A note on sufficiency in binary panel models
Koen Jochmans, Thierry Magnac

To cite this version:
Koen Jochmans, Thierry Magnac. A note on sufficiency in binary panel models. 2015. hal-01248065

HAL Id: hal-01248065
https://sciencespo.hal.science/hal-01248065
Preprint submitted on 23 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License
A NOTE ON SUFFICIENCY IN BINARY PANEL MODELS

Koen Jochmans
Thierry Magnac

Sciences Po Economics Discussion Papers
A NOTE ON SUFFICIENCY IN BINARY PANEL MODELS

KOEN JOCHMANS AND THIERRY MAGNAC

December 4, 2015

Consider estimating the slope coefficients of a fixed-effect binary-choice model from two-period panel data. Two approaches to semiparametric estimation at the regular parametric rate have been proposed. One is based on a sufficient statistic, the other is based on a conditional-median restriction. We show that, under standard assumptions, both approaches are equivalent.

KEYWORDS: binary choice, fixed effects, panel data, regular estimation, sufficiency.

INTRODUCTION

A classic problem in panel data analysis is the estimation of the vector of slope coefficients, $\beta$, in fixed-effect linear models from binary response data on $n$ observations.

In seminal work, Rasch (1960) constructed a conditional maximum-likelihood estimator for the fixed-effect logit model by building on a sufficiency argument. Chamberlain (2010) and Magnac (2004) have shown that sufficiency is necessary for estimation at the $n^{-1/2}$ rate to be possible in general.

Manski (1987) proposed a maximum-score estimator of $\beta$. His estimator relies on a conditional median restriction and does not require sufficiency. However, it converges at the slow rate $n^{-1/3}$. Horowitz (1992) suggested smoothing the maximum-score criterion function and showed that, by doing so, the convergence rate can be improved, although the $n^{-1/2}$-rate remains unattainable.

Lee (1999) has given an alternative conditional-median restriction and derived a $n^{-1/2}$-consistent maximum rank-correlation estimator of $\beta$. He provided sufficient conditions for this condition to hold that restrict the distribution of the fixed effects and the covariates. It can be shown that these restrictions involve the unknown parameter $\beta$ through index-sufficiency requirements on the distribution of the covariates, and that these can severely restrict the values that $\beta$ is allowed to take.

In this note we reconsider the conditional-median restriction of Lee (1999) under standard assumptions and look for conditions that imply it to hold for any $\beta$. We find that imposing the...
conditional-median restriction is equivalent to requiring sufficiency.

1. MODEL AND ASSUMPTIONS

Suppose that binary outcomes \( y_i = (y_{i1}, y_{i2}) \) relate to a set of observable covariates \( x_i = (x_{i1}, x_{i2}) \) through the threshold-crossing model

\[
    y_{i1} = 1\{x_{i1}\beta + \alpha_i \geq u_{i1}\}, \quad y_{i2} = 1\{x_{i2}\beta + \alpha_i \geq u_{i2}\},
\]

where \( u_i = (u_{i1}, u_{i2}) \) are latent disturbances, \( \alpha_i \) is an unobserved effect, and \( \beta \) is a parameter vector of conformable dimension, say \( k \). The challenge is to construct an estimator of \( \beta \) from a random sample \( \{(y_i, x_i), i = 1, \ldots, n\} \) that converges at the regular \( n^{-1/2} \) rate.

Let \( \Delta y_i = y_{i2} - y_{i1} \) and \( \Delta x_i \equiv x_{i2} - x_{i1} \). The following assumption will be maintained throughout.

**Assumption 1 (Identification and regularity)**

(a) \( u_i \) is independent of \( (x_i, \alpha_i) \).

(b) \( \Delta x_i \) is not contained in a proper linear subspace of \( \mathbb{R}^k \).

(c) The first component of \( \Delta x_i \) continuously varies over \( \mathbb{R} \) (for almost all values of the other components) and the first component of \( \beta \) is not equal to zero.

(d) \( \alpha_i \) varies continuously over \( \mathbb{R} \) (for almost all values of \( x_i \)).

