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From Micro to Macro Gender Differences: Evidence
from Field Tournaments*

José De Sousa and Guillaume Hollard�

August 15, 2022

Abstract

We document that women compete worse against men in field tournaments in

over 150 countries and across all ages. Our field setting is the game of chess and we

benefit from a large and rich dataset to investigate the robustness and heterogeneity

of our uncovered gender differences in competition. We find a macro gender gap in

every country: there are fewer female than male players, especially at the top, and

women have lower average rankings. Moreover, comparing millions of individual

games, we find a small but robust micro gender gap: women’s scores are about 2%

lower than expected when playing a man rather than a woman with an identical

rating, age and country. Using a simple theoretical model, we show how this small

micro gap may affect women’s long-run human-capital formation. By reducing effort

and increasing the probability of quitting, both effects accumulate to explain a larger

share of the macro gap.
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the database on FIDE chess games. This is a substantially-revised version of an earlier working paper
entitled “Gender Differences: Evidence from Field Tournaments”.
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1 Introduction

A vibrant and recent literature has explored the effects of competition on gender differ-

ences.1 The main themes addressed are gender differences in: (1) performance in com-

petitive environments,2 (2) willingness to compete,3 and (3) competitive choices when

competing against men or women.4 We add to this literature first by documenting that

women compete worse against men in a field setting in over 150 countries and across all

ages. Second, benefiting from a large and rich dataset, we investigate the robustness and

heterogeneity of our uncovered gender differences in competition.

Our field setting is the game of chess, which offers a number of advantages with respect

to the gender and competition literature. First, chess is played in official competitions

all over the world. Second, male and female players compete against each other in tour-

naments. Third, players are ranked using a transparent, comparable and gender-neutral

rating system (Elo, 1978), which provides us with an accurate performance measure that

is rarely available in standard data. Chess is also played at all ages, from children and stu-

dents, who are frequent subjects in lab and field experiments, to non-student adults and

retirees. Fourth, we use the entire distribution of Elo ratings to analyze gender differences

in the chess hierarchy, and finally we exploit game results to study gender differences in

individual performance.

We first document a “macro gender gap” by analyzing country ranking distributions.

In any country, women have average lower ratings than men. Women are also less repre-

sented at the top of the hierarchy. As of November 2021, there is only one woman among

the Top 100 rated players and 6 in the Top 500, even though women represent about 10%

of rated players. The same attrition along the hierarchical ladder is observed within each

country: there are fewer women than men, especially at the top. We therefore affirm

a “leaky pipeline” phenomenon that is also found in labor markets around the world,

1This dynamism is corroborated by recent surveys, including Booth, 2009; Croson and Gneezy, 2009;
Bertrand, 2011; Niederle and Vesterlund, 2011; Azmat and Petrongolo, 2014; Niederle, 2016.

2See Gneezy et al. (2003); Gneezy and Rustichini (2004); Antonovics et al. (2009); Cárdenas et al.
(2012); Dreber et al. (2014); Booth and Yamamura (2018).

3See Niederle and Vesterlund (2007); Gneezy et al. (2009); Booth and Nolen (2012); Buser et al. (2017).
Buser et al. (2014) explore how preferences for competition across genders affects academic task choice.

4See Gneezy et al. (2003); Niederle and Vesterlund (2007); Booth and Nolen (2012).
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with women being massively under-represented at the top of the hierarchies in Business,

Politics and Science.5

Second, using data from individual chess games, we compare the performance of women

playing against men to counterfactual single-sex pairings in order to uncover a “micro

gender gap” in performance. Benefiting from millions of games enables us to use a large

range of estimation techniques, including matching estimators. We find that a woman’s

score is 1.7 to 2.5% lower than expected when playing against a man rather than a woman

with the same rating, age and country.6 This micro gender gap is found in virtually all

countries, at all ages and persists with experience. We also provide a whole array of

robustness checks to ensure that the observed micro gender gap is not spurious due to

measurement errors in the performance measure, i.e. the Elo ratings. For instance, we take

advantage of the fact that the frequency at which Elo ratings are updated tripled during

our period of observation, inducing natural and exogenous variation in the precision of

these ratings. We also check that the Elo is not gender-biased due to women self-selecting

into women-only tournaments. To this end, we identify countries in which self-selection

into women-only tournaments is almost impossible or very limited, ensuring that female-

male matching is random. We also calibrate the size of the error in ratings required to

render the micro gender gap insignificant, and show that this error has to be fairly large

for the gap to become zero. Last, we explore the dynamics of moves, wins and the Elo

that could reflect the gender gap. We find that women play relatively longer games and

score fewer wins than otherwise similar men. All sensitivity checks confirm the existence

of a robust micro gender gap.

By uncovering a micro gender gap in the field in over 150 countries, with different gen-

5See Hausmann et al. (2013) for cross-country evidence. For instance, women account for 47% of PhD
graduates, 37% of Associate Professors but only 21% of Full Professors in Europe (European Commission,
2016). Similar patterns are observed for Lawyers in the US (women represent 45% of associates but under
20% of partners – NALP, 2016) and among Corporate Directors in Europe (women account for only 12%
of Board of Directors membership, despite being 45% of the labor force – Pande and Ford, 2011). These
figures for Academics, Lawyers and Corporate Directors are fairly similar in other environments. In
Economics, while women represented 19% of RePEc authors in 2017, there were only two women in
the World top 100 (see https://blog.repec.org/2017/11/21/female-representation-in-repec/). The leaky
pipeline metaphor has been used to characterized the experience of female economists in higher education,
as the fraction of women falls at each point along the path from Graduate School to Full-Professor
positions (see Buckles, 2019; Lundberg and Stearns, 2019).

6In chess, the score of a game takes on three values: 1 point for a win, 0.5 for a draw, and 0 for a loss.
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der norms, and for ages ranging from 5 to 90 years, we complement the literature that has

studied gender differences in competitive performance in a specific country (Antonovics

et al., 2009; Booth and Yamamura, 2018), or from lab and field experiments with stu-

dents (Gneezy et al., 2003) or with children and teenagers (Gneezy and Rustichini, 2004;

Cárdenas et al., 2012; Dreber et al., 2014).7

How are the micro and macro gender gaps related? We find a micro gender gap that

equates to women having around a 2% lower chance of winning against men, which is

equivalent to a 7 Elo point difference.8 As such, the micro gap is small and women

should still regularly be found at or near the top. For instance, a Top 100 chess player

who loses 7 points would drop an average of 4 positions. As such, the direct effect of

the micro gender gap is too small to explain the macro gender gap, which is about 120

Elo points. However, although small, the micro gender gap may explain a larger share

of the aggregate gap, through what we call the “accumulation hypothesis.” Our simple

theory suggests that the micro gender gap may have indirect and long-term consequences

on human-capital accumulation and the likelihood that women drop out of competition.

We set out a model in which players regard the outcome of their games as a signal of

their underlying ability. As women lose relatively more often than men, they receive

more negative signals regarding their own ability. As a result, the expected benefits from

competition are comparatively lower for women, leading to less investment in human

capital.

