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Abstract

An alternative voting scheme is proposed to fill the democratic
gap between a president elected democratically via universal suffrage
(deterministic outcome, the actual majority decides), and a president
elected by one person randomly selected from the population (prob-
abilistic outcome depending on respective supports). Indeed, moving
from one voting agent to a group of r randomly selected voting agents,
reduces the probabilistic character of the outcome. Accordingly, build-
ing r such groups, each one electing its president (elementary bricks),
to constitute a group of the groups with the r local presidents electing
a higher-level president, does reduce further the outcome probabilistic
aspect. The process is then repeated n times to reach a bottom-up
pyramidal structure with n levels, rn−1 elementary bricks at the bot-
tom and a president at the top. Agents at the bottom are randomly
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selected but higher-level presidents are all designated according to the
respective local majorities within the groups which elect them. At the
top of the hierarchy the president is still elected with a probability
but the distance from a deterministic outcome reduces quickly with
increasing n. At a critical value nc,r the outcome turns deterministic
recovering the same result a universal suffrage would yield. This al-
ternative hierarchical scheme introduces several social advantages like
the distribution of local power to the competing minority, which thus
makes the structure more resilient, yet preserving the presidency al-
location to the actual majority. It also produces an area around fifty
percent for which the president is elected with an almost equiprobabil-
ity slightly biased in favor of the actual majority. However, our results
reveal the existence of a severe geometric vulnerability to lobbying. It
is shown that a tiny lobbying group is able to kill the democratic
balance by seizing the presidency democratically. It is sufficient to
complete a correlated distribution of a few agents at the hierarchy
bottom. Moreover, at the present stage, identifying an actual killing
distribution is not feasible, which sheds a disturbing light on the dev-
astating effect geometric lobbying can have on democratic hierarchical
institutions.

Keywords: Democratic voting, bottom-up hierarchies, lobbying, killing
geometry, democratic vulnerability

1 Introduction

1.1 About sociophysics

Sociophysics aims at a description of social and political behaviors using
concepts and techniques from statistical physics. It should be stressed that
it is neither a metaphoric description nor a biunique mapping of models from
physics to social sciences. More precisely it is the physicist’s approach which
has to be implemented in tackling a social objet having in mind the way
physicists dealt with the puzzles of inanimate matter in bulk to reach the
powerful today accomplishments of statistical physics,[2].

The instrumental key to implement a successful sociophysics modeling is
to build specific models using tools and concepts from the physics of disorder.
To transpose a model allocating social meaning to the corresponding physical
variables may be a first step but should not be the last one. At some point

2



the social model must depart from its physical counterpart,[1]. That is the
methodology I have been advocating and pushing forwards since the late
seventies,[2].

Is is instructive to remind that in earlier eighties the physicist community
was rather hostile to the new emerging field of sociophysics,[3]. I was rather
lonely trying to convince my physicist colleagues focusing on the contradic-
tory duality of their situation with on the one hand, a totally closed horizon
in terms of professional opportunities, and on the other hand, the incredi-
bility powerful new tools they had mastered,[4, 5, 6]. In parallel I started to
formalize my first contributions to the field publishing a series of innovative
and founding papers,[7, 8, 9].

Thirty years latter sociophysics, and more generally the formal modeling
of social behavior, has became an active field of research among physicists,[10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. With the
development of multi-agent technics computer scientists are now joining the
physicists quite naturally along social simulation,[28, 29]. More unexpected
has been the new trend among mathematicians who started to get interested
in sociophysics, uncovering new families of problems appropriate for math-
ematical investigation, e.g., this special issue,[30, 31]. Beside a few excep-
tions, social scientists are still very scarce to get involved in sociophysics,[32].
However, time has come to confront sociophysical models to social sciences.
Along this necessity, in 2013 I have joined the CEVIPOF, Centre for Political
Research at Sciences Po, a leading social science institution in Paris.

1.2 Randomness and threshold dynamics

Most sociophysical opinion models are found to obey threshold dynamics with
tipping points and attractors. The update of agents is implemented using
random selection and local rules. Depending on the model parameters and
the diversity of agents, tipping points are often not symmetrical with respect
to the competing choices. They can be found located at values as low as
15% and as high as 85% in case of two competing choices,[33]. However,
although the democratic balance may be heavily broken along one state, this
very state still needs to get an initial support above the actual tipping point
to invade the whole population. Randomness in the selection of agents is a
key ingredient of these threshold dynamics.

However in this paper I show that threshold-like geometrical structures
display the possibility for a tiny number of agents to democratically seize
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the top leadership with certaintly, despite the existence of a tipping point to
win. To bypass the threshold requirement demands to achieve a correlated
geometrical nesting among these few agents.

To illustrate this process I propose an alternative voting scheme to fill
the democratic gap between a president elected democratically via universal
suffrage and a president elected by one person randomly selected from the
population. The outcome is deterministic in the first case with the actual
majority within the whole population deciding on the president. Knowing
the actual supports for the respective competing candidates allows to predict
with certainty the voting outcome. It is only because these supports are not
know precisely, even if polls can indicate good estimates at a given time, that
the vote itself must take place in order to find out their respective values and
thus the corresponding winner. On the contrary, the second case yields by
definition a probabilistic outcome. Even knowing before end the different
supports would not allow to foresee the actual outcome. Only the actual
measure reveals the winner.

More precisely, for two competing candidates A and B with respective
supports p0 and (1− p0), universal suffrage leads with certainty to president
A when p0 > 1

2
and to president B otherwise (p0 < 1

2
). However a one

person voting randomly selected from the entire population yields president
A with probability p0 and president B with probability (1− p0). Therefore,
to move from one voting agent to a group of r randomly selected voting
agents, reduces the probabilistic character of the outcome. The new outcome
probability p1 arises from all configurations of r agents with a majority of A
agents satisfying p1 > p0 when p0 >

1
2

and p1 < p0 for p0 <
1
2
.

This result hints at gathering together r such groups, denoted elementary
bricks, to have their respective presidents to elect a higher level president with
a probability p2 > p1 > p0 when p0 >

1
2

and p2 < p1 < p0 for p0 <
1
2
, thus

reducing once more the outcome probabilistic aspect. Repeating the process
n times ends up in the building of a bottom-up pyramidal structure with n
levels, rn−1 elementary bricks at the bottom and a president at the top.

Although agents are randomly selected at the bottom, higher-level presi-
dents are all designated with certainty according to the respective local ma-
jorities within the groups which elect them. However, the hierarchy top pres-
ident outcome is still given by a probability pr,n to account for all possible
configurations of the rn agents. Nevertheless, the distance from a determinis-
tic outcome reduces quickly with increasing n. Indeed, at a critical value nc,r
the outcome turns deterministic recovering the same result a universal suf-
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frage would give with pnc,r ≈ 1 for p0 >
1
2

and pnc,r ≈ 0 for p0 <
1
2
,[35, 36, 37].

