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Abstract

Modern multilevel analysis, whereby outcomes of individuals within groups take into account group membership, has been accompanied by impressive 
theoretical development (e.g. Kozlowski and Klein, 2000) and sophisticated methodology (e.g. Snijders and Bosker, 2012). But typically the approach 
assumes that links between groups are non-existent, and interdependence among the individuals derives solely from common group membership. It is 
not plausible that such groups have no internal structure nor they have no links between each other. Networks provide a more complex representation 
of interdependence. Drawing on a small but crucial body of existing work, we present a general formulation of a multilevel network structure. We 
extend exponential random graph models (ERGMs) to multilevel networks, and investigate the properties of the proposed models using simulations 
which show that even very simple meso effects can create structure at one or both levels. We use an empirical example of a collaboration network about 
French cancer research elites and their affiliations (Lazega et al., 2006, 2008) to demon-strate that a full understanding of the network structure requires 

the cross-level parameters. We see these as the first steps in a full elaboration for general multilevel network analysis using ERGMs.
. Introduction

Statistical analysis using multilevel models, or hierarchical lin-
ar models (HLMs) (Snijders and Bosker, 2012), is applicable where
he data has a nested hierarchical structure. The units of study are
ategorized in two or more levels. Snijders et al. (2012) listed sev-
ral multilevel examples such as schools and teachers, classes and
upils, and doctors and patients. The lower levels (i.e. teachers,
upils and patients) are commonly referred to as the micro- or

ndividual-levels, and the upper levels (i.e. schools, classes and doc-
ors) are known as macro- or group-levels. The interactions across
evels, known as the meso-level structure, usually describe the
ffiliations between the micro- and macro-level units, typically in
nested structure where the micro-level units are affiliated with
ne and only one macro-level unit. The analytical focus is usually on
he outcomes of micro-level units, taking into account this nested
tructure and partitioning the variance of the outcome variable
cross levels.

To date, multilevel analysis has not been commonly used in
ocial network analysis, although attention has been drawn to

he theoretical importance of multilevel concepts. In the con-
ext of organizational network theory, for example, major reviews
Kozlowski and Klein, 2000; Borgatti and Foster, 2003; Brass et al.,
2004) have highlighted the relevance of multilevel aspects of orga-
nizations. Brass et al. (2004) reviewed organizational network
research at different organizational levels, but the amalgamation
of multilevel and network perspectives has barely begun.

The classic HLM analysis described above assumes that links
between groups at the macro-level are non-existent, and that
interdependence among the individuals derives solely from shared
group membership instead of other forms of endogenous network
processes. Network analysis in general presents a more complex
representation of interdependence. It is not plausible that group-
ings of individuals have no internal structure beyond the simple
membership structure, nor is it always the case that such groups
have no links among themselves. Yet, it is also not always plausible
that network structure exists at only one level. For instance, orga-
nizations are explicitly multilevel in design and operation, yet this
is not taken into account in organizational network analysis.

Network methods focus attention on relationships among indi-
viduals. For a one-mode network (nodes of one type – say,
individuals), there is no nesting structure. Network methods may
be used to predict individual outcomes given the network struc-
ture: for instance, when individual responses are assumed to relate
to responses by network partners termed as social influence, net-
work diffusion or network contagion (e.g. Friedkin, 2006; Mason
et al., 2007). However, the structure itself may be the research issue.

Network structure may be self-organizing into various endogenous
patterns. Individual qualities may also influence the formation or
dissolution of network ties, known as social selection (e.g. Robins
et al., 2001a). Social influence and selection processes may be
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Fig. 1. A multilevel network.

tudied simultaneously using the stochastic actor oriented models
SAOMs) proposed by Snijders et al. (2010) with longitudinal data.
ecent methods to analyze cross-sectional network data include
xponential random graph models (ERGMs) (Snijders et al., 2006;
obins et al., 2007a,b; Lubbers and Snijders, 2007).

In this paper, we present a general formulation of a multi-
evel network structure, and extend ERGMs to multilevel networks.

e start with descriptions of the general multilevel data struc-
ure in a network context that generalizes all previous data types
itherto seen in multilevel network studies, and then compare
RGMs with the classical HLMs. Before introducing the multilevel
RGMs, we review and investigate some of the current ERGM spec-
fications using simulations. As part of the proposed multilevel
RGMs, these simulations are crucial for the later model interpreta-
ions we give to within-level network structures. We then propose
RGM specifications for multilevel networks. Through simulation,
e illustrate how simple cross-level associations can create struc-

ure at both levels. The proposed models are then applied to an
mpirical data set collected among French cancer research elites
nd their affiliations (Lazega et al., 2006, 2008). By estimating and
omparing models with and without multilevel effects, we show
he importance of the multilevel effects in both goodness of fit
nd model selection. The model interpretations reveal the depend-
ncies among the micro-, macro- and meso-level network, and
rovide richer and more detailed descriptions of the empirical data.
he proposed models are implemented in the program MPNet as a
ultilevel network extension for PNet (Wang et al., 2006).

. Multilevel networks

Multilevel network data categorizes nodes into different levels,
nd the network ties represent relationships between nodes within
nd across different levels. A k-level network has nodes of k differ-
nt types, and each type represents a different level. A one-mode
etwork can be defined within each level, and a bipartite (two-
ode) network can be defined between nodes from two adjacent

evels.
For a two-level network with u nodes at the macro-level, and v

odes at the micro-level, we label the macro-level network as net-
ork A, the micro-level network as network B, and the meso-level

ipartite network as network X. We refer the overall network as
(u, v) two-level network, labelled as M. This flexible data struc-

ure, as shown in Fig. 1, generalizes the multilevel networks in the

iterature to date:

. In a cross-level nested structure, all B nodes have degree one
in X. With both macro- and micro-level networks (A and B)
empty, we have a multilevel modelling structure. With networks
among the at the micro-level B, post hoc multilevel inferences
can be made after applying ERGMs to each group (Anderson et al.,
1999; Snijders and Baerveldt, 2003; Lubbers, 2003; Lubbers and
Snijders, 2007).

2. A fixed nested structure X, with A and B networks non-empty,
is presented by Lazega et al. (2008). See also Hedström et al.
(2000) and Bellotti (2011). One level is nested in another, but
with networks at one or both levels. We can investigate how
structures in A and B are related.

3. An empty macro-level A network, with non-empty B and X, is the
data structure of Koehly et al. (2003), Torlo et al. (2010), Snijders
(2002, 2009), and Lomi et al. (2011).

4. The most general form presents a range of possibilities depend-
ing on whether or not some of the three networks are assumed
exogenous. For instance, with an exogenous meso-level X, we
can ask: given the meso-links, how do micro and macro struc-
tures relate? Or when all three networks are endogenous, and we
can examine the interdependencies among the micro-, macro-
and meso-level networks. The most general form was first dis-
cussed by Iacobucci and Wasserman (1990) and Wasserman and
Iacobucci (1991), but not in the context of multiple levels.

Lazega et al. (2008) presented an example with two-level net-
work data collected among French elite cancer researchers and
their affiliated research laboratories. There are individual and col-
lective forms of agency at each level. At the researcher level, the
data captures advice-seeking ties whereas at the laboratory level,
the network represents collaborations among the laboratories, and
the cross-level ties represent researchers’ affiliations with labora-
tories. Based on various centrality measures, Lazega et al. (2008)
categorized researchers into “little or big fish”, and laboratories into
“small or big pond”, and inferred theory on how network strategies
may affect an individual’s performance; the cross-level structure
is treated as exogenous and understood, whereas the within-level
structure is endogenous and assumed affected by the cross-level
structure. We use the data from Lazega et al. (2008) to demon-
strate how the ERGMs proposed in this paper may be applied and
interpreted in an empirical context in the modelling example.

3. Multilevel models

Multilevel modelling using hierachical linear models (HLMs)
(Snijders and Bosker, 2012) has forerunners including “Within-
and-between” organizational analysis (Dansereau et al., 1984).
HLMs can be used for nested multilevel data analysis, when there
is an underlying hierarchy that determines the categorization of
the nodes such that nodes from lower level are nested or belong
to nodes in the higher levels. HLMs explain the individual outcome
as a result of explanatory variables at individal level, taking into
account the nested multilevel structure. Variance is apportioned
across both levels because persons are nested within groups. Let j
denote the index for groups and i denote the index for individuals,
the simplest form of HLMs (known as the empty model without any
explanatory variables) can be expressed as

Yij = ˇ0 + u0j + eij

where Yij is the dependent variable representing the outcome of
node i from group j; ˇ0 is a general mean; u0j is a random effect at
group level; and eij is a random effect at the individual level. Both u0j
and eij are assumed to be independent of one another and normally

distributed with means 0s and variances �2

u and �2
e respectively.