To provide evidence in favor of the accumulation hypothesis, we test several non-trivial

predictions from our model. For example, the model predicts that (1) women who suffer

from the largest micro gender gap are more likely to drop out, (2) experienced women are

less prone to the micro gender gap, and (3) the macro gender gap does not vary much

across countries, despite cultures that differ regarding the place of women in societies.

7Our work, however, is silent on the role of competitive pressure (Paserman, 2007; Shurchkov, 2012;
Iriberri and Rey-Biel, 2019) or on the role of the gender composition of the pool of competitors (Lavy,
2013; Booth and Yamamura, 2018). Moreover, we only observe players who have already self-selected in
competition, so that we do not compare a competitive and a non-competitive environment (as Gneezy
et al., 2003; Gneezy and Rustichini, 2004), and we do not study a setting in which there is selection into
competition (as Niederle and Vesterlund, 2007).

8This difference comes from the conversion table of expected scores into rating differences (see Table
8.1a in the FIDE handbook at https://handbook.fide.com/chapter/B022017).
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These predictions are supported by the data. A very-recent literature also offers some

support for the mechanism proposed here, finding that predominantly-male environments

negatively affect women’s performance expectations (see, e.g., Born et al., 2022; Shan,

2020; Stoddard et al., 2020).

None of our results reject an explanation of the micro gender gap based on psycho-

logical phenomena such as stereotype threats. The worry that one might be the target of

negative stereotypes is in line with other work on gender differences (Iriberri and Rey-Biel,

2017, Walton et al., 2015, Smerdon et al., 2020). The stereotype-threat explanation is also

supported by work that looked at the sequence of moves in chess, finding that competition

harms women more than it boosts men (Gerdes and Gränsmark, 2010; Dreber et al., 2013;

Backus et al., 2016).9 Our results complement this literature by using millions of chess

games to explore gender differences in performance across countries and ages. We find

that both the micro and macro gender gaps are remarkably robust to large variations in

the covariates used.

What can we learn from our chess results? The literature has now produced converging

evidence of detrimental effects of competition on women’s performance that likely slow

women down on their way to the top. The magnitude of these effects is found to be quite

small in comparison of the size of the overall gender gap. The question that remains to

be answered is whether these small effects accumulate to generate large overall gaps, or

whether their overall impact will remain only limited. Using the chess environment, and

its unique advantages, we provide two key pieces of evidence in favor of the accumulation

effect. First, our testable predictions about how small micro gaps can generate much larger

macro gaps receive are supported empirically, with none of the predictions being rejected

by the data. Second, both the micro and macro gender gaps are surprisingly stable across

9Men choose more-aggressive strategies when playing against women (Gerdes and Gränsmark, 2010)
and riskier strategies when playing against attractive women (Dreber et al., 2013). Backus et al. (2016)
compare human moves with the preferred moves of a powerful chess machine. With this attractive
computer-rated measure of the quality of human moves they find that “the gender composition effect
is driven by women playing worse against men, rather than by men playing better against women”. In
particular, “the mean error committed by a female player between moves 15 and 30 increases by about
eight percent when facing a male opponent.” One key difference between their work and ours is that
they focus on a smaller sample that does not allow them to establish that women compete worse against
men in the field over very many different countries, and to thoroughly investigate the robustness of and
heterogeneity in the main effects.
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countries: the micro gap is around 7 Elo points and the macro gap around 120 points.

This stability in the gaps is found despite substantial variation in gender norms across

countries. This stability is an argument in favor of gender-gap explanations that do not

overly-depend on the social context. A small (psychological) effect that accumulates over

time is then a plausible explanation.

The remainder of the paper is set out as follows. In Section 2, we describe the context,

provide an overview of the data and present the macro gender gap. Section 3 uncovers

the micro gender gap. In Section 4, we consider the possibility that the Elo rating is

a gender-biased estimate of performance. Section 5 sets out a simple model linking the

micro and macro gender gaps, and Section 6 tests a series of the model’s implications.

Last, Section 7 summarizes our conclusions and draws out some implications for future

research.

2 Context, Data, and the Macro Gender Gap

2.1 Context and Data

Chess is played competitively all over the world under the auspices of the World Chess

Federation (Fédération Internationale des Échecs or FIDE). Our data set covers 3,272,577

games played in all FIDE-registered tournaments between February 2008 and April 2013.

These games involved 116,422 players from 161 countries (see Appendix Table A1 for a

complete country list). Players are ranked according to the Elo rating system, allow-

ing us to compare them across countries and over time (Appendix B describes the Elo

rating system). Players in the present dataset are dedicated to chess in the sense that

participation in FIDE tournaments is costly in terms of time, effort and money. A typical

tournament lasts nine rounds, with one round per day, from Saturday to Sunday the next

week. Players train, practice openings, and prepare against specific opponents before and

during tournaments. Participants may also incur certain costs beyond the tournament

entry fee, such as lodging and travel expenses if they do not live near the tournament
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site.10 In addition, in order to participate in official tournaments, players must be affil-

iated with a federation, which traditionally involves membership in a club.11 A number

of the players in our data set are also professionals, and appear at the top of the world

rankings.12 FIDE provides a unique identifier for each player, as well as her/his year of

birth, national federation, gender, and the result of each game. We first use this data set

to provide evidence of an overall gender gap in rankings, called the macro gender gap,

that we observe in all countries.

2.2 The Macro Gender Gap

Women are under-represented among chess players. There is also a considerable attrition

along the hierarchical ladder: while 10,139 of 116,422 players in our database are women

(8.7%), we only observe one woman in the Top 100 and 22 in the Top 1000 in the period

from February 2008 to April 2013.13 This under-representation at the top is very stable

over time. As of November 2021, official FIDE statistics show that there is only one

woman among the Top 100 rated players and 23 in the Top 1000.

The gender difference in world rankings is reflected in the distribution of Elo ratings

(see Table 1 and Panel A of Figure 1). Women are on average rated lower than men,

by about 123 points.14 The average gap is significant and the distribution of ratings is

shifted to the right for men in Panel A of Figure 1. The size of the gap shows that gender

differences in chess competitions are substantial, so that an average woman has a 36%

chance of winning against an average man.15 The Cohen’s d of this gap is of 0.467.16

10Note that the top players’ expenses are always fully covered, as well as those for Grandmasters in
some specific tournaments.

11Players must therefore pay their chess dues to their club as well as to the federation for the season,
regardless of the number of games they play.

12The exact number of professionals is unfortunately impossible to determine, as they are not required
to register as professionals.

13In official FIDE statistics (see https://ratings.fide.com/download.phtml), women represented 8.6%
of all FIDE rated players from July 2007 to June 2013. If we focus our attention on active FIDE players,
i.e. players who played at least one FIDE-rated game in the previous 12 months, the share of women is
8.5%.

14This average is weighted by the number of games played by each player from February 2008 to April
2013. Using the unweighted average, women are rated about 150 points lower than men. See Appendix
Table A2.

15See Appendix B for the formula used to calculate the winning chances or expected scores based on
the Elo differences.

