
HAL Id: hal-02186524
https://sciencespo.hal.science/hal-02186524

Submitted on 17 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

RTextTools: A Supervised Learning Package for Text
Classification

Timothy P. Jurka, Loren Collingwood, Amber E. Boydstun, Emiliano
Grossman, van Atteveldt Wouter

To cite this version:
Timothy P. Jurka, Loren Collingwood, Amber E. Boydstun, Emiliano Grossman, van Atteveldt
Wouter. RTextTools: A Supervised Learning Package for Text Classification. The R Journal, 2013, 5
(1), pp.6-12. �10.32614/rj-2013-001�. �hal-02186524�

https://sciencespo.hal.science/hal-02186524
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CONTRIBUTED RESEARCH ARTICLES 6

RTextTools: A Supervised Learning
Package for Text Classification
by Timothy P. Jurka, Loren Collingwood, Amber E. Boydstun, Emiliano Grossman, and Wouter van
Atteveldt

Abstract Social scientists have long hand-labeled texts to create datasets useful for studying topics
from congressional policymaking to media reporting. Many social scientists have begun to incorporate
machine learning into their toolkits. RTextTools was designed to make machine learning accessible
by providing a start-to-finish product in less than 10 steps. After installing RTextTools, the initial
step is to generate a document term matrix. Second, a container object is created, which holds all
the objects needed for further analysis. Third, users can use up to nine algorithms to train their data.
Fourth, the data are classified. Fifth, the classification is summarized. Sixth, functions are available for
performance evaluation. Seventh, ensemble agreement is conducted. Eighth, users can cross-validate
their data. Finally, users write their data to a spreadsheet, allowing for further manual coding if
required.

Introduction

The process of hand-labeling texts according to topic, tone, and other quantifiable variables has yielded
datasets offering insight into questions that span social science, such as the representation of citizen
priorities in national policymaking (Jones et al., 2009) and the effects of media framing on public
opinion (Baumgartner et al., 2008). This process of hand-labeling, known in the field as “manual
coding”, is highly time consuming. To address this challenge, many social scientists have begun to
incorporate machine learning into their toolkits. As computer scientists have long known, machine
learning has the potential to vastly reduce the amount of time researchers spend manually coding data.
Additionally, although machine learning cannot replicate the ability of a human coder to interpret the
nuances of a text in context, it does allow researchers to examine systematically both texts and coding
scheme performance in a way that humans cannot. Thus, the potential for heightened efficiency and
perspective make machine learning an attractive approach for social scientists both with and without
programming experience.

Yet despite the rising interest in machine learning and the existence of several packages in R, no
package incorporates a start-to-finish product that would be appealing to those social scientists and
other researchers without technical expertise in this area. We offer to fill this gap through RTextTools.
Using a variety of existing R packages, RTextTools is designed as a one-stop-shop for conducting
supervised learning with textual data. In this paper, we outline a nine-step process, discuss the core
functions of the program, and demonstrate the use of RTextTools with a working example.

The core philosophy driving RTextTools’ development is to create a package that is easy to use
for individuals with no prior R experience, yet flexible enough for power users to utilize advanced
techniques. Overall, RTextTools offers a comprehensive approach to text classification, by interfacing
with existing text pre-processing routines and machine learning algorithms and by providing new
analytics functions. While existing packages can be used to perform text preprocessing and machine
learning, respectively, no package combines these processes with analytical functions for evaluating
machine learning accuracy. In short, RTextTools expedites the text classification process: everything
from the installation process to training and classifying has been streamlined to make machine learning
with text data more accessible.

General workflow

A user starts by loading his or her data from an Access, CSV, Excel file, or series of text files using
the read_data() function. We use a small and randomized subset of the congressional bills database
constructed by Adler and Wilkerson (2004) for the running example offered here.1 We choose this
truncated dataset in order to minimize the amount of memory used, which can rapidly overwhelm a
computer when using large text corpora. Most users therefore should be able to reproduce the example.
However, the resulting predictions tend to improve (nonlinearly) with the size of the reference dataset,
meaning that our results here are not as good as they would be using the full congressional bills
dataset. Computers with at least 4GB of memory should be able to run RTextTools on medium to
large datasets (i.e., up to 30,000 texts) by using the three low-memory algorithms included: general

1http://www.congressionalbills.org/research.html

The R Journal Vol. 5/1, June ISSN 2073-4859

http://CRAN.R-project.org/package=RTextTools
http://www.congressionalbills.org/research.html

CONTRIBUTED RESEARCH ARTICLES 7

linearized models (Friedman et al., 2010) from the glmnet package, maximum entropy (Jurka, 2012)
from maxent, and support vector machines (Meyer et al., 2012) from e1071. For users with larger
datasets, we recommend a cloud computing service such as Amazon EC2.