The variance of Yij is therefore decomposed into the variances
at group level and individual level. Taking into account the
explanatory variable (xij) at the individual level and assuming that

dx.doi.org/10.1016/j.socnet.2013.01.004
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defined on a common type of nodes with no level distinction. The
dependencies between ties of different types from different lev-
els require modelling of the within-level one-mode networks and
he slope associated with the explanatory variable is group depend-
nt, the HLMs have the following general form:

ij = ˇ0 + u0j + ˇ1xij + u1jxij + eij

here ˇ0j = ˇ0 + u0j defines the intercept and ˇ1j = ˇ1 + u1j defines
he slope. Such a model construction assumes both the intercept
nd slope are group dependent with group-level residuals u0j and
1j. One may include several individual level explanatory vari-
bles in HLMs; however, direct modelling of dependencies among
icro-level network ties as endogenous effects is not possible. This

pproach is not aiming or designed to model network ties directly,
nd there are limitations when using HLMs for modelling mul-
ilevel networks in general. Firstly, the HLM approach treats the
ested meso-level structure as exogenous and understood, so any
nderlying meso-level network processes are not captured. Sec-
ndly, the micro- and macro-within level network structure cannot
e captured directly by HLMs, thus the interdependencies between
etwork ties cannot be tested.

. Exponential random graph models

Introduced by Frank and Strauss (1986) and Wasserman and
attison (1996), exponential random graph models (ERGMs) treat
he network structure as endogenous and a topic of research inter-
st. Treating each network tie as a random variable, ERGMs model
etwork ties explicitly, and present the overall network structure
s a collective result of various local network processes. The local
etwork processes are represented by graph configurations such
s edges, stars, and triangles (see, e.g. Frank and Strauss, 1986;
nijders et al., 2006), where all presented ties in a particular con-
guration are assumed to be conditionally dependent reflecting
ypotheses that empirical network ties do not form at random, but
hat they self organize into various patterns arising from underly-
ng social processes. ERGMs have been applied to different data
tructures such as bipartite networks (Skvoretz and Faust, 1999;
gneessens and Roose, 2008; Wang et al., 2009, 2013) and multi-
le networks (Pattison and Wasserman, 1999; Robins and Pattison,
006; Wang, 2013). In the generic cases, where one uni-partite (or
ne-mode) network (Y) with n nodes is involved, the ERGMs have
he following form:

r(Y = y) = 1
�(�)

exp
∑

Q

�Q zQ (y)

here

y is a network instance.
Q defines the network configurations which are based on the
dependence assumptions of tie variables. Note that a network
variable Y can be seen as a collection of tie variables (Yij) defined
on each dyad (i, j) of the network. A network configuration of type
Q includes tie variables that are conditionally dependent given
the rest of the network.
zQ (y) =

∑
y

∏
Yij ∈ Q yij is the network statistic for the correspond-

ing network configuration of type Q.
�Q is the parameter associated with zQ (y).
�(�) is a normalizing constant defined based on the graph space
of networks of size n and the actual model specification.

Since the normalizing constants of ERGMs become intractable
or networks with even a small number of nodes, maximum like-

ihood estimates (MLEs) cannot be derived analytically except for
imple Bernoulli models. Snijders (2002) proposed an estimation
lgorithm which relies on Markov Chain Monte Carlo (MCMC) sim-
lations of ERGMs. The MCMC simulation also serves as a tool for
model goodness of fit (GOF) test, where simulated graph distribu-
tions are compared with the observed networks (Snijders, 2002;
Hunter et al., 2008).

As in Frank and Strauss (1986), the model assumes network
homogeneity such that isomorphic network configurations have
equal parameters, and the corresponding effect is the same across
the network. For networks where such assumptions do not apply, a
homogeneous model may have difficulty in convergence. We may
treat part of such networks as exogenous, or fit conditional models
depending on exogenous covariates.

ERGM specifications for both one-mode and bipartite networks
can be derived from dependence assumptions between network tie
variables. There has been a rich literature on how the network ties
may be conditionally dependent and their inferred ERGM specifi-
cations including the dyadic independence assumption (Erdös and
Rényi, 1960; Holland and Leinhardt, 1981) where all the tie vari-
ables are considered independent from one another; the Markov
assumption (Frank and Strauss, 1986) where a pair of tie vari-
ables are considered conditionally independent unless they have a
node in common; and the social circuit assumptions (Pattison and
Robins, 2002, 2004; Snijders et al., 2006) where tie variables within
a social circuit (four-cycle) are considered conditionally dependent.
Pattison et al. (2009) and Pattison and Snijders (2013) proposed a
hierarchy of dependence assumptions based on a graph theoretical
framework which provides guidance for systematic development
of ERGM specifications. The social circuit specifications proposed
by Snijders et al. (2006) introduced alternating statistics where
geometric weights with parameters (�) are assigned to the degree
distribution and the two-path (or shared partner) distribution, such
that large changes of graph statistics in simulations are avoided
to alleviate model degeneracy (Handcock, 2003; Rinaldo et al.,
2009). The graph statistics introduced by Snijders et al. (2006)
include alternating-k-stars (AS), alternating-k-triangles (AT) and
alternating-k-two-paths (A2P),1 representing the dispersion of the
degree distribution, the tendency for closure, and the tendency
for sharing multiple partners respectively. For bipartite networks
involving nodes of two distinct sets, Wang et al. (2009) applied
the same geometric weighting technique on the degree distribu-
tions with alternating-stars and the two-path distributions with
alternating-4-cycles (ACs) of two different types.

The current available ERGMs may model multilevel networks
by parts. Without considering the cross-level network structure,
ERGMs for one-mode networks can be used to analyze individual
within-level networks one at a time, assuming ties from different
levels are independent from each other. Such analysis are likely
to be inadequate for the obvious reason that the cross level struc-
tures are ignored. Explicit multilevel network structure is invoked
through bipartite networks, with nodes of two different types (e.g.
people and groups) and relations (associations) from persons to
groups. For bipartite analysis, ERGMs, SAOMs, and other meth-
ods are available (e.g. Latapy et al., 2008; Wang et al., 2009, 2013;
Koskinen and Elding, 2010). In fact, all bipartite networks can be
seen as special cases of two-level networks where within level
ties are absent. This approach treats the cross-level structure as
endogenous but there are no within-level networks. ERGMs for
multivariate network analysis (Pattison and Wasserman, 1999)
provided an approach that models the interdependence of several
networks of different types. However, the different types of ties are
1 Also known by Hunter and Handcock (2006) as geometrically weighted degrees,
geometrically weighted edge-wise shared partners, and geometrically weighted
dyadic-wise shared partners.

dx.doi.org/10.1016/j.socnet.2013.01.004


t
f
f
E

5

s
f

P zQ (b

i

•

•

•

•

w
e
v
R
2
s
t
t
o
b
p
m
u
e

T
S
c

he cross-level bipartite networks together. We propose ERGMs
or multilevel networks in the simplest form which involves nodes
rom two levels. It may be further extended to the general k-level
RGMs following similar data and model constructions.

. ERGMs for two-level networks

Based on the description and labels of the two-level network
tructure also shown in Fig. 1, ERGMs can then be expressed in the
ollowing form:

r(A = a, X = x, B = b) = 1
�(�)

exp
∑

Q

{�Q zQ (a) + �Q zQ (x) + �Q

There are several components based on the different networks
nvolved:

zQ (a) and zQ (b) are network statistics for the corresponding
within level network configurations. We can apply the current
ERGM specifications for one-mode networks (Snijders et al.,
2006; Robins et al., 2007b, 2009) to look at within level network
structures, given other effects in the model.
zQ (x) are the network statistics for structural effects within the
bipartite affiliation network. The corresponding ERGM specifica-
tions were proposed by Wang et al. (2009, 2013).
zQ (a, x) and zQ (b, x) are network statistics for configurations
involving ties from one of the unipartite network (A or B) and the
bipartite network (X), representing the interactions between the
two networks. Using zQ (a, x) as an example, it can be expressed
as zQ (a, x) =

∑
a,x

∏
Aij ∈ Q,Xkl ∈ Q aijxkl .

zQ (a, x, b) =
∑

a,x,b

∏
Aij ∈ Q,Xkl ∈ Q,Buv ∈ Q aijxklbuv are statistics for

configurations involving ties from all three networks, and express
tendencies for structural effects to be associated across both lev-
els simultaneously.

