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Consider estimating the slope coefficients of a fixed-effect binary-choice model from two-period panel data. Two approaches to semiparametric estimation at the regular parametric rate have been proposed. One is based on a sufficient statistic, the other is based on a conditional-median restriction. We show that, under standard assumptions, both approaches are equivalent.

INTRODUCTION

A classic problem in panel data analysis is the estimation of the vector of slope coefficients, β, in fixed-effect linear models from binary response data on n observations. In seminal work, [START_REF] Rasch | Probabilistic models for some intelligence and attainment tests[END_REF] constructed a conditional maximum-likelihood estimator for the fixed-effect logit model by building on a sufficiency argument. [START_REF] Chamberlain | Binary Response Models for Panel Data: Identification and Information[END_REF] and [START_REF] Magnac | Panel Binary Variables and Sufficiency: Generalizing Conditional Logit[END_REF] have shown that sufficiency is necessary for estimation at the n -1/2 rate to be possible in general. [START_REF] Manski | Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data[END_REF] proposed a maximum-score estimator of β. His estimator relies on a conditional median restriction and does not require sufficiency. However, it converges at the slow rate n -1/3 . [START_REF] Horowitz | A Smoothed Maximum Score Estimator for the Binary Response Model[END_REF] suggested smoothing the maximum-score criterion function and showed that, by doing so, the convergence rate can be improved, although the n -1/2 -rate remains unattainable. [START_REF] Lee | A Root-N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data[END_REF] has given an alternative conditional-median restriction and derived a n -1/2 -consistent maximum rank-correlation estimator of β. He provided sufficient conditions for this condition to hold that restrict the distribution of the fixed effects and the covariates. It can be shown that these restrictions involve the unknown parameter β through index-sufficiency requirements on the distribution of the covariates, and that these can severely restrict the values that β is allowed to take.

In this note we reconsider the conditional-median restriction of [START_REF] Lee | A Root-N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data[END_REF] under standard assumptions and look for conditions that imply it to hold for any β. We find that imposing the conditional-median restriction is equivalent to requiring sufficiency.

MODEL AND ASSUMPTIONS

Suppose that binary outcomes y i = (y i1 , y i2 ) relate to a set of observable covariates x i = (x i1 , x i2 ) through the threshold-crossing model

y i1 = 1{x i1 β + α i ≥ u i1 }, y i2 = 1{x i2 β + α i ≥ u i2 },
where u i = (u i1 , u i2 ) are latent disturbances, α i is an unobserved effect, and β is a parameter vector of conformable dimension, say k. The challenge is to construct an estimator of β from a random sample {(y i , x i ), i = 1, . . . , n} that converges at the regular n -1/2 rate.

Let ∆y i = y i2 -y i1 and ∆x i ≡ x i2 -x i1 . The following assumption will be maintained throughout.

Assumption 1 (Identification and regularity)

(a) u i is independent of (x i , α i ). (b) ∆x i is not contained in a proper linear subspace of R k .
(c) The first component of ∆x i continuously varies over R (for almost all values of the other components) and the first component of β is not equal to zero.

(d) α i varies continuously over R (for almost all values of x i ).

(e) The distribution of u i admits a strictly positive, continuous, and bounded density function with respect to Lebesgue measure.

Parts (a)-(c) collect sufficient conditions that ensure that β is identified while Parts (d)-(e) are conventional regularity conditions (see [START_REF] Magnac | Panel Binary Variables and Sufficiency: Generalizing Conditional Logit[END_REF]. From here on out we omit the 'almost surely' qualifier from all conditional statements.

Assumption 1 does not parametrize the distribution of u i nor does it restrict the dependence between α i and x i beyond the complete-variation requirement of Assumption 1(d). As such, our approach is semiparametric and we treat the α i as fixed effects.

CONDITIONS FOR REGULAR ESTIMATION

Magnac (2004, Theorem 1) has shown that, under Assumption 1, the semiparametric efficiency bound for β is zero unless y i1 + y i2 is a sufficient statistic for α i . Sufficiency can be stated as follows.

