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We derive bias-corrected least-squares estimators of panel vector autoregressions with

fixed effects. The correction is straightforward to implement and yields an estimator

that is asymptotically unbiased under asymptotics where the number of time series

observations grows at the same rate as the number of cross-sectional observations.

This makes the estimator well suited for most macroeconomic data sets. Simulation

results show that the estimator yields substantial improvements over within-group

least-squares estimation. We illustrate the bias correction in a study of the relation

between the unemployment rate and the economic growth rate at the U.S. state level.

JEL Classification: C33
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Introduction

Vector autoregressions are a standard tool in macroeconometrics since the work

of Sims (1972, 1980). Stock and Watson (2001) provide a survey and critical

assessment. A growing literature exploits the availability of large longitudinal

data sets to fit panel versions of vector autoregressive models. A recent overview

of this literature is available in Canova and Ciccarelli (2013).

We consider the estimation of vector autoregressions from panel data on N

units and T (effective) time periods. While it is well-known that least-squares

estimators of vector autoregressions that feature fixed effects are heavily biased
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in short panels, the fact that they are also asymptotically biased as N,T → ∞
unless N/T → 0 (Phillips and Moon 1999; Hahn and Kuersteiner 2002) seems to

be neglected in the empirical literature. At the same time, the GMM estimator

of Holtz-Eakin, Newey and Rosen (1988), which performs well under fixed-T

asymptotics, is asymptotically biased under asymptotics where N,T →∞ unless

N/T →∞ (Alvarez and Arellano 2003; Hsiao and Zhang 2015).

In this paper we consider bias-corrected estimation under asymptotics where

N/T converges to a constant. Such an asymptotic approximation is well suited

for many macroeconomic data sets, where T cannot reasonably be considered

small relative to N . Our estimator consists of a simple additive correction to

the (within-group) least-squares estimator and extends the work of Hahn and

Kuersteiner (2002). The correction removes the asymptotic bias from the limit

distribution of the least-squares estimator while leaving its asymptotic variance

unchanged. The resulting estimator is straightforward to implement. We also

discuss bias-corrected estimation of impulse-reponse functions, which are often

the ultimate parameters of interest.

In Section I we present the model of interest. In Section II we show that the limit

distribution of the within-group least-squares estimator is incorrectly centered

and derive the bias. The bias-corrected estimator is then obtained by subtracting

an estimator of this bias from the within-group least-squares estimator. It is

asymptotically unbiased. We also show that the correction immediately yields

an estimator of the impulse-reponse function that is asymptotically unbiased. In

Section III we present Monte Carlo simulations. In Section IV we investigate the

relationship between the unemployment rate and the economic growth rate at the

U.S. state level. The appendix contains technical details.

I. Vector autoregression for panel data

Consider panel data on N units observed for T +P consecutive time periods. For

each unit i we observe M outcome variables yit1, . . . , yitM , where t ranges from
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1 − P to T . The behavior of yit = (yit1, yit2, . . . , yitM )′ is described by the P th

order vector autoregression

(1.1) yit = Γ1yit−1 + Γ2yit−2 + · · ·+ ΓPyit−P + ǫit,

where yit−p = Lp yit is the pth lag of yit, Γp is the associated M ×M coefficient

matrix, and ǫit is an M -dimensional error term. We assume that

ǫit = αi + υit

for a fixed effect αi = (αi1, . . . , αiM )′ and an error vector υit = (υit1, . . . , υitM )′.

We normalize E[υit] = 0 and let Ω = E[υitυ
′
it].

Equation (1.1) can be extended to include time dummies, one for each period.

The presence of time dummies changes the least-squares estimator but leaves the

bias correction and the asymptotic approximation developed below unchanged

(see Hahn and Moon 2006 for a discussion on this).

We complete the model by imposing the following conditions.

Assumption 1 (Stationarity condition). The roots of the determinantal equation

det
(
IM − Γ1z − · · · − ΓP z

P
)
= 0

all lie outside the unit circle.

Assumption 1 implies that the vector autoregressive process is stable.