(e) The distribution of \( u_i \) admits a strictly positive, continuous, and bounded density function with respect to Lebesgue measure.

Parts (a)–(c) collect sufficient conditions that ensure that \( \beta \) is identified while Parts (d)–(e) are conventional regularity conditions (see Magnac 2004). From here on out we omit the ‘almost surely’ qualifier from all conditional statements.

Assumption 1 does not parametrize the distribution of \( u_i \) nor does it restrict the dependence between \( \alpha_i \) and \( x_i \) beyond the complete-variation requirement of Assumption 1(d). As such, our approach is semiparametric and we treat the \( \alpha_i \) as fixed effects.

2. CONDITIONS FOR REGULAR ESTIMATION

Magnac (2004, Theorem 1) has shown that, under Assumption 1, the semiparametric efficiency bound for \( \beta \) is zero unless \( y_{i1} + y_{i2} \) is a sufficient statistic for \( \alpha_i \). Sufficiency can be stated as follows.
**Condition 1 (Sufficiency)**  There exists a real function $G$, independent of $\alpha_i$, such that

$$\Pr(\Delta y_i = 1|x_i, \Delta y_i \neq 0, \alpha_i) = \Pr(\Delta y_i = 1|x_i, \Delta y_i \neq 0) = G(\Delta x_i \beta)$$

for all $\alpha_i \in \mathcal{R}$.

Condition 1 states that data in first-differences follow a single-indexed binary-choice model. This yields a variety of estimators of $\beta$, such as semiparametric maximum likelihood (Klein and Spady 1993), that are $n^{-1/2}$-consistent under standard assumptions.

Magnac (2004, Theorem 3) derived conditions on the distributions of $u_i$ and $\Delta u_i$ that imply that Condition 1 holds.

On the other hand, Lee (1999) considered estimation of $\beta$ based on a sign restriction. We write $\text{med}(x)$ for the median of random variable $x$ and let $\text{sgn}(x) = 1\{x > 0\} - 1\{x < 0\}$.

**Condition 2 (Median restriction)**  For any two observations $i$ and $j$,

$$\text{med}\left(\frac{\Delta y_i - \Delta y_j}{2} \bigg| x_i, x_j, \Delta y_i \neq 0, \Delta y_j \neq 0, \Delta y_i \neq \Delta y_j\right) = \text{sgn}(\Delta x_i \beta - \Delta x_j \beta)$$

holds.

Condition 2 suggests a rank estimator for $\beta$. Conditions for this estimator to be $n^{-1/2}$-consistent are stated in Sherman (1993).

Lee (1999, Assumption 1) restricted the joint distribution of $\alpha_i, x_i$, and $x_i \beta$ to ensure that Condition 2 holds. Aside from these restrictions going against the fixed-effect approach, they do not hold uniformly in $\beta$, in general. The Appendix contains additional discussion and an example.

### 3. Equivalence

The main result of this paper is the equivalence of Conditions 1 and 2 as requirements for $n^{-1/2}$-consistent estimation of any $\beta$.

**Theorem 1 (Equivalence)**  Under Assumption 1 Condition 2 holds for any $\beta$ if and only if Condition 1 holds.

**Proof:**  We start with two lemmas that are instrumental in showing Theorem 1.
Lemma 1 (Sufficiency) Condition 1 is equivalent to the existence of a continuously-differentiable, strictly-decreasing function $c$, independent of $\alpha_i$, such that

$$\frac{\Pr(\Delta y_i = -1|x_i, \alpha_i)}{\Pr(\Delta y_i = 1|x_i, \alpha_i)} = c(\Delta x_i \beta)$$

for all $\alpha_i \in \mathcal{R}$.