1. Creating a matrix

First, we load our data with data(USCongress), and use the tm package (Feinerer et al., 2008) to create
a document-term matrix. The USCongress dataset comes with RTextTools and hence the function data
is relevant only to data emanating from R packages. Researchers with data in Access, CSV, Excel, or
text files will want to load data via the read_data() function. Several pre-processing options from the
tm package are available at this stage, including stripping whitespace, removing sparse terms, word
stemming, and stopword removal for several languages.2 We want readers to be able to reproduce our
example, so we set removeSparseTerms to .998, which vastly reduces the size of the document-term
matrix, although it may also reduce accuracy in real-world applications. Users should consult Feinerer
et al. (2008) to take full advantage of preprocessing possibilities. Finally, note that the text column can
be encapsulated in a cbind() data frame, which allows the user to perform supervised learning on
multiple columns if necessary.

data(USCongress)

CREATE THE DOCUMENT-TERM MATRIX
doc_matrix <- create_matrix(USCongress$text, language="english", removeNumbers=TRUE,

stemWords=TRUE, removeSparseTerms=.998)

2. Creating a container

The matrix is then partitioned into a container, which is essentially a list of objects that will be fed
to the machine learning algorithms in the next step. The output is of class matrix_container and
includes separate train and test sparse matrices, corresponding vectors of train and test codes, and a
character vector of term label names. Looking at the example below, doc_matrix is the document term
matrix created in the previous step, and USCongress$major is a vector of document labels taken from
the USCongress dataset. trainSize and testSize indicate which documents to put into the training
set and test set, respectively. The first 4,000 documents will be used to train the machine learning
model, and the last 449 documents will be set aside to test the model. In principle, users do not have
to store both documents and labels in a single dataset, although it greatly simplifies the process. So
long as the documents correspond to the document labels via the trainSize and testSize parameters,
create_container() will work properly. Finally, the virgin parameter is set to FALSE because we are
still in the evaluation stage and not yet ready to classify virgin documents.

container <- create_container(doc_matrix, USCongress$major, trainSize=1:4000,
testSize=4001:4449, virgin=FALSE)

From this point, users pass the container into every subsequent function. An ensemble of up to
nine algorithms can be trained and classified.

3. Training models

The train_model() function takes each algorithm, one by one, to produce an object passable to
classify_model(). A convenience train_models() function trains all models at once by passing in a
vector of model requests.3 The syntax below demonstrates model creation for all nine algorithms. For
expediency, users replicating this analysis may want to use just the three low-memory algorithms:
support vector machine (Meyer et al., 2012), glmnet (Friedman et al., 2010), and maximum entropy
(Jurka, 2012).4 The other six algorithms include: scaled linear discriminant analysis (slda) and bagging
(Peters and Hothorn, 2012) from ipred; boosting (Tuszynski, 2012) from caTools; random forest (Liaw
and Wiener, 2002) from randomForest; neural networks (Venables and Ripley, 2002) from nnet; and
classification or regression tree (Ripley., 2012) from tree. Please see the aforementioned references to

2Languages include Danish, Dutch, English, Finnish, French, German, Italian, Norwegian, Portuguese, Russian,
Spanish, and Swedish.

3classify_models() is the corollary to train_models().
4Training and classification time may take a few hours for all 9 algorithms, compared to a few minutes for the

low memory algorithms.

The R Journal Vol. 5/1, June ISSN 2073-4859

http://CRAN.R-project.org/package=glmnet
http://CRAN.R-project.org/package=maxent
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=ipred
http://CRAN.R-project.org/package=caTools
http://CRAN.R-project.org/package=randomForest
http://CRAN.R-project.org/package=nnet
http://CRAN.R-project.org/package=tree

CONTRIBUTED RESEARCH ARTICLES 8

find out more about the specifics of these algorithms and the packages from which they originate.
Finally, additional arguments can be passed to train_model() via the ... argument.

SVM <- train_model(container,"SVM")
GLMNET <- train_model(container,"GLMNET")
MAXENT <- train_model(container,"MAXENT")
SLDA <- train_model(container,"SLDA")
BOOSTING <- train_model(container,"BOOSTING")
BAGGING <- train_model(container,"BAGGING")
RF <- train_model(container,"RF")
NNET <- train_model(container,"NNET")
TREE <- train_model(container,"TREE")

4. Classifying data using trained models

The functions classify_model() and classify_models() use the same syntax as train_model(). Each
model created in the previous step is passed on to classify_model(), which then returns the classified
data.