Throughout, we treat the αi as fixed, that is, we condition on them. We

also condition on the initial observations, yi(1−P ), . . . ,yi0. This allows the initial

observations not to be generated from the corresponding stationary distribution,

and so, does not require the time series processes to have started in the distant

past.

Assumption 2 (Regularity conditions). υit has finite eight-order moments and,
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as N →∞,

1

N

N∑

i=1

‖αi‖2 = O(1),
1

N

N∑

i=1

‖yi1−p‖2 = O(1),

for p = 1, . . . , P .

The moment conditions in Assumption 2 ensure regular asymptotic behavior of

the least-squares estimator and are standard.

For simplicity, we will maintain the assumption that the error vectors υit are

independent and identically distributed.

Assumption 3 (Errors). υit is independent and identically distributed across i

and t, E[υit] = 0, and Ω = E[υitυ
′
it] < +∞.

Independence across time can be relaxed to allow for dependence between υit

and υit−p through their higher-order moments. This would come at the cost of

more complicated regularity conditions, parallelling Hahn and Kuersteiner (2002,

Conditions 1 and 2), but would leave our bias calculations unchanged. Any

intertemporal dependence would come into play only in the asymptotic variance

of the within-group least-squares estimator.

Under these conditions, as t→∞, yit has the moving-average representation

yit = µi +

∞∑

k=0

Φk ǫit−k,

where µi =
∑∞

k=0Φk αi and the matrices Φk are defined by

(1.2)
(
IM − Γ1L− · · · − ΓPL

P
)−1

=
∞∑

k=0

ΦkL
k.

This representation is important as it implies ∂yit+h/∂υ
′
it = Φh, which quantifies

the impact on yit+h of a unit increase in the elements of υit. As a function of h,

this defines the impulse-response functions, which are key parameters of interest
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(see, e.g., Hamilton 1994, Section 11.4).

II. Bias-corrected estimation

A. Least-squares estimator

Define the M ×MP matrix Γ ′ = (Γ1, . . . ,ΓP ) and xit = (y′it−1,y
′
it−2, . . . ,y

′
it−P )

′

to write (1.1) as

yit = αi + Γ ′xit + υit.

Collect all time-series observations and error terms for unit i in the matrices

Yi = (yi1, . . . ,yiT ), Xi = (xi1, . . . ,xiT ), Υi = (υi1, . . . ,υiT ),

and let ιT denote the T -dimensional vector of ones to define Ai = ι′T ⊗ αi. We

may then write

Yi = Ai + Γ ′Xi + Υi.

The within-group least-squares (WG-OLS) estimator solves the normal equations

N∑

i=1

(
Yi − Γ ′Xi

)
MX ′

i = 0,

where M = IT − ιT ι
′
T is the usual demeaning matrix that sweeps out the fixed

effects.

The WG-OLS estimator is

Γ̂ =

(
N∑

i=1

XiMX ′
i

)−1 ( N∑

i=1

XiMY ′
i

)
.

Given Γ̂ we may construct an estimator of the Φk defined in (1.2), and with it

an estimator of the impulse-response functions.

It is well-known that Γ̂ is inconsistent under asymptotics where T is treated
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as fixed (see, e.g., Nickell 1981). Holtz-Eakin, Newey and Rosen (1988) proposed

GMM estimators that are consistent and asymptotically normal under fixed-T

asymptotics. However, these estimators are known to be asymptotically biased

when T is allowed to grow at the same rate as N (Alvarez and Arellano 2003;

Hsiao and Zhang 2015), and so are not attractive in situations where T/N is not

close to zero.

On the other hand, even though Γ̂ is consistent under asymptotics where

N,T → ∞ jointly, its limit distribution has a non-zero asymptotic bias unless

N/T → 0 (see Hahn and Kuersteiner 2002 and also below). This suggests that

inference based on the WG-OLS estimator will tend to be unreliable unless T is

substantially larger than N .

B. Bias-corrected least-squares estimator

We consider asymptotically unbiased estimation of Γ under asymptotics where

N/T → ρ2 < ∞ as N,T → ∞, extending the applicability of the approach of

Hahn and Kuersteiner (2002).