This alternative hierarchical scheme introduces several social advantages
like the distribution of local power to the competing minority, which thus
makes the structure more resilient, yet preserving the presidency allocation
to the actual majority. It also produces an area around fifty percent for
which the president is elected with an almost equiprobability slightly biased
in favor of the actual majority, thus avoiding hung election controversies,[38].

However, our results reveal the existence of a severe geometric vulner-
ability of these democratic bottom-up structures to lobbying. It is found
that a tiny lobbying group is able to kill the democratic balance by seizing
the presidency democratically from the occupation of a few targeted bottom
slots. It is sufficient to complete a correlated distribution of a few agents
at the hierarchy bottom to reach the last level with certainty. Moreover, at
the present stage, identifying an actual killing distribution is not feasible,
which sheds a disturbing light on the devastating effect geometric lobbying
can have on democratic hierarchical institutions.

1.3 Outline

The rest of the paper is organized as follows. Next Section analyzes the r
agent group voting election outcome when moving gradually from one agent
to the entire population. Third Section investigates the process of circum-
venting the probabilistic outcome of the one voting group by building hierar-
chies. Conditions to recover a deterministic outcome are outlined in Section
four. The existence of rare antidemocratic bottom configurations is studied
in the fifth Section. The outcome of a hierarchy with n levels and bricks
of size r is compared to the one group voting which includes rn agents in
Section six. Section seven shows how to design killing geometries from the
identification of rare antidemocratic configurations. The impossibility to de-
tect an on going geometrical lobbying is discussed in Section 8 while last
Section contains some conclusion.

2 Randomness versus probability for presi-

dential one group voting elections

Consider a population of N agents, each one supporting either one of two
competing political orientations A or B with respective proportions p0 and
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1 − p0. Although those proportions are not known they can be estimated
at a given time more or less precisely using polls. While a president can be
elected directly by the whole population using general elections, we address
the question of alternative democratic elective schemes. However using ran-
domly selected subsets of the population instead of a direct election shifts
automatically the deterministic character of the election, the actual major-
ity wins, into a probabilistic outcome driven by the random selection of the
involved voting agents.

2.1 The presidential total group voting election

A direct general election with all agents voting yields a deterministic out-
come. A A president is elected when p0 > 1

2
and the president is B for

p0 <
1
2
. It embodies the basic axiom of democratic voting where the pres-

ident is elected by the current majority. It corresponds to the so called
universal suffrage presidential election.

At this level we are considering a turnout of 100%. The outcome associ-
ated probability p1 is a step function Pall as

p1 ≡ Pall(p0) =

{
1 if p0 > 1/2
0 if p0 < 1/2.

(1)

as exhibited in Figure (1). It is total group voting where the group incorpo-
rates the whole population as explained in Figure (2).

Here we have neither randomness nor probability. The unique and essen-
tial unknown being the actual value of p0.

2.2 The presidential one person group voting election

At the opposite side of a total group voting one could consider a minimum
group voting where one agent is selected randomly and votes for the presi-
dent according to its own orientation either A or B. The outcome associated
probability p1 is a straight line P1 as seen in Figure (3) with

p1 ≡ P1(p0) = p0 (2)

which is a probabilistic outcome.
We now have both randomness and probability, the actual value of p0

being still unknown. However, in case p0 is known, the outcome is still
probabilistic contrary to the total group voting election.
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Figure 1: The whole population voting step function (Eq. (1)). The result is
deterministic, either yes or no depending on the density p0 of A supporters.
When p0 >

1
2

an A is elected against a B for p0 <
1
2
.
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Figure 2: The result for one vote in favor of A from a group which includes
the whole population with a density p0 of A supporters and (1 − p0) for B.
The result is deterministic, either yes or no depending on p0.
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Figure 3: The result for one vote in favor of A from a one agent randomly
selected from the population (straight diagonal line) and from a group of
three agents randomly selected (curved line) from a population with a density
p0 of A supporters and (1−p0) for B. The result is now probabilistic in both
case. For the one agent group p1 = p0 while for the 3 agent group p1 < p0
when p0 <

1
2

while p1 > p0 for p0 >
1
2
.
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2.3 The presidential three person group voting elec-
tion

Between above two extreme cases including either the full population or one
single agent we can study the step by step construction of the total group.
First step is to move from the one person group up to a three person group.
Odd sizes are required to ensure the existence of a majority within the voting
group. However, even sizes can be included provided eventual ties are broken
randomly with equal probability among A and B. When three agents are
randomly chosen from the population to elect the president (Fig. (4)) p1
is given by a degree 3 polynomial function. A local A majority is given by
either {3A, 0B} or {2A, 1B} yielding the probabilistic function

p1 ≡ P3(p0) = p30 + 3p20(1− p0), (3)

shown in Fig. (3). While Eq. (1) produces always a deterministic voting
outcome in favor of the current majority, using Eq. (3) turns the process
probabilistic for the whole range 0 < p0 < 1 (Fig. (5)). At p0 = 0 and p0 = 1
the outcome is trivially deterministic.

While p0 = 0.100 yields the probability of p1 = 0.028 to win the pres-
idency, which is a rather improbable event, p0 = 0.300 gives p1 = 0.216,
which is a likely event. However, a majority of 70% has 78% to win the elec-
tion. A short majority at 55%, gives only 58% to get the presidency while
an advantage of 5% is huge in democratic societies.

Closer to p0 = 0.500 the voting outcome becomes equivalent to the flip-
ping of a slightly imperfect coin. The coin bias being at the benefit of the
actual majority. For instance p0 = 0.520 wins only with p1 = 0.530 at con-
trast to the 100% from total group voting. The closer to 50% the more
equiprobable is the outcome with a high volatility in the actual selection of
the three agents.

In contrast, large differences like 90% versus 10% makes the majority to
win at 97%, which is almost independent of the choices of the three voting
agents in the sense that they are all likely to belong to the majority.

As for the one person group voting both randomness and probability are
present no matter if the the actual value of p0 is known or not.
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Figure 4: Three agents are picked randomly from the population either A or
B. The randomly selected group of 3 agents elects the president.
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Figure 5: The result for one vote in favor of A from a group of three agents
picked randomly from a population with a density p0 of A supporters and
(1− p0) for B. The result is probabilistic.
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2.4 The presidential r person group voting election

To preserve the current democratic balance the instrumental question is to
ensure that the local majority within the selected group of r agents is identi-
cal to the overall majority within the full population. We have seen that large
differences in respective supports for A and B reduce the statistical fluctu-
ations in the selection of the three agents. Configurations which thwart the
expected democratic balance with the current minority winning the election
are very improbable.

At the same time small differences in respective supports is highly en-
hanced using three person group voting. In this case, statistical fluctuations
associated to the random selection of three agents are amplified and to have
a minority president becomes more likely.