16See Niederle (2016) for a discussion of the use of Cohen’s d in the gender literature. Here, a Cohen’s
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Table 1: Summary Statistics

Men Women Women vs. Men

Variable Mean S.D. Min Max Mean S.D. Min Max Diff. Ratio
(1) (2) (3) (4) (3)-(1) (4)/(2)

Elo 2044.0 261.1 1002 2861 1921.6 272.6 1011 2711 -122.5a 1.04a

Age 36.2 18.0 5 90 22.4 12.5 5 90 -13.8a 0.70a

# Games 159.0 145.2 1 1078 179.7 137.3 1 734 20.7a 0.95a

# Tournaments 24.9 20.2 1 170 27.1 18.1 1 101 2.2a 0.89a

Note: Mean, standard deviation (S.D.), minimum (Min), and maximum (Max) of the Elo rating, age, number of games
played (# Games), and number of tournaments played (# Tournaments) for 116,422 players, of which 10,139 are women
(8.71%). ‘Diff.’ stands for the difference in women’s and men’s means using a two-sample t-test; ‘Ratio’ is the ratio of
women’s to men’s standard deviations using a two-sample variance-comparison F-test. a denotes significance at the 1%
level.

Figure 1: Gender Differences in Elo Ratings, Age and Number of Games

A: Elo Ratings
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Notes: Panels A and B show the distributions of age and Elo ratings of our 116,422 players, of
whom 10,139 are women. Panel C is a binned scatterplot of the number of games played by Elo
rating for women and men. The unbroken lines refer to the estimated quadratic relationships by
gender.

Chess is a man’s world, but there are some instances of very successful women per-

d figure of 0.467 indicates that the average Elo rating differs by 0.467 standard deviations, with 95%
confidence intervals of 0.469 and 0.464.
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forming at the top. For instance, Judit Polgár, who is the highest-rated woman in our

sample with 2711 Elo points (see Table 1), has defeated ten World Chess Champions,

including Gary Kasparov and Anatoly Karpov.

Another important gender difference is worth underlining: female players are on aver-

age much younger than male players, as can be seen in Table 1 and Panel B of Figure 1.

The weighted average age of a female chess player is 22.4 (with a standard deviation of

12.5), as compared to the male figure of 36.2 (18). This age difference can first reflect a

significant number of women dropping out before age 30, and second there being older

male newcomers who enter official competitions for the first time as adults (while very

few women do so).

Finally, Table 1 shows that women played on average significantly more games than

did men from February 2008 to April 2013: about 180 games for women (col. 3) versus

159 for men (col. 1):17 while women represent 8.7% of players, they account for 10% of

the games played during this period. Panel C of Figure 1 also shows that the difference

in the number of games played is found almost all along the distribution of ratings and

is only partly explained by gender difference in age. As shown in Column 1 of Appendix

Table A3, the older the player, the fewer the games played; this relationship is even more

pronounced for women (as revealed in the negative interaction between female and age).

However, even controlling for age and ratings, women play more games than men.18 In

line with this finding, women also play 2.2 more tournaments than men.19 Again, gender

differences in age do not fully explain why women compete more than men in official

tournaments:20 women play more tournaments even controlling for age and ratings (see

column 2 of Appendix Table A3).

Overall, compared to men, women are on average lower-rated, younger and play more

17It should be noted that our dataset only records games played between two rated players, which may
introduce a potential bias if a tournament contains a high proportion of unrated players.

18This result also explain why the gender gap in ratings using the weighted average (123 points) is
lower than the unweighted average (150 points - See Appendix Table A2). This implies that the best
women play relatively more than do the best men, as shown in Column 1 of Table A3.

19This significant difference is expected, given that women play about 21 games more than men and
that official tournaments usually include 9 games.

20Note that our dataset only records FIDE-registered tournaments. Some local tournaments are not
registered at FIDE and do not count for the international Elo rating.
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Figure 2: The Macro Gender Gap in 70 countries

ARG

ARM

AUS
AUT

AZE
BAN

BEL

BIHBLR

BRA

BUL CAN

CHI

CHN

COL

CRO

CUB

CZE

DEN

DOM

ECU

EGY

ENG

ESP

FIN

FRA

GEO

GER

GRE

HUN

IND

IRI

IRL

IRQISL

ISR

ITA

KAZ

LAT

LTU

LUX

MAS

MDA
MEX

MNE

NED

NEP

NOR

PAR

PER

PHI

POL

POR

ROU

RUS
SCOSLO

SRB

SRI

SUISVK

SWE

TUR

UKR

URU

USAUZB

VEN

VIE

WLS

16
00

18
00

20
00

22
00

24
00

M
ea

n 
El

o 
R

at
in

g 
of

 W
om

en

1600 1800 2000 2200 2400
Mean Elo Rating of Men

45 degree line
slope = 0.94 (se = 0.05), R2 = 0.77

Notes: This figure shows the correlation of men’s and women’s mean Elo ratings. We retain all
countries with over 500 players in our sample (70 countries out of 161). ISO codes are used to
represent the countries; these are listed in Appendix Table A1. The regression slope is 0.939
with a standard error (s.e.) of 0.052 and a R-squared of 0.771.

games and tournaments.

2.3 Does the Macro Gender Gap Vary across Countries?

We observe considerable heterogeneity across countries: some national chess federations

are larger, older, richer, receive government support,21 and have top players who poten-

tially act as role models. For instance, as of November 2021, a country that has a strong

chess tradition like Russia was top-ranked with an average Elo score of 2729 for its top

10 players, while Eswatini was ranked 163th with an average score of 1590.22 How does

country heterogeneity relate to the macro gender gap? To explore this association and en-

sure representativeness, we retain all countries with over 500 players in our sample. These

70 countries out of 161 represent 96.3% of the games played by women (see Appendix

21For instance, chess grandmasters in Iceland receive government financial support.
22See the federations rankings on the FIDE website (https://ratings.fide.com/topfed.phtml).
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Table A1). We then plot the average rating of female and male players in each country in

Figure 2. The linear fit (slope = 0.939, robust standard error = 0.052, p-value = 0.000,

R2 = 0.771) reveals a positive association between male and female ratings. Countries are

heterogeneous, but all appear below the dashed red 45-degree gender-equality line: in all

70 countries there is a macro gender gap, with the average rating of female players being

lower than that of men. Thus, despite huge differences across countries, the size of their

macro gender gap remains fairly similar.

3 The Micro Gender Gap

Descriptive Statistics — Having highlighted a macro gender gap in the previous

section, we now explore gender differences based on game outcomes. The 10,139 women

in our sample played 330,084 games. They lost 47% of these games, drew 24% and

won 29%. These raw numbers are not surprising given the above macro gender gap in

ratings. The average gender difference of 123 Elo points implies that the lowest rated

player has only a 33% chance of winning the game, which is nevertheless 4 percentage

points higher than the observed 29% of games won by women. Note that this chance of

winning comprises gains against both men and women. If we now only focus on games

between women and men, we find a lower share of wins: women won on average 25% of

their games against men.23

Estimation — Descriptive statistics reveal gender differences in individual outcomes,

but also the need to control for the large differences in covariate values between genders.