To derive the bias of the WG-OLS estimator, start from the sampling-error

representation

√
NT vec

(
Γ̂ − Γ

)
=

(
IM ⊗ 1

NT

N∑

i=1

XiMX ′
i

)−1 (
1√
NT

N∑

i=1

vec(XiMΥ ′i )

)
.

For any vector ait, let ai· = T−1
∑T

t=1 ait. Then

1

NT

N∑

i=1

XiMX ′
i

p−→ lim
N,T→∞

1

NT

N∑

i=1

T∑

t=1

E[(xit − xi·) (xit − xi·)
′] = Σ,

where Σ is the variance matrix of xit in the limit t→∞. Further,

1√
NT

N∑

i=1

vec (XiMΥ ′i − E[XiMΥ ′i ])
d−→ N (0,Ω ⊗Σ).
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However, the within transformation introduces a bias in the normal equations. In

particular, E [XiMΥ ′i ] = O(1), which implies that the bias of Γ̂ is O(T−1). In

the Appendix we show that, as T →∞,

E
[
XiMΥ ′i

]
= B + o(1)

where

(2.1) B = −(ιP ⊗ (IM − Γ1 − · · · − ΓP )
−1)Ω.

Therefore, letting b = vecB = −(IM ⊗ ιP ⊗ (IM − Γ1 − · · · − ΓP )
−1) vecΩ, we

have the following result.

Theorem 1 (Within-group least-squares estimator). Let Assumptions 1–3 hold.

Then

(2.2)
√
NT vec (Γ̂ − Γ )

d−→ N
(
ρ (IM ⊗Σ−1) b,Ω ⊗Σ−1

)

as N,T →∞ with N/T → ρ2.

In Theorem 1, b represents the non-negligible part of the bias in the normal

equations that causes conventional confidence intervals, constructed around the

WG-OLS estimator, to be incorrectly centered.

Equations (2.1)–(2.2) suggest correcting Γ̂ by subtracting an estimate of its

bias, which may be formed as a plug-in estimate using Γ̂ itself. This yields the

bias-corrected WG-OLS (BC-WG-OLS) estimator

(2.3) Γ̃ = Γ̂ − Σ̂−1B̂

T
,
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where

(2.4) Σ̂ =
1

NT

N∑

i=1

XiMX ′
i, B̂ = −(ιP ⊗ (IM − Γ̂1 − · · · − Γ̂P )

−1) Ω̂,

with

(2.5) Ω̂ =
1

NT

N∑

i=1

Υ̂iMΥ̂ ′i , Υ̂i = Yi − Γ̂ ′Xi.

This estimator is asymptotically unbiased.

Theorem 2 (Bias-corrected least-squares estimator). Let Assumptions 1–3 hold.

Then
√
NT vec (Γ̃ − Γ )

d−→ N
(
0,Ω ⊗Σ−1

)

as N,T →∞ with N/T → ρ2.

Theorem 2 shows that the asymptotic distribution of Γ̃ is correctly centered and

has the same variance as that of Γ̂ . This result extends Hahn and Kuersteiner

(2002, Theorem 2). One may expect that, under the additional asumption that

υit ∼ N (0,Ω), in which case the within-group least-squares estimator coincides

with the maximum-likelihood estimator, the bias-corrected estimator in (2.3) is

asymptotically efficient, as in Hahn and Kuersteiner (2002, Corollary 1), although

we do not pursue a formal proof here.

The estimator in (2.3)–(2.5) is constructed using a plug-in estimator of the bias

based on the WG-OLS estimator. We may consider repeating the correction by

iterating until convergence on

Γ̃ (1) = Γ̃ , Γ̃ (j+1) = Γ̂ − Σ̂−1B̃(j)

T
, j = 1, 2, . . . ,

where B̃(j) is constructed as in (2.4)–(2.5) but with Γ̂ replaced by Γ̃ (j). Iterating

the correction does not yield an asymptotic improvement over Theorem 2, but

it may reduce the bias in finite samples since now B itself is estimated using an
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asymptotically unbiased plug-in estimator of Γ .

