A note on sufficiency in binary panel models

Koen Jochmans, Thierry Magnac

To cite this version:

Koen Jochmans, Thierry Magnac. A note on sufficiency in binary panel models. 2015. hal-01248065

HAL Id: hal-01248065 https://sciencespo.hal.science/hal-01248065

Preprint submitted on 23 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

SciencesPo
 DEPARTMENT OF ECONOMICS

Discussion paper 2015-10

A NOTE ON SUFFICIENCY IN BINARY PANEL MODELS

Koen Jochmans
Thierry Magnac

Sciences Po Economics Discussion Papers

A NOTE ON SUFFICIENCY IN BINARY PANEL MODELS

Koen Jochmans and Thierry Magnac

December 4, 2015

Abstract

Consider estimating the slope coefficients of a fixed-effect binary-choice model from two-period panel data. Two approaches to semiparametric estimation at the regular parametric rate have been proposed. One is based on a sufficient statistic, the other is based on a conditional-median restriction. We show that, under standard assumptions, both approaches are equivalent.

KEYWORDS: binary choice, fixed effects, panel data, regular estimation, sufficiency.

INTRODUCTION

A classic problem in panel data analysis is the estimation of the vector of slope coefficients, β, in fixed-effect linear models from binary response data on n observations.
In seminal work, Rasch (1960) constructed a conditional maximum-likelihood estimator for the fixed-effect logit model by building on a sufficiency argument. Chamberlain (2010) and Magnac (2004) have shown that sufficiency is necessary for estimation at the $n^{-1 / 2}$ rate to be possible in general.

Manski (1987) proposed a maximum-score estimator of β. His estimator relies on a conditional median restriction and does not require sufficiency. However, it converges at the slow rate $n^{-1 / 3}$. Horowitz (1992) suggested smoothing the maximum-score criterion function and showed that, by doing so, the convergence rate can be improved, although the $n^{-1 / 2}$-rate remains unattainable.

Lee (1999) has given an alternative conditional-median restriction and derived a $n^{-1 / 2}$-consistent maximum rank-correlation estimator of β. He provided sufficient conditions for this condition to hold that restrict the distribution of the fixed effects and the covariates. It can be shown that these restrictions involve the unknown parameter β through index-sufficiency requirements on the distribution of the covariates, and that these can severely restrict the values that β is allowed to take.

In this note we reconsider the conditional-median restriction of Lee (1999) under standard assumptions and look for conditions that imply it to hold for any β. We find that imposing the

[^0]conditional-median restriction is equivalent to requiring sufficiency.

1. MODEL AND ASSUMPTIONS

Suppose that binary outcomes $y_{i}=\left(y_{i 1}, y_{i 2}\right)$ relate to a set of observable covariates $x_{i}=\left(x_{i 1}, x_{i 2}\right)$ through the threshold-crossing model

$$
y_{i 1}=1\left\{x_{i 1} \beta+\alpha_{i} \geq u_{i 1}\right\}, \quad y_{i 2}=1\left\{x_{i 2} \beta+\alpha_{i} \geq u_{i 2}\right\}
$$

where $u_{i}=\left(u_{i 1}, u_{i 2}\right)$ are latent disturbances, α_{i} is an unobserved effect, and β is a parameter vector of conformable dimension, say k. The challenge is to construct an estimator of β from a random sample $\left\{\left(y_{i}, x_{i}\right), i=1, \ldots, n\right\}$ that converges at the regular $n^{-1 / 2}$ rate.

Let $\Delta y_{i}=y_{i 2}-y_{i 1}$ and $\Delta x_{i} \equiv x_{i 2}-x_{i 1}$. The following assumption will be maintained throughout.

Assumption 1 (Identification and regularity)

(a) u_{i} is independent of $\left(x_{i}, \alpha_{i}\right)$.
(b) Δx_{i} is not contained in a proper linear subspace of \mathcal{R}^{k}.
(c) The first component of Δx_{i} continuously varies over \mathcal{R} (for almost all values of the other components) and the first component of β is not equal to zero.
(d) α_{i} varies continuously over \mathcal{R} (for almost all values of x_{i}).
(e) The distribution of u_{i} admits a strictly positive, continuous, and bounded density function with respect to Lebesgue measure.