SVM_CLASSIFY <- classify_model(container, SVM)
GLMNET_CLASSIFY <- classify_model(container, GLMNET)
MAXENT_CLASSIFY <- classify_model(container, MAXENT)
SLDA_CLASSIFY <- classify_model(container, SLDA)
BOOSTING_CLASSIFY <- classify_model(container, BOOSTING)
BAGGING_CLASSIFY <- classify_model(container, BAGGING)
RF_CLASSIFY <- classify_model(container, RF)
NNET_CLASSIFY <- classify_model(container, NNET)
TREE_CLASSIFY <- classify_model(container, TREE)

5. Analytics

The most crucial step during the machine learning process is interpreting the results, and RTextTools
provides a function called create_analytics() to help users understand the classification of their
test set data. The function returns a container with four different summaries: by label (e.g., topic), by
algorithm, by document, and an ensemble summary.

Each summary’s contents will differ depending on whether the virgin flag was set to TRUE or
FALSE in the create_container() function in Step 3. For example, when the virgin flag is set to FALSE,
indicating that all data in the training and testing sets have corresponding labels, create_analytics()
will check the results of the learning algorithms against the true values to determine the accuracy of
the process. However, if the virgin flag is set to TRUE, indicating that the testing set is unclassified data
with no known true values, create_analytics() will return as much information as possible without
comparing each predicted value to its true label.

The label summary provides statistics for each unique label in the classified data (e.g., each topic
category). This includes the number of documents that were manually coded with that unique la-
bel (NUM_MANUALLY_CODED), the number of document sthat were coded using the ensemble method
(NUM_CONSENSUS_CODED), the number of documents that were coded using the probability method
(NUM_PROBABILITY_CODED), the rate of over- or under-coding with each method (PCT_CONSENSUS_CODED
and PCT_PROBABILITY_CODED), and the percentage that were correctly coded using either the ensemble
method or the probability method (PCT_CORRECTLY_CODED_CONSENSUS or
PCT_CORRECTLY_CODED_PROBABILITY, respectively).

The algorithm summary provides a breakdown of each algorithm’s performance for each unique
label in the classified data. This includes metrics such as precision, recall, f-scores, and the accuracy of
each algorithm’s results as compared to the true data.5

The document summary provides all the raw data available for each document. By docu-
ment, it displays each algorithm’s prediction (ALGORITHM_LABEL), the algorithm’s probability score
(ALGORITHM_PROB), the number of algorithms that agreed on the same label (CONSENSUS_AGREE), which
algorithm had the highest probability score for its prediction (PROBABILITY_CODE), and the original

5If a dataset is small (such as the present example), there is a chance that some f-score calculations will report
NaN for some labels. This happens because not all labels were classified by a given algorithm (e.g., no cases were
given a 5). In most real-world datasets, this will not happen.

The R Journal Vol. 5/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 9

label of the document (MANUAL_CODE). Finally, the create_analytics() function outputs information
pertaining to ensemble analysis, which is discussed in its own section.

Summary and print methods are available for create_analytics(), but users can also store each
summary in separate data frames for further analysis or writing to disk. Parameters include the
container object and a matrix or cbind() object of classified results.6

analytics <- create_analytics(container,
cbind(SVM_CLASSIFY, SLDA_CLASSIFY,

BOOSTING_CLASSIFY, BAGGING_CLASSIFY,
RF_CLASSIFY, GLMNET_CLASSIFY,
NNET_CLASSIFY, TREE_CLASSIFY,
MAXENT_CLASSIFY))

summary(analytics)

CREATE THE data.frame SUMMARIES
topic_summary <- analytics@label_summary
alg_summary <- analytics@algorithm_summary
ens_summary <-analytics@ensemble_summary
doc_summary <- analytics@document_summary

6. Testing algorithm accuracy

While there are many techniques used to evaluate algorithmic performance (McLaughlin and Her-
locker, 2004), the summary call to create_analytics() produces precision, recall and f-scores for
analyzing algorithmic performance at the aggregate level. Precision refers to how often a case the
algorithm predicts as belonging to a class actually belongs to that class. For example, in the context
of the USCongress data, precision tells us what proportion of bills an algorithm deems to be about
defense are actually about defense (based on the gold standard of human-assigned labels). In contrast,
recall refers to the proportion of bills in a class the algorithm correctly assigns to that class. In other
words, what percentage of actual defense bills did the algorithm correctly classify? F-scores produce a
weighted average of both precision and recall, where the highest level of performance is equal to 1
and the lowest 0 (Sokolova et al., 2006).