C. Impulse-response functions

Besides Γ , estimation of the impulse-response functions is of interest. Recall that

Φh = Γ1Φh−1 + Γ2Φh−2 + · · ·+ ΓPΦh−P ,

with Φh = 0 if h < 0 and Φ0 = IM (see, e.g., Hamilton 1994, Eq. 10.1.19).

Clearly, a plug-in estimator of Φh based on the WG-OLS estimator will suffer from

asymptotic bias. However, Theorem 2 directly implies that the bias-corrected

estimator based on the recursion

Φ̃h = Γ̃1Φ̃h−1 + Γ̃2Φ̃h−2 + · · ·+ Γ̃P Φ̃h−P

will be asymptotically unbiased if N,T → ∞ with N/T → ρ2. Asymptotically

valid inference on the impulse-responses can then be performed.

To state the result, let

Gh =
h∑

s=1

Φs−1 ⊗ (Φ′h−s, Φ
′
h−s−1, · · · , Φ′h−s−P+1)

in the following theorem.

Theorem 3 (Bias-corrected impulse-response functions). Let Assumptions 1–3

hold. Then

√
NT vec (Φ̃′h −Φ′h)

d−→ N
(
0,Gh(Ω ⊗Σ−1)G′h

)

as N,T →∞ with N/T → ρ2.
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D. Single-equation correction

When M = 1 the model in (1.1) reduces to

(2.6) yit = αi + γ1yit−1 + · · ·+ γP yit−P + υit, υit ∼ i.i.d. (0, ω2).

In this case a simpler, yet asymptotically equivalent, bias correction may be

performed.

Write (2.6) as

yit = αi + γ ′xit + υit,

where γ = (γ1, . . . , γP )
′ and xit = (yit−1, . . . , yit−P )

′. The WG-OLS estimator of

γ is

γ̂ =

(
N∑

i=1

T∑

t=1

(xit − xi·)(xit − xi·)
′

)−1( N∑

i=1

T∑

t=1

(xit − xi·)(yit − yi·)

)
.

Write Σ = ω2 V , where V is the variance matrix of ω−1xit in the limit t → ∞.

Combining Theorem 1 with the expression for V −1 in Galbraith and Galbraith

(1974, p. 70) we find

√
NT (γ̂ − γ) d−→ N (ρc,V −1),

where c = (c1, c2, . . . , cP )
′ and

cp = cP−p+1 = −(1− γ1 − γ2 − · · · − γp−1 + γP−p+1 + · · ·+ γp)

for p = 1, . . . , ⌈P/2⌉. Therefore, a bias-corrected estimator can be constructed as

(2.7) γ̃ = γ̂ − ĉ

T
,

which does not require estimating ω2. We have the following result.
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Theorem 4 (Single-equation bias correction). Let Assumptions 1–3 hold. Then

√
NT (γ̃ − γ) d−→ N

(
0,V −1

)

as N,T →∞ with N/T → ρ2.

When P = 1, (2.7) reduces to the well-known correction (Nickell 1981, p. 1422)

γ̃ = γ̂ +
1 + γ̂

T
,

and Theorem 4 yields

√
NT

(
γ̂ +

1 + γ̂

T
− γ

)
d−→ N

(
0, 1− γ2

)
,

which agrees with Hahn and Kuersteiner (2002, p. 1645).

III. Simulations

We present simulation results for a two-equation two-lag autoregressive model

with

Γ1 =


 .75 −.20

.20 .25


 , Γ2 =


 .20 −.10

.10 .05


 , Ω =


 1 .2

.2 1


 ,

errors generated as υit ∼ N (0,Ω), and various panel sizes. We start the time

series processes in the distant past, so the initial observations are drawn from

their steady-state distribution. Note that the results are invariant to the choice

of αi.

We computed point estimates and confidence intervals for the elements of the

coefficient matrices, Γ1 and Γ2, and for the impulse-response functions

φmn(h) =
∂yi(t+h)m

∂υitn
.
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Table 1 gives the bias, the standard deviation, and the coverage rate of 95%

confidence intervals centered at the WG-OLS estimator, computed from 10, 000

Monte Carlo replications. Table 2 gives the corresponding results for the bias-

corrected estimator. In the tables, we denote the (m,n)th element of Γp as γmnp.