Parts (a)-(c) collect sufficient conditions that ensure that β is identified while Parts (d)-(e) are conventional regularity conditions (see Magnac 2004). From here on out we omit the 'almost surely' qualifier from all conditional statements.

Assumption 1 does not parametrize the distribution of u_{i} nor does it restrict the dependence between α_{i} and x_{i} beyond the complete-variation requirement of Assumption 1(d). As such, our approach is semiparametric and we treat the α_{i} as fixed effects.

2. CONDITIONS FOR REGULAR ESTIMATION

Magnac (2004, Theorem 1) has shown that, under Assumption 1, the semiparametric efficiency bound for β is zero unless $y_{i 1}+y_{i 2}$ is a sufficient statistic for α_{i}. Sufficiency can be stated as follows.

Condition 1 (Sufficiency) There exists a real function G, independent of α_{i}, such that

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=G\left(\Delta x_{i} \beta\right)
$$

for all $\alpha_{i} \in \mathcal{R}$.

Condition 1 states that data in first-differences follow a single-indexed binary-choice model. This yields a variety of estimators of β, such as semiparametric maximum likelihood (Klein and Spady 1993), that are $n^{-1 / 2}$-consistent under standard assumptions.

Magnac (2004, Theorem 3) derived conditions on the distributions of u_{i} and Δu_{i} that imply that Condition 1 holds.
On the other hand, Lee (1999) considered estimation of β based on a sign restriction. We write $\operatorname{med}(x)$ for the median of random variable x and let $\operatorname{sgn}(x)=1\{x>0\}-1\{x<0\}$.

Condition 2 (Median restriction) For any two observations i and j,

$$
\operatorname{med}\left(\left.\frac{\Delta y_{i}-\Delta y_{j}}{2} \right\rvert\, x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right)
$$

holds.

Condition 2 suggests a rank estimator for β. Conditions for this estimator to be $n^{-1 / 2}$-consistent are stated in Sherman (1993).

Lee (1999, Assumption 1) restricted the joint distribution of α_{i}, x_{i}, and $x_{i 1} \beta, x_{i 2} \beta$ to ensure that Condition 2 holds. Aside from these restrictions going against the fixed-effect approach, they do not hold uniformly in β, in general. The Appendix contains additional discussion and an example.

3. EQUIVALENCE

The main result of this paper is the equivalence of Conditions 1 and 2 as requirements for $n^{-1 / 2}$ consistent estimation of any β.

Theorem 1 (Equivalence) Under Assumption 1 Condition 2 holds for any β if and only if Condition 1 holds.

Proof: We start with two lemmas that are instrumental in showing Theorem 1.

Lemma 1 (Sufficiency) Condition 1 is equivalent to the existence of a continuously-differentiable, strictly-decreasing function c, independent of α_{i}, such that

$$
\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=c\left(\Delta x_{i} \beta\right)
$$

for all $\alpha_{i} \in \mathcal{R}$.

Proof: Conditional on $\Delta y_{i} \neq 0$ and on α_{i}, x_{i}, the variable Δy_{i} is Bernoulli with success probability

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\frac{1}{1+\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}} .
$$

Re-arranging this expression and enforcing Condition 1 shows that

$$
\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=\frac{1+G\left(\Delta x_{i} \beta\right)}{G\left(\Delta x_{i} \beta\right)},
$$

which is a function of $\Delta x_{i} \beta$ only. Monotonicity of this function follows easily, as in Magnac (2004, Proof of Theorem 2). This completes the proof of Lemma 1.
Q.E.D.

Lemma 2 (Median restriction) Let

$$
\tilde{c}\left(x_{i}\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}\right)} .
$$

Condition 2 is equivalent to the sign restriction

$$
\operatorname{sgn}\left(\tilde{c}\left(x_{j}\right)-\tilde{c}\left(x_{i}\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right)
$$

holding for any two observations i and j.
Proof: Conditional on $\Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}$ (and the covariates),

$$
\frac{\Delta y_{i}-\Delta y_{j}}{2}=\left\{\begin{array}{rl}
1 & \text { if } \Delta y_{i}=1 \text { and } \Delta y_{j}=-1 \\
-1 & \text { if } \Delta y_{j}=1 \text { and } \Delta y_{i}=-1
\end{array} .\right.
$$