From above size three group results we see that having a group of three
agents instead of one reduces the distance to the deterministic outcome,
which corresponds to the total group voting. If p0 < 1

2
we get p1 < p0,

which means a value closer to zero, the associated democratic outcome. By
symmetry, for p0 >

1
2

we get p1 > p0, which means a value closer to one, the
corresponding democratic outcome.

It is thus interesting to study more quantitatively the connection be-
tween fluctuations, group sizes and democratic balance while going from the
minimum size group with one single agent up to the maximum size group
which includes the whole population. To evaluate the effect of the size voting
group on the amplitude of the voting fluctuations given by the distance of
p1 to 100%, we consider the general r person group voting case with the r
agents being still randomly selected from the population.

A local majority is achieved with configurations {rA, 0B}, {(r−1)A, 1B},
{(r − 2)A, 2B}... , {( r+1

2
)A, r−1

2
)B}. Accordingly, the corresponding prob-

ability p1 = Pr(p0) to have an A elected by a group of r agents randomly
selected from the population writes

p1 = Pr(p0) ≡
r∑

m= r+1
2

(
r

m

)
pm0 (1− p0)r−m, (4)

where
(
r
m

)
≡ r!

m!(r−m)!
is a binomial coefficient.

The function Pr(p0) allows to estimate quantitatively the discrepancy be-
tween the outcome of an election using Pr versus Pall, which always yields a
deterministic result. Voting outcomes associated to the values r = 5, 15, 35, 115, 1115
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are shown in Figure (6) using Eq. (4). As seen from the Figure, increasing
the value of r reduces the range of value of p0 which yields a probabilistic
outcome with a large ranges of p0 for which a quasi-determinisitc outcome is
obtained.

For instance p0 = 0.300 yields p1 = 0.163 for a group of 5 agents against
p1 = 0.216 for the former case of 3 agents. This value falls down to p1 = 0.006
for a group size r = 35 and reaches p1 = 0.004 already at a size r = 39.
Rounding at two digits we can state that for a population of any size with
two competing orientations with supports at respectively 30% and 70% a
randomly selected group of only 39 agents yields the same outcome of electing
a candidate from the majority of the full population, which could include
millions of people.

The single random group voting can thus substitute itself to the total
group voting provided the group size is tuned to recover a deterministic
result. The problem being that an increase of support at the benefit of the
minority as to be damped by increasing the voting group size (Fig. 7).

Table (1) shows the various values of p1 obtained for respectively p0 =
0.100, 0.200, 0.300, 0.400, 0.450, 0.470, 0.490, 0.500, 0.510, 0.530, 0.550, 0.600,
0.700, 0.800, 0.900 using for each value r = 5, 15, 35, 115, 1115, all. In the
range p0 < 0.47 or p0 > 0.53, the r = all result is always recovered. When
0.47 < p0 < 0.53 the size r = 1115 is not sufficient to overcome the fluc-
tuations. However larger size group will do as for instance p0 = 0.470 at
r = 2000 yielding p1 = 0.004.

2.5 The even size group voting election

Even sizes can also be included in the one group voting election. But to
ensure a president is always elected preserving he democratic majority rule,
one way is to break randomly eventual ties with equal probability at the
benefit of A and B. Indeed with such a balanced tie break a group of even
size r = 2l is identical to an odd size group with r = 2l− 1 as demonstrated
below.

For any size r both odd and even the voting function Pr from Eq. (4) has
to reformulated as

p1 = Pr(p0) ≡
r∑

m=N [ r
2
]

(
r

m

)
pm0 (1− p0)r−m +kδ

{
r

2
−N

[
r

2

]}(
r
r
2

)
p

r
2
0 (1− p0)

r
2 ,

(5)
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Figure 6: Five different functions Pr(p0) are shown for r = 5, 15, 35, 115, 1115.
While the outcomes stay probabilistic for some range of p0 they turn deter-
ministic elsewhere. Increasing the value of r reduces the range of value of p0
which yields a probabilistic outcome.
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Table 1: The single group voting outcome p1 is displayed for respec-
tively p0 = 0.100, 0.2000.300, 0.400, 0.450, 0.470, 0.490, 0.500, 0.510, 0.530,
0.550, 0.600, 0.700, 0.800, 0.900 using r = 5, 15, 35, 115, 1115, all.

p0 p1 p1 p1 p1 p1 p1
r = 3 r = 5 r = 35 r = 115 r = 1115 r = all

0.100 0.028 0.009 0.000 0.000 0.000 0
0.200 0.104 0.058 0.000 0.000 0.000 0
0.300 0.216 0.163 0.006 0.000 0.000 0
0.400 0.352 0.317 0.114 0.015 0.000 0
0.450 0.425 0.407 0.275 0.141 0.000 0

0.470 0.455 0.444 0.360 0.259 0.022 0
0.490 0.485 0.481 0.453 0.415 0.252 0

0.500 0.500 0.500 0.500 0.500 0.500 0.500

0.510 0.515 0.519 0.547 0.585 0.745 1
0.530 0.545 0.556 0.640 0.741 0.978 1

0.550 0.575 0.593 0.743 0.859 1.000 1
0.600 0.648 0.683 0.886 0.985 1.000 1
0.700 0.784 0.837 0.994 1.000 1.000 1
0.800 0.896 0.942 1.000 1.000 1.000 1
0.900 0.972 0.991 1.000 1.000 1.000 1
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Figure 7: Increasing the size of the random voting group from r = 3 produces
a range of values of p0 where the outcome becomes deterministic as for the
whole population voting group. Elsewhere the outcome is still probabilistic.
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where
(
r
m

)
≡ r!

m!(r−m)!
, k is an integer with 0 ≤ k ≤ 1, N [x] ≡ Integer part

of x and δ{x} is the Kronecker function, i.e., δ{x} = 1 if x = 0 and δ{x} = 0
if x 6= 0. The factor k in the second part of Eq. (5) allows to break the
symmetry between both orientations at an even group tie with a probability
k to contribute to A and (1− k) for B.

Any odd size r yields { r
2
− N [ r

2
]} = 1

2
making the Kronecker function

always equals to zero in Eq. (5) thus canceling last term with Eq. (5)
becoming identical to Eq. (4). For even r size { r

2
−N [ r

2
]} = 0 with the last

term contributing as k
(
r
r
2

)
p

r
2
0 (1 − p0)

r
2 . Eq. (5) can thus simply be written

in two different expressions as

Pr(p0) ≡
r∑

m= r+1
2

(
r

m

)
pm0 (1− p0)r−m, (6)

for odd sizes r, and

Pr(p0) ≡
r∑

m= r
2
+1

(
r

m

)
pm0 (1− p0)r−m + k

(
r
r
2

)
p

r
2
0 (1− p0)

r
2 , (7)

when r is even.
While k 6= 1

2
produces very interesting results including quite naturally

the effects of prejudices, collectives beliefs and cognitive bias in the process
of decision making,[33, 34] here no advantage is given to neither one of the
two competing politics taking k = 1

2
. In such a case it is worth to emphasize

that Eq. (7) with r = 2l is identical to Eq. (6) with r = 2l − 1. In other
terms

P2l(p0) = P2l−1(p0), (8)

using Eq. (5) with k = 1
2
. But as soon as k 6= 1

2
we have P2l(p0) 6= P2l−1(p0).