Table 1—WG-OLS

N T γ111 γ121 γ112 γ122 γ211 γ221 γ212 γ222
BIAS

25 25 −.0557 .0006 −.0230 −.0256 .0089 −.0459 .0376 −.0367

50 50 −.0237 −.0012 −.0101 −.0137 .0040 −.0211 .0186 −.0171
75 75 −.0151 −.0010 −.0064 −.0091 .0026 −.0139 .0124 −.0113

100 100 −.0109 −.0008 −.0046 −.0070 .0019 −.0102 .0093 −.0083
200 200 −.0052 −.0004 −.0023 −.0034 .0009 −.0051 .0045 −.0040

STD

25 25 .0432 .0416 .0443 .0405 .0420 .0426 .0446 .0408
50 50 .0210 .0205 .0220 .0203 .0204 .0208 .0220 .0201

75 75 .0137 .0137 .0147 .0133 .0136 .0134 .0146 .0135

100 100 .0102 .0101 .0111 .0100 .0100 .0102 .0109 .0100
200 200 .0051 .0051 .0054 .0050 .0050 .0051 .0054 .0050

COVERAGE
25 25 .6991 .9391 .9131 .8968 .9338 .7825 .8578 .8429

50 50 .7734 .9434 .9222 .8905 .9428 .8143 .8606 .8588
75 75 .7918 .9478 .9252 .8933 .9443 .8248 .8604 .8669

100 100 .8084 .9490 .9252 .8939 .9433 .8234 .8635 .8683

200 200 .8183 .9466 .9331 .8919 .9474 .8281 .8678 .8740

Table 1 shows that the magnitude of the bias in the within-group estimator

varies quite substantially across the coefficients. The results also illustrate that

the bias is not negligible relative to the standard deviation. Indeed, the confidence

intervals suffer from substantial undercoverage and the distortion persists as the

sample size grows.

Table 2 shows that much of the bias in the within-group estimator is succesfully

removed by the bias correction. Furthermore, the correction has very little effect

on the variance of the estimator. Indeed, the standard deviation of the corrected

estimator is almost identical to that of the uncorrected estimator. Also, correcting

for the bias leads to confidence intervals with substantially improved coverage

rates. Therefore, the conclusions from Table 2 support our theoretical findings

summarized in Theorem 2.
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Table 2—BC-WG-OLS

N T γ111 γ121 γ112 γ122 γ211 γ221 γ212 γ222
BIAS

25 25 −.0175 .0048 −.0047 .0008 .0024 −.0078 .0034 −.0054
50 50 −.0043 .0010 −.0012 .0001 .0006 −.0017 .0009 −.0013
75 75 −.0020 .0005 −.0005 .0001 .0004 −.0009 .0005 −.0007

100 100 −.0011 .0004 −.0002 .0000 .0002 −.0004 .0003 −.0004
200 200 −.0003 .0001 −.0001 .0001 .0000 −.0002 .0000 .0000

STD

25 25 .0430 .0417 .0445 .0413 .0421 .0426 .0458 .0417
50 50 .0209 .0206 .0220 .0205 .0204 .0208 .0223 .0203

75 75 .0136 .0137 .0147 .0134 .0136 .0134 .0148 .0136
100 100 .0102 .0101 .0111 .0101 .0100 .0102 .0110 .0101
200 200 .0051 .0051 .0054 .0050 .0050 .0051 .0055 .0050

COVERAGE
25 25 .8719 .9059 .9071 .9072 .9380 .9331 .9369 .9374
50 50 .9125 .9265 .9245 .9247 .9483 .9428 .9454 .9483

75 75 .9319 .9356 .9338 .9391 .9470 .9515 .9492 .9463
100 100 .9322 .9408 .9357 .9380 .9476 .9469 .9459 .9478

200 200 .9416 .9437 .9443 .9450 .9521 .9516 .9498 .9530

Figures 1 and 2 summarize the simulation results for the WG-OLS estimator

and the BC-WG-OLS estimator, respectively, of the impulse-response functions

for N = T = 25. The (m,n) plot of each figure contains the (true) impulse-

response function φmn (solid grey line), the average (across the Monte Carlo

replications) of the estimated functions (solid black line), and pointwise 95%-

confidence bands constructed from the Monte Carlo standard deviation (dotted

black lines) and from the estimated standard error based on Theorem 3 (dashed

black lines).