In order to control for these differences, and to simplify the gender comparison of outcomes

and the discussion of the results, we make two changes to the sample. These changes reflect

our thought experiment of finding for every game played by a woman against a man, a

counterfactual game either between two men (Scenario 1) or between two women (Scenario

2). The results are similar in these two counterfactual scenarios. In one case, the male

23Focusing on the 70 countries, which represent 96.3% of the games played by women (see the above
section), we find women lost 48% of their games against men, drew 24% and won 28%. Overall, we find
that gender differences in individual outcomes are fairly stable both across countries and over our analysis
period.
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player does better against the woman than he would playing against a comparable man,

while in the other case the woman would do worse against the man than she would playing

against a comparable woman. Our reason for focusing on Scenario 1 is the relatively large

number of male-male games, and thus the much-higher possibility of finding a suitable

counterfactual. We describe these sample changes in Appendix D.1.24 First, we eliminate

outliers with respect to age or Elo-rating differences in order to increase the quality of the

counterfactuals. Second, we randomly assign each player of a game to be player 1 or player

2. This is independent of having the White or Black pieces (which is also randomized).

We then only retain the observations in which player 2 is a man. We now compare the

scores in over 150 000 individual games played by a woman against a man to those in over

2 million counterfactual games played between two men. It is worth noting that none of

these sample changes affect our conclusions.25 Based on this comparison, we uncover a

robust gender difference in individual performance, called the Micro Gender Gap (MGG).

Our sample of 2,825,838 observations consists of all those games where player 2 was

a man, and we compare the game’s results according to the gender of player 1. These

results, which are our dependent variable in the regressions, are loss, draw or win. The

MGG is measured by the estimated coefficient on the dummy variable Female vs. Male

in these regressions. The regressions also control for other important covariates: the age

and rating differences between the two players, and a White-pieces dummy for player 1

(as the literature underlines that White starts the game with a certain advantage).26

Table 2 presents estimates of this gap using nine different estimators. The score s in a

chess game takes on three values: loss (s = 0), draw (s = 0.5), and win (s = 1). As these

outcomes are ordered, the ordered statistical models in the first four columns of Table 2

are natural choices. The ordered logit and probit estimates appear in columns 1 and 3

respectively, column 2 refers to the ordered logit heteroskedastic model, which allows the

24The changes are also made so that the sample for the parametric estimates is the same as for the
nonparametric estimates, which impose a common support.

25In the Online Appendix, we show that using the full sample (Table A29) or keeping outliers (Ta-
ble A30) does not affect our parametric results.

26In our sample, holding all other factors constant, White wins slightly more often than Black. Over
2,825,838 games, White scores 53% (39% wins, 28% draws and 33% losses). In Section 6.2, we explore
the role of experience.
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Table 2: The Micro Gender Gap in Performance

Dependent Variable: Score of Player 1 against Player 2

Non-Linear Linear Matching

Estimator: Ologit Ologit Het Oprobit GOL MNL OLS PSM NNM1 NNM2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Micro Gender Gap
-0.023a -0.025a -0.022a -0.021a -0.021a -0.019a -0.017a -0.022a -0.020a

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Notes: The figures here refer to probabilities. The gender gaps are estimated via different methods: the details appear in Ap-
pendix D. Each estimation covers 2,825,838 observations. An observation is a game between player 1 (female or male) and player
2 (male). Standard errors are in parentheses with a denoting significance at the 1 percent level. In each column, the dependent
variable is the score of player 1 against player 2 (loss=0, draw=0.5, win=1). The covariates are the age and Elo-rating differences
between the two players, and a White pieces dummy for player 1. The different estimation methods are: Col 1: Ordered Logit
(Ologit); Col. 2: Ordered Heteroskedastic Logit (Ologit Het); Col. 3: Ordered Probit (Oprobit); Col. 4: Generalized Ordered
Logit (GOL); Col. 5: Multinomial Logit (with the draw as the baseline); Col 6: Ordinary Least Squares (OLS); Col. 7: Propensity
Score Matching (PSM); Col. 8: Nearest-Neighbor Matching (NNM) with Euclidean distance (NNM1); and Col. 9: NNM with
Mahalanobis distance (NNM2). The standard errors are calculated using the Delta method in columns 1 to 5.

variance of the unobservables to vary by gender. One reason to expect gender differences

in the variance of unobservables is that women may be averse to competing against much

higher-rated players. This unobserved preference may lead some women to self-select into

specific tournaments, for instance with lower average ratings. In column 4, we use the

more flexible generalized ordered logit (GOL) model, as the ordered logit relies on the

restrictive proportional odds assumption. In column 5, we estimate a multinomial logit

model (with the draw as the baseline). Column 6 refers to OLS estimation of the Female

vs. Male dummy. Appendix D discusses the technical details of each estimator, as well as

the odds ratios, marginal effects, and the way in which gender gaps are calculated from

non-linear models.

The linear and non-linear models rely on specific functional forms, linking the game

scores to the covariates. In columns 7 to 9, we estimate the size and significance of the

MGG using a less-parametric approach based on matching estimators. The basic principle

of matching here is to find, for each game played by a woman against a man, a “twin”

or counterfactual game played between two men. We use two matching techniques to

estimate the MGG: the Propensity Score Matching (PSM) estimator (column 7) and the

Nearest-Neighbor Matching (NNM) estimator (columns 8 and 9). The PSM is based

on single nearest-neighbor matching without replacement, while the NNM looks for the

closest game using the Euclidean (column 8) or Mahalanobis (column 9) distance in the

covariate space. The technical details of the matching estimators appear in Appendix D.
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All of the estimates indicate that women ceteris paribus underperform when play-

ing against men. On average, men have a 1.7% to 2.5% higher winning probability

against women than against otherwise-comparable men. In sum, the parametric and non-

parametric estimations yield a consistent message: there is a significant micro gender

effect in performance that is similar in size across specifications.

4 Do Inaccuracies in the Elo Rating Lie Behind the

Micro Gender Gap?

The identification of the micro gender gap depends critically on the accuracy of the Elo

rating. We here test the robustness of the gap with respect to concerns about this rating.

FIDE sets Elo ratings using a simple, publicly-available formula that does not de-

pend on the player’s gender (See Appendix B). However, concerns may be raised that

the Elo rating is not the best unbiased estimate of relative strengths between men and

women. A first concern is that the Elo rating could be gender-biased. In practice, pair-

ings are drawn randomly and are gender-neutral.27 However, women may self-select into

women-only tournaments or tournaments with a higher fraction of women. The fact that

women tend to play disproportionately more against women than against men could bias

women’s ratings upward, creating a possibly-spurious gender gap.28 A second concern is

of measurement error in the Elo ratings. As is well known, classical measurement error in

a single variable biases its estimate towards zero. However, this attenuation bias may also

bias the estimated coefficients on other regressors, measured without error, as long as the

regressors are correlated. As women have lower average ratings, Elo and gender appear to

be correlated. Therefore, measurement error in ratings could explain why gender, which

may have no effect on the score after controlling for ratings, may attract a significant

27Most tournaments are held under the “Swiss system”: in each round, competitors are paired against
opponents with a similar number of points scored (see https://handbook.fide.com/chapter/C0401 for
more details). Two other systems are used: (1) knock-out, where competitors are eliminated before the
end of the tournament, and (2) round-robin, in which each competitor meets all others in turn. These
use straightforward pairing systems, but are less frequent as they involve fewer contestants.