Therefore, it is Bernoulli with success probability

$$
\operatorname{Pr}\left(\Delta y_{i}=1, \Delta y_{j}=-1 \mid x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)=\frac{1}{1+r\left(x_{i}, x_{j}\right)},
$$

where

$$
r\left(x_{i}, x_{j}\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1, \Delta y_{j}=1 \mid x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1, \Delta y_{j}=-1 \mid x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)} .
$$

Note that

$$
\operatorname{med}\left(\left.\frac{\Delta y_{i}-\Delta y_{j}}{2} \right\rvert\, x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)=\operatorname{sgn}\left(\frac{1}{1+r\left(x_{i}, x_{j}\right)}-\frac{r\left(x_{i}, x_{j}\right)}{1+r\left(x_{i}, x_{j}\right)}\right) .
$$

By the Bernoulli nature of the outcomes in the first step and random sampling of the observations in the second step, we have that

$$
r\left(x_{i}, x_{j}\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1, \Delta y_{j}=1 \mid x_{i}, x_{j}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1, \Delta y_{j}=-1 \mid x_{i}, x_{j}\right)}=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}\right)} \frac{\operatorname{Pr}\left(\Delta y_{j}=1 \mid x_{j}\right)}{\operatorname{Pr}\left(\Delta y_{j}=-1 \mid x_{j}\right)}=\frac{\tilde{c}\left(x_{i}\right)}{\tilde{c}\left(x_{j}\right)} .
$$

Therefore, Condition 2 can be written as

$$
\operatorname{sgn}\left(\tilde{c}\left(x_{j}\right)-\tilde{c}\left(x_{i}\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right) .
$$

This completes the proof of Lemma 2.
Q.E.D.

We first establish that Condition 1 implies Condition 2. Armed with Lemmas 1 and 2 this is a simple task. First note that, because the function c is strictly decreasing by Lemma 1, Condition 1 implies that

$$
\operatorname{sgn}\left(c\left(\Delta x_{j} \beta\right)-c\left(\Delta x_{i} \beta\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right)
$$

Under Condition 1 we also have that

$$
c\left(\Delta x_{i} \beta\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}\right)}=\tilde{c}\left(x_{i}\right) .
$$

Therefore,

$$
\operatorname{sgn}\left(\tilde{c}\left(x_{j}\right)-\tilde{c}\left(x_{i}\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right) .
$$

By Lemma 2, this is Condition 2.
To see that Condition 2 implies Condition 1, first note that

$$
\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=\frac{\operatorname{Pr}\left(u_{i 1} \leq \tilde{\alpha_{i}}-\frac{1}{2} \Delta x_{i} \beta, u_{i 2}>\tilde{\alpha}_{i}+\frac{1}{2} \Delta x_{i} \beta\right)}{\operatorname{Pr}\left(u_{i 1}>\tilde{\alpha_{i}}-\frac{1}{2} \Delta x_{i} \beta, u_{i 2} \leq \tilde{\alpha_{i}}+\frac{1}{2} \Delta x_{i} \beta\right)}
$$

where we let $\tilde{\alpha}_{i}=\alpha_{i}+\frac{1}{2}\left(x_{i 1}+x_{i 2}\right) \beta$. Therefore,

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\tilde{G}\left(\Delta x_{i} \beta, \tilde{\alpha}\right)
$$

for some function \tilde{G}, and

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=\int \tilde{G}\left(\Delta x_{i} \beta, \tilde{\alpha}_{i}\right) P\left(d \tilde{\alpha} \mid x_{i}, \Delta y_{i} \neq 0\right)
$$

where $P\left(\tilde{\alpha}_{i} \mid x_{i}, \Delta y_{i} \neq 0\right)$ denotes the distribution of $\tilde{\alpha}_{i}$ given x_{i} and $\Delta y_{i} \neq 0$. Next, by Lemma 2 , Condition 2 implies that

$$
\Delta x_{i} \beta=\Delta x_{j} \beta \Longleftrightarrow \tilde{c}\left(x_{i}\right)=\tilde{c}\left(x_{j}\right) \Longleftrightarrow E\left[\tilde{G}\left(\Delta x_{i} \beta, \tilde{\alpha}_{i}\right) \mid x_{i}, \Delta y_{i} \neq 0\right]=E\left[\tilde{G}\left(\Delta x_{j} \beta, \tilde{\alpha}_{j}\right) \mid x_{j}, \Delta y_{j} \neq 0\right]
$$

