. The monetary aggregate that we consider is M2, which best corresponds to

the notion of “liquid assets” in the Survey of Consumer Finances. Note that the Gini coefficient of

this distribution is as high as 0.85. The quartely value of M2 over GDP over the 1982-2005 period

is 0.52.

We model the dynamics of monetary conditions between 1982Q1 and 2005Q4 as a two-state,

10It is straightforward to introduce elastic labor supply using GHH preferences, as in Heathcote (2005).
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first-order Markov chain. More specifically, we estimate this chain using CPI-inflation and extract

the inflation levels that prevail in the ‘high-’versus ‘low-inflation’regimes, as well as the probabilities

to transit between those regimes. This gives πL = 0.64%, πH = 1.17%, and probabilities to stay in

the same state Pr
(
πL|πL

)
= 0.944 and Pr

(
πH |πH

)
= 0.889.

We specify the fiscal policy parameters G and ψ as follows. According to Domeij and Heathcote

(2004), for the period 1990-1996 the capital income tax rate averaged 39.7 percent, while the labor

income tax rate averaged 26.9 percent. We thus set ψ = 39.7/26.9. Moreover, applying those rates

to a version of our model without aggregate risk (and with inflation equal to the unconditional

mean of inflation in the baseline model) gives G = 0.25 as a residual; we thus calibrate G to this

value in the baseline economy.

4 Results

4.1 Equilibrium distributions and laws of motion

We first check that our calibration does reproduces the broad features of the US wealth distribu-

tion. Unlike earlier studies, we seek to match the distributions of two components of total wealth:

money wealth and nonmonetary wealth. Given our focus on the portfolio structure chosen by the

households, our empirical counterparts from the Survey of Consumer Finances (SCF 2004) are the

following. First, we use the “liquid assets” component of financial wealth as a measure of house-

holds’ money wealth (as argued above, this roughly corresponds to the assets belonging to the M2

monetary aggregate). Liquid assets in the SCF are essentially made of money market accounts,

checking accounts, saving accounts and call accounts. Second, we compute the distribution of non-

monetary wealth by removing liquid assets from the financial assets held by the households in the

SCF. From the SCF, nonmonetary wealth refers to bonds, stocks, life insurance, retirement plans

and other managed financial assets. Table ?? compares the properties of those two distributions

with those generated by the model, under the parameter configuration specified in Tables ??-??.

Given our parametric utility function, all households hold some money in our model, even

though the amount being held may be very small. However, many households are not wealthy

enough to hold both money and nonmonetary assets: they are “constrained”, in the sense of

endogenously choosing not to hold capital –not in the sense of holding zero wealth.

The benchmark model predicts a fairly high Gini index for the distribution of nonmonetary
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assets (0.81), as is consistent with the data (0.82). Moreover, the model does a reasonable job

in matching the lower tail of the distribution of nonmonetary assets. Perhaps unsurprisingly, the

model underestimates the nonmonetary wealth share of the top 1%, which is predicted to be 9.03%

while it is 34.30% in the data. This flaw is common to many models that only use idiosyncratic

income risk to generate wealth dispersion and ignore, for example, entrepreneurship (see, e.g.,

Quadrini, 2000.)

Our model predicts that 6.6% of the households on average face a binding borrowing limit. The

range of available estimates for this share is notoriously large. Using information on the number of

borrowing requests which were rejected in the SCF, Jappelli argued that up to 19% of families are

liquidity-constrained. However, using updated SCF data, Budria Rodriguez et al. (2002) reported

that only 2.5% of the households have zero wealth, which might better correspond to our theoretical

borrowing limit.

Finally, we find the following laws of evolution for capital:

low inflation : lnKt+1 = 0.4723 + 0.7870 lnKt + 0.1140 ln Ωs
t , R

2 = 0.9982.

high inflation : lnKt+1 = 0.4421 + 0.8085 lnKt + 0.1155 ln Ωs
t , R

2 = 0.9981.