Condition 1 (Sufficiency) There exists a real function G, independent of α i , such that

Pr(∆y i = 1|x i , ∆y i = 0, α i ) = Pr(∆y i = 1|x i , ∆y i = 0) = G(∆x i β)
for all α i ∈ R.

Condition 1 states that data in first-differences follow a single-indexed binary-choice model. This yields a variety of estimators of β, such as semiparametric maximum likelihood [START_REF] Klein | An Efficient Semiparametric Estimator for Binary Choice Models[END_REF], that are n -1/2 -consistent under standard assumptions.

Magnac (2004, Theorem 3) derived conditions on the distributions of u i and ∆u i that imply that Condition 1 holds.

On the other hand, [START_REF] Lee | A Root-N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data[END_REF] considered estimation of β based on a sign restriction. We write med(x) for the median of random variable x and let sgn(x) = 1{x > 0} -1{x < 0}.

Condition 2 (Median restriction) For any two observations i and j,

med ∆y i -∆y j 2 x i , x j , ∆y i = 0, ∆y j = 0, ∆y i = ∆y j = sgn(∆x i β -∆x j β) holds.
Condition 2 suggests a rank estimator for β. Conditions for this estimator to be n -1/2 -consistent are stated in [START_REF] Sherman | The Limiting Distribution of the Maximum Rank Correlation Estimator[END_REF].

Lee (1999, Assumption 1) restricted the joint distribution of α i , x i , and x i1 β, x i2 β to ensure that Condition 2 holds. Aside from these restrictions going against the fixed-effect approach, they do not hold uniformly in β, in general. The Appendix contains additional discussion and an example.

EQUIVALENCE

The main result of this paper is the equivalence of Conditions 1 and 2 as requirements for n -1/2consistent estimation of any β.

Theorem 1 (Equivalence) Under Assumption 1 Condition 2 holds for any β if and only if Condition 1 holds.

Proof: We start with two lemmas that are instrumental in showing Theorem 1.

Lemma 1 (Sufficiency) Condition 1 is equivalent to the existence of a continuously-differentiable, strictly-decreasing function c, independent of α i , such that

Pr(∆y i = -1|x i , α i ) Pr(∆y i = 1|x i , α i ) = c(∆x i β)
for all α i ∈ R.

Proof: Conditional on ∆y i = 0 and on α i , x i , the variable ∆y i is Bernoulli with success probability

Pr(∆y i = 1|x i , ∆y i = 0, α i ) = 1 1 + Pr(∆yi=-1|xi,αi)
Pr(∆yi= 1|xi,αi)

.

Re-arranging this expression and enforcing Condition 1 shows that

Pr(∆y i = -1|x i , α i ) Pr(∆y i = 1|x i , α i ) = 1 + G(∆x i β) G(∆x i β) ,
which is a function of ∆x i β only. Monotonicity of this function follows easily, as in [START_REF] Magnac | Panel Binary Variables and Sufficiency: Generalizing Conditional Logit[END_REF] Proof of Theorem 2). This completes the proof of Lemma 1.

Q.E.D. Lemma 2 (Median restriction) Let c(x i ) = Pr(∆y i = -1|x i ) Pr(∆y i = 1|x i ) .
Condition 2 is equivalent to the sign restriction

sgn(c(x j ) -c(x i )) = sgn(∆x i β -∆x j β)
holding for any two observations i and j.

Proof: Conditional on ∆y i = 0, ∆y j = 0, ∆y i = ∆y j (and the covariates), ∆y i -∆y j 2 = 1 if ∆y i = 1 and ∆y j = -1 -1 if ∆y j = 1 and ∆y i = -1 .

Therefore, it is Bernoulli with success probability Pr(∆y i = 1, ∆y j = -1|x i , x j , ∆y i = 0, ∆y j = 0, ∆y i = ∆y j ) = 1 1 + r(x i , x j ) , where r(x i , x j ) = Pr(∆y i = -1, ∆y j = 1|x i , x j , ∆y i = 0, ∆y j = 0, ∆y i = ∆y j ) Pr(∆y i = 1, ∆y j = -1|x i , x j , ∆y i = 0, ∆y j = 0, ∆y i = ∆y j ) .

med ∆y i -∆y j 2 x i , x j , ∆y i = 0, ∆y j = 0, ∆y i = ∆y j = sgn 1 1 + r(x i , x j ) -r(x i , x j ) 1 + r(x i , x j )

.