Hence, it must hold that

$$
\int_{-\infty}^{+\infty} \tilde{G}(v, \tilde{\alpha})\left\{P\left(d \tilde{\alpha} \mid x_{i}, \Delta y_{i} \neq 0\right)-P\left(d \tilde{\alpha} \mid x_{j}, \Delta y_{i} \neq 0\right)\right\}=0
$$

for all values $v \in \mathcal{R}$ and all $\left(x_{i}, x_{j}\right)$. Because the distribution of α_{i} given x_{i} and $\Delta y_{i} \neq 0$ is unrestricted, this condition holds if and only if the function \tilde{G} does not depend on $\tilde{\alpha}_{i}$, and so not on α_{i}. Moreover, we must have that

$$
\tilde{G}\left(\Delta x_{i} \beta, \tilde{\alpha}_{i}\right)=\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=G\left(\Delta x_{i} \beta\right)
$$

for some function G. This is Condition 1. This completes the proof of Theorem 1.

APPENDIX (NOT FOR PUBLICATION)

The notation in Lee (1999) decomposes x into its continuously varying single component whose coefficient is equal to 1 and the remaining variables. We shall denote a the first component and z the remaining variables so that $x=(a, z)$. We denote by θ the coefficient of z in $x \beta$ so that $\beta=(1, \theta)$, and omit the subscript i throughout.
Assumptions (g) and (h) of Lee (1999) can be written as
(g) $\quad \alpha \quad \perp \Delta z \mid \Delta a+\theta \Delta z$,
(h) $\quad a_{1}+\theta z_{1} \quad \perp \Delta z \mid \Delta a+\theta \Delta z, \alpha$
in which, e.g., $\Delta z=z_{2}-z_{1}$.
We first prove that these conditions imply an index sufficiency requirement on the distribution function of regressors. Second, we provide an example in which these conditions restrict the parameter of interest to only two possible values, except in non-generic cases.

Index sufficiency

Denote by f the density with respect to some dominating measure and rewrite (h) as

$$
f\left(a_{1}+\theta z_{1}, \Delta z \mid \Delta a+\theta \Delta z, \alpha\right)=f\left(a_{1}+\theta z_{1} \mid \Delta a+\theta \Delta z, \alpha\right) f(\Delta z \mid \Delta a+\theta \Delta z, \alpha)
$$

As Condition (g) can be written as

$$
f(\Delta z \mid \Delta a+\theta \Delta z, \alpha)=f(\Delta z \mid \Delta a+\theta \Delta z)
$$

we therefore have that

$$
f\left(a_{1}+\theta z_{1}, \Delta z \mid \Delta a+\theta \Delta z, \alpha\right)=f\left(a_{1}+\theta z_{1} \mid \Delta a+\theta \Delta z, \alpha\right) f(\Delta z \mid \Delta a+\theta \Delta z)
$$

which we can multiply by $f(\alpha \mid \Delta a+\theta \Delta z)$ and integrate with respect to α to get

$$
f\left(a_{1}+\theta z_{1}, \Delta z \mid \Delta a+\theta \Delta z\right)=f\left(a_{1}+\theta z_{1} \mid \Delta a+\theta \Delta z\right) f(\Delta z \mid \Delta a+\theta \Delta z)
$$

As this expression can be rewritten as

$$
f\left(\Delta z \mid \Delta a+\theta \Delta z, a_{1}+z_{1} \theta\right)=f(\Delta z \mid \Delta a+\theta \Delta z)
$$

Conditions (g) and (h) of Lee (1999) demand that

$$
f\left(\Delta z \mid a_{1}+z_{1} \theta, a_{2}+z_{2} \theta\right)=f\left(\Delta z \mid \Delta a+\theta \Delta z, a_{1}+z_{1} \theta\right)=f(\Delta z \mid \Delta a+\theta \Delta z)
$$

or in terms of the original variables, that

$$
f\left(\Delta z \mid x_{1} \beta, x_{2} \beta\right)=f(\Delta z \mid \Delta x \beta)
$$

This is an index sufficiency requirement on the data generating process of the regressors x that is driven by the parameter of interest, β.