Proof: Conditional on $\Delta y_i \neq 0$ and on $\alpha_i, x_i$, the variable $\Delta y_i$ is Bernoulli with success probability

$$\Pr(\Delta y_i = 1|x_i, \Delta y_i \neq 0, \alpha_i) = \frac{1}{1 + \frac{\Pr(\Delta y_i = -1|x_i, \alpha_i)}{\Pr(\Delta y_i = 1|x_i, \alpha_i)}}.$$

Re-arranging this expression and enforcing Condition 1 shows that

$$\frac{\Pr(\Delta y_i = -1|x_i, \alpha_i)}{\Pr(\Delta y_i = 1|x_i, \alpha_i)} = 1 + r(x_i, x_j),$$

which is a function of $\Delta x_i \beta$ only. Monotonicity of this function follows easily, as in Magnac (2004, Proof of Theorem 2). This completes the proof of Lemma 1. Q.E.D.

Lemma 2 (Median restriction) Let

$$\tilde{c}(x_i) = \frac{\Pr(\Delta y_i = -1|x_i)}{\Pr(\Delta y_i = 1|x_i)}.$$

Condition 2 is equivalent to the sign restriction

$$\text{sgn}(\tilde{c}(x_j) - \tilde{c}(x_i)) = \text{sgn}(\Delta x_i \beta - \Delta x_j \beta)$$

holding for any two observations $i$ and $j$.

Proof: Conditional on $\Delta y_i \neq 0, \Delta y_j \neq 0, \Delta y_i \neq \Delta y_j$ (and the covariates),

$$\frac{\Delta y_i - \Delta y_j}{2} = \begin{cases} 
1 & \text{if } \Delta y_i = 1 \text{ and } \Delta y_j = -1 \\
-1 & \text{if } \Delta y_j = 1 \text{ and } \Delta y_i = -1
\end{cases}.$$ 

Therefore, it is Bernoulli with success probability

$$\Pr(\Delta y_i = 1, \Delta y_j = -1|x_i, x_j, \Delta y_i \neq 0, \Delta y_j \neq 0, \Delta y_i \neq \Delta y_j) = \frac{1}{1 + r(x_i, x_j)},$$

where

$$r(x_i, x_j) = \frac{\Pr(\Delta y_i = -1, \Delta y_j = 1|x_i, x_j, \Delta y_i \neq 0, \Delta y_j \neq 0, \Delta y_i \neq \Delta y_j)}{\Pr(\Delta y_i = 1, \Delta y_j = -1|x_i, x_j, \Delta y_i \neq 0, \Delta y_j \neq 0, \Delta y_i \neq \Delta y_j)}.$$
Note that
\[
\text{med} \left( \frac{\Delta y_i - \Delta y_j}{2} \right)_{x_i, x_j, \Delta y_i \neq 0, \Delta y_j \neq 0, \Delta y_i \neq \Delta y_j} = \text{sgn} \left( \frac{1}{1 + r(x_i, x_j)} - \frac{r(x_i, x_j)}{1 + r(x_i, x_j)} \right).
\]

By the Bernoulli nature of the outcomes in the first step and random sampling of the observations in the second step, we have that
\[
r(x_i, x_j) = \frac{\Pr(\Delta y_i = -1, \Delta y_j = 1 | x_i, x_j)}{\Pr(\Delta y_i = 1, \Delta y_j = -1 | x_i, x_j)} = \frac{\Pr(\Delta y_i = -1 | x_i)}{\Pr(\Delta y_j = 1 | x_j)} = \frac{\tilde{c}(x_i)}{\tilde{c}(x_j)}.
\]

Therefore, Condition 2 can be written as
\[
\text{sgn}(\tilde{c}(x_j) - \tilde{c}(x_i)) = \text{sgn}(\Delta x_i \beta - \Delta x_j \beta).
\]

This completes the proof of Lemma 2. \( Q.E.D. \)

We first establish that Condition 1 implies Condition 2. Armed with Lemmas 1 and 2 this is a simple task. First note that, because the function \( c \) is strictly decreasing by Lemma 1, Condition 1 implies that
\[
\text{sgn}(c(\Delta x_j \beta) - c(\Delta x_i \beta)) = \text{sgn}(\Delta x_i \beta - \Delta x_j \beta).
\]

Under Condition 1 we also have that
\[
c(\Delta x_i \beta) = \frac{\Pr(\Delta y_i = -1 | x_i, \alpha_i)}{\Pr(\Delta y_i = 1 | x_i, \alpha_i)} = \frac{\Pr(\Delta y_i = -1 | x_i)}{\Pr(\Delta y_i = 1 | x_i)} = \tilde{c}(x_i).
\]

Therefore,
\[
\text{sgn}(\tilde{c}(x_j) - \tilde{c}(x_i)) = \text{sgn}(\Delta x_i \beta - \Delta x_j \beta).
\]

By Lemma 2, this is Condition 2.