To illustrate Eq. (8) a voting group of size 4 with k = 1
2

has a the
probabilistic voting function

p1 ≡ P4(p0) = p40 + 4p30(1− p0) + 3p20(1− p0)2, (9)

which reduces to −2p3 +3p2, the probabilistic size 3 voting function given by
Eq. (3). The same identity holds for r = 6 and r = 5 and so on. Therefore
in the following we consider only odd r values without any loss of generality.

18



3 Democratic hierarchies to circumvent the

one group voting probabilistic character

Above analysis showed that on the one hand, selecting a voting group of r
randomly selected agents yield a probability p1 < p0 to have an A elected
when p0 <

1
2

while p1 > p0 if p0 >
1
2
. On the other hand, increasing r reduces

the distance to the deterministic outcome of either zero or one obtained from
the total group voting.

3.1 The elementary democratic probabilistic voting brick

The distance of | p1− 1
2
| being always larger than | po− 1

2
| hints at considering

a series of one r voting group to produce a population of elected representative
from which a new r voting group could be formed to elect the president and
thus reduces again the distance to the tipping point 1

2
.

To implement the scheme we consider the building of elementary pres-
idential r person voting groups which now elect respectively a first level
representative still using a local majority rule. These groups will serve as
elementary bricks denoted r-brick1.

Each r person voting group being formed by a random selection of the r
agent, a number 2r different configurations are possible, half of them (2r−1)
yielding majority A and the other half majority B. The case r = 3 is shown in
Figure (8) with its associated 23 = 8 different first level bricks, i.e., 3-brick1.
Two bricks have respectively 3 A and 3 B, three have 2 A against 1 B and
three 1 A against 2 B.

3.2 The second level democratic probabilistic voting
brick

At this stage we can pick up randomly a series of r elementary r-brick1 to
build a bigger second level elementary brick. The r first level representatives
form a new r voting group which elects the president as exhibited in Figure
(9) for r = 3. If the random selection of the r-brick1 contains a majority of
A first level representatives the president is A and it is B otherwise.

Figure (9) shows a case of B majority with one peculiar series of 3-brick1.
But for this very case there exists eight possible aggregations of 3-brick1. Four
yield a majority of A first level elected representatives and four a B majority.
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Figure 8: The 8 elementary first level representative bricks (3-brick1). A
and B agents are represented respectively with red circles and blue squares.
Upper brick yields a B elected while lower bricks have an A elected. Cases
2 against 1 (right column) exist in three different configurations with the
minority agent at each of the three slots.
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Figure 9: Three first level representative bricks of size three (3-brick1) are
put together to form a 3-brick2. A and B agents are represented respectively
with red circles and blue squares. Here two 3-brick1 (left and right) have B
majority (respectively 3 B and {1 A, 2 B}) and one brick (middle) holding
A majority { 2 A, 1 B}. The 3-brick2 yields president is B.
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Since the selection of the subset of three elementary 3-brick1 is random we
can calculate the probability of having either an A or a B president.

At the second level of the new two level brick the probability p2 to get
an A president is the sum of all the configurations with a majority ( r+1

2
) of

A-r-brick1. This sum is obtained simply by substituting p1 to p0 in Eq. (6).
We have

p2 = Pr(p1) = Pr{Pr(p0)}, (10)

with inequalities | p2 − 1
2
|>| p1 − 1

2
|>| p0 − 1

2
|.

3.3 The n level democratic probabilistic voting brick

From Figure (9) the resulting brick geometry appears to be pyramidal as
expected by construction. But then, since the distance to 1

2
has been reduced

twice in a row moving from the bottom level up to first and second level it
is appealing to repeat the process a few more time to increase further the
distance to 1

2
thus reducing the probability to get a president belonging to

the actual overall minority.
To build a n level brick with voting groups of size r, i.e., a r-brickn, rn

groups of r agents are required to constitute the first hierarchical level, i.,e.,
the bottom of the hierarchy. One case with r = 3 and n = 3 is shown in
Figure (10). It includes 9 groups of size three scoring to 27 agents at the
bottom. The second level has 3 groups of 3 agents adding to 9. The third
level has 1 group of 3 and at last level stands the elected president. The
full hierarchy involves 40 agents of which 27 are randomly selected from the
population. Others are chosen according to the respective votes of the various
groups.

However, for most values p0, the outcome is not deterministic with the
probability p3 being neither zero nor one as for instance with the series p0 =
0.400, p1 = 0.352, p2 = 0.284 and p3 = 0.197. In contrast an initial p0 = 0.200
leads to p1 = 0.104, p2 = 0.030 and p3 = 0.000.

At this stage the instrumental question is to determine if recovering a
deterministic outcome (eventually equal to zero or one) is feasible within
small values of n. To build a bottom-up democratic hierarchy with one
hundred levels does not make sense. Given a r-bricksn hierarchy we want to
determine the critical number of levels nc,r for which pnc,r ≈ 0 for p0 <

1
2

and
pnc,r ≈ 1 for p0 >

1
2
.

22



Figure 10: Nine first level representative bricks of size three (3-brick1) are
put together to form a 3-brick3. A and B agents are represented respectively
with red circles and blue squares. Six 3-brick1 with B majority and three
with A majority are gathered to constitute a 3-brick2. The three 3-brick2
yield each B majority ending with a B president.
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3.3.1 Fixed points and their stability

Increasing the hierarchy level being identical to iterate Eq. (6) we need first
to study the associated dynamics by determining the corresponding fixed
points solving Pr(p∗) = p∗. Three fixed points pB = 0, pc = 1

2
, pA = 1 are

found. At pB = 0 and pA = 1 any election is a trivial deterministic event
with a hundred percent prediction of the outcome, respectively B and A. At
pc = 1

2
the probability to have an A elected is equal to the probability to

have a B elected. It is worth to stress that for a group of size r, the voting
function Pr(p0) is a polynomial of degree r which has r fixed points. However
only pB, pc, pA satisfy the “physical constraint” 0 ≤ p ≤ 1.

To evaluate the respective stabilities of above three fixed points pB, pc, pA
we expand the voting function pn = Pr(pn−1) around a fixed point p∗ getting

pn ≈ p∗ + (pn−1 − p∗)λr , (11)

where λr(p
∗) ≡ dPr(pn−1)

dpn−1
|p∗ . Rewriting Eq. (11) as

(pn − p∗) ≈ (pn−1 − p∗)λr , (12)

shows that λr < 1 implies a stable fixed point while for λr > 1 the fixed
point is unstable.