Example

To illustrate, suppose that z is a single dimensional regressor and that regressors are jointly normal with a restricted covariance matrix allowing for contemporaneous correlation only. Moreover,

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
z_{1} \\
z_{2}
\end{array}\right) \sim N\left(\left(\begin{array}{l}
\mu_{a_{1}} \\
\mu_{a_{2}} \\
\mu_{z_{1}} \\
\mu_{z_{2}}
\end{array}\right), \quad\left(\begin{array}{cccc}
\sigma_{a_{1}}^{2} & 0 & \sigma_{a_{1} z_{1}} & 0 \\
0 & \sigma_{a_{2}}^{2} & 0 & \sigma_{a_{2} z_{2}} \\
\sigma_{a_{1} z_{1}} & 0 & \sigma_{z_{1}}^{2} & 0 \\
0 & \sigma_{a_{2} z_{2}} & 0 & \sigma_{z_{2}}^{2}
\end{array}\right)\right)
$$

Then

$$
\left(\begin{array}{c}
\Delta z \\
x_{1} \beta \\
x_{2} \beta
\end{array}\right) \sim N\left(\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right),\left(\begin{array}{lll}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\
\Sigma_{12} & \Sigma_{22} & \Sigma_{23} \\
\Sigma_{13} & \Sigma_{23} & \Sigma_{33}
\end{array}\right)\right)
$$

for

$$
\begin{aligned}
& \mu_{1}=\mu_{z_{2}}-\mu_{z_{1}} \\
& \mu_{2}=\mu_{a_{1}}+\mu_{z_{1}} \theta \\
& \mu_{3}=\mu_{a_{2}}+\mu_{z_{2}} \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\Sigma_{11} & =\operatorname{var}(\Delta z)=\operatorname{var}\left(z_{1}\right)+\operatorname{var}\left(z_{2}\right) \\
\Sigma_{12} & =\operatorname{cov}\left(\Delta z, x_{1} \beta\right)=-\operatorname{cov}\left(z_{1}, a_{1}+z_{1} \theta\right) \\
& =-\operatorname{cov}\left(a_{1}, z_{1}\right)-\theta \operatorname{var}\left(z_{1}\right) \\
& =-\sigma_{a_{1} z_{1}}-\theta \sigma_{z_{1}}^{2} \\
\Sigma_{13} & =\operatorname{cov}\left(\Delta z, x_{2} \beta\right)=\operatorname{cov}\left(z_{2}, a_{2}+z_{2} \theta\right) \\
& =\operatorname{cov}\left(a_{2}, z_{2}\right)+\theta \operatorname{var}\left(z_{2}\right) \\
& =\sigma_{a_{2} z_{2}}+\theta \sigma_{z_{2}}^{2} \\
\Sigma_{22} & =\operatorname{var}\left(x_{1} \beta\right)=\operatorname{var}\left(a_{1}+z_{1} \theta\right) \\
& =\operatorname{var}\left(a_{1}\right)+\theta^{2} \operatorname{var}\left(z_{1}\right)+\theta 2 \operatorname{cov}\left(a_{1}, z_{1}\right) \\
& =\sigma_{a_{1}}^{2}+2 \theta \sigma_{a_{1} z_{1}}+\theta^{2} \sigma_{z_{1}}^{2} \\
\Sigma_{33} & =\operatorname{var}\left(x_{2} \beta\right)=\operatorname{var}\left(a_{2}+z_{2} \theta\right) \\
& =\operatorname{var}\left(a_{2}\right)+\theta^{2} \operatorname{var}\left(z_{2}\right)+\theta 2 \operatorname{cov}\left(a_{2}, z_{2}\right) \\
& =\sigma_{a_{2}}^{2}+2 \theta \sigma_{a_{2} z_{2}}+\theta^{2} \sigma_{z_{2}}^{2} \\
\Sigma_{23} & =\operatorname{cov}\left(x_{1} \beta, x_{2} \beta\right)=0 .
\end{aligned}
$$