By the Bernoulli nature of the outcomes in the first step and random sampling of the observations in the second step, we have that

r(x i , x j ) = Pr(∆y i = -1, ∆y j = 1|x i , x j ) Pr(∆y i = 1, ∆y j = -1|x i , x j ) = Pr(∆y i = -1|x i ) Pr(∆y i = 1|x i ) Pr(∆y j = 1|x j ) Pr(∆y j = -1|x j ) = c(x i ) c(x j ) .
Therefore, Condition 2 can be written as

sgn(c(x j ) -c(x i )) = sgn(∆x i β -∆x j β).
This completes the proof of Lemma 2.

Q.E.D.

We first establish that Condition 1 implies Condition 2. Armed with Lemmas 1 and 2 this is a simple task. First note that, because the function c is strictly decreasing by Lemma 1, Condition

1 implies that sgn(c(∆x j β) -c(∆x i β)) = sgn(∆x i β -∆x j β).
Under Condition 1 we also have that

c(∆x i β) = Pr(∆y i = -1|x i , α i ) Pr(∆y i = 1|x i , α i ) = Pr(∆y i = -1|x i ) Pr(∆y i = 1|x i ) = c(x i ).
Therefore, sgn(c(x j ) -c(x i )) = sgn(∆x i β -∆x j β).

By Lemma 2, this is Condition 2.

To see that Condition 2 implies Condition 1, first note that

Pr(∆y i = -1|x i , α i ) Pr(∆y i = 1|x i , α i ) = Pr(u i1 ≤ αi -1 2 ∆x i β, u i2 > αi + 1 2 ∆x i β) Pr(u i1 > αi -1 2 ∆x i β, u i2 ≤ αi + 1 2 ∆x i β)
where we let αi = α i + 1 2 (x i1 + x i2 )β. Therefore,

Pr(∆y i = 1|x i , ∆y i = 0, α i ) = G(∆x i β, α)
for some function G, and Pr(∆y i = 1|x i , ∆y i = 0) = G(∆x i β, αi ) P (d α|x i , ∆y i = 0), where P ( αi |x i , ∆y i = 0) denotes the distribution of αi given x i and ∆y i = 0. Next, by Lemma 2, Condition 2 implies that

∆x i β = ∆x j β ⇐⇒ c(x i ) = c(x j ) ⇐⇒ E[ G(∆x i β, αi )|x i , ∆y i = 0] = E[ G(∆x j β, αj )|x j , ∆y j = 0]. Hence, it must hold that +∞ -∞ G(v, α) {P (dα|x i , ∆y i = 0) -P (dα|x j , ∆y i = 0)} = 0
for all values v ∈ R and all (x i , x j ). Because the distribution of α i given x i and ∆y i = 0 is unrestricted, this condition holds if and only if the function G does not depend on αi , and so not on α i . Moreover, we must have that

G(∆x i β, αi ) = Pr(∆y i = 1|x i , ∆y i = 0, α i ) = Pr(∆y i = 1|x i , ∆y i = 0) = G(∆x i β)
for some function G. This is Condition 1. This completes the proof of Theorem 1.

Q.E.D.

APPENDIX (NOT FOR PUBLICATION)

The notation in [START_REF] Lee | A Root-N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data[END_REF] decomposes x into its continuously varying single component whose coefficient is equal to 1 and the remaining variables. We shall denote a the first component and z the remaining variables so that x = (a, z). We denote by θ the coefficient of z in xβ so that β = (1, θ), and omit the subscript i throughout.

Assumptions (g) and (h) of [START_REF] Lee | A Root-N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data[END_REF] can be written as

(g) α ⊥ ∆z | ∆a + θ∆z, (h) a 1 + θz 1 ⊥ ∆z | ∆a + θ∆z, α
in which, e.g., ∆z = z 2z 1 .