Users can quickly compare algorithm performance. For instance, our working example shows
that the SVM, glmnet, maximum entropy, random forest, SLDA, and boosting vastly outperform the
other algorithms in terms of f-scores, precision, and recall. For instance, SVM’s f-score is 0.65 whereas
SLDA’s f-score is 0.63, essentially no difference. Thus, if analysts wish to only use one algorithm, any
of these top algorithms will produce comparable results. Based on these results, Bagging, Tree, and
NNET should not be used singly.7

Algorithm Precision Recall F-score

SVM 0.67 0.65 0.65
Glmnet 0.68 0.64 0.64
SLDA 0.64 0.63 0.63
Random Forest 0.68 0.62 0.63
Maxent 0.60 0.62 0.60
Boosting 0.65 0.59 0.59
Bagging 0.52 0.39 0.39
Tree 0.20 0.22 0.18
NNET 0.07 0.12 0.08

Table 1: Overall algorithm precision, recall, and f-scores.

6Users who conduct the analysis with the three low-memory algorithms will want to slightly modify the
following code.

7Note that these results are specific to these data. The overall sample size is somewhat small. Bagging, Tree, and
NNET perform well with more data.

The R Journal Vol. 5/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 10

7. Ensemble agreement

We recommend ensemble (consensus) agreement to enhance labeling accuracy. Ensemble agreement
simply refers to whether multiple algorithms make the same prediction concerning the class of an
event (i.e., did SVM and maximum entropy assign the same label to the text?). Using a four-ensemble
agreement approach, Collingwood and Wilkerson (2012) found that when four of their algorithms
agree on the label of a textual document, the machine label matches the human label over 90% of the
time. The rate is just 45% when only two algorithms agree on the text label.

RTextTools includes create_ensembleSummary(), which calculates both recall accuracy and cover-
age for n ensemble agreement. Coverage simply refers to the percentage of documents that meet the
recall accuracy threshold. For instance, say we find that when seven algorithms agree on the label
of a bill, our overall accuracy is 90% (when checked against our true values). Then, let’s say, we find
that only 20% of our bills meet that criterion. If we have 10 bills and only two bills meet the seven
ensemble agreement threshold, then our coverage is 20%. Mathematically, if k represents the percent
of cases that meet the ensemble threshold, and n represents total cases, coverage is calculated in the
following way:

Coverage =
k
n

(1)

Users can test their accuracy using a variety of ensemble cut-points, which is demonstrated below.
Table 2 reports the coverage and recall accuracy for different levels of ensemble agreement. The general
trend is for coverage to decrease while recall increases. For example, just 11% of the congressional bills
in our data have nine algorithms that agree. However, recall accuracy is 100% for those bills when the
9 algorithms do agree. Considering that 90% is often social scientists’ inter-coder reliability standard,
one may be comfortable using a 6 ensemble agreement with these data because we label 66% of the
data with accuracy at 90%.8

create_ensembleSummary(analytics@document_summary)

Coverage Recall

n >= 2 1.00 0.77
n >= 3 0.98 0.78
n >= 4 0.90 0.82
n >= 5 0.78 0.87
n >= 6 0.66 0.90
n >= 7 0.45 0.94
n >= 8 0.29 0.96
n >= 9 0.11 1.00

Table 2: Ensemble agreement coverage and recall.

8. Cross validation

Users may use n-fold cross validation to calculate the accuracy of each algorithm on their dataset and
determine which algorithms to use in their ensemble. RTextTools provides a convenient
cross_validate() function to perform n-fold cross validation. Note that when deciding the ap-
propriate n-fold it is important to consider the total sample size so that enough data are in both the
train and test sets to produce useful results.

SVM <- cross_validate(container, 4, "SVM")
GLMNET <- cross_validate(container, 4, "GLMNET")
MAXENT <- cross_validate(container, 4, "MAXENT")
SLDA <- cross_validate(container, 4, "SLDA")
BAGGING <- cross_validate(container, 4, "BAGGING")
BOOSTING <- cross_validate(container, 4, "BOOSTING")

8This result is excellent, given that the training data consist of just a few thousand observations.