The plots in Figure 1 demonstrate that estimating impulse-response functions

using least-squares coefficient estimates introduces substantial bias. This bias is

not negligible, as is evident from the confidence bands. As the plots in Figure 2

show, using bias-corrected estimates of the coefficient matrices yields estimated

impulse-response functions that suffer from much less bias. The remaining bias

is also small relative to the standard error. These findings are in line with the

conclusions of Theorem 3

To show that the bias in the least-squares estimator persists Figures 3 and 4

provide plots of the impulse-response functions analogous to those in Figures 1
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Figure 1. Impulse-response functions, N = T = 25, WG-OLS
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and 2, but now for panels with N = T = 100. The plots in Figure 3 show that the

least-squares based confidence bounds settle around the wrong curve. In contrast,

as evidenced by the plots in Figure 4, the corrected impulse-response functions

are asymptotically unbiased.

IV. Empirical application

As an empirical illustration we investigate the relation between the unemployment

rate and GDP growth by means of a vector autoregressive model estimated from

a panel on U.S. states. The data span the period 2003 − 2013, corresponding

to 11 time-series observations for 51 cross-sectional units (all U.S. states and the

District of Columbia). The data on the unemployment rate were taken from the

U.S. Bureau of Labor Statistics and matched with those on gross state product
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Figure 2. Impulse-response functions, N = T = 25, BC-WG-OLS
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(in current U.S. dollars) from the U.S. Bureau of Economic Analysis.

We select the number of lags in the specification by information criteria. Table

3 contains the values of the Akaike (AIC), Schwarz (SIC), and Hannan-Quinn

(HQC) information criteria (based on the bias-corrected point estimates). All

three criteria point to a first-order autoregressive model.

Table 3—Information criteria

P AIC SIC HQC
1 −16.0327 −15.9116 −16.1655

2 −14.9970 −14.8217 −15.3754
3 −13.7702 −13.6510 −14.5739
4 −12.3148 −12.4384 −13.8429

5 −10.5011 −11.1952 −13.2798
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Figure 3. Impulse-response functions, N = T = 100, WG-OLS

! "# "!
#

#$%

#$&

#$'

#$(

""

! "# "!

#$)

#$%!

#$%

#$"!

#$"

#$#!

#

"%

! "# "!
#

#$#!

#$"

#$"!

#$%

#$%!

#$)

%"

! "# "!

#$"

#

#$"

#$%

%%

We thus estimate


 urateit

grateit


 =


 αi1

αi2


+


 γ11 γ12

γ21 γ22





 urateit−1

grateit−1


+


 υit1

υit2


 .

Table 4 contains the point estimates of the coefficient matrix. The signs on the

own autoregressive parameters, γ11 > 0, γ22 > 0, are as expected. The corrected

point estimates are larger than those of WG-OLS, revealing greater persistence

in the dynamics of both the unemployment rate and the growth rate of the gross

state product. The coefficient γ12, which relates to the impact of grateit−1 on

urateit is found to be negative and is similarly estimated by WG-OLS and BC-

WG-OLS. In contrast, where WG-OLS picks up a large positive effect of urateit−1

on grateit, bias-corrected estimation yields a small negative point estimate that
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Figure 4. Impulse-response functions, N = T = 100, BC-WG-OLS
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is statistically insignificant.

Table 4—Coefficient estimates

γ11 γ12 γ21 γ22
WG-OLS 0.5921 −0.1898 0.2351 0.3316

(0.0280) (0.0150) (0.0873) (0.0468)

BC-WG-OLS 0.7048 −0.1782 −0.0446 0.3708
(0.0204) (0.0109) (0.0845) (0.0453)

The shocks υit1, υit2 are found to be negatively correlated with an estimated

correlation coefficient of −.4275. The standard deviations of the unemployment

and growth shocks are estimated at .0077 and .0318, respectively.