We first prove that these conditions imply an index sufficiency requirement on the distribution function of regressors. Second, we provide an example in which these conditions restrict the parameter of interest to only two possible values, except in non-generic cases.

Index sufficiency

Denote by f the density with respect to some dominating measure and rewrite (h) as

f (a 1 + θz 1 , ∆z | ∆a + θ∆z, α) = f (a 1 + θz 1 | ∆a + θ∆z, α)f (∆z | ∆a + θ∆z, α).
As Condition (g) can be written as

f (∆z | ∆a + θ∆z, α) = f (∆z | ∆a + θ∆z),
we therefore have that

f (a 1 + θz 1 , ∆z | ∆a + θ∆z, α) = f (a 1 + θz 1 | ∆a + θ∆z, α)f (∆z | ∆a + θ∆z),
which we can multiply by f (α | ∆a + θ∆z) and integrate with respect to α to get

f (a 1 + θz 1 , ∆z | ∆a + θ∆z) = f (a 1 + θz 1 | ∆a + θ∆z)f (∆z | ∆a + θ∆z).
As this expression can be rewritten as

f (∆z | ∆a + θ∆z, a 1 + z 1 θ) = f (∆z | ∆a + θ∆z),
Conditions (g) and (h) of [START_REF] Lee | A Root-N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data[END_REF] demand that

f (∆z | a 1 + z 1 θ, a 2 + z 2 θ) = f (∆z | ∆a + θ∆z, a 1 + z 1 θ) = f (∆z | ∆a + θ∆z),
or in terms of the original variables, that

f (∆z | x 1 β, x 2 β) = f (∆z | ∆xβ),
This is an index sufficiency requirement on the data generating process of the regressors x that is driven by the parameter of interest, β.

Example

To illustrate, suppose that z is a single dimensional regressor and that regressors are jointly normal with a restricted covariance matrix allowing for contemporaneous correlation only. Moreover,

      a 1 a 2 z 1 z 2       ∼ N             µ a1 µ a2 µ z1 µ z2       ,       σ 2 a1 0 σ a1z1 0 0 σ 2 a2 0 σ a2z2 σ a1z1 0 σ 2 z1 0 0 σ a2z2 0 σ 2 z2             . Then     ∆z x 1 β x 2 β     ∼ N         µ 1 µ 2 µ 3     ,     Σ 11 Σ 12 Σ 13 Σ 12 Σ 22 Σ 23 Σ 13 Σ 23 Σ 33         for µ 1 = µ z2 -µ z1 µ 2 = µ a1 + µ z1 θ µ 3 = µ a2 + µ z2 θ and Σ 11 = var(∆z) = var(z 1 ) + var(z 2 ) Σ 12 = cov(∆z, x 1 β) = -cov(z 1 , a 1 + z 1 θ) = -cov(a 1 , z 1 ) -θ var(z 1 ) = -σ a1z1 -θσ 2 z1 Σ 13 = cov(∆z, x 2 β) = cov(z 2 , a 2 + z 2 θ) = cov(a 2 , z 2 ) + θ var(z 2 ) = σ a2z2 + θσ 2 z2 Σ 22 = var(x 1 β) = var(a 1 + z 1 θ) = var(a 1 ) + θ 2 var(z 1 ) + θ 2cov(a 1 , z 1 ) = σ 2 a1 + 2θσ a1z1 + θ 2 σ 2 z1 Σ 33 = var(x 2 β) = var(a 2 + z 2 θ) = var(a 2 ) + θ 2 var(z 2 ) + θ 2cov(a 2 , z 2 ) = σ 2 a2 + 2θσ a2z2 + θ 2 σ 2 z2 Σ 23 = cov(x 1 β, x 2 β) = 0.
From standard results on the multivariate normal distribution we have that ∆z|x 1 β, x 2 β is normal with constant variance and conditional mean function

m(x 1 β, x 2 β) = µ 1 + (Σ 13 Σ 22 -Σ 12 Σ 23 )(x 2 β -µ 3 ) -(Σ 13 Σ 23 -Σ 12 Σ 33 )(x 1 β -µ 2 ) Σ 22 Σ 33 -Σ 2 23 .
To satisfy the condition of index sufficiency we need that