28In our data, female-female pairings are indeed much more frequent than random pairing would predict.
Due to the relatively small number of women in our sample, we should only find about 0.8% all-women
games, but this figure is actually 5.6% (156,987 games out of 2,825,838).
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estimated coefficient in practice.29

We present five tests to ensure that these concerns do not affect our results. We first

control for women’s history via the proportion of games they played against other women

in our sample (see Section 4.1). Second, we identify countries in which self-selection

into women-only tournaments is almost impossible or very limited, ensuring that female-

male matching is random (Section 4.2). Third, we appeal to an exogenous variation in

the frequency of updates to the Elo rating that greatly increases its accuracy, thereby

reducing potential measurement errors (Section 4.3). Fourth, we calibrate the size of the

error required to render the gender effect insignificant (Section 4.4). Last, we explore the

dynamics of moves, wins and the Elo that could reflect the gender gap (Section 4.5).

All of the sensitivity checks lead to the same qualitative findings: potential errors

and biases in Elo ratings do not appear to be responsible for the micro gender gap in

performance.

4.1 Gender Differences in Rating Acquisition

We here analyze the potential impact of self-selection into women-only tournaments on

ratings by defining two groups of female players. In the first group, women played 50% or

more of their games against other women, while their opponents were mostly men in the

second group. We calculate this measure of women opponents played using information

up to each of the tournaments under consideration.30 We create dummy variables for each

group, and interact these with the Female vs. Male dummy. We use the same sample and

specification as in Section 3, with the generalized ordered logit as the reference estimator.

The gender estimates are summarized in the first two columns of Table 3, while the details

and the odds ratios appear in Appendix Table A11.

The micro gender gap for women who play mostly against women is 1.5%, as against a

figure of 2.3% for women who play mostly against men (see columns 1 and 2 of Table 3).

29See Gillen et al. (2019) for a more general point about gender effects and the role of attenuation bias
in correlated regressors.

30Note that we cannot calculate this measure using information up to each individual game, as we do
not observe the order of the games played within a tournament: we only know the date of the tournament,
not the date of each game.
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Table 3: Gender and Sensitivity Checks on Elo Ratings

Estimator: Generalized Ordered Logit
Dep. Var.: Score of Player 1 against Player 2
Sample: Player 1 is a Woman or a Man and Player 2 is a Man

Model 1 Model 2 Model 3

Women Facing Mostly Country Types Frequency of Elo Updates

Women Men Type R Type C Type N 3-Month 2-Month Monthly

(1) (2) (3) (4) (5) (6) (7) (8)

Micro Gender Gap -0.015a -0.023a -0.018a -0.019a -0.024a -0.026a -0.020a -0.015a

(0.002) (0.001) (0.004) (0.002) (0.002) (0.002) (0.002) (0.003)

Notes: The gender gaps are calculated for women playing mostly against women (col. 1) or men (col. 2); for women in
countries where the proportion of female-female pairings is random (Type R, col. 3), close to random (Type C, col. 4), or
non-random (Type N, col. 5); and for women in periods where the rating is updated every 4 months (Period 1, col. 6), every
2 months (Period 2, col. 7), or every month (Period 3, col. 8). In each column, the dependent variable is the score of player
1 against player 2 (loss=0, draw=0.5, win=1). The covariates are the age and Elo-rating differences between the two players,
and a White pieces dummy for player 1. All gender gaps are calculated based on predicted probabilities (see Table A11 for
the first two columns, Table A12 for columns 3 to 5, and Table A13 for columns 6 to 8). For instance, in column 1, the
gap is [Pr(ScoreFM = 1) + 0.5 ∗ Pr(ScoreFM = 0.5)] − [Pr(ScoreMM = 1) + 0.5 ∗ Pr(ScoreMM = 0.5)] = −0.014, where
Pr(ScoreFM = 1) = 0.3200 is the probability of Female winning against Male, Pr(ScoreFM = 0.5) = 0.3229 that of Female
drawing against Male, Pr(ScoreMM = 1) = 0.3162 that of Male winning against Male, and Pr(ScoreMM = 0.5) = 0.3583
that of Male drawing against Male. Standard errors in parentheses are calculated using the Delta method, with a denoting
significance at the 1% level.

Caution should be exercised in interpreting results involving self-selection into specific

environments. The opposite result, i.e. a larger gender gap for women playing a majority

of women, may have been expected for two reasons. First, self-selection into women-

only tournaments may primarily have been motivated by the wish to avoid competing

against men, that is players against whom their performance would have been relatively

inferior. Second, we may also expect the opposite result if women who play mostly against

women were over-rated. An upward bias in their ratings would overestimate their expected

outcome Eij (see Equations 6 and 7). Therefore, by losing, they would lose more points.31

Rather, the observed gender differences in Table 3 suggest that the gender gap cannot be

attributed to women being over-rated due to tournament segregation. Our results show

instead a greater effect of competition for women in male-dominated environments.

4.2 Gender as a Treatment Variable

As noted above, women may choose to participate in tournaments with a larger proportion

of female players. However, in countries where most competitions are mixed, women

31Another potential psychological explanation could be that each gender performs better against the
gender with which it competes less often.
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are not able to self-select into “women-only events”, and the proportion of female-male

pairings is as good as random. Gender can then be considered as a treatment variable:

playing against a woman is a random event that affects all players equally.32

In each country in our data set, we first calculate the expected proportion of mixed-

gender games under purely random matching. We then calculate the difference between

the expected and observed proportions, and rank countries accordingly. Roughly one-

third of the observations come from countries in which no difference is found between

the expected and observed figures (according to a χ2 test), suggesting random gender

matching (we call these Type R, as a mnemonic for random). Only minor differences are

found in the second group (Type C, for close to random; the χ2 statistic is only significant

at the 10% level in some of these countries). Last, the differences between the expected

and observed proportions are significant in the third group (Type N, for non-random).

We create dummy variables for each group and interact them with the Female vs. Male

dummy. The gender-gap estimates associated with each interaction appear in columns 3

to 5 of Table 3, and the detailed results in Appendix Table A12.

Regardless of the difference between the expected and observed proportions of mixed-

gender games, we confirm that women are at a disadvantage when playing against men.

We do nevertheless see some differences across country types, although there is no clear

pattern suggesting that self-selection is the main explanation of the micro gender gap

in performance.33 On average, men have a 2.4 percent lower probability of losing when

playing a woman in a country with self-selection, versus 1.8 percent in countries with

random matching. However, these differences are not statistically different from each

other (columns 3 to 5 of Table 3). They also fall within the range of the estimates in

Table 2. As a result, the micro gender gap in performance is found for each sub-group,

32Players may decide to play abroad, but there are significant costs associated with this decision,
such as travel, accommodation and visa fees (if applicable). Unfortunately, we do not have access to
information on the location of the game. However, we observe that 78% of the games in our estimation
sample involve two players from the same country (most likely playing at home). This proportion rises
to 81% if we exclude high-ranked players, above 2500 Elo, who more frequently travel abroad to play.