From standard results on the multivariate normal distribution we have that

$$
\Delta z \mid x_{1} \beta, x_{2} \beta
$$

is normal with constant variance and conditional mean function

$$
m\left(x_{1} \beta, x_{2} \beta\right)=\mu_{1}+\frac{\left(\Sigma_{13} \Sigma_{22}-\Sigma_{12} \Sigma_{23}\right)\left(x_{2} \beta-\mu_{3}\right)-\left(\Sigma_{13} \Sigma_{23}-\Sigma_{12} \Sigma_{33}\right)\left(x_{1} \beta-\mu_{2}\right)}{\Sigma_{22} \Sigma_{33}-\Sigma_{23}^{2}}
$$

To satisfy the condition of index sufficiency we need that

$$
\left(\Sigma_{13} \Sigma_{22}-\Sigma_{12} \Sigma_{23}\right)=\left(\Sigma_{13} \Sigma_{23}-\Sigma_{12} \Sigma_{33}\right)
$$

Plugging-in the expressions from above, this becomes

$$
\left(\sigma_{a_{2} z_{2}}+\theta \sigma_{z_{2}}^{2}\right)\left(\sigma_{a_{1}}^{2}+2 \theta \sigma_{a_{1} z_{1}}+\theta^{2} \sigma_{z_{1}}^{2}\right)=\left(\sigma_{a_{1} z_{1}}+\theta \sigma_{z_{1}}^{2}\right)\left(\sigma_{a_{2}}^{2}+2 \theta \sigma_{a_{2} z_{2}}+\theta^{2} \sigma_{z_{2}}^{2}\right)
$$

We can write this condition as the third-order polynomial equation (in θ)

$$
C+B \theta+A \theta^{2}+D \theta^{3}=0
$$

with coefficients

$$
\begin{aligned}
C & =\sigma_{a_{1}}^{2} \sigma_{a_{2} z_{2}}-\sigma_{a_{2}}^{2} \sigma_{a_{1} z_{1}} \\
B & =\sigma_{a_{1}}^{2} \sigma_{z_{2}}^{2}+2 \sigma_{a_{2} z_{2}} \sigma_{a_{1} z_{1}}-\sigma_{a_{2}}^{2} \sigma_{z_{1}}^{2}-2 \sigma_{a_{2} z_{2}} \sigma_{a_{1} z_{1}} \\
& =\sigma_{a_{1}}^{2} \sigma_{z_{2}}^{2}-\sigma_{a_{2}}^{2} \sigma_{z_{1}}^{2} \\
A & =\sigma_{a_{1} z_{1}} \sigma_{z_{2}}^{2}-\sigma_{a_{2} z_{2}} \sigma_{z_{1}}^{2} \\
D & =0 .
\end{aligned}
$$

For $t=1,2$, let

$$
\rho_{t}=\frac{\sigma_{a_{t} z_{t}}}{\sigma_{a_{t}} \sigma_{z_{t}}}, r_{t}=\frac{\sigma_{a_{t}}}{\sigma_{z_{t}}} .
$$

Then

$$
\begin{aligned}
& \frac{C}{\sigma_{a_{1}} \sigma_{a_{2}} \sigma_{z_{1}} \sigma_{z_{2}}}=\rho_{2} r_{1}-\rho_{1} r_{2} \\
& \frac{B}{\sigma_{a_{1}} \sigma_{a_{2}} \sigma_{z_{1}} \sigma_{z_{2}}}=\frac{r_{1}}{r_{2}}-\frac{r_{2}}{r_{1}} \\
& \frac{A}{\sigma_{a_{1}} \sigma_{a_{2}} \sigma_{z_{1}} \sigma_{z_{2}}}=\frac{\rho_{1}}{r_{2}}-\frac{\rho_{2}}{r_{1}} .
\end{aligned}
$$

The polynomial condition therefore is

$$
\left(\rho_{2} r_{1}-\rho_{1} r_{2}\right)+\left(\frac{r_{1}}{r_{2}}-\frac{r_{2}}{r_{1}}\right) \theta+\left(\frac{\rho_{1}}{r_{2}}-\frac{\rho_{2}}{r_{1}}\right) \theta^{2}=0 .
$$