As in Krusell and and Smith (1998), we find the first-order moments of the distributions to

yield an almost perfect prediction of prices (based on the R-square statistics.)

4.2 Individual policy rules

Figure 1 displays the individual policy rules when the money growth rate is πL (the policy rules when

π = πH have a very similar shape) and for the average levels of capital. The policy rules for total

wealth, nonmonetary assets, money and consumption are decomposed for each level of productivity

eh, em and el. For example, the third panel of Figure 1 reports the individual policy rules for

nonmonetary assets. The policy rule lies above the 45-degree line for the most productive household

(with productivity eh) and below the 45-degree line for the other two types (with productivity em

or el). This implies that the former accumulate nonmonetary assets for self-insurance purposes

whereas the latter dis-save to smooth individual consumption. For medium- and low-productivity

households, the policy rule displays a kink at low levels of wealth; this is because at such wealth

levels these households hold money but no nonmonetary assets. The second and fourth panels show
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Table 2: Wealth distribution
Data Economy∗

Distribution of nonmonetary assets
Gini 0.82 0.81
Share of constrained households [2%, 20%] 6.6%
Fraction of total asset held by

Bottom 20% 0.00 0.12
Bottom 40% 0.20 0.26
Top 20% 84.70 78.22
Top 10% 71.20 52.89
Top 1% 34.30 9.03

Distribution of money holdings
Gini 0.85 0.81
Fraction of total money held by

Bottom 20% 0.00 0.84
Bottom 40% 0.00 1.66
Top 20% 88.20 87.69
Top 10% 76.46 67.34
Top 1% 39.49 15.55

Capital/GDP 12.00 10.37
Money/GDP 0.52 0.32
∗ The model properties are averages over a 10,000 period simulation.

the policy rules for money holdings and consumption, which roughly display the same pattern

as the policy rule for nonmonetary assets. The more productive the household (holding wealth

constant), or the wealthier the household (holding productivity constant), the higher are individual

consumption and money holdings. The close connection between the policy rules for consumption

and money holdings stems from the complementarity between the two, a direct implication of our

assumed instant utility function.
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4.3 Welfare

We now evaluate the welfare cost of inflation fluctuations within our incomplete-market economy.

We do so by performing ex ante welfare comparison conditional on a particular value of the indi-

vidual state vector (productivity and wealth). The benchmark that we use for comparision is an

economy without inflation risk, where the inflation rate is constant and equal to the unconditional

mean of inflation in the baseline model with inflation risk. We wish to understand who are the the

losers (or winners) from fluctuating inflation and thus proceed as follows.

First, we compute the ergodic distribution of households over productivity e and beginning-of-

period wealth a generated by our baseline model, and extract from it the average beginning-of-

period wealth over all households (denoted by ā) as well as the corresponding averages for low-,

medium- and high-productivity levels (denoted by al, am and ah, respectively).

Second, we compute the ex ante welfare of typical households in the baseline economy. For

example, to compute the ex ante welfare of a low-productivity (i.e., el) household, we first compute

his ex post intertemporal welfare (
∑∞

t=0 β
tu (ct,mt)) under a particular history of idiosyncratic and

aggregate shocks after date 0 (with transition probabilities F and T ), letting him start his life

with the average portfolio of households with similar productivity (i.e., al). We then repeat the

same computation for ten thousand productivity histories, but under the same initial condition

and history of aggregate shocks. Averaging over all idiosyncratic histories then gives use the ex

ante welfare of this typical household (i.e., E0
∑∞

t=0 β
tu (ct,mt)). We perform similar conditional

welfare computations for the typical medium- (em, am) and high-productivity (eh, ah) households.

To broaden the picture, we also compute the ex ante welfare of medium-productivity households

(em) starting his life with the typical portfolio of a high- or a low-productivity household (ie. al or

am). This would be the ex ante welfare level of a household who would have just transited into the

medium-productivity class, after having stayed highly (or little) productive for a while. We also

compute the ex ante welfare levels by initial productivity types for households starting their life

with the economywide average beginning-of-period wealth ā.