For the two extreme values pB = 0 and pA = 1 we have λr(pB) = λr(pA) =
0 making both fixed points stable. For pc = 1

2
we get

λr(pc) =
1

2r−1

r∑
m= r+1

2

(2m− r)
(
r

m

)
, (13)

which can be reduced to

λr(pc) =
r

2r−1

(
r − 1
r−1
2

)
. (14)

Eq. (14) yields λr(pc) > 1 for any size from r = 3 with λ3(pc) = 3
2

to

λr(pc)→
√

2
π

r√
(r− 2

3

≈
√

2r
π

for r � 1 as seen in Table (2).

Above results λr(pB) = λr(pA) = 0 and λr(pc) > 1 show that the flow
diagram of the dynamics driven by repeated voting exhibits two attractors
located at respectively pB = 0 and pA = 1, the separator being located at
pc = 1

2
. An initial support p0 >

1
2

leads towards an election at 100% provided
enough voting levels are present. When p0 <

1
2

it leads towards an election
at 0% for the A politics.
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Table 2: Variation of λr(pc) as function the local group size with r =
3, 5, 7, 9, 15, 101, 1001. It is always larger than 1 making the fixed point pc = 1

2

unstable.
r 3 5 7 9 15 101 1001

λr(pc) 1.5 1.87 2.19 2.46 3.14 8.04 25.25

3.3.2 Critical number of hierarchical levels

Having determined the flow diagram we can formally evaluate the number
nc,r of hierarchical levels at which pnc,r = 0 starting from p0 <

1
2
. We iterate

Eq. (12) further from level (n− 1) to (n− 2) and so forth down to level 0 to
get

(pn − pc) ≈ (p0 − pc)λnr . (15)

At n = nc,r having by definition pnc,r = 0 turns Eq. (15) to

λnc,r
r ≈ pc

pc − p0
, (16)

from which, taking the Logarithm on both side yields

nc,r ≈
1

lnλr
ln

1

1− p0
pc

. (17)

When p0 > pc = 1
2

we get by symmetry

nc,r ≈
1

lnλr
ln

1
p0
pc
− 1

. (18)

where we used pnc,r = 1 instead of pnc,r = 0. Eqs. (17) and (18) combine
into the single Equation

nc,r ≈
1

lnλr
ln

1

| 1− p0
pc
|
, (19)

which exhibits a logarithmic singularity at the unstable fixed point separator
pc.

The singularity embodies the fact that when p0 is very close to pc many
voting levels are necessary to increase the initial small difference in respective
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Table 3: Exact numerical estimates nec,r for nc,r using Eq. (6) and the values
obtained from Eq. (19) for the bottom value p0 = 0.49 as a function of the
series of voting size group r = 3, 5, 7, 9, 11, 13, 15. Values n̄c,r from Eq. (20)
are also given.

r 3 5 7 9 11 13 15

nec,r 12 8 6 6 6 5 5

nc,r 9.65 6.22 4.99 4.34 3.93 3.64 3.42
n̄c,r 11 8 6 6 5 5 5

supports for A and B with volatility at its highest in the random selection of
agents.

Table (3) compares the exact numerical estimates nec,r for nc,r obtained
by successive iterations of Eq. (6) to the values obtained from Eq. (19)
in the case p0 = 0.49 as a function of the series of voting size group r =
3, 5, 7, 9, 11, 13, 15.

The number of levels being by nature an integer Eq. (19) should be
modified accordingly. Moreover, we notice that to match nc,r given Eq. (19)
to the exact estimates nec,r it is sufficient to take the integer part of Eq. (19)
and to add +2 to the result besides for r = 3. It leads to the effective
expression

n̄c,r ≡ N

 1

lnλr
ln

1

| 1− p0
pc
|

+ 2 . (20)

This +2 addition has one +1 coming from taking the integer part of nc,r
while the second +1 contribution is an ad hoc hand fit.

Figure (11) illustrates the dependence of n̄c,r and nc,r for the two voting
group sizes r = 3 and r = 15 as function of p0 with 0 ≤ p0 ≤ 1. The stair
functions correspond to n̄c,r. Both curves shows a singularity at the separator
pc = 1

2
, which means that in the very vicinity of 50% many voting levels are

required to enlarge significantly the difference in respective supports while
climbing up the hierarchy. Much less stairs appear for the larger size r = 15
in agreement with the limit case of r = all, which yields nc,r = 1.
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Figure 11: The variation of n̄c,r and nc,r for the two voting group sizes r = 3
(left part) and r = 15 (right part) as function of 0 ≤ p0 ≤ 1. The stair
functions correspond to n̄c,r. Both curves exhibit a logarithmic singularity
at the unstable fixed point pc = 1

2
separator. Much less stairs appear for the

larger size r = 15.
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4 Deterministic versus probabilistic outcome

for a n-level hierarchy

Given some support p0 for A and (1−p0) for B a number n̄c,r of bottom-up hi-
erarchical levels was evaluated (Eq. (20)) to ensure the president ultimately
elected at the top, i.e., the n̄c,r level belongs to the overall majority in the
population. However, n̄c,r is a function of p0 while in the social world politi-
cal institutions do not change their structure at every election or decisional
event. They have a fixed and constant number of hierarchical levels. On the
other hand, the respective supports for competing A and B may vary quite
subsequently from one election to another. This very fact discards the use
of Eq. (20) for any practical application to real situations. To make our
analysis applicable the problem must be reformulated.

The operational question is therefore to determine, given n levels, what
is the minimum overall support at the bottom if any, for either A or B to get
the presidency with certainty. To answer the question we invert Eq. (15) to
get

p0 = pc + (pn − pc)λ−nr . (21)

Plugging pn = 0 yields the higher limit pr,n,B below which any vote produces
a B victory at the top level. It defines a lower killing threshold below which
A gets a zero probability to win the presidency with

pr,n,B = pc(1− λ−nr )

=
1

2
(1− λ−nr ) , (22)

since pc = 1
2
. In parallel plugging pn = 1 into Eq. (21) gives a second

threshold, the higher killing threshold pr,n,A, above which the A gets the top
of the hierarchy with a total certainty with

pr,n,A = pc(1− λ−nr ) + λ−nr

=
1

2
(1 + λ−nr ) . (23)

Accordingly, using a bottom-up democratic voting hierarchy instead of
a total group voting produces a symmetric shift ±1

2
λ−nr around the 50%

democratic threshold. This shift creates two different voting regimes. For
pr,n,B < p0 < pr,n,A the voting outcome is probabilistic and outside this area
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Figure 12: Functions pr,n,A and pr,n,A from Eqs. (22, 23) as a function of
the number of the bottom-up hierarchical levels for r = 3 (upper part) and
r = 15 (lower part). In upper green (dark) parts any initial p0 yields at
the top of the hierarchy a deterministic victory for A. In lower yellow (light)
parts any initial p0 yields at the top of the hierarchy a deterministic failure
of A with a victory for B. In the central colored areas the result at the top
is probabilistic. A drastic shrinkage of the probabilistic area is seen when
going from r = 3 (upper part) to r = 15 (lower part).
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for p0 ≤ pr,n,B and p0 ≥ pr,n,A the deterministic outcome of the voting is
recovered as seen in in Figure (12).