To see that Condition 2 implies Condition 1, first note that
\[
\frac{\Pr(\Delta y_i = -1 | x_i, \alpha_i)}{\Pr(\Delta y_i = 1 | x_i, \alpha_i)} = \frac{\Pr(u_{i1} \leq \tilde{\alpha}_i - \frac{1}{2} \Delta x_i \beta, u_{i2} > \tilde{\alpha}_i + \frac{1}{2} \Delta x_i \beta)}{\Pr(u_{i1} > \tilde{\alpha}_i - \frac{1}{2} \Delta x_i \beta, u_{i2} \leq \tilde{\alpha}_i + \frac{1}{2} \Delta x_i \beta)}
\]
where we let \( \tilde{\alpha}_i = \alpha_i + \frac{1}{2}(x_{i1} + x_{i2}) \beta \). Therefore,
\[
\Pr(\Delta y_i = 1 | x_i, \Delta y_i \neq 0, \alpha_i) = \tilde{G}(\Delta x_i \beta, \tilde{\alpha})
\]

for some function \( \tilde{G} \), and
\[
\Pr(\Delta y_i = 1 | x_i, \Delta y_i \neq 0) = \int \tilde{G}(\Delta x_i \beta, \tilde{\alpha}) P(d\tilde{\alpha}|x_i, \Delta y_i \neq 0),
\]
where \( P(\tilde{\alpha}_i | x_i, \Delta y_i \neq 0) \) denotes the distribution of \( \tilde{\alpha}_i \) given \( x_i \) and \( \Delta y_i \neq 0 \). Next, by Lemma 2, Condition 2 implies that

\[
\Delta x_i^\beta = \Delta x_j^\beta \iff \tilde{c}(x_i) = \tilde{c}(x_j) \iff E[\tilde{G}(\Delta x_i^\beta, \tilde{\alpha}_i) | x_i, \Delta y_i \neq 0] = E[\tilde{G}(\Delta x_j^\beta, \tilde{\alpha}_j) | x_j, \Delta y_j \neq 0].
\]

Hence, it must hold that

\[
\int_{-\infty}^{+\infty} \tilde{G}(v, \tilde{\alpha}_i) \left\{ P(d\tilde{\alpha}_i | x_i, \Delta y_i \neq 0) - P(d\tilde{\alpha}_i | x_j, \Delta y_i \neq 0) \right\} = 0
\]

for all values \( v \in \mathbb{R} \) and all \((x_i, x_j)\). Because the distribution of \( \alpha_i \) given \( x_i \) and \( \Delta y_i \neq 0 \) is unrestricted, this condition holds if and only if the function \( \tilde{G} \) does not depend on \( \tilde{\alpha}_i \), and so not on \( \alpha_i \). Moreover, we must have that

\[
\tilde{G}(\Delta x_i^\beta, \tilde{\alpha}_i) = \Pr(\Delta y_i = 1 | x_i, \Delta y_i \neq 0, \alpha_i) = \Pr(\Delta y_i = 1 | x_i, \Delta y_i \neq 0) = G(\Delta x_i^\beta)
\]

for some function \( G \). This is Condition 1. This completes the proof of Theorem 1. \( Q.E.D. \)

**APPENDIX (NOT FOR PUBLICATION)**

The notation in Lee (1999) decomposes \( x \) into its continuously varying single component whose coefficient is equal to 1 and the remaining variables. We shall denote \( a \) the first component and \( z \) the remaining variables so that \( x = (a, z) \). We denote by \( \theta \) the coefficient of \( z \) in \( x^\beta \) so that \( \beta = (1, \theta) \), and omit the subscript \( i \) throughout.