For effects that associate one type of within-level tie (A or B)
ith a cross level tie (X), i.e. zQ (a, x) or zQ (b, x), and the cross level

ffects zQ (a, x, b), we propose model specifications based on the
arious dependence assumptions in the literature (e.g. Erdös and
ényi, 1960; Frank and Strauss, 1986; Pattison and Robins, 2002,
004). Although the dependence assumptions applied here are the
ame as in ERGMs for one- or two-mode networks, the interpre-
ations are very different as we assume dependencies between
ie-variables of different nature or types. We use the terminol-
gy “node of type A” or “A-node” to refer to the nodes that can
e involved in A-ties, and similarly for “node of type B”. For sim-

licity, we focus on the descriptions and possible interpretations of
odels for non-directed multilevel networks in the following sim-

lation studies. These interpretations may be equally applied to the
xtensions to directed multilevel models. See Figs. 2 and 3 for a list

able 1
imulated graph statistics for models with Star2AX and AAAXS. (Note: SD and SK stand f
lustering coefficient.).

Statistics Random Star2AX+

A
SD 1.873(0.240) 6.863(0.008)
SK 0.284(0.425) 3.422(0.010)
GCC 0.144(0.035) 0.147(0.000)

X
SD(A) 1.406(0.186) 7.610(0.000)
SK(A) 0.522(0.429) 3.607(0.000)
SD(B) 1.394(0.178) 0.346(0.000)
SK(B) 0.526(0.430) 2.273(0.000)
GCC 0.066(0.031) 0.896(0.000)
) + �Q zQ (a, x) + �Q zQ (b, x) + �Q zQ (a, x, b)}

of proposed model configurations with possible interpretations for
both non-directed and directed networks.

Following the Markov assumption, several parameters repre-
senting interactions between one of the within level network and
the bipartite network may be derived including stars and trian-
gles involving different types of ties. Note that because the Markov
assumption implies cliques of sizes up to three (or triangles), statis-
tics involving all three types of tie-variables, for example (Aij, Bkl
and Xik), cannot be defined. Example Markov configurations includ-
ing the interaction stars (such as Star2AX and Star2BX) and the

interaction triangles (TXAX, TXBX) are depicted in Fig. 2. Based on
the social circuit assumption, interaction alternating-triangles (e.g.
ATXAX) and cross-level four-cycles (C4AXB) may be included in the
model. A further extension in dependence, the three-path assump-
tion, allows interaction three-paths (e.g. L3XAX) and cross-level
three-paths (L3AXB) to be included in the model. To understand
properties of the various proposed model specifications, simula-
tion studies for the proposed configurations were carried out in the
next section, and we illustrate possible interpretations of the pro-
posed effects in a two-level researcher–laboratory network context
similar to the data we used in our empirical example.

6. Multilevel ERGM simulation studies

The simulation studies were performed on (30, 30) two-level
networks with 65 ties in each of the within-level (A, B) and meso-
level (X) networks. For proposed effects only involving interactions
between one of the within-level network and the meso-level net-
work, network B was kept empty for simplicity, as the interaction
effects between A and X are equally applicable to interactions
between B and X. The densities of the networks are fixed, and we
used strongly positive (+2) and negative (−2) parameter values for
each of proposed configurations and left other effects at 0s to test
the non-zero main effects on the network structure. We present
visualizations of sampled networks, and graph statistics such as the
means and standard deviations of the global clustering coefficients
(GCCs), the standard deviations (SDs) and the skewness (SKs) of
the degree distributions in each of the networks A, B and X. The
GCCs for the within-level networks (A, B) are calculated as the ratio
between closed and open triads; whereas the GCC for the meso-
level network X is calculated as the ratio between the numbers of
four-cycles and three-paths (Robins and Alexander, 2004).

Simulated network samples are shown from Figs. 4–8, where

each row has the tested main effect listed in the first column fol-
lowed by the decomposition of a simulated multilevel network M
in the order of networks (A, X, B) when they apply. For the sim-
ulated graph statistics as listed from Tables 1–4, the main effects

or standard deviation and skewness of degree distributions. GCC stands for global

Star2AX− AAAXS+ AAAXS−

3.502(0.184) 2.822(0.258) 1.703(0.224)
−0.084(0.168) −0.108(0.253) 0.304(0.414)

0.334(0.043) 0.229(0.044) 0.136(0.036)

3.345(0.194) 1.769(0.190) 1.329(0.169)
1.208(0.193) 0.512(0.364) 0.462(0.410)
1.283(0.160) 1.394(0.178) 1.407(0.180)
0.371(0.403) 0.524(0.409) 0.524(0.415)
0.207(0.037) 0.083(0.032) 0.064(0.030)

dx.doi.org/10.1016/j.socnet.2013.01.004
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Table 3
Simulated graph statistics for models with three-paths (L3XAX). (Note: SD and SK
stand for standard deviation and skewness of degree distributions. GCC stands for
global clustering coefficient.).

Statistics Random L3XAX+ L3XAX−
A

SD 1.873(0.240) 2.554(0.310) 1.897(0.230)
SK 0.284(0.425) 0.144(0.328) 0.289(0.401)
GCC 0.144(0.035) 0.207(0.047) 0.145(0.036)

X

T
S
c

L3AX

Fig. 2. Multilevel ERGM config

sed in the simulation are listed in the header, and we compared the
tatistics from the simulated distributions with a random network
istribution (listed under the header “random”) to understand the

mpact on the global network structure. For each of the simulations,
e picked every 10,000th graph from a 10,000,000 iteration sim-
lation after a 1,000,000 iteration burn-in from random starting
etworks of the same density.
.1. Interaction stars

The Star2AX and the Star2BX configurations as shown in Fig. 2
epresent the dependence between two tie variables of different

SD(A) 1.406(0.186) 1.240(0.164) 1.423(0.188)
SK(A) 0.522(0.429) 0.450(0.444) 0.546(0.416)
SD(B) 1.394(0.178) 4.196(0.322) 1.248(0.155)
SK(B) 0.526(0.430) 4.313(0.514) 0.369(0.406)
GCC 0.066(0.031) 0.149(0.071) 0.069(0.033)

able 2
imulated graph statistics for models with interaction triangles. (Note: SD and SK stand for standard deviation and skewness of degree distributions. GCC stands for global
lustering coefficient.).

Statistics Random TXAX+ TXAX− ATXAX+ ATXAX−
A

SD 1.873(0.240) 5.379(0.049) 1.892(0.242) 3.628(0.257) 2.466(0.267)
SK 0.284(0.425) 0.437(0.003) 0.297(0.415) 0.730(0.110) 0.557(0.347)
GCC 0.144(0.035) 0.977(0.014) 0.144(0.034) 0.623(0.052) 0.154(0.036)

X
SD(A) 1.406(0.186) 2.535(0.080) 1.420(0.190) 3.377(0.102) 2.337(0.172)
SK(A) 0.522(0.429) 0.428(0.036) 0.539(0.408) 0.987(0.070) 0.660(0.256)
SD(B) 1.394(0.178) 4.541(0.052) 1.258(0.158) 1.282(0.150) 1.359(0.181)
SK(B) 0.526(0.430) 1.856(0.019) 0.364(0.383) 0.359(0.380) 0.481(0.427)
GCC 0.066(0.031) 0.959(0.019) 0.068(0.033) 0.214(0.032) 0.119(0.032)
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Fig. 3. Multilevel ERGM configurations for directed networks.
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Fig. 4. Simulated network s

ypes established by a node in common. Fig. 4(a) illustrates
ypical networks from the simulated network distributions where
he Star2AX parameter was set at 2 and −2 respectively, and
etwork B was kept empty, so as to observe only the effects on
etwork A. The positive Star2AX parameter is an A-hub creator, as
e can see from the plot of the networks (A, X and M), two A-hubs
ere generated both connected to all other A-nodes in network A

nd all the B-nodes in the affiliation network X. The model created
n almost frozen graph distribution in both network A and the
ffiliation network X indicated by the standard deviations close

o 0 in the various graph statistics shown in Table 1. The standard
eviation (SD) and skewness (SK) of A-node degree distributions

n both networks A and X are much higher than the random graph
istribution; the B-node degree distribution in network X is flat,

able 4
imulated graph statistics for models with cross-level interaction effects (L3AXB and
istributions. GCC stands for global clustering coefficient.).

Statistics Random L3AXB+

A
SD 1.873(0.240) 5.241(0.005)
SK 0.284(0.425) 0.497(0.004)
GCC 0.144(0.035) 0.857(0.003)

B
SD 1.867(0.234) 6.014(0.027)
SK 0.288(0.422) 2.674(0.050)
GCC 0.145(0.035) 0.221(0.007)

X
SD(A) 1.406(0.186) 2.649(0.004)
SK(A) 0.522(0.429) 0.610(0.007)
SD(B) 1.394(0.178) 4.470(0.006)
SK(B) 0.526(0.430) 1.797(0.003)
GCC 0.066(0.031) 0.867(0.002)
with Star2AX and AAAXS.

as all B-nodes are connected to the three A-hubs, hence having
degrees 2 or 3.