The probabilistic area shrinks quite quickly with increasing either the
number of levels n or and the size r. The extend of the probabilistic surface,
which is a function of n and r, is measured by

∆r,n ≡ pr,n,A − pr,n,B ,

= λ−nr . (24)

Given r its maximum value ∆r,1 = 1/λr is reached at n = 1 since λr > 1

with λ−nr → 0 for n � 1 since always λr > 1. In addition λr →
√

2r
π

for

r � 1 =⇒ ∆r,n → (2r
π

)−n/2 → 0 for r � 1 with any value n.
At this stage Eqs. (22) and (23) are approximate formulas which result

from a Taylor expansion in the vicinity of the unstable fixed point pc = 1
2
.

We thus have to check their accuracy as done above with nc,r given by Eq.
(19). In this case we had to eventually modify nc,r to n̄c,r from Eq. (20)
to get a more accurate formula for predictions. Here the similar correction
leads to add a +2 correction to the exponent −n as

p̄r,n,(A,B) =
1

2
(1± λ−n+2

r ) (25)

The existence of a probabilistic domain implies a coexistence region where
the results of an election may yield some unexpected and sudden shift in the
elected leadership at the top of the hierarchy. Within that region, no political
orientation is sure of winning, which creates an interesting political situation.
For the range ∆r,n around 50% the outcome is probabilistic with a slight bias
in favor of the orientation which is larger, i.e., the current majority. To win
with certainty requires to have a little more than just being above 50%.

This coexistence region shrinks as a power law λ−nr whose exponent is
the number n of hierarchical levels. Therefore, having a small number of
hierarchical levels puts higher the threshold to a certain reversal of power
since the current minority will need to reach more than fifty percent in order
to win for certain the presidency. Simultaneously it lowers the threshold from
which the minority, still being minority, starts to have a non zero chance to
win against the current majority as illustrated in Figure (12). For instance,
given n = 5 we get 0.500 ± 0.148,±0.076,±0.048,±0.016 for respectively
r = 3, 5, 7, 15.
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5 Rare antidemocratic bottom configurations

Given a n-brickr, associated bottom configurations yielding an A president
obtained via a random selections of rn agents can be discriminated between
two families. First one includes configurations which have a A bottom ma-
jority while second one regroups configurations for which the number of A
is minority, i.e., less than r+1

2
. Those last configurations thwart the current

bottom majority leading to a president who belongs to the bottom minority.

5.1 Case r = 3 and n = 2

An illustration of an such antidemocratic bottom configuration is shown in
Figure (13) for r = 3 and n = 2. The 4 A-agents present at the bottom
against a majority of 5 B-agents obey a (2, 2, 0) distribution of A among the
3 bottom voting groups of size 3. By permutation 27 different antidemocratic
rearrangements can be obtained leading to a probability

P
4/5
3,2 (p0) = 27p40(1− p0)5, (26)

to get such an antidemocratic situation.
This ratio of 4 against 5 is the unique one which can makes the bottom

minority to win the presidency. Four agents is the minimum number of
agents to achieve this process. Three are not enough and five are already the
majority. These figures are a function of both r and n.

Going further along this case we can enumerate all configurations which
lead to a A victory. In addition to above antidemocratic configurations, we
have A democratic configurations with {2, 2, 1}, {3, 2, 0} for a ratio 5 to 4,
{3, 3, 0}, {2, 2, 2}, {3, 2, 1} for a ratio 6 to 3, {3, 3, 1}, {3, 2, 2} for a ratio 7
to 2, {3, 3, 2} or a ratio 8 to 1, {3, 3, 3} or a ratio 9 to 0 and all associated
permutations. Adding all of them gives

P3,2(p0) = 27p40(1− p0)5 + 99p50(1− p0)4 + 84p60(1− p0)3

+ 36p70(1− p0)2 + 9p80(1− p0)1 + p90, (27)

which is found as expected to be identical to P3{P3(p0)}. Figure (14) exhibits
both probabilities P3(p0) and P3,2(p0) as a function of p0 with the first one
being contained within the second one.

These findings shed a light on the effect of fragmentation of a single
group into smaller subgroups with the simultaneous building of a bottom-up
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Figure 13: An antidemocratic bottom configuration with a minority number
of A-agents {4A, 5B}, which yields an A president.
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Figure 14: Both probabilities P3(p0) and P3,2(p0) as a function of p0 with
the first one being contained within the second one. Two iterations on the
inside curve are identical to one iteration on the external curve.
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hierarchy. Looking at all wining configurations from a single voting group of
size 3× 3 = 9 yields

P9(p0) = p90+9p80(1−p0)+36p70(1−p0)2+84p60(1−p0)3+126p50(1−p0)4. (28)

Comparing Eq. (28) to Eq. (27) shows that all coefficients associated to
configurations {9A, 0B}, {8A, 1B}, {7A, 2B}, {6A, 3B} are identical. Differ-
ences arise from both the coefficient of configuration {5A, 4B} and the one
of {4A, 5B}. First one is 126 in Eq. (28) against 99 in Eq. (27). Second one
in Eq. (27) accounts for a contribution from the minority configuration with
a coefficient 27.

Last term 27p40(1 − p0)
5 happens to be exactly the one associated to

the antidemocratic configurations found above. By symmetry between the
two orientations, similar configurations exist as well in favor of B with the
possibility of a winning B minority of 4 agents. This is why, on the one hand
the coefficient 126 associated to the configuration {4A, 5B} in Eq. (28) is
reduced to 126-27= 99 in Eq. (27), and on the other hand there exists a
symmetrical contribution in favor of A in Eq. (27) with the coefficient 27
at the expense of B from the configurations {4A, 5B}. These numbers and
values of these ratios are a function of both r and n.

The fragmentation of the group of 9 agents into 3 separate subgroups of
3 agents each has created the possibility of a few bottom minority winner
configurations. It hints quite naturally to envision the possibility of “strategic
nesting”, which is a crucial ingredient to evaluate the fragility of democratic
geometries against possible lobbying.