Note that the leading polynomial coefficient is equal to zero if and only if $\rho_{1} r_{1}=\rho_{2} r_{2}$. This leads to three mutually-exclusive cases:
(i) The data are stationary, that is, $\rho_{1}=\rho_{2}$ and $r_{1}=r_{2}$. Then all polynomial coefficients are zero so that all values of θ satisfy Lee's restriction.
(ii) We have $\rho_{1} r_{1}=\rho_{2} r_{2}$ but $r_{1} \neq r_{2}$. Then the resulting linear equation admits one and only one solution in θ.
(iii) The leading polynomial coefficient is non-zero, so, $\rho_{1} r_{1} \neq \rho_{2} r_{2}$. In this case the discriminant
of the second-order polynomial equals

$$
\begin{aligned}
\Delta & =\left(\frac{r_{1}}{r_{2}}-\frac{r_{2}}{r_{1}}\right)^{2}-4\left(\frac{\rho_{1}}{r_{2}}-\frac{\rho_{2}}{r_{1}}\right)\left(\rho_{2} r_{1}-\rho_{1} r_{2}\right) \\
& =\left(\frac{r_{1}}{r_{2}}\right)^{2}+\left(\frac{r_{2}}{r_{1}}\right)^{2}-2-4\left(\rho_{1} \rho_{2}\left\{\frac{r_{1}}{r_{2}}+\frac{r_{2}}{r_{1}}\right\}-\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right)
\end{aligned}
$$

Set $x=\frac{r_{1}}{r_{2}} \geq 0$ and write

$$
\Delta(x)=x^{2}+\frac{1}{x^{2}}-2-4\left(\rho_{1} \rho_{2}\left(x+\frac{1}{x}\right)-\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right)
$$

which is smooth for $x>0$. The derivative of Δ with respect to x equals

$$
\begin{aligned}
\Delta^{\prime}(x) & =2 x-\frac{2}{x^{3}}-4\left(\rho_{1} \rho_{2}\left(1-\frac{1}{x^{2}}\right)\right) \\
& =\frac{2}{x^{3}}\left(x^{4}-1\right)-4 \rho_{1} \rho_{2} \frac{1}{x^{2}}\left(x^{2}-1\right) \\
& =\frac{2}{x^{3}}\left(x^{2}-1\right)\left(x^{2}+1-2 \rho_{1} \rho_{2} x\right)
\end{aligned}
$$

Note that the Cauchy-Schwarz inequality implies that $x^{2}+1-2 \rho_{1} \rho_{2} x \geq 0$ so that, for $x \geq 0$,

$$
\operatorname{sgn}\left(\Delta^{\prime}(x)\right)=\operatorname{sgn}(x-1)
$$

Further, $\Delta(1)=4\left(\rho_{1}-\rho_{2}\right)^{2}$. Therefore, $\Delta(x)$ is always non-negative. Hence, in this case, the polynomial condition generically has two solutions in θ.

Conclusion

Conditions (g) and (h) of Lee (1999) imply an index-sufficiency condition for the distribution function of regressors. In generic cases in a standard example, this condition is restrictive and is not verified by every possible value of the parameter of interest, θ, but only two.

REFERENCES

Chamberlain, G. (2010), "Binary Response Models for Panel Data: Identification and Information," Econometrica, 78, 159-168.
Horowitz, J. L. (1992), "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, 60, 505-531.
Klein, R. W., and Spady, R. H. (1993), "An Efficient Semiparametric Estimator for Binary Choice Models," Econometrica, 61, 387-421.
Lee, M.-J. (1999), "A Root- N Consistent Semiparametric Estimator for Related-Effects Binary Response Panel Data," Econometrica, 67, 427-433.

Magnac, T. (2004), "Panel Binary Variables and Sufficiency: Generalizing Conditional Logit," Econometrica, 72, 1859-1876.
Manski, C. F. (1987), "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, 55, 357-362.
Rasch, G. (1960), "Probabilistic models for some intelligence and attainment tests,", Unpublished report, The Danish Institute of Educational Research, Copenhagen.
Sherman, R. P. (1993), "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, 61, 123-137.

[^0]: Department of Economics, Sciences Po, 28 rue des Saints Pères, 75007 Paris, France. koen.jochmans@sciencespo.fr.

 GREMAQ and IDEI, Toulouse School of Economics, 21 Allée de Brienne, 31000 Toulouse, France. thierry.magnac@tse-fr.eu.