Assumptions (g) and (h) of Lee (1999) can be written as

\[
(g) \quad \alpha \perp \Delta z | \Delta a + \theta \Delta z,
\]

\[
(h) \quad a_1 + \theta z_1 \perp \Delta z | \Delta a + \theta \Delta z, \alpha
\]

in which, e.g., \( \Delta z = z_2 - z_1 \).

We first prove that these conditions imply an index sufficiency requirement on the distribution function of regressors. Second, we provide an example in which these conditions restrict the parameter of interest to only two possible values, except in non-generic cases.

**Index sufficiency**

Denote by \( f \) the density with respect to some dominating measure and rewrite (h) as

\[
f(a_1 + \theta z_1, \Delta z | \Delta a + \theta \Delta z, \alpha) = f(a_1 + \theta z_1 | \Delta a + \theta \Delta z, \alpha) f(\Delta z | \Delta a + \theta \Delta z, \alpha).
\]

As Condition (g) can be written as

\[
f(\Delta z | \Delta a + \theta \Delta z, \alpha) = f(\Delta z | \Delta a + \theta \Delta z),
\]
we therefore have that

\[ f(a_1 + \theta z_1, \Delta z \mid \Delta a + \theta \Delta z, \alpha) = f(a_1 + \theta z_1 \mid \Delta a + \theta \Delta z, a) f(\Delta z \mid \Delta a + \theta \Delta z), \]

which we can multiply by \( f(\alpha \mid \Delta a + \theta \Delta z) \) and integrate with respect to \( \alpha \) to get

\[ f(a_1 + \theta z_1, \Delta z \mid \Delta a + \theta \Delta z) = f(a_1 + \theta z_1 \mid \Delta a + \theta \Delta z) f(\Delta z \mid \Delta a + \theta \Delta z). \]

As this expression can be rewritten as

\[ f(\Delta z \mid \Delta a + \theta \Delta z, a_1 + z_1 \theta) = f(\Delta z \mid \Delta a + \theta \Delta z), \]

Conditions (g) and (h) of Lee (1999) demand that

\[ f(\Delta z \mid a_1 + z_1 \theta, a_2 + z_2 \theta) = f(\Delta z \mid \Delta a + \theta \Delta z, a_1 + z_1 \theta) = f(\Delta z \mid \Delta a + \theta \Delta z), \]

or in terms of the original variables, that

\[ f(\Delta z \mid x_1 \beta, x_2 \beta) = f(\Delta z \mid \Delta x \beta), \]

This is an index sufficiency requirement on the data generating process of the regressors \( x \) that is driven by the parameter of interest, \( \beta \).

**Example**

To illustrate, suppose that \( z \) is a single dimensional regressor and that regressors are jointly normal with a restricted covariance matrix allowing for contemporaneous correlation only. Moreover,

\[
\begin{pmatrix}
a_1 \\
a_2 \\
z_1 \\
z_2
\end{pmatrix}
\sim N
\begin{pmatrix}
\mu_{a1} \\
\mu_{a2} \\
\mu_{z1} \\
\mu_{z2}
\end{pmatrix},
\begin{pmatrix}
\sigma_{a1}^2 & 0 & \sigma_{a1z1} & 0 \\
0 & \sigma_{a2}^2 & 0 & \sigma_{a2z2} \\
\sigma_{a1z1} & 0 & \sigma_{z1}^2 & 0 \\
0 & \sigma_{a2z2} & 0 & \sigma_{z2}^2
\end{pmatrix}.
\]