5.2 Case r = 3 and n = 3

A r = 3, n = 3 hierarchy is obtained adding one hierarchical level to the
r = 3, n = 2 hierarchy treated above. The associated bottom geometry
includes now 27 agents distributed among 9 different voting groups of size 3.
Another antidemocratic distribution of A agents is shown in Figure (15). A
minority of 8 A-agents, who are strategically nested, are sufficient to hold up
the presidency against the majority of 19 B-agents. It is worth to stress that
such an antidemocratic bottom configuration can in principle also occur by
chance under a random selection of the voting agents. However, as for the
precedent case, the occurrence of such a configuration is a rare event as it
appears from calculating its probability of occurrence.
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Figure 15: The optimized distribution of 8 A-agents against 19 B-agents
within the voting bottom groups of a r = 3, n = 3 hierarchy, which in turn
ensures A to win the presidency.
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First contribution comes from the probability to have 8 A-agents and 19
B-agents, it is equal to p80(1 − p0)

19. Second contribution arises from the
number of distinct rearrangements of this minority winning configuration,
which scores to (3× 3× 3)2 × 3 = 2187. The final result is

P
8/19
3,3 = 2187p80(1− p0)19, (29)

whose variation as function of p0 is shown in Figure (16). Its peak reaches
the maximum value 0.00016 at p0 = 8

27
demonstrating how improbable such

antidemocratic bottom configurations are.
Contrary to the precedent case r = 3, n = 2, which has only one an-

tidemocratic distribution (4 against 5) the 8 versus 19 antidemocratic bottom
distribution is not unique. It corresponds to the minimum minority size to
reach the presidency for a 27 bottom hierarchy. However, there exists many
more antidemocratic bottom distributions covering the range from 8/19 up
to 13/14, which can yield a democratic victory as the benefit of the bottom
minority provided the corresponding agent distributions are antidemocratic,
i.e., lead to an A president as in Figure (15).

6 One group voting versus small group hier-

archies

To implement the building of our democratic bottom-up hierarchies we have
started from one group voting using r-brick1 first components. From these
elementary bricks one could build higher lego-like bricks to obtain r-brickn.
While the voting outcome is probabilistic for these bricks, we saw that some
critical number of levels nc,r exists, for which the r-bricknc,r outcome is de-
terministic (within some number of digits rounding).

In addition to restoring a deterministic voting outcome the hierarchical
geometry has the benefit to incorporate representatives from the minority at
various levels of the hierarchy, Power is distributed locally involving minority
agents although more likely at lower levels than toward the top level. It
thus creates a more resilient political structure in which the minority is a
stakeholder.

However, comparing Eq. (27) and Eq. (28) we also found that fragmen-
tation into small groups allows the appearance of antidemocratic configura-
tions, yet they are very rare. It is thus of interest to compare the voting
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Figure 16: The probability P
8/19
3,3 (p0) of bottom antidemocratic rearrange-

ments for a (r = 3, n = 3) hierarchy with the 8-A agents against 19 B-agents
(Eq. (29)). The maximum value is 0.00016 at p0 = 8
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.
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outcome from a r-brickn to the one obtained from a rn-brick1, which is a one
voting group including all the agents distributed into the rn−1 bottom r size
groups of the r-brickn. The two voting probabilities to compare are thus

pn = Pr(Pr(Pr(...Pr(p0)))), (30)

where Pr is iterated n time given by Eq. (6) and

ppn ≡ PR(p0) ≡
R∑

m=R+1
2

(
R

m

)
pm0 (1− p0)R−m, (31)

where R ≡ rn.
Above two equations reduces to Eq. (27) and Eq. (28) for r = 3 and

n = 2 as expected. Figure (17) shows the case r = 3 with n = 2, 3, 4, 5. It is
seen that increasing n enlarge a bit the democratic outperformance of the one
group voting. This advantage came from the fact that the iteration process
allows for a few antidemocratic bottom configurations, which are not present
in the bottom one group voting scheme. Therefore increasing n allows for
more possible antidemocratic bottom configurations as illustrated in compar-
ing above r = 3 and n = 2 versus r = 3 and n = 3 cases. However, a direct
voting from the bottom taking as one voting group decreases the number of
configurations yielding a democratic outcome yet allowing bottom majorities
although they belong to the currently minority in the full population.

Interesting to notice from Figure (18) that p5 ≈ pp4 for r = 3. Such
adequacy holds also for larger value of n and other values of r. These results
hints at a possible quasi-identity pn+1 ≈ ppn for n ≥ 4. However the eventual
demonstration is out of scope of the present paper.

In addition it is of importance to underline that pn from Eq. (30) in-
cludes the antidemocratic bottom configurations at the benefit of A but it
also excludes by symmetry the antidemocratic bottom configurations with A
majority yet at the benefit of B. This fact can be illustrated by evaluating
the difference pn − ppn for above case r = 3 and n = 2. From Eq. (27) and
Eq. (28) we get

p2 − pp2 = 27p40(1− p0)5 − 27p50(1− p0)4, (32)

where the first term corresponds to Eq. (26) and the second term accounts
for the symmetric B antidemocratic bottom configurations.
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Figure 17: Voting probabilities pn (solid line) and ppn (dot line) form Eq.
(30) and Eq. (31) for the case r = 3 with n = 2, 3, 4, 5. Increasing n is seen
to enlarge a bit the democratic outperformance of the one group voting. An
overlap pn+1 ≈ ppn is exhibited for n = 4, 5.
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Figure 18: Cases p4 and p5 (solid line) with pp4 (dot line). The overlap
p5 ≈ pp4 is clealy seen.
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7 From rare antidemocratic configurations to

the killing efficiency of geometric lobbying

The discovery and identification of rare antidemocratic configurations opens
the path to design killing strategies to take over democratic institutions us-
ing a combination of democratic rules and instrumental positioning of agents
at regular slots. These spots are turned to killing slots only once they get
correlated with targeted occupation by a lobbying group. Once strategi-
cally located within appropriate bottom voting groups, the ongoing repeated
bottom-up local majority rule voting yields the presidency to the bottom
lobbying group.

A global monitoring of a given nesting group is thus found to transform
above antidemocratic extremely rare events into a certain deterministic out-
come. Instead of requiring a support of more than 50% to win the presidency
a few agents are now sufficient to hold up the president without any breaking
law behavior. Once critically located at the bottom, required minimum num-
bers of upper level representatives are automatically generated by repeated
democratic elections till the presidency.

To proceed, we extend above case r = 3 and n = 2 to the general case r
and n. To get an antidemocratic configuration for n = 1 requires to have no
more but at least r+1

2
agents of the lobbying orientation in the unique bottom

group of size r. It is a r-brick1. To move to n = 2 requires to add one level,
i.e., r r-brick1. However, only r+1

2
r-brick1 are requested to have r+1

2
agents

to reach the presidency. It scores to a total number kr,2 = r+1
2
× r+1

2
= ( r+1

2
)2

of nested agents. The corresponding scheme is shown in Figure (19).
Therefore for a r-brickn a number ( r+1

2
)n−1 of r-brick1 needs to have at

least r+1
2

lobbying agents each.The total number of bottom nested agents is

kr,n = (
r + 1

2
)n, (33)

for a total number rn bottom agents including the nested ones. The killing
proportion of nested agents is thus

k̄r,n =
kr,n
rn

=
1

2n

(
1 +

1

r

)n
, (34)

which can be approximated as

k̄r,n ≈
1

2n

(
1 +

n

r

)
. (35)
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Figure (20) shows k̄r,n from Eq. (34) as a function of the number of levels
n given a series of fixed values of the voting size group r = 3, 7, 11, 15, 21.
The variation of kr,n as a function of the group size r for a fixed number of
levels with at n = 2, 3, 4, 6 is exhibited in Figure (21). Both Figures illustrate
the quick and drastic lowering from the democratic threshold rn+1

2
for the

requested proportion of agents to win the presidency using a geometric killing
nesting.