Third, we run exactly the same conditional, ex ante welfare computations in the benchmark

economy without aggregate inflation shocks, wherein inflation stays constant at the unconditional

mean inflation rate of the baseline model (with individual welfare levels computed using the same
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individual histories as in the economy with inflation risk). The welfare cost of inflation fluctuations

for a particular household type is then the difference in ex ante welfare for this type (i.e., holding

initial productivity and wealth the same) between the two economies. In table 3 we report the

welfare costs of inflation for the various household types under considerations, expressing welfare

costs in terms of equivalent life-time proportional consumption loss. For example, for a currently

mid-productivity household (em) holding the typical portfolio of this category (am), switching

from the constant-inflation benchmark to an economy with inflation risk is as costly as staying

in the constant inflation economy but experiencing a permanent 1.23 percent drop in individual

consumption.

Productivity Initial wealth Welfare cost (% of permanent consumption)

eh ah −0.36
em ah −0.80
em am 1.23
em al 1.77
el al 1.24
eh ā 0.87
em ā 0.89
el ā 0.93

Differentiating households by productivity types only – that is, considering the welfare loss

of individuals with different beginning-of-life productivity – but holding the same initial wealth –

the economywide average ā – illustrates the fact that on average individuals tend to suffer from

inflation fluctuations, with an equivalent permanent consumption loss close to 1%.

Importantly, the welfare cost of inflation fluctuations that we find are very unevenly distributed

across households. In particular, while most households incur large welfare losses (up to 1.77% of

permanent consumption), the most productive and/or wealthy households incur no loss or even a

gain. Such is the case both for the typical high-productivity individual (starting with the average

wealth of individuals with same productivity, ah) and for a medium-productivity household having

been lucky enough in the past to have accumulated ah. To understand why this is the case, one

must bear in mind how inflation risk affects households’ utility under our preference specification.

More specifically, the impact of inflation risk on individual welfare can be traced back to two effects:

a direct effect due to fluctuations in the marginal utility of money holdings, and an indirect effect

working through the distribution of aggregate capital income across households. The first effect

implies that inflation risk, which mechanically generates volatility in real money holdings, hurts
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all households holding cash (since utility is concave in real balances). The second effect is related

to the complementarity between money and consumption. Because the marginal utility of real

balances is concave and consumption and real balances are complement, an increase in the volatility

of future real money balances (as implied by greater inflation risk) lowers the average marginal

utility of future consumption and hence discourages current savings.11 This is true for all types of

savings, including holdings of capital claims, and for all households, i.e., at all productivity levels.

Hence, inflation risk lowers the capital stock and raises the return on capital claims, which tilts

the distribution of total capital income towards high-productivity households (who holds greater

capital holdings on average).12 The indirect effect turns out to (mildly) dominate the direct effect

for high productivity or mid-prodictivity/high wealth households, causing them to benefit rather

than suffer from inflation risk in equilibrium.

5 Conclusion

TBC

11Note that the lower future average marginal utility of consumption is accompanied by a greater volatility of
future marginal utility of consumption. Since the marginal utility of consumption is convex at all levels of real
balances, a “prudence” effect will limit, but not overturns, the impact of inflation risk on the average marginal utility
of consumption (formally, the impact of prudence on current consumption-saving choices operates at one order of
magnitude below the effect due to the complementarity between consumption and money).

12The quartely after-tax rates of return on capital claims are or average 0.60% and 0.59% in the high and the low
inflation states of the baseline economy, respectively, while the same return is time-invariant at 0.55% in the economy
without inflation risk.
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A Numerical Algorithm

A.1 Overview of the Algorithm

The algorithm used to obtain the solution of the model is as follows.

1. Given laws of motion for real money balance and capital, defined by (??) and (??), solve the

individual’s problem given by the equations (??), (??), (??) and kt+1 > 0.