33For instance, the odds ratios, shown in Table A12, are not statistically different between type-R and
type-N countries (Prob > χ2 = 0.703). However, these odds ratios are different from the intermediate
type [type C vs. type R: Prob > χ2 = 0.091, and type C vs. type N: Prob > χ2 = 0.000]. In contrast,
the probabilities, displayed at the foot of Table A12, highlight a higher gender gap in countries with
self-selection (type N; see column 5 of Table 3).
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and does not depend on random gender matching.

4.3 Imperfections in Elo Ratings

Elo ratings may be inaccurate. At a given point in time, some players may be under- or

over-rated relative to their “true” or equilibrium value. The frequency of rating updates

especially affects fast-improving or fast-deteriorating players. Consider a concrete example

with ratings updated every six months, say in January and July, and a young player with

a rating of 2000 points on the January 1st list. Suppose she improves quickly and earns

virtually 10 points per month. Five months later, at the end of May, she will be underrated

by 50 points, while her actual rating will only change on the 1st of July. This bias will

also affect her expected outcomes.34 In this case, more-frequent updates would reduce

the inaccuracy in her Elo rating and expected outcomes.

The main concern with respect to our analysis is that Elo inaccuracies, due to infre-

quent updates, are gender-specific. Suppose that men devote more effort on average to

chess than do women. Men would then progress faster, and be more often underrated

compared to women. Our gender gap would therefore be an artifact. In this case, the

size of the micro gender gap will vary by update frequency, and infrequent updates will

produce a greater gender gap in performance. To rule out this possibility, we exploit

naturally-occurring variations in the frequency of rating updates. From January 2000 to

the first half of 2009, FIDE published four lists per year, so that ratings were updated

every three months. By the second half of 2009 there were six lists per year. Finally,

in July 2012 FIDE started publishing monthly ratings. As our database covers all FIDE

games played from February 2008 to April 2013, the frequency of updates has tripled over

this period. We exploit these naturally-occurring changes by comparing three separate

groups of updates: from February 2008 to June 2009 (3-month update), from July 2009

to June 2012 (2-month update), and from July 2012 to April 2013 (monthly update).

We create dummy variables for each group and interact them with the Female vs. Male

dummy. The gender-gap estimates associated with each interaction appear in columns 6

34The bias will be inversely proportional to the difference in ratings, ∆Eloij in Equation 6.
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to 8 of Table 3, and the detailed results in Appendix Table A13.

Elo ratings become more accurate as the frequency of updates increases. However, the

micro gender gap continues to hold despite the exogenous variations in update frequency.

In each update period, women were at a disadvantage when playing against men. However,

there are some interesting differences despite the fact that the odds ratios in Table A13 are

not significantly different between the three groups. When the Elos are updated monthly,

the gender gap is 1.5%, as compared to 2.4% when the Elos are updated every four

months. Overall, the micro gender gap in performance is consistent with the estimates in

Table 2 and the first two columns of Table 3.

4.4 Measurement Error in Elo Ratings

As women have lower average Elo ratings, ratings and gender appear to be correlated. As

a consequence, the micro gender gap could be explained by the attenuation bias in the

Elo rating. To deal with this issue we consider the following thought experiment: if the

attenuation bias in ratings is responsible for the significant gender gap, how much would

the variance of the error in ratings have to fall to drive the gap down to zero? We show

that this error in ratings has to be fairly large for the gap to become zero.

To facilitate the presentation, consider the following linear regression with two inde-

pendent variables:35

Score = β∆Elo + γFemale + ε, (1)

where the dependent variable is the score of player 1 against player 2, ∆Elo the difference

in their Elo ratings, and Female a dummy for player 1 being a woman (given that in our

estimation sample player 2 is always a man). Consider now that the true measure of rating

differences, denoted ∆Elo∗, suffers from measurement error, so that ∆Elo = ∆Elo∗ + u,

with σ2
u = Var(u).

Using the Frisch-Waugh theorem, we obtain an explicit formula linking βols and γols

35For a more general derivation of bias in the regression coefficients with systematic measurement error
as an explanatory variable see Herbert and Dinh (1989).
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to their “true” values of β and γ, respectively:

β = βols
Var(∆Elo) Var(Female)− Cov(∆Elo,Female)2 − σ2

u

Var(∆Elo) Var(Female)− Cov(∆Elo,Female)2
, (2)

and

γ = γols +
β Cov(∆Elo,Female)σ2

u

Var(∆Elo) Var(Female)− Cov(∆Elo,Female)2
. (3)

Equations 2 and 3 can be combined to yield:

γ = γols +
βols Cov(∆Elo,Female)σ2

u

Var(∆Elo) Var(Female)− Cov(∆Elo,Female)2 − σ2
u Var(Female)

. (4)

We then solve for σ2
u assuming that γ = 0 in order to determine the amount of noise (i.e.

the value of σ2
u) necessary for the true coefficient γ to be zero:

σ2
u =

γols [Var(∆Elo) Var(Female) + Cov(∆Elo,Female)2]

γols Var(Female) + βols Cov(∆Elo,Female)
. (5)

Equation 5 provides an expression that allows us to calculate σ2
u based on the OLS

estimates of Equation 1 and sample moments. However, to control for age we restrict

the trivariate regression 1 to players with at most a five-year age difference.36 The OLS

results appear in Table 4. As expected, βols and γols are significant.37

Using Equation 5, the OLS estimates in Table 4 and the sample moments produce

a value of σu = 53. We provide two benchmarks showing that this figure for the error

in ratings that would drive the gender coefficient (γols) down to zero is large. We first

compare the value of σu = 53 to the standard deviation of ∆Elo to have a sense of the

magnitude of the noise. As σ
∆Elo = 195, noise would have to account for over one quarter

of the variation of the Elo difference between two players i and j. Second, the value of σu

can be linked to how chess ratings are updated. As explained in Appendix Section B, the

rating changes are determined by a parameter K. For players with K = 15, which is the

value for the majority of the players in our sample (see Appendix Table A16), winning a

36This restriction reduces the size of the sample but produces some benefits. We still have a sizable
sample of 866,784 observations and focusing on a linear regression with only two regressors allows us to
obtain a tractable measure of the error in ratings (Equation 5).

37These results are in line with the OLS estimation in Appendix Table A4.
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Table 4: The Effect of the Elo Difference and Gender on the Score

Dependent Variable: Score of Player 1 against Player 2

∆Elo (βols) 0.106a

(0.001)

Female (vs. Male) (γols) -0.025a

(0.002)

R2 0.242
Observations 866,784

Notes: The dependent variable is the score of player 1 against player 2 (0, .5, 1).
∆Elo is the difference in Elo rating between player 1 and player 2. OLS estimates
with robust standard errors in parentheses and a denoting significance at the 1%
level. The sample includes all observations for which the age difference is at most
5 years and player 2 is always a man.

game against an opponent of the same rating is equivalent to gaining K points times a

50% expected outcome, i.e. 15 ∗ (1− .5) = 7.5 (see Equation 7). An error in ratings of 53

points is equivalent to winning seven games in a row (7*7.5=52.5) against an opponent

with the exact same rating, a highly-unlikely event.38

4.5 The Dynamics of Elo Ratings and Moves

Dynamics of Elo Ratings — As Elo ratings change over time with performance, if

women underperform when they play men then their ratings could already reflect the

gender gap (see e.g. Smerdon et al., 2020). We construct a simple example with two

objectives: first, to illustrate that ratings do not necessarily reflect the micro gender gap,

and second to derive an important implication regarding scores. Consider a 10-game

match between two identical players, except that one is a woman and the other a man.