When Star2AX is negative, the model tries to avoid any associa-
tion between the within- and the meso-level ties, and created two
components in the overall multilevel network. This effect created
lots of isolated A-nodes in both networks A and X, as non-isolated
nodes in network A became isolates in network X and vice versa
to form the separated overall structure. Since more isolated nodes
are involved, the available network ties had to constrain them-
selves to the connected component, so we have higher SDs and

SKs for A-nodes in both networks A and X, and higher cluster-
ing coefficients than expected from random (see Table 1). We
expect similar behaviour for the Star2BX effect, and in general, we
may conclude that the within- and meso-level interaction two-star

C4AXB). (Note: SD and SK stand for standard deviation and skewness of degree

L3AXB− C4AXB+ C4AXB−

2.862(0.264) 3.706(0.195) 2.098(0.252)
−0.217(0.243) 0.727(0.102) 0.369(0.426)

0.234(0.045) 0.643(0.025) 0.156(0.037)

2.854(0.272) 4.238(0.159) 2.097(0.256)
−0.212(0.251) 0.648(0.055) 0.367(0.408)

0.234(0.046) 0.771(0.027) 0.156(0.036)

2.267(0.341) 3.331(0.008) 1.615(0.216)
1.486(0.407) 0.954(0.016) 0.696(0.408)
2.252(0.345) 3.089(0.009) 1.615(0.217)
1.494(0.384) 0.789(0.019) 0.703(0.416)
0.133(0.036) 0.650(0.006) 0.082(0.032)

dx.doi.org/10.1016/j.socnet.2013.01.004
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Fig. 5. Simulated network sample

arameters represent popularity effects in both within level and
ffiliation network. In a researcher and laboratory network context,
here the B-level network contains advice seeking ties among the

esearchers, the A-level network is defined based on the collabo-
ation ties among the laboratories, and the researcher–laboratory
ffiliation network X, a positive Star2BX parameter indicates that
esearchers popular in the advice seeking network are also popular
n the affiliation network (i.e. have many affiliations).
To alleviate the issues of model degeneracy or the frozen
raph distributions, we can apply the same geometric weighting
echniques on either or both the affiliation star parameters and the
ithin-level star parameters to form higher-order configurations,

Fig. 6. Simulated network samples for m
odels with interaction triangles.

such as alternating-X-stars with one A-tie attached (AXS1A), or
alternating-A-alternating-X-stars (AAAXS). Fig. 2 illustrates some
possible alternating-star effects. The alternating-star effects gen-
erally attenuate the overwhelmingly frozen structures created by
the two-star effects seen in the previous simulations, but provide
similar interpretations. We followed the same simulation strategy
with the same parameter values (+2 and −2) for models with
AAAXS. As can been seen from Table 1, when AAAXS is positive, the

graph distribution has higher SD for the A-node degree distribution
than a simple random graph, but much smaller than for the previ-
ous model with positive Star2AX. The SD(A) in network X, and SKs
for A-nodes for both networks A and X are not very different from

odels with three-paths (L3XAX).

dx.doi.org/10.1016/j.socnet.2013.01.004


Fig. 7. Simulated network samples for models with three-paths (L3AXB).
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Fig. 8. Simulated network samples for

andom. From the visualization in Fig. 4(b), we do not see obvious
ubs in the network A but more nodes with degree greater than 2
r 3 compared with positive Star2AX model. There are also more
solates in network A, as nodes are not forced to be part of hubs any-

ore; and four out of the six isolates are also isolates in the overall
etwork M, i.e. the unpopular nodes in within level network are
lso unpopular in the affiliation network. When AAAXS is negative,
e actually see marginally smaller A-node SDs in both networks A

nd X, and smaller SK in network A than random networks repre-
enting more flat A-node degree distributions in both networks A
nd X, suggesting a tendency against centralization.

.2. Interaction triangles

The interaction triangle effects (TXAX, TXBX, ATXAX and ATXBX)
ave two connected nodes within the same level, sharing one or
ore nodes from the other level through affiliations. They can

e seen as affiliation based closures, or within level homophily
ffects based on common affiliations (i.e. the homophily can be
onstrued as arising from a shared affiliation). We conducted sim-
lations using positive and negative values (+2 and −2) for TXAX

nd ATXAX similarly as before, and the results are shown in Fig. 5
nd Table 2. When TXAX is positive, it created clique-like structures
n the within-, meso- and overall two-level networks.2 In turn, we

2 Note that for bipartite networks, sub-graphs with two nodes sharing one or
ore nodes of the other type are all considered as cliques.
s with cross-level four-cycles (C4AXB).

see greater than random SD and SK in network A, and greater a
SD(A) in network X, as there are centralization effects on network
ties among nodes involved in the clique; and the global clustering
coefficients for both networks A and X are also much greater than
expected from random networks. These clique-like formations are
to be expected from positive Markov triangle parameters, given
that similar effects are evident in unipartite models. When TXAX
is negative, the clique-like structures disappear, and most of the
previously isolated nodes merge into the big components of the
networks. Since the negative TXAX is trying to separate bipartite
two-paths from the within level A ties, or in other words, the con-
nected A-nodes tend not to share common affiliations, we can see
long circular-like structures in network X. Compared with random
networks, there is no obvious differences on the degree distribution
and clustering measures we obtained.

The ATXAX attenuates the TXAX effect in a similar fashion as
in the star configurations. When ATXAX is positive, we still have
clique-like core structures in both network A and X. However,
instead of being isolated, the rest of the A-nodes are connected to
the core in network A; and only the core-members in network A
are sharing multiple B-nodes in the bipartite network X and the
overall multilevel network M. The GCCs and SDs for A-node degree
distributions in both networks A and X are higher than random
networks but smaller than the case when TXAX is set at the same

positive value. Comparing the negative effects of TXAX and ATXAX,
the attenuating ATXAX had higher values in most of the statistics in
Table 2, but generally lower compared with the model with positive
ATXAX. In the cases of researcher–laboratory networks for instance,

dx.doi.org/10.1016/j.socnet.2013.01.004


a
t

6

l
t
c
w
w
a
t
a
i
o
A
s
n
m
e
G
a
b
v
t

p
t
(
t
r

6

f
L
p
w
n
s
a
t
w
b
s
f
a
c
c
t
S
i
t
n
i
t
a
o
w
W
w
b
k

To date, there is not a typical set of one-mode ERGM parameters
that could reproduce caveman graphs.3 However, it is not difficult
to reproduce caveman like graphs using two-level ERGMs where
positive TXBX or ATXAX effect may indicate that researchers from
he same laboratories tend to seek advice from each other.

.3. Interaction three-paths

Defined by two X-ties and one within level tie (either A or B), we
abel the three-path statistics involving the interactions between
he within- and meso-level networks as L3XAX and L3XBX. They
an be seen as the interaction between meso-level popularity and
ithin-level activity, or meso-level degree assortativity through
ithin level ties. From the simulation results as shown in Fig. 6

nd Table 3 using the same settings as previously, we can see that
he positive L3XAX parameter creates as many XAX three-paths
s possible such that non-isolated A-nodes in network A are all
nvolved in the bipartite network X, as an A-tie is an essential part
f the L3XAX. Compared with the random GCCs for both networks
and X, the networks with positive L3XAX have higher GCCs as

hown in Table 3. Because all bipartite ties are associated with
on-isolated A-nodes in network A, they create more TXAXs, hence
ore L3XAXs as the TXAX configuration is also part of L3XAX. How-

ver, the effect is not as strong as a positive TXAX effect where the
CCs are much higher, as shown in Table 2. When L3XBX is neg-
tive, there are very long paths in the bipartite network to make
ipartite clustering less likely; and the clustering in network A is
ery similar to random networks. Together, they create fewer XAX
hree-paths.

In the researcher–laboratory network context, a positive L3XAX
arameter may suggest that researchers (B) popular in the affilia-
ion network tend to be associated with collaborating laboratories
A); or there is a degree assortativity effect such that labs
end to collaborate with other labs having a similar number of
esearchers.