2. Simulate the economy to approximate the equilibrium laws of motion for K and M . We use

the grid-based simulation procedure proposed by Young (2010).

(a) Set an initial wealth/employment-efficiency distribution µ0 (a, e) that provides pi,e0 the

mass of agents of employment-efficiency type e with wealth ai at the ith wealth grid

point for i = 1, · · · , Ngrid; an initial value for π; and initial individual policy rules for k

and m.13

(b) Given the decision rules gk(at, et;πt,Kt), and gm(at, et;πt,Kt) that solve the individual’s

problem, the wealth/employment-efficiency distribution µ (at, et), and a draw for πt,

calculate ∫
gm(at, et;πt,Kt)dµ (at, et) = Mt

13We use the wealth distribution and the associated policy rules that we get for the economy without monetary
shock.
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and ∫
gk(at, et;πt,Kt)dµ (at, et) = Kt+1

c. Repeat steps (b) and (c) and obtain a long time series for K and M , of which the first

part is discarded.

3. Use the time series obtained in step (2) to get the new equilibrium laws of motion for K and

M.

4. Compare the new equilibrium laws of motion for K and M with those used in step (1). If

they are similar, stop. Otherwise, update the coefficients of the laws of motion, and go to

step (1).

A.2 Details on the Resolution of the Individual Problem

We have the following first order conditions

uc (ct,mt)− um (ct,mt) = βEt

[
va (at+1, et+1;πt+1,Kt+1)

1 + πt+1

]
(15)

uc (ct,mt) = βEt
[(

1 +
(
1− τ ct+1

)
rt+1

)
va (at+1, et+1;πt+1,Kt+1)

]
(16)

The last equation is true if kt+1 > 0. Given an initial guess for v0a(.), the first derivative with

respect to a of the value function, for each grid point, we will solve the individual problem defined

by the previous FOC and the budget constraint (??). Given the solution at each grid point, we

get a new v1a(.) = uc (ct,mt). If the new derivative of the value function is close to the old one, we

have found an approximation of the fixed point, and we get g0c (.), g
0
k(.), and g0m(.) as the solution

of the problem. If not, we update v0a(.) = v1a(.).

We have two distinct cases:

1) If kt+1 = 0, we solve the non linear equation in mt:

uc (ct,mt)− um (ct,mt)− βEt
[
v0a (at+1, et+1;πt+1,Kt+1)

1 + πt+1

]
= 0

where ct = at +
(
1− τ lt

)
wtetn̄−mt, and given v0a (at+1, et+1;πt+1,Kt+1) where at+1 = mt

1+πt+1
, and

Kt+1 given by the fixed aggregate laws of motion.

23



2) If kt+1 > 0, we find the solution for gc, gm, gk, and va using nested bisection methods. First,

we solve for m and k given a certain level of consumption using equation (??) and the budget

constraint. Second, we solve the capital foc for c where the m and k are given by the previous step.

More formally, for each grid point, we have the following steps:

1. For a given value of c, solve the following foc for m

uc (ct,mt)− um (ct,mt)− βEt
[
v0a (at+1, et+1;πt+1,Kt+1)

1 + πt+1

]
= 0

given v0a (at+1, et+1;πt+1,Kt+1) where at+1 =
(
1 +

(
1− τ ct+1

)
rt+1

)
kt+1 + mt

1+πt+1
, and kt+1

deduced from the budget constraint. Kt+1 is given by the fixed aggregate laws of motion.

2. Given kt+1, and mt found in the previous step, solve the following non-linear equation for c

uc (ct,mt)− βEt
[(

1 +
(
1− τ ct+1

)
rt+1

)
v0a (at+1, et+1;πt+1,Kt+1)

]
= 0

given v0a (at+1, et+1;πt+1,Kt+1) where at+1 =
(
1 +

(
1− τ ct+1

)
rt+1

)
kt+1 + mt

1+πt+1
, and Kt+1 is

given by the fixed aggregate laws of motion.
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