Their observed ratings correctly measure their “true” or equilibrium ratings, say 2000

points. Their expected score is 50%, or 5 points out of 10 each. Suppose the man starts

with an exceptional series of five wins: his rating would then climb to 2034 and hers would

drop to 1966. As the rating difference increases the value of a win for the lower-rated

player, and as the man’s winning streak was truly exceptional, the players will return to

38The winning streak varies with K. The higher is K, the shorter the winning streak required to
produce an error of 53 points. However, the higher is K, the greater the estimated micro gender gap (see
Table 8), and the larger the error needed to drive the gap down to 0.
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Table 5: Number of Wins and Gender

Dependent Variable: Number of Winsit

Period t: Months Years Whole

Womani -0.112a -0.214a -0.604a

(0.005) (0.012) (0.037)

Player’s Average Elo ratingit 0.061a 0.134a 0.325a

(0.001) (0.002) (0.006)

Player’s Average Ageit -0.003a -0.006a -0.028a

(0.000) (0.000) (0.001)

Player’s Total Number of Gamesit 0.382a 0.404a 0.404a

(0.001) (0.001) (0.001)

Observations 849,318 363,827 111,934
Adjusted R2 0.517 0.836 0.931

Notes: The dependent variable is the player’s total number of wins calculated over different t periods:
each month (column 1), each year (column 2) or over the entire sample period (2008-2013, column 3).
The different t periods are used to average the payer’s Elo rating and her/his age, and to calculate the
player’s total number of games. Robust standard errors, clustered at the player level in columns 1 and
2, are in parentheses with a denoting significance at the 1% level.

their equilibrium values if the woman scores 4 wins and a draw in the second half of the

match. After this mean-reverting process, the difference in ratings would be tiny, but

the woman has only scored four wins, and 4.5 points out of 10.39 From this example, we

can make a simple prediction regarding the micro gender gap: a woman’s rating may be

unaffected, but returns to its equilibrium value with fewer wins. Therefore, all else equal,

women may score fewer wins than otherwise similar men. We check this prediction in

Table 5.

Table 5 presents the results of an OLS regression of the player’s total number of

wins on a female dummy variable, controlling for the player’s mean Elo rating, her/his

mean age and her/his total number of games. Each variable is summed or averaged over

different t periods: each month (column 1), each year (column 2) and the entire sample

period (2008-2013, column 3). The results are fairly intuitive: the higher the rating,

the younger the player, the more games played, the more wins there are. Moreover, as

39After the second half of the match, the difference in ratings could be 2 Elo points in favor of the man
or the woman, according to the order of the four wins and the draw. Interestingly, we can construct more
extreme examples with a man’s 10-win streak followed by 7 defeats such that both players have the same
rating: 2000 points. They return to their true rating, but the woman has scored only 41% of the points.
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predicted, all else equal, women win fewer games than men. This result is in line with

ratings returning to their equilibrium values after under-performance, but at the cost of

more defeats. However, these defeats are not necessarily harmless in the long run. We

show in the theoretical Section 5 that losses may lead to less effort and more dropout.

The gender difference in the number of wins also depends on the accuracy of the Elo

ratings. However, despite all of the tests showing that Elo ratings are gender-neutral and

relatively accurate, we cannot be entirely certain that gender differences in the number

of wins or scores are unbiased. Therefore, as further evidence of gender differences in

individual interactions, we below present some results on move dynamics.

The Dynamics of Moves — We construct Figure 3 using a sample of 838,773 games

of which we know the length (see Appendix F for details). This figure plots the densities

of the number of half-moves or plies comparing same-sex pairings.40 This intra-group

comparison allows us to control for large differences in covariates across groups. In panel

A, we see that women play relatively longer games than men. On average, games last 86

half-moves when both players are women compared to 79 when both players are men (a

difference of 7 half-moves with a standard error of 0.13; p < 0.001). However, the length of

drawn games may be considered as more informative than decisive games (wins or losses),

as some players may decide to resign prematurely or pursue a hopeless position to the end.

Additionally, draws may involve interesting strategic considerations between continuing

to fight or ending the game early, for instance to save energy for the next game. There

are a number of ways in which a game can end in a draw (i.e., neither player winning).

The most common is by mutual agreement during the game.41 Panel B of Figure 3 shows

that women play even longer games when focusing only on draws. On average a drawn

chess game lasts 73 half-moves when both players are men and 85 when both players are

women (a difference of 12 with a standard error of 0.30; p < 0.001). Very similar figures

40A ply is one turn taken by one of the players and measures more precisely when the game ends.
41See Article 5 in the FIDE handbook (https://www.fide.com/FIDE/handbook/LawsOfChess.pdf).

Another related way to make a draw is the threefold repetition (when the same position occurs three
times with the same player to move). The game can nevertheless be drawn without any mutual agreement
including stalemate (when the player to move is not in check but has no legal move) or the fifty-move
rule (when the last fifty successive moves made by both players contain no capture or pawn move).
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Figure 3: The Distribution of the Number of Moves
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are found when mixed-gender games are considered, and when controlling for all available

covariates.42 Overall, women play longer games than men regardless of the age or rating

differences. We thus confirm the intuition that mixed-gender games unfold in a different

manner than do same-gender games. This result does not depend on Elo ratings and the

shortcomings of any performance measure.

5 A Simple Model Linking the Micro and Macro

Gender Gaps

We lay out a simple model, which is developed in Appendix G, to examine the macro

consequences of the micro gender gap. Players are modeled as rational agents who, at each

period of time, choose how much effort to invest into their (chess) skills. Players’ optimal

decisions depend on their beliefs about their “true” chess ability. Intuitively, if a player

believes she is very talented, sufficiently say to become a Grandmaster, her expected

return to effort will be high. It is then in her best interest to put in significant effort

in order to reap the benefits. However, players do not ex ante exactly know their true

ability, and will update their beliefs from the signals given by the outcomes of successive

42See Figure A6 that adds the mixed-gender density to Figure 3. Moreover, controlling for differences
in ratings and ages yields the same difference of 12 half-moves as in Panel B.
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games. The more optimistic their beliefs, the greater their effort.

Men and women in our model face exactly the same decision problem: they have the

same utility function, update their beliefs the same way, have the same initial beliefs,

etc. The only gender difference considered in the model, and supported by the data, is

the micro gender gap. So, women are assumed to experience an unconscious and small

drop in Elo rating when playing against men. On its own, this drop in Elo rating is

not sufficient to generate a macro gender gap. The mean-reverting process illustrated in

Section 4.5 helps women to restore their Elo. However, women lose more often than men.