.4. Cross-level three-path

The cross-level three-path L3AXB configuration involves ties
rom all three (A, B and X) networks, and is very different from
3XAX or L3XBX; it represents a tendency for nodes that are
opular within levels to be affiliated through the meso-level net-
ork X, and can be seen as degree assortativity effect between
etworks A and B through meso-level network X. We conducted
imulations for the L3AXB effect using the same positive and neg-
tive parameter values. Since L3AXB involve tie variables from all
hree networks (A, X and B), network B is now set to have 65 ties
ith fixed density; other simulation settings are set the same as

efore. The simulated sample plots and graph statistics are pre-
ented in Fig. 7 and Table 4. When L3AXB is positive, hubs emerge
rom one of the within level networks (in our case, network A);
nd ties from the other network (B) form a clique-like strongly
onnected component. All nodes that are part of the connected
omponent in network (A) are connected to the hubs in network (B)
hrough the bipartite network; and unsurprisingly, all of the SDs,
Ks and GCCs are higher than random networks. Note that start-
ng the simulation from random networks of the same densities,
he structures for networks A and B may swap depending on the
etwork in which the hubs emerge first, and the other network

n turn forms the clique-like structure. When L3AXB is negative,
o form as few as possible AXB three-paths, the parameter avoids
ny affiliations between nodes from the connected components
f the within-level networks. As a result, the isolated nodes in
ithin level networks become the popular nodes in network X.

e can see from the visualization of the overall multilevel net-
ork M that the two within-level networks are loosely connected

y few bipartite ties, and the isolates are working as agents or bro-
ers between the two components. The statistics listed in Table 4
indicate that the global structures of the within-level networks are
very similar.

In a researcher–laboratory network context, a positive L3AXB
parameter suggests high degree researchers are affiliated with high
degree labs.

For directed within level networks, we can define four types
of L3AXB as L3AXB-in, L3AXB-out, L3AXB-path and L3BXA-path
as shown in Fig. 3. The L3AXB-in/-out, where the within level
incoming or outgoing ties represent within level popularity or
expansiveness, may be interpreted similarly to the non-directed
L3AXB as effects indicating the tendency for popular or expan-
sive nodes from the two levels to form affiliations. L3AXB-path
and L3BXA-path however, represent the interaction between pop-
ularity of nodes at one level and expansiveness of nodes at the
other level through their affiliations. In the researcher–laboratory
network context, a positive L3AXB-in effect may indicate that the
popular laboratories (A) in the collaboration network tend to have
resourceful researchers (B) from whom lots of other researchers
seek advice; whereas a positive L3AXB-path effect may indicate
that popular laboratories tend to have researchers seeking more
advice from others.

6.5. Cross-level four-cycle

The cross-level four-cycle C4AXB involves ties from all three
networks, representing a cross-level “mirroring” or alignment
effect such that members of connected groups are themselves
connected (Lazega et al., 2010, 2011). Through simulations using
similar settings as before, we can see from Fig. 8 that when C4AXB
is positive, it generated clique-like cores in both networks A and B,
and the members of the cores are affiliated with each other. Statis-
tics from Table 4 suggest there is centralization on ties from both of
the within-level networks with greater than random SDs and SKs;
with the clustering of high-degree nodes reflected by the high GCCs
in all networks A, B and X. The negative C4AXB effect however, is
trying to misalign A- and B-ties through affiliation, and can be gen-
erally understood as a decentralization effect, with fewer isolated
nodes especially in the affiliation network X. In terms of degree dis-
tributions and global clustering, the SDs, SKs and GCCs for all three
networks are not very different from random.

In the researcher–laboratory network context, a positive C4AXB
may suggest researchers from collaborating laboratories tend to
seek advice from each other.

For directed networks, depending on the directions of the
within-level ties and whether reciprocal ties are involved, C4AXB
may have several forms as shown in Fig. 3.

6.6. Models for caveman graphs

As an illustrative example to show how the proposed multi-
level model parameters may interact with each other, we compare
ERGMs with and without the cross level interaction effects to sim-
ulate caveman graphs, where small clique like components are
sparsely connected to form a large component. Caveman graphs
were introduced in a discussion of the small world phenomenon
by Watts (1999). In this case, we continue to use the multilevel ter-
minology, although now the ‘levels’ may simply be construed as
two different types of nodes as Wasserman and Iacobucci (1991)
originally described.
3 Robins et al. (2005) presented some simulation studies involving frozen graphs
of different forms representing small and other worlds.

dx.doi.org/10.1016/j.socnet.2013.01.004
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Fig. 9. ERGM configurations following Snijders et al. (2006).

ithin level networks form the clique like structures or “caves”, and
he cross level bipartite network can be used to connect the caves.
imulations were conducted on (20, 20) two-level networks with
xed within level densities of 0.15, and a fixed bipartite density
f 0.06. For within level networks (A and B), we use the one-
ode ERGM specification following Snijders et al. (2006), including

lternating-stars (AS), alternating-triangles (AT) and alternating-
wo-paths (A2P) as shown in Fig. 9.

To have the highly clustered but separated components or
caves” in the within level networks, we use the following set of
arameters for both within level networks A and B where:

AS = −1, AT = 2 and A2P = −1. The positive alternating-triangles
nsure high clustering; the negative alternating-stars decentralize
he degrees, i.e. discourage formation of hubs; and the negative
lternating-two-paths break down the network into separate
omponents. The bipartite network (X) is left at random, and all
etween or cross-level interaction effects are set at 0s. We use this
odel as a reference where no between-level interaction effects

re imposed. Fig. 10(a) and (b) show a typical set of within level
etworks simulated from this model. Fig. 10(c) is the simulated
andom bipartite network (X) that connects the caves from both
etworks A and B to form the caveman like two-level graph in
ig. 10(d). We can observe some random overlapping between
he caves where connected dyads from caves of different types
re forming cross-level four-cycles (C4AXBs). Depending on the

ensity of the bipartite networks, the random overlapping may
ave some of the caves tightly interlocked.

Fig. 10. A caveman graph without cross-level effects.
Fig. 11. A caveman graph with cross-level effects.

For the interaction model, we use the same set of within level
parameter values to create the “caves”. The within bipartite net-
work (X) effects were left at 0s, but the following interaction effects
were imposed where: AAAXS = 2, ABAXS = −2 and C4AXB = −2. A
simulated graph sample is presented in Fig. 11. These parameters
in effect imply that popular nodes in the A network will be popular
with B nodes as well (i.e. centrality in the A network is associated
with centrality in the X network); but that popular B nodes are not
popular with A nodes; and that cross-level 4 cycles are less likely
to be present.

The opposite signs of the interaction stars (AAAXS and ABAXS)
affect the popularities of nodes as well as the sizes of the clique-
like components of different types. To generate more AAAXS but
fewer ABAXS, the bipartite ties are more centralized on nodes of
type A. Comparing Fig. 11(a) to Fig. 10(a), we have fewer but large
clique like components, as well as more isolates, indicating stronger
degree centralization in network A. Compare Fig. 11(c) to Fig. 10(c),
there are more isolates of type A than B, hence the average degree
of A nodes are higher in the bipartite network. As nodes from
larger cliques have higher average degrees than smaller cliques,
and the bipartite ties are centralized on A nodes that are not isolates
(as shown in Fig. 11(d)), the interaction effects effectively created
more AAAXS and less ABAXS than the previous model. The negative
C4AXB limits the alignment or entrainment of ties from different
cliques such that only a single member within a clique may connect
to multiple members of a clique from the other level. In other words,
we have brokerage effects between different types of ‘caves’ where
one member of one cave tends to be the gatekeeper in regra to the
other cave. The combined effect of the three interaction parame-
ters created caveman graphs where smaller caves from one level are
centralized on larger caves of the other level as shown in Fig. 11(d).
Such networks are not uncommon, e.g. in organizational networks,
suppose that larger cliques represent a small number of central
management divisions, and smaller cliques represent other busi-
ness divisions. This model represent networks where within each
division (large or small) nodes are highly connected, but between
divisions, there is only one or two nodes worked as brokers or
representatives liaising with other divisions.

As we can see from these simulation studies, even very simple

interaction effects can create structure at one or both levels. Our
example in the next section demonstrated the importance of these
parameters in capturing the dependencies between the macro-,
micro- and meso-level networks.

dx.doi.org/10.1016/j.socnet.2013.01.004
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Fig. 12. The multilevel network among Fr

. Models for French cancer researchers and their
nstitutions

.1. The network data

The network data was collected from French cancer researcher
lites4 and their institutions in 1999. Several studies have been
arried out based on this set of data (Lazega et al., 2004, 2006,
008, 2010, 2011). The data set consists of 97 researchers and 82

aboratories. The corresponding two-level network consists of a
irected collaboration network among the laboratories (A) as nom-

nated by the laboratory directors; a directed advice network (B)
here researchers nominated from whom they seek advice; and

he bipartite network (X) representing the affiliation between the
esearchers and laboratories. Fig. 12 displays the multilevel net-
ork as three separate networks.