The R Journal Vol. 5/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 11

RF <- cross_validate(container, 4, "RF")
NNET <- cross_validate(container, 4, "NNET")
TREE <- cross_validate(container, 4, "TREE")

9. Exporting data

Finally, some users may want to write out the newly labeled data for continued manual labeling on
texts that do not achieve high enough accuracy requirements during ensemble agreement. Researchers
can then have human coders verify and label these data to improve accuracy. In this case, the document
summary object generated from create_analytics can be easily exported to a CSV file.

write.csv(analytics@document_summary, "DocumentSummary.csv")

Conclusion

Although a user can get started with RTextTools in less than ten steps, many more options are available
that help to remove noise, refine trained models, and ultimately improve accuracy. If you want more
control over your data, please refer to the documentation bundled with the package. Moreover, we
hope that the package will become increasingly useful and flexible over time as advanced users develop
add-on functions. RTextTools is completely open-source, and a link to the source code repository as
well as a host of other information can be found at the project’s website – http://www.rtexttools.com.

Bibliography

E. S. Adler and J. Wilkerson. Congressional Bills Project. URL http://congressionalbills.org/, 2004.
[p6]

F. Baumgartner, S. De Boef, and A. Boydstun. The Decline of the Death Penalty and the Discovery of
Innocence. Cambridge University Press, 2008. [p6]

L. Collingwood and J. Wilkerson. Tradeoffs in accuracy and efficiency in supervised learning methods.
Journal of Information Technology & Politics, 9(3):298–318, 2012. [p10]

I. Feinerer, K. Hornik, and D. Meyer. Text mining infrastructure in R. Journal of Statistical Software, 25
(5):1–54, 2008. [p7]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1, 2010. [p7]

B. Jones, H. Larsen-Price, and J. Wilkerson. Representation and American governing institutions. The
Journal of Politics, 71(01):277–290, 2009. [p6]

T. P. Jurka. maxent: An R package for low-memory multinomial logistic regression with support for
semi-automated text classification. The R Journal, 4(1):56–59, June 2012. [p7]

A. Liaw and M. Wiener. Classification and regression by randomForest. R News, 2(3):18–22, 2002. [p7]

M. McLaughlin and J. Herlocker. A collaborative filtering algorithm and evaluation metric that
accurately model the user experience. In Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 329–336. ACM, 2004. [p9]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc Functions of the
Department of Statistics (e1071), TU Wien, 2012. URL http://CRAN.R-project.org/package=e1071.
R package version 1.6-1. [p7]

A. Peters and T. Hothorn. ipred: Improved Predictors, 2012. URL http://CRAN.R-project.org/package=
ipred. R package version 0.8-13. [p7]

B. Ripley. tree: Classification and Regression Trees, 2012. URL http://CRAN.R-project.org/package=
tree. R package version 1.0-31. [p7]

M. Sokolova, N. Japkowicz, and S. Szpakowicz. Beyond accuracy, F-score and ROC: a family of
discriminant measures for performance evaluation. In AI 2006: Advances in Artificial Intelligence,
pages 1015–1021, Springer, 2006. [p9]

The R Journal Vol. 5/1, June ISSN 2073-4859

http://www.rtexttools.com
http://congressionalbills.org/
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=ipred
http://CRAN.R-project.org/package=ipred
http://CRAN.R-project.org/package=tree
http://CRAN.R-project.org/package=tree

CONTRIBUTED RESEARCH ARTICLES 12

J. Tuszynski. caTools: Tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc., 2012. URL http:
//CRAN.R-project.org/package=caTools. R package version 1.13. [p7]

W. Venables and B. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition, 2002.
[p7]

Timothy P. Jurka
Department of Political Science
University of California, Davis
One Shields Avenue
Davis, CA 95616
USA
tpjurka@ucdavis.edu

Loren Collingwood
Department of Political Science
University of California, Riverside
900 University Avenue
Riverside, CA 92521
USA
loren.collingwood@ucr.edu

Amber E. Boydstun
Department of Political Science
University of California, Davis
One Shields Avenue
Davis, CA 95616
USA
aboydstun@ucdavis.edu

Emiliano Grossman
Sciences Po /CEE
28, rue des Saints-Pères
75007 Paris
France
emiliano.grossman@sciences-po.fr

Wouter van Atteveldt
Communication Science Department
Vrije Universiteit
de Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
wouter@vanatteveldt.com

The R Journal Vol. 5/1, June ISSN 2073-4859

http://CRAN.R-project.org/package=caTools
http://CRAN.R-project.org/package=caTools
mailto:tpjurka@ucdavis.edu
mailto:loren.collingwood@ucr.edu
mailto:aboydstun@ucdavis.edu
mailto:emiliano.grossman@sciences-po.fr
mailto:wouter@vanatteveldt.com