Figure 5 contains the estimated impulse-response functions. The bias-corrected

estimates (solid black line) are given along with 95%-confidence bands. The
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Figure 5. Impulse-response functions
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uncorrected (least-squares) estimates (solid grey line) are also provided but we

do not report confidence bands for clarity of the plots.

The two upper plots suggest that WG-OLS underestimates the persistence of

the impact of shocks on the unemployment rate and the growth rate on future

unemployment rates, with the point estimates lying almost completely outside

the bias-corrected confidence bands. The difference between the least-squares

estimates and the biased-corrected estimates is also economically important. For

example, where least-squares predicts the unemployment rate to fully recover from

an unemployment shock in about five years, the bias-corrected impulse-response

function suggests it would take almost three times as long for the shock to die out.

A similar qualitative difference is observed for the response of unemployment to

growth rate shocks.
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Turning to the two plots in the bottom of Figure 5, we observe that WG-OLS

also tend to underestimate the duration of impact of a growth rate shock on future

growth rates, although the underestimation is less severe here. Starting out in

the positive range, the WG-OLS point estimate quickly becomes negative as the

forecast horizon increases, eventually converging to zero after roughly ten years.

The associated 95% confidence bands would not allow to statistically discriminate

the negative point estimates from zero, however. On the other hand, failure

to bias-correct leads to the largely spurious finding that positive shocks to the

unemployment rate have a positive impact on the future growth rate. Even though

the bias-corrected confidence interval is somewhat wide for the first few periods,

it does not cover the impulse-response function estimated by least-squares in that

period.
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Appendix

Proof of Theorem 1. A standard argument (Phillips and Moon 1999; Hahn and

Kuersteiner 2000) yields the asymptotic-normality result of the within-group

least-squares estimator centered around its probability limit. It therefore suffices

to calculate the bias term in the limit distribution.
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As in Hahn and Kuersteiner (2002), B = limT→∞E [XiMΥ ′i ] is the large-T

approximation to the bias in the normal equations. Note that B consists of the

M ×M matrices B1, . . . ,BP , where

Bj = lim
T→∞

E

[
T∑

t=1

(
yit−j −

1

T

T∑

t′=1

yit′−j

)
υ′it

]

= − lim
T→∞

E

[
1

T

T∑

t=1

T∑

t′=1

yit′−jυ
′
it

]

= − lim
T→∞

E

[
1

T

T∑

t=1

T∑

t′=1

∞∑

k=0

Φkυit′−j−kυ
′
it

]

= −
∞∑

k=0

ΦkΩ = −(IM − Γ1 − · · · − ΓP )
−1Ω,

which does not depend on j. Hence,

B = −(ιP ⊗ (IM − Γ1 − · · · − ΓP )
−1)Ω,

as claimed. This concludes the proof.

Proof of Theorem 2. The result readily follows from the previous theorem.

Proof of Theorem 3. The result follows along the same lines as in, e.g., Hamilton

(1994, Section 11.7) from Theorem 2 by an application of the delta method.

Proof of Theorem 4. In the single-equation case, Theorems 1 and 2 hold with

Σ−1b = − V −1 ιP

1− γ1 − · · · − γP
.

Galbraith and Galbraith (1974, p. 70) showed that

V −1 = AA′ −H ′H
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where

A = −




γ0 0 · · · 0

γ1
. . .

. . .
...

...
. . .

. . . 0

γP−1 · · · γ1 γ0




, H = −




γP γP−1 · · · γ1

0
. . .

. . .
...

...
. . .

. . . γP−1

0 · · · 0 γP




,

and γ0 = −1. Now,

A′ιP = a+ (1− γ1 − · · · − γP )ιP , HιP = h+ (1− γ1 − · · · − γP )ιP ,

where

a =




γP

γP−1 + γP
...

γ1 + · · ·+ γP




, h =




γ0

γ0 + γ1
...

γ0 + · · ·+ γP−1




.

Noting that Aa−H ′h = 0, we find

Σ−1b = −(A−H ′) ιP = c.

This concludes the proof.