This data set has several features. First of all, the affiliation
etwork is based on public information about the researchers’
ffiliations, each individual researcher was only affiliated with one
aboratory, and most laboratories only had one researcher who

as a member of these elites. It is hard to infer more interesting
ipartite structures apart from a list of isolated dyads and stars
f sizes two or three, so we treated the bipartite network as

xogenous in our models. This implies that the bipartite network
s fixed throughout the model estimations and goodness of fit
ests. Secondly, there are two laboratories with much higher

4 The selection criterion for inclusion in this population was having published at
east eight papers per year for three consecutive years – 1996–1998 – in international
ancer research journals listed in the CANCERLIT database (nowadays included in
he PUBMED database).
ancer research elites (Lazega et al., 2008).

out-degrees (29 and 36) compared with the rest of the laboratories
(with a maximum out-degree of 13). Both of these laboratories
were providers of experimental equipment and materials for other
laboratories. Given their special position, we treated ties associated
with these two laboratories as exogenous in our models. Note that
the isolated nodes in the laboratory or researcher networks are
not isolates in the affiliation network.

7.2. Modelling results and interpretations

We firstly present models for within level networks, and
then compare them with a model for the overall multilevel
network in both parameter estimates and model goodness of
fits. In other words, the within-level model simply models the
A and B (researcher and laboratory) network structures under
the assumption that the bipartite affiliations are irrelevant,
whereas the interaction models takes the bipartite structure into
account. Such comparisons can reveal the importance of the
cross level network processes that shape the structure of both
the individual within level networks and the overall multilevel
network.

Both of the within level networks in our data are directed. Fig. 13
shows some of the directed ERGM configurations involved in the
within level models. The alternating-in-stars (AinS) represent the
in-degree centralization or popularity spread; the alternating-
out-stars (AoutS) represent out-degree centralization or activity
spread (Robins et al., 2009). Combining the in and out degree
alternating statistics, we can also derive a statistic known as the

alternating-in-alternating-out-star (AinAoutS) representing the
correlation between in and out degrees. While this is seldom used
in unipartite networks (sometimes a simple two-path parameter
is used to control for this correlation), it will be important in

dx.doi.org/10.1016/j.socnet.2013.01.004
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on how combining different star or AS parameters with different
�-values within the same model may help capturing the long-
tailed degree distribution.) Even though the AinS with � = 2.0 is not

Laboratory in-degree distribu�on 
Standard devia�on = 2.58

Skewness = 1.12
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Fig. 13. Directed ERGM configur

he modelling examples. Robins et al. (2009) applied the same
ependence assumption and techniques using geometric weight-

ngs and alternating signs as in Snijders et al. (2006) for directed
etworks, and introduced alternating-k-triangles/-k-two-paths of
ifferent forms. In our models, we include the AT-T configuration
epresenting the tendency for multiple transitive paths to form
losure; AT-C for cyclic path closure, which may be interpreted as
form of generalized exchange; and A2P-U for shared activity.

All models presented here are successfully converged, so con-
ergence statistics are not presented. For model goodness of fit
GOF) test, simulated graph distributions using the converged

odel were compared with the observed statistics, and t-ratios are
sed as heuristic GOF test statistics (Snijders, 2002; Hunter et al.,
008). We tested each within-level models against 54 within-level
raph statistics, and for the overall multilevel goodness of fit, 131
raph statistics were tested. We only present the statistics that
re not well fitted, defined as t-ratios greater than 2.0 in absolute
alues.

.2.1. Model for laboratory collaboration network only
Despite treating the two high out-degree equipment/material

roviders as exogenous, the in- and out-degree distributions of the
aboratory remain skewed as shown in Fig. 14, and there are still
small group of laboratories with high in-/out-degrees compared
ith the rest of the nodes, making the degree distributions long
ailed, or even multimodal. Despite the robustness of the social
ircuit model specifications (Snijders et al., 2006), the long tailed
egree distributions remain a challenge for ERGMs in model good-
ess of fit. The model estimates for the laboratory network shown

able 5
arameter estimates for laboratory collaboration network only.

Effects Estimates Standard errors

Arc −3.811 0.530*

Reciprocity 1.784 0.345*

Two-path −0.100 0.025*

Isolates 2.051 0.834*

AinS(4.00) 0.702 0.255*

AoutS(4.00) 0.315 0.082*

AinS(2.00) −1.019 0.582
AT-T(2.00) 0.493 0.133*

* indicates significant effect where the estimated effect exceeds twice the
tandard error in absolute value.
used in the modelling example.

in Table 5 fitted all 54 graph statistics adequately, including the
standard deviations and skewness of the in-/out-degree distribu-
tions. To provide a good fit to the long-tailed in-degree distribution,
we needed two alternating-in-star (AinS) parameters with different
�-values (4.0 and 2.0). (Appendix presents some simulation studies
Laboratory out-degree distribu�on
(without the two high degree nodes with out-degrees 29 and 36) 

Standard devia�on = 4.96
Skewness = 4.20

In/Out degree correla�on = 0.24
Mean degree = 3.34
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Fig. 14. In- and out-degree distributions of the laboratory collaboration network.
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Researcher in-degree distribu�on
Standard devia�on = 3.76

Skewness = 0.67
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Table 6
Parameter estimates for researcher advice network only.

Effects Estimates Standard errors

Arc −3.213 1.024*

Reciprocity 3.534 0.213*

2-Out-star 0.358 0.146*

3-Out-star −0.018 0.009
Two-path −0.135 0.010*

AinS(4.00) 0.596 0.159*

AoutS(4.00) −0.722 0.599
AinS(2.00) −1.164 0.450*

AoutS(2.00) 0.384 0.787
AinAoutS(2.00) −0.233 0.369
AT-T(2.00) 0.932 0.067*

statistics with the simulated means based on the within level mod-
els, the observed advice seeking within laboratories is much higher
than expected from the models that do not explicitly cater for cross-
level effects. The within level models also failed to capture the

Table 7
Poorly fitted statistics for models with within-level effects only.

Configurations Observed Mean Standard
deviations

GOF
(t-ratio)

TXBXarc 30 2.391 1.775 15.55
TXBXreciprocity 14 0.612 0.770 17.38
C4AXBentrainment 202 43.918 14.893 10.62
Mean degree = 5.62

Fig. 15. In- and out-degree distributions of the researcher advice network.

ignificant, a GOF comparison between the presented model and a
odel without AinS(2.0) showed that by including the AinS(2.0) in

he model, the t-ratio for the skewness of the in-degree distribution
educed from 2.74 to 1.26. For many practical modelling applica-
ions, seeking to obtain such excellent fit may not be necessary, so
hese models may seem overly complex. However, we seek good
t here on many indices in order to illustrate the relevance of the

ull multilevel structure.
From the parameter estimates, we can see that the collabora-

ions between laboratories tended to be reciprocated. The positive
nd significant alternating in-/out-stars with � = 4.0, indicate both
he in- and out-degree degree distributions are more dispersed
han expected from random networks. In other words, both the
opularity and expansiveness of the laboratory collaborations are
entralized. The positive AT-T suggests the laboratory collabora-
ion tended to be clustered. Combining the clustering effect and
he negative two-path suggests a path-shortening effect whereby
he collaborations are more direct, rather than going through mul-
iple paths. Given the other effects, there are more isolated nodes
han expected (although those isolates are not isolated nodes in the
ffiliation network).

.2.2. Model for the researcher advice network only
The advice network contains advice seeking ties among 97

esearchers. Both the in- and out-degree distributions are skewed,
specially for the out-degree distribution with long tails with two
xpansive researchers nominating more than 20 ties, as shown in

ig. 15. To provide adequate fit to the degree distributions along
ith the other statistics, we needed several star parameters as

hown in Table 6. Some of the star parameters are not signifi-
ant, but they are important in fitting the degree distributions and
* indicates significant effect where the estimated effect exceeds twice the
standard error in absolute value.

the clustering coefficient as well as the correlation between in-
and out-degrees. The same model specification without two- and
three-out stars underestimated the skewness of the out-degree dis-
tribution (t-ratio = 2.12), and failed to capture the global clustering
coefficient (t-ratio = 3.48). The same model specification without
AinAoutS underestimated the in- and out-degree correlation (t-
ratio = −4.66).

Besides the various star parameters, the interpretation of this
model is similar to the laboratory collaboration network. The
strongly positive reciprocity effect indicates advice seeking tended
to be reciprocated in this network. Through the positive AT-T, we
see researchers seek advice in clusters; combined with a negative
two-path parameter, we can infer the path-shortening effect also
existed in the advice network. In other words, network closure is
the predominant effect in this model, suggesting advice seeking
among researchers in a clustered, team-like way.

The interpretations of the various star parameters generally
infer a long-tailed or multi-mode degree distribution, as we have
discussed in the simulation study of AS with different �-values.
The positive and significant 2-out-star suggests there are hub-like
advice seekers who ask a lot more advice than others. The posi-
tive AinS(4.0) allow some variations for nodes with high in-degrees
but not hubs; and the negative AinS(2.0) suggests there was little
variation among researchers in being popular sources of advice.