(Σ 13 Σ 22 -Σ 12 Σ 23 ) = (Σ 13 Σ 23 -Σ 12 Σ 33 ).
Plugging-in the expressions from above, this becomes

(σ a2z2 + θσ 2 z2 )(σ 2 a1 + 2θσ a1z1 + θ 2 σ 2 z1 ) = (σ a1z1 + θσ 2 z1 )(σ 2 a2 + 2θσ a2z2 + θ 2 σ 2 z2 ).
We can write this condition as the third-order polynomial equation (in θ)

C + Bθ + Aθ 2 + Dθ 3 = 0 with coefficients C = σ 2 a1 σ a2z2 -σ 2 a2 σ a1z1 B = σ 2 a1 σ 2 z2 + 2σ a2z2 σ a1z1 -σ 2 a2 σ 2 z1 -2σ a2z2 σ a1z1 = σ 2 a1 σ 2 z2 -σ 2 a2 σ 2 z1 A = σ a1z1 σ 2 z2 -σ a2z2 σ 2 z1 D = 0. For t = 1, 2, let ρ t = σ atzt σ at σ zt , r t = σ at σ zt . Then C σ a1 σ a2 σ z1 σ z2 = ρ 2 r 1 -ρ 1 r 2 B σ a1 σ a2 σ z1 σ z2 = r 1 r 2 - r 2 r 1 A σ a1 σ a2 σ z1 σ z2 = ρ 1 r 2 - ρ 2 r 1 .
The polynomial condition therefore is

(ρ 2 r 1 -ρ 1 r 2 ) + r 1 r 2 - r 2 r 1 θ + ρ 1 r 2 - ρ 2 r 1 θ 2 = 0.
Note that the leading polynomial coefficient is equal to zero if and only if ρ 1 r 1 = ρ 2 r 2 . This leads to three mutually-exclusive cases:

(i) The data are stationary, that is, ρ 1 = ρ 2 and r 1 = r 2 . Then all polynomial coefficients are zero so that all values of θ satisfy Lee's restriction.

(ii) We have ρ 1 r 1 = ρ 2 r 2 but r 1 = r 2 . Then the resulting linear equation admits one and only one solution in θ.

(iii) The leading polynomial coefficient is non-zero, so, ρ 1 r 1 = ρ 2 r 2 . In this case the discriminant of the second-order polynomial equals

∆ = r 1 r 2 - r 2 r 1 2 -4 ρ 1 r 2 - ρ 2 r 1 (ρ 2 r 1 -ρ 1 r 2 ) = r 1 r 2 2 + r 2 r 1 2 -2 -4 ρ 1 ρ 2 r 1 r 2 + r 2 r 1 -(ρ 2 1 + ρ 2 2 ) .
Set x = r1 r2 ≥ 0 and write

∆(x) = x 2 + 1 x 2 -2 -4(ρ 1 ρ 2 (x + 1 x ) -(ρ 2 1 + ρ 2 2 )),
which is smooth for x > 0. The derivative of ∆ with respect to x equals ∆ ′ (x) = 2x -2 x 3 -4(ρ 1 ρ 2 (1 -

1 x 2 )) = 2 x 3 (x 4 -1) -4ρ 1 ρ 2 1 x 2 (x 2 -1) = 2
x 3 (x 2 -1)(x 2 + 1 -2ρ 1 ρ 2 x). Note that the Cauchy-Schwarz inequality implies that x 2 + 1 -2ρ 1 ρ 2 x ≥ 0 so that, for x ≥ 0, sgn(∆ ′ (x)) = sgn(x -1).

Further, ∆(1) = 4(ρ 1ρ 2 ) 2 . Therefore, ∆(x) is always non-negative. Hence, in this case, the polynomial condition generically has two solutions in θ.

Conclusion

Conditions (g) and (h) of [START_REF] Lee | A Root-N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data[END_REF] imply an index-sufficiency condition for the distribution function of regressors. In generic cases in a standard example, this condition is restrictive and is not verified by every possible value of the parameter of interest, θ, but only two.