Then

\[
\begin{pmatrix}
\Delta z \\
x_1 \beta \\
x_2 \beta
\end{pmatrix}
\sim N
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{pmatrix},
\begin{pmatrix}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\
\Sigma_{12} & \Sigma_{22} & \Sigma_{23} \\
\Sigma_{13} & \Sigma_{23} & \Sigma_{33}
\end{pmatrix}
\]

for
\[ \mu_1 = \mu_{z_2} - \mu_{z_1} \]
\[ \mu_2 = \mu_{a_1} + \mu_{z_1} \theta \]
\[ \mu_3 = \mu_{a_2} + \mu_{z_2} \theta \]

and
\[ \Sigma_{11} = \text{var}(\Delta z) = \text{var}(z_1) + \text{var}(z_2) \]
\[ \Sigma_{12} = \text{cov}(\Delta z, x_1 \beta) = -\text{cov}(z_1, a_1 + z_1 \theta) \]
\[ = -\text{cov}(a_1, z_1) - \theta \text{var}(z_1) \]
\[ = -\sigma_{a_1 z_1} - \theta \sigma_{z_1}^2 \]
\[ \Sigma_{13} = \text{cov}(\Delta z, x_2 \beta) = \text{cov}(z_2, a_2 + z_2 \theta) \]
\[ = \text{cov}(a_2, z_2) + \theta \text{var}(z_2) \]
\[ = \sigma_{a_2 z_2} + \theta \sigma_{z_2}^2 \]
\[ \Sigma_{22} = \text{var}(x_1 \beta) = \text{var}(a_1 + z_1 \theta) \]
\[ = \text{var}(a_1) + \theta^2 \text{var}(z_1) + \theta \text{cov}(a_1, z_1) \]
\[ = \sigma_{a_1}^2 + 2\theta \sigma_{a_1 z_1} + \theta^2 \sigma_{z_1}^2 \]
\[ \Sigma_{33} = \text{var}(x_2 \beta) = \text{var}(a_2 + z_2 \theta) \]
\[ = \text{var}(a_2) + \theta^2 \text{var}(z_2) + \theta \text{cov}(a_2, z_2) \]
\[ = \sigma_{a_2}^2 + 2\theta \sigma_{a_2 z_2} + \theta^2 \sigma_{z_2}^2 \]
\[ \Sigma_{23} = \text{cov}(x_1 \beta, x_2 \beta) = 0. \]

From standard results on the multivariate normal distribution we have that
\[ \Delta z|_{x_1 \beta, x_2 \beta} \]
is normal with constant variance and conditional mean function
\[
m(x_1 \beta, x_2 \beta) = \mu_1 + \frac{(\Sigma_{13} \Sigma_{22} - \Sigma_{12} \Sigma_{23})(x_2 \beta - \mu_2) - (\Sigma_{13} \Sigma_{23} - \Sigma_{12} \Sigma_{33})(x_1 \beta - \mu_1)}{\Sigma_{22} \Sigma_{33} - \Sigma_{23}^2}.
\]

To satisfy the condition of index sufficiency we need that
\[ (\Sigma_{13} \Sigma_{22} - \Sigma_{12} \Sigma_{23}) = (\Sigma_{13} \Sigma_{23} - \Sigma_{12} \Sigma_{33}). \]

Plugging-in the expressions from above, this becomes
\[
(\sigma_{a_2 z_2} + \theta \sigma_{z_2}^2)(\sigma_{a_1}^2 + 2\theta \sigma_{a_1 z_1} + \theta^2 \sigma_{z_1}^2) = (\sigma_{a_1 z_1} + \theta \sigma_{z_1}^2)(\sigma_{a_2}^2 + 2\theta \sigma_{a_2 z_2} + \theta^2 \sigma_{z_2}^2).
\]
We can write this condition as the third-order polynomial equation (in $\theta$)

$$C + B\theta + A\theta^2 + D\theta^3 = 0$$

with coefficients

$$C = \sigma_a^2 \sigma_{a_2} \sigma_{a_1} \sigma_{z_2} - \sigma_a^2 \sigma_{a_1} \sigma_{z_1}$$
$$B = \sigma_a^2 \sigma_{a_2}^2 + 2\sigma_{a_2} \sigma_{a_1} \sigma_{a_1} - \sigma_a^2 \sigma_{z_2}^2 - 2\sigma_{a_2} \sigma_{a_1} \sigma_{z_1}$$
$$= \sigma_a^2 \sigma_{a_2}^2 - \sigma_a^2 \sigma_{z_1}^2$$
$$A = \sigma_{a_1} \sigma_{a_2} \sigma_{z_1}^2 - \sigma_{a_2} \sigma_{z_1}^2$$
$$D = 0.$$