7.2.3. Within level model GOF with respect to between-level
statistics

The separate models for laboratories and researcher fitted
within level statistics well with all t-ratios less than 2.0. However,
by testing the models against multilevel interaction statistics, they
fail to capture a list of statistics listed in Table 7.

The cross-level triangulation effects (TXBXarc and TXBXre-
ciprocity) are quite basic: they represent researchers from the same
laboratory seeking advice from each other. Comparing the observed
C4AXBexchange 196 43.532 13.768 11.07
C4AXBexchangeBreciprocity 136 23.700 9.209 12.20
C4AXBexchangeAreciprocity 60 6.844 5.091 10.44
C4AXBreciprocity 11 0.942 0.993 10.13

dx.doi.org/10.1016/j.socnet.2013.01.004


Table 8
A multilevel ERGM for French cancer research elites.

Effects Estimates Standard errors

Laboratory collaboration network
Arc −3.831 0.556*

Reciprocity 1.679 0.381*

Two-path −0.079 0.029*

Isolates 2.017 0.760*

AinS(4.00) 0.640 0.268*

AoutS(4.00) 0.320 0.086*

AinS(2.00) −0.889 0.614
AT-T(2.00) 0.446 0.127*

Researcher advice network
Arc −4.084 0.118*

Reciprocity 3.313 0.212*

AT-T(2.00) 1.085 0.072*

AT-C(2.00) −0.384 0.068*

A2P-U(2.00) −0.071 0.020*

Laboratory collaboration and affiliation
AXS1Ain(2.00) 0.240 0.131
AXS1Aout(2.00) −0.324 0.129*

Researcher advice and affiliation
TXBXarc 1.958 0.275*

Cross level interactions
L3AXBin −0.006 0.018
L3AXBout −0.012 0.008
L3BXApath −0.003 0.010
L3AXBpath −0.051 0.015*

C4AXBentrainment 0.634 0.104*

C4AXBexchange 0.639 0.109*

C4AXBexchange reciprocal A −0.293 0.065*

C4AXBexchange reciprocal B −0.295 0.136*
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* indicates significant effect where the estimated effect exceeds twice the
tandard error in absolute value.

ross level exchange and various forms of cross level entrainment
ffects. These effects represent tendencies for researchers from col-
aborating laboratories to ask advice from each other. Evidently,
hese tendencies are much stronger than expected from the within
evel models. These poorly fitting statistics indicate that the cross
evel interaction parameters are required to provide good fit to the
etwork data.

.2.4. Model for the overall multilevel network
The model for the overall multilevel network is presented in

able 8. It has several sections including effects for both within level
etworks, interaction effects between the advice network and the
ffiliation network, interaction effects between the collaboration
etwork and the affiliation network, and the cross level interactions

nvolving all three networks. In this case, all 131 GOF statistics were
ess than 2.0 in absolute values, indicating a good fit to the observed
wo-level network on a very wide range of graph statistics.

We interpret this model by sections while keeping in mind that
ll parameters in the model are dependent on each other, hence
he interpretation of one particular section is always conditional
n the rest of the model. We start with the sections involving cross
evel network effects and then move on to the interpretations of
he within level effects. Comparing the changes in the within level
ffects with the models without cross level effects, we discuss the
mpact and importance of the cross level effects.

The Interaction effects between the laboratory collaborations
nd the affiliation network include alternating laboratory affiliation
tars with an incoming collaboration tie (AXS1Ain) and an outgo-
ng collaboration tie (AXS1Aout). Note that the AXS1Ain parameter
s not significant (defined here as an absolute value greater than
wice the size of the estimated standard error) but close to signifi-

ance. Its removal from the model leads to poor fit on the in-degree
istribution of the within level laboratory collaboration network.
aving the alternating affiliation star as part of the statistics explic-

tly models the laboratory with more than one researcher, which
are among the popular laboratories or the “big ponds” in the net-
work as described in Lazega et al. (2008). This positive estimate
suggests that bigger laboratories tended to receive more nomina-
tions as collaborators from other labs. However, in contrast, they
tended to nominate fewer collaborating labs, as indicated by the
negative and significant AXS1Aout parameter. This interpretation
makes empirical and theoretical sense, as the “big pond” labs might
be the dominant research centres that had good reputations and
more research resources that other labs were chasing, but they
themselves did not feel the same urgency to collaborate with other
laboratories in the same country.

The only significant interaction effect between the advice net-
work and the affiliation network in the model is a triangle:
researchers affiliated with the same laboratories seek advice from
each other (TXBXarc). Not surprisingly, such effect is positive and
strongly significant. From the model goodness of fit test, this effect,
together with other parameters, provide adequate fit to the recip-
rocated version of TXBXarc, or the TXBXreciprocity which were not
captured by the model without cross level effects.

The cross level interaction parameters involving all three
networks include the in-/out-degree assortativity effects rep-
resented by various forms of three-paths, and the cross level
entrainment and exchange effects represented by different four-
cycles. Only one of the three-path effects is significant, but
removing the non-significant three-paths made the model conver-
gence difficult. The negative and significant L3AXBpath parameter
estimate suggests there was an anti degree assortativity effect
between the laboratories’ in-degree and researchers’ out-degree. In
other words, the popularity of labs in the collaboration network and
expansiveness of researcher advice seeking are compensating each
other rather than forming a joint core-periphery structure. The neg-
ative L3AXBpath does not mean such a configuration does not exist
in the network. By combining the negative L3AXBpath effect with
the positive and significant closure parameter C4AXBexchange, we
see that L3AXBpath is more likely to exist within closure, which
means that researchers from labs who receive more collaboration
tend to seek advice from researchers from collaborating laborato-
ries but not from other researchers.

The different types of cross level four-cycle effects present
an interesting interpretation of the multilevel network struc-
ture. (Note that another possible cross level four-cycle parameter
(C4AXBreciprocity) was not included in the final model, as it was
not significant, and the current model fits the statistic well.) The
cross level entrainment and exchange four-cycle effects are both
positive, indicating a general co-occurrence of advice at one level
and collaboration at another, such that researchers within collabo-
rating laboratories were more likely to seek advice from each other.
This is consistent with the ‘fusional’ strategies described in Lazega
et al. (2008) where researchers only work within the boundaries
defined by their affiliated laboratories and the laboratories’ col-
laborators; or a tendency for researchers not to seek advice from
researchers affiliated with non-collaborating laboratories.

However, such co-occurrence was less likely to happen when
reciprocation occurs in either the collaboration network or the
advice network, as indicated by the negative and significant
(C4AXBexchange reciprocal A) and (C4AXBexchange reciprocal B)
parameters. Note that the reciprocity effects for both the labora-
tory and researcher within networks are strong and positive. But
these reciprocations are less likely to occur when cross-level clo-
sure is involved. As the reciprocal ties can be considered as strong
ties, we suggest a possible interpretation for these negative effects.
It is possible that a strong form of collaboration among laborato-

ries may result in shared knowledge and resources generally, so the
researchers no longer have to seek advice from one another in those
laboratories. On the other hand, reciprocal advice seeking among
researchers may be more likely to occur across non-collaborating

dx.doi.org/10.1016/j.socnet.2013.01.004
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aboratories, perhaps as they may have distinct but complementary
nowledge or skills, such that advice in rather different areas may
rovide mutual benefits (Lazega et al., 2011). This is also consis-
ent with the argument that the strong forms of fusional strategies
re not ideal for the researchers’ performance (Lazega et al.,
008).

The within level effects for the laboratory collaboration network
re largely consistent with the within level only model, as we have
he same parameter specifications and compatible scales on the
arameter values. Therefore, we may use the same interpretations
s previously.

For the within level researcher advice network, however, the
ultilevel model greatly simplified the previous specifications. No

tar parameters were required to capture the researcher degree-
istributions. We may now interpret the apparently multi-modal
r long tailed degree-distributions as largely an artefact of the cross
evel interactions. The interpretations of the positive and significant
T-T confirm that advice seeking in this system tended to happen

n clusters; together with the negative and significant generalized
xchange effect (AT-C), we see the advice network as locally hier-
rchical. The negative alternating-two-path (A2P-U) representing
hared advice seeking may also help shape the out-degree distri-
ution as it indicates that active advice seekers tended not to seek
dvice from common others.

In summary, the multilevel ERGM reveals some interesting
tructural features of the researcher multilevel network, and intu-
tive interpretations consistent with previous work are available.
ollaboration does take place in a clustered manner for both
esearchers and laboratories; advice seeking is stronger within lab-
ratories; and collaborating laboratories tend to have affiliated
esearchers seeking advice from one another; however, recipro-
ated or strong collaboration did not encourage advice exchange
etween researchers. More importantly, we see that some compli-
ated features of the within-level network structure are explained
olely by the cross-level interactions: in this case the degree distri-
ution of researcher advice-seeking.