8 The impossible identification of an existing

killing geometric lobbying

At this stage it is worth to underline that a killing bottom configuration
can be modified by performing all permutations within the nested groups
and between nested groups and non-nested groups yet achieving the same
performance of electing a minority president. The number of permutations
associated to a killing bottom configuration increases quite rapidly with r and
n. This fact makes impossible the identification of an actual implemented
targeted lobbying.

The total number of existing bottom killing configurations can be cal-
culated exactly for a given bottom-up democratic hierarchy from Eq. (30).
Indeed it is a polynomial expansion in p0 and (1−p0). The highest degree of
p0 is rn with rn A and zero B. The lowest degree gives the minimum number
of nested agents, i.e., kr,n (Eq. (33)). We thus have

pn = p0
rn + rnp0

rn−1

(1− p0) + . . .+ gr,np0
kr,n(1− p0)r

n−kr,n , (36)

where gr,n is the minimum number of agents required to seize democratically
the presidency. its value can be evaluated exactly as

gr,n =

(
r!

r+1
2

! r−1
2

!

) (r+1)n−2n

2n−1(r−1)

(37)

where the exponent is the sum of the geometric series 1+ r+1
2

+
(
r+1
2

)2
+ . . .+(

r+1
2

)n−1
. It happens that gr,n reaches astronomical values quite immediately.

For instance it yields, 27, 2187, 14348907 for respectively n = 2, 3, 4 at r = 3
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Figure 19: An antidemocratic bottom configuration for a n = 2 hierarchy
with voting groups of size r featuring the case of the minimum number of
A-agents to win the presidency.
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Figure 20: The evolution of kr,n from Eq. (33) for 5 values of the voting size
groups r = 3, 7, 11, 15, 21 as a function of the number of levels n.
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Figure 21: The evolution of kr,n from Eq. (33) for 4 values of the number
of levels with n = 2, 3, 4, 6 as a function of the voting size groups r.
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and 104, 1013, 1031 for respectively n = 2, 3, 4 at r = 5. Accordingly for any
hierarchy the number of correlated slots which allow the president seizing is
“infinite” in practical terms.

In addition to the countless number of killing configurations with the min-
imum number of nested agents, quite more killing geometries are available.
Indeed all cases where the presidency is won by a bottom minority suitably
distributed yields the identical democratic thwarting. All these cases are di-
rectly identified by calculating the difference δr,n ≡ pn − ppn from Eq. (30)
and Eq. (31) as illustrated above for r = 3 and n = 2 with Eq. (32). For a
bigger hierarchy with n = 3 we get

δ3,2 = 2187p8(1− p)19 + 35721p9(1− p)18266085p10(1− p)17

+1203903p11(1− p)16 + 3677346p12(1− p)15 + 7902198p13(1− p)14

−2187p19(1− p)8 − 35721p18(1− p)9 − 266085p17(1− p)10

−1203903p16(1− p)11 − 3677346p15(1− p)12 − 7902198p14(1− p)13,
(38)

which exhibits the expected symmetry between both orientations A and B.
Negative terms account for antidemocratic configurations which are at the
benefit of B. The minimum number of killing agents is found to be 8 against
19 with 2187 configurations as evaluated above with g3,3 = 2187 from Eq.
(37).

For every killing geometry at the benefit of A exists the same one at the
benefit of B. However their respective contributions to the presidency winning
probability vary with the proportion p0 of A supporters in the population.
Those killing configurations are more beneficial to the overall minority as is
seen in Figure (22). When p0 <

1
2

the net contribution between the killing
configurations, which yield a A president and the ones which lead to a B
president, is positive. It turns negative for p0 >

1
2
.

Last but nor least, the lobbying group does not preclude to have ad-
ditional supporters randomly distributed among the bottom voting groups,
which increases the blurring of the lobbying activity making its detection
quasi-impossible. These extra agents do not need to be aware about the
ongoing lobbying by their group, contributing further to the screening of the
on going manipulation.
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Figure 22: Variation of δ3,2 from Eq. (38) as function of p0. Upper part (
> 0 ) is at the benefit of A while below part ( < 0 ) is at the expense of A.
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9 Conclusion

We have provided an alternative voting scheme to the universal suffrage elec-
tion of a president. The scheme is built from elementary bricks of r agents
randomly selected from the whole population. Each group elects a local pres-
ident according to its local majority rule. We shown that the deterministic
universal suffrage outcome can be recovered provided enough hierarchical lev-
els are included in the bottom-up democratic hierarchy built from elementary
bricks.

In addition to restoring a deterministic voting outcome the hierarchical
geometry has the advantage to associate representatives from the minority
at various levels of the hierarchy. Power is thus distributed locally involving
minority agents although more likely at lower levels than in the top level
vicinity. Yet, the top presidency is allocated with certainty to the actual
majority in the whole population. The hierarchical structure is thus resilient
towards temptation from the minority to call into question the presidency
legitimacy.

The scheme produces also an area around fifty percent for which the
president is elected with an almost equiprobability slightly biased in favor
of the actual majority thus preventing destabilizing controversies when the
election outcome is vey narrow around fifty percent,[38].

However, we also found that small groups bottom fragmentation produces
antidemocratic configurations. Yet, despite being very rare, these antidemo-
cratic configurations open the path to design killing geometries for a lobbying
group. It is sufficient to implement some correlated distribution of agents at
a series of bottom slots to win the presidency democratically just applying
the democratic majority rule voting at all its hierarchy levels.

We were thus able to reveal the existence of a severe geometric vulner-
ability of pyramidal structures against lobbying. Moreover, at the present
stage, identifying an actual killing distribution is not feasible, which sheds
a disturbing light on the devastating effect geometric lobbying can have on
democratic hierarchical institutions.

Of course, our model may sound exaggerated and in many aspects it is.
But the purpose is not to describe precisely a real situation. On the con-
trary, the aim is to exhibit the formal possibilities, which do exist in real
organizations, to divert completely a democratic dynamics at the expense of
the will of people majority. We have enlightened the advantage an infinites-
imal small group can gain in playing the structure against its democracy
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founding principle. Hopefully further studies will determine possibilities to
thwart these “geometric coups”. For future work it will be also interesting to
investigate those killing geometries in presence of k 6= 1

2
, which makes even

sizes to depart significantly from odd sizes,[33].
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