For $t = 1, 2$, let

$$\rho_t = \frac{\sigma_{a_t} \sigma_{z_t}}{\sigma_{a_t} \sigma_{z_t}}, \quad r_t = \frac{\sigma_{a_t}}{\sigma_{z_t}}.$$

Then

$$C = \frac{\rho_2 \rho_1 - \rho_1 \rho_2}{\sigma_{a_1} \sigma_{a_2} \sigma_{z_1} \sigma_{z_2}}$$
$$B = \frac{r_1 - r_2}{\sigma_{a_1} \sigma_{a_2} \sigma_{z_1} \sigma_{z_2}}$$
$$A = \frac{r_1 - r_2}{\sigma_{a_1} \sigma_{a_2} \sigma_{z_1} \sigma_{z_2}}$$

The polynomial condition therefore is

$$(\rho_2 r_1 - \rho_1 r_2) + \left(\frac{r_1}{r_2} - \frac{2}{r_1}\right) \theta + \left(\frac{\rho_1}{r_2} - \frac{\rho_2}{r_1}\right) \theta^2 = 0.$$

Note that the leading polynomial coefficient is equal to zero if and only if $\rho_1 r_1 = \rho_2 r_2$. This leads to three mutually-exclusive cases:

(i) The data are stationary, that is, $\rho_1 = \rho_2$ and $r_1 = r_2$. Then all polynomial coefficients are zero so that all values of $\theta$ satisfy Lee’s restriction.

(ii) We have $\rho_1 r_1 = \rho_2 r_2$ but $r_1 \neq r_2$. Then the resulting linear equation admits one and only one solution in $\theta$.

(iii) The leading polynomial coefficient is non-zero, so, $\rho_1 r_1 \neq \rho_2 r_2$. In this case the discriminant
of the second-order polynomial equals
\[ \Delta = \left( \frac{r_1}{r_2} - \frac{r_2}{r_1} \right)^2 - 4 \left( \frac{\rho_1}{r_2} - \frac{\rho_2}{r_1} \right) (\rho_2 r_1 - \rho_1 r_2) \]
\[ = \left( \frac{r_1}{r_2} \right)^2 + \left( \frac{r_2}{r_1} \right)^2 - 2 - 4 \left( \rho_1 \rho_2 \left\{ \frac{r_1}{r_2} + \frac{r_2}{r_1} \right\} - (\rho_1^2 + \rho_2^2) \right). \]

Set \( x = \frac{r_1}{r_2} \geq 0 \) and write
\[ \Delta(x) = x^2 + \frac{1}{x^2} - 2 - 4(\rho_1 \rho_2(x + \frac{1}{x}) - (\rho_1^2 + \rho_2^2)), \]
which is smooth for \( x > 0 \). The derivative of \( \Delta \) with respect to \( x \) equals
\[ \Delta'(x) = 2x - \frac{2}{x^3} - 4(\rho_1 \rho_2(1 - \frac{1}{x^2})) \]
\[ = \frac{2}{x^3}(x^4 - 1) - 4\rho_1 \rho_2 \frac{1}{x^2}(x^2 - 1) \]
\[ = \frac{2}{x^3}(x^2 - 1)(x^2 + 1 - 2\rho_1 \rho_2 x). \]

Note that the Cauchy-Schwarz inequality implies that \( x^2 + 1 - 2\rho_1 \rho_2 x \geq 0 \) so that, for \( x \geq 0 \),
\[ \text{sgn}(\Delta'(x)) = \text{sgn}(x - 1). \]

Further, \( \Delta(1) = 4(\rho_1 - \rho_2)^2 \). Therefore, \( \Delta(x) \) is always non-negative. Hence, in this case, the polynomial condition generically has two solutions in \( \theta \).

**Conclusion**

Conditions \((g)\) and \((h)\) of Lee (1999) imply an index-sufficiency condition for the distribution function of regressors. In generic cases in a standard example, this condition is restrictive and is not verified by every possible value of the parameter of interest, \( \theta \), but only two.

**REFERENCES**