. Conclusion

In this paper, we proposed a generalized data structure which
aptures both within-level and meso-level networks. The data
tructure is flexible, and accommodates most of the multilevel net-
ork studies to date. We proposed a new multilevel ERGM to model

his structure.
Based on the hierarchy of tie dependence assumptions as sum-

arized by Pattison et al. (2009) and Wang et al. (2013), we
ave formulated the general form of ERGMs for two-level network
ata, and proposed model specifications for both non-directed and
irected networks. They are designed to reveal the interdepen-
encies among the micro-, macro- and meso-level networks. Our
imulation studies demonstrated the properties of each of the pro-
osed configurations, and showed that even simple cross-level
ffects can create highly structured within-level networks. When
he cross-level effects are not included, the models are no differ-
nt from fitting three independent ERGMs, two for within-level
ne-mode networks, and one for the bipartite ties. Our empiri-
al example shows that these cross-level effects not only provide
etter fits to the data, but also simplified otherwise complicated
ithin-level models. By comparing the models with and without

he interaction effects, our example showed that an apparently
ulti-modal long-tailed degree distribution can be seen as an arte-
act of the dependence among micro-, macro- and meso-level ties.
Depending on the context and the research question, the defi-

ition of the levels in a multilevel network can be determined by
ither the different nature of the nodes, individuals and groups, for
example; or the classifications of nodes by their attributes such as
gender, occupation, and education. In the first instance, network
ties of different types may be defined for the nodes of different lev-
els, such as the example we presented in the paper. For the second
case where the levels are defined based on a nodal attribute, but the
same type of relation is defined for nodes within and cross different
categories. This is the type of data originally envisaged by Iacobucci
and Wasserman (1990) and Wasserman and Iacobucci (1991). The
research question is then based on the assumption that the network
effects are heterogeneous among nodes with different attributes.
In fact, any network data involving binary categorization of nodes
can be seen as a “two-level” network. For example, in a friendship
network context, a two-level network may be constructed by the
genders of the nodes assuming that friendship network processes
are different within and between genders. When more than two
categories are defined among a common set of nodes, we can ana-
lyze the data as “multilevel” networks assuming network processes
are different within and between categories. The ERGMs proposed
in this paper can be equally applied to both cases.

Multilevel data opens interesting possibilities for sampling. The
cluster sampling method, where one first samples units and then
samples within units, may be relevant to multilevel networks. We
cannot take a simple random sample of nodes in order to estimate a
network model for ties within units, but Handcock and Gile (2010)
and Pattison et al. (2011) have proposed conditional estimation
strategies for snowball sampled network data where ERGM param-
eters can be obtained based on a snowball sample of the (small or
large) network. More work needs to be done to consider bow best
such approaches may be applied to multilevel networks.

Future elaboration of the proposed multilevel ERGMs may
include social selection models (Robins et al., 2001a) and autol-
ogistic actor attribute models (ALAAMs) (Robins et al., 2001b;
Daraganova and Robins, 2013). Social selection models include
actor attributes as covariates, and allow the tests of how nodal
attributes may affect multilevel structure, for example, how indi-
viduals’ performance affect their network positions. ALAAMs for
multilevel networks on the other hand assume network struc-
tures are exogenous, and test how nodal attributes are affected by
individual’s multilevel network position; they may share similar
configurations or network statistics as in social selection models
but these are treated as exogenous.

Regardless of the forms of the possible models, multilevel
networks have more complicated dependencies among ties from
different levels. These interactions make the models and their inter-
pretations more complex. As there are almost unlimited number
of possible graph configurations, and no formal “step-wise” model
selection strategies, to find the best model for an empirical mul-
tilevel network will require theoretical guidance as well as model
fitting experience. We see the proposed models and examples pre-
sented in this article as the first steps in a full elaboration of an
ERGM approach to multilevel network analysis.
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Appendix.

A.1. Alternating stars and different �-values
To fit long-tailed degree distributions well, we may need to
include two or more star parameters with different � values.
We illustrate how different star parameters may be combined
in unipartite models to fit the degree distribution better. The
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Fig. 16. Simulation using alternating-stars with different �-values.
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Fig. 17. Simulation using models wi

lternating-star (AS) statistic uses geometric weighting parameter
�)5 on the graph degree-distribution. For a network with n nodes,
t is defined as

AS(x, �) =
n−1∑

k=2

(−1)k zSk(x)
�k−2

here zSk(x) is the number of stars of size k, and i+ is the degree of
ode i. Different �-values may yield different degree distributions.
rom experience, the alternating statistics with � = 2.0 (including
S, AT and A2P, etc.) generally provide robust model convergence.
owever, the converged model may still have difficulty in captur-

ng the actual degree- or two-path-distribution for the cases where
he distributions are heavy tailed. Hunter and Handcock (2006) pro-
osed methods for estimating � as a ratio parameter, although they
re computationally intensive in practice. Robins and Lusher (2013)
onducted some simulation studies to demonstrate how different
alues of lambda may result in different triangle and two-path
istributions in the cases of alternating triangles and alternating
wo-paths. Robins and Lusher (2013) also demonstrated how we

ay improve model GOF by including both the alternating star (AS)
nd the two-star parameters in the model. In our modelling exam-
les presented in this paper, obtaining excellent fit to the degree
istributions required the two-star parameter as well as two or
ore AS parameters with different �-values.
To illustrate model interpretation and the properties of AS with

ifferent � values, we present simulations on networks with 30
odes and a fixed density of 0.1. The AS parameter was set con-
tant at 1.0, but the �-values were changed from 2 to 16 in factors

f 2s. We collected every 10,000th sample from a simulation of
0,000,000 iterations which gave a distribution of 1000 graphs. For
ach different �-value, Fig. 16 presents an example graph from

5 The �-values for alternating-k-stars described here are equally applicable to
he geometrically weighted degree distribution as described in Hunter and Handcock
2006) which uses a ratio parameter ˛ = ln (�).
ltiple (alternating-)star parameters.

the simulated graph distribution along with a box plot of the
degree-distributions of the 1000 graphs. As the �-value increased
from 1 to 8, the range of the degree distributions increased from
the highest maximum degree of 11 (� = 1) to the highest maximum
degree of 23 (� = 8). The number of isolated nodes also increased
from around 3 to about 10. The degree distributions look continu-
ous (not multi-modal), and the tails become longer. With � = 16, the
degree distribution is more discontinuous with two modes, where
most graphs had two or three very high-degree nodes, with the rest
of the nodes having degrees below 5 with some variations. When �
equals infinity, which makes the alternating-star statistic equiva-
lent to the two-star statistic, the graph distribution is almost frozen
across the simulation, with two very high degree nodes. Based on
these observations, we may conclude that a positive AS parameter
with a greater � value is likely to create high-degree nodes or hubs
in a network. A greater � may capture long-tailed degree distribu-
tions with greater variances. However, when � is too big, the degree
distribution may become multi-modal and frozen.

Model specifications with two or more star parameters with dif-
ferent � values may be able to capture degree distributions that
are long-tailed, continuous (not two- or multi-modal), and hav-
ing some variations in both very high-degree nodes as well as low
degree nodes. While a positive two-star parameter, or a positive
AS parameter with a larger � value, creates high-degree hubs, neg-
ative alternating star parameters with smaller � values captures
nodes with relatively low degrees and prevents the simulation from
becoming frozen. Fig. 17 illustrates the effects of combining two or
more star parameters in a single model. As in previous simulations,
for networks with 30 nodes and a fixed density at 0.1, we fixed a
positive two-star parameter at 0.25 and a negative AS (� = 2) at −1.
The positive two-star generated graphs with a very high-degree
node connected to most of the other nodes in the network, while
the negative AS created some variability in the low degree nodes

(as compared to the frozen graph distribution generated only by
the positive two-star).

To reduce the degree of the hubs, we replace the positive two-
star parameter with an AS parameter with � = 4. The simulation

dx.doi.org/10.1016/j.socnet.2013.01.004
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enerated graph distributions with hubs having maximum degree
f 14. Compare the degree distribution to the simulation with only
ne positive AS parameter with � = 4, as shown in Fig. 16, the neg-
tive AS with � = 2 made the majority of nodes having low degrees
nd with little variation, while the positive AS with � = 4 made
ome high degree nodes possible. The decision about how many AS
arameters with different �-values should be included in a model
epends on the observed degree distribution. In some cases (as
emonstrated in our modelling example section), non-significant
S parameters are important for adequate fit to the data.
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