As a result, they receive more negative signals about their own ability to play chess and

will become, on average, increasingly pessimistic when competing against men. Being

uncertain about their true chess ability and having more-pessimistic beliefs lead to lower

effort and a smaller increase in Elo ratings. We therefore below show that the initial

micro gender gap creates a vicious cycle through an accumulation mechanism. At the

extreme, very pessimistic beliefs lead to a steady state of zero effort, which we assimilate

to dropping out.

Before deriving testable predictions from the model, it worth clarifying the role of

uncertainty on true ability. Without uncertainty on the return of their efforts, the micro

gender gap would not accumulate. Women would lose more games against men than

against comparable women. However, this would not result in a growing gap. Women

would navigate between two Elo ratings, which would differ by the size of the micro gap,

depending on their number of mixed-gender games. Formally, without uncertainty, the

overall macro gap would be exactly equal to the micro gender gap. Note also that in the

absence of a micro gender gap, uncertainty would generate no gender difference. In short,

the precise channel through which a small micro gap can accumulate is the interplay of

the micro gap itself and uncertainty about the returns to human-capital investment.

Testable Predictions — From our model, we can establish three predictions:

Prediction 1: The likelihood of women dropping out of competition increases with

the size of the micro gender gap: the larger the gap, the greater the probability that

women drop out of competition. As a result, women are more likely than men to drop
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out.

Prediction 2: The higher the fraction of mixed-gender games, the higher the proba-

bility that women drop out.

Prediction 3: The higher rate of female dropouts generates selection and a decrease

in the micro gender gap over time, in particular for the most successful women (those who

received the most positive signals). The reduction in the micro gender gap could also be

the result of women slowly finding ways to overcome the gap itself. Both effects predict

a fall in the size of micro gender gap with experience.

For ease of presentation, the proofs of these predictions appear in Appendix G.

6 Testable Predictions: Dropping Out, Experience,

and Environmental Influences

The first two predictions of our model refer to quitting competition. We provide empir-

ical evidence regarding dropouts in Section 6.1. The model also predicts that the most

successful and experienced women face a lower micro gender gap. We take this prediction

to the data in Section 6.2.

Last, beyond our testable predictions, we wish to establish whether our model leaves

out important factors behind gender differences. The model implicitly focuses on some

factors and may leave out some potentially-important aspects, such as cultural factors.

To address this issue, we compare our predictions across various environments in which

women and men interact (see Section 6.3).

6.1 Dropouts versus Stayers

We first check whether a larger micro gender gap is related to a greater probability that

women drop out from competition. In the absence of any measure of outside options, we

cannot establish a causal impact between the size of the gender gap and dropping out of

chess. We can however obtain valuable insights by comparing two groups of women: those

who were active at both the beginning and the end of our sample period, and those who
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Table 6: Gendered Outcomes, Dropouts and Stayers

Estimator: Generalized Ordered Logit
Dependent Variable: Score of Player 1 against Player 2
Sample: Player 1 is a Woman or a Man; Player 2 is a Man

Dropouts Stayers
(1) (2)

Micro Gender Gap
-0.041a -0.012a

(0.007) (0.003)

Notes: We restrict our sample to 2009. “Dropouts” are women who were active in 2009 but not in
2012 (column 1), and “Stayers” are women who were active in both 2009 and 2012 (column 2). In each
column, the dependent variable is the score of player 1 against player 2 (loss=0, draw=0.5, win=1). The
covariates are the age and Elo-rating differences between the two players, and a White pieces dummy for
player 1. The gender gaps are calculated based on the predicted probabilities. For instance, in column 1,
the gap is [Pr(ScoreFM = 1) + 0.5 ∗ Pr(ScoreFM = 0.5)]− [Pr(ScoreMM = 1) + 0.5 ∗ Pr(ScoreMM =
0.5)] = −0.041, where Pr(ScoreFM = 1) = 0.2934 is the probability of Female winning against Male,
Pr(ScoreFM = 0.5) = 0.3276 that of Female drawing against Male, Pr(ScoreMM = 1) = 0.3139 that of
Male winning against Male, and Pr(ScoreMM = 0.5) = 0.3695 that of Male drawing against Male. See
Table A14 for more details on the predicted probabilities and the estimation of the gender gaps. Standard
errors in parentheses are calculated using the Delta method, with a denoting significance at the 1% level.

drop out. We compare these two groups, restricting our sample to 2009, where we observe

3,589 women who played 25,128 games. Of these women, 1,043 (29%) were inactive in

2012.

Table 6 compares the “stayers” (2,546 women who were active in both 2009 and 2012;

column 1) to the “dropouts” (1,043 women who were active in 2009 but not in 2012;

column 2). As shown in Appendix Table A14, the estimated coefficients on the rating

differences, age differences and White pieces are very similar between the two groups.

However, the gender gaps displayed in Table 6 are significantly different. Women who

were no longer active in 2012 had a gender gap of 4.1% in 2009, while this figure is

only 1.2% for women who remained active in 2012. It could be that women who faced

a greater gender disadvantage at the beginning of our sample period are more likely to

have dropped out. This correlation obviously cannot be considered as causal. However,

the difference is significant, and it is not easy to find reasonable alternative explanations.

For instance, why should women who have better outside options also be more sensitive

to gender effects? We believe the competition effect is thus likely to reduce the pool of

women and, hence, the probability that women reach the top.

We now check whether the probability of women leaving competition increases with
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the likelihood of mixed-gender games. We already know that countries differ in their

shares of these games (see Section 4.2 and Model 2 of Table 3). Does the probability

of women leaving competition increase with this country share? We consider the same

women as above who, in 2009, are either stayers (active in 2012) or dropouts (inactive

in 2012). We then estimate various regression models of women having dropped out by

2012 as a function of their individual characteristics in 2009 (age, Elo and the number

of games played) and the country share of mixed-gender games. We additionally control

for the share of all-women games. We might otherwise capture a comparison between

countries in which women have more access to chess and those in which they do not. The

3,589 women in 2009 come from 105 different countries, and we calculate the share of

mixed-gender games and the share of all-women games over the whole period.43 To make

the results easier to read, we create a dummy variable for the country share being above

the median (5.5%).44

The results appear in Table 7. For presentation purposes, the coefficients are listed as

odd ratios for the logit in columns 1 to 3, and in exponential form for the probit and linear-

probability models in columns 4 and 5. Our variable of interest, the share of mixed-gender

games, attracts a positive significant estimated coefficient in all specifications. Women

in countries with an above-median share of mixed-gender games are more likely to drop

out. Appendix H Figure A5 depicts the way in which the share of mixed-gender games

in a country is related to the probability that women drop out.

The other results are intuitive. The older the player, the higher her rating, and the

more she played in 2009, the less likely she is to have dropped out by 2012. However,

only the estimate of the number of games is clearly statistically significant across the

estimations.

To summarize, the results, predicted by the theory, show that women who suffer from

a large micro gender gap are more likely to drop out. Ignoring for the moment newcomers,

this attrition would produce a falling micro gender gap over time. In addition, “learning-

43Using the whole period offers more representative shares, but calculating these only in 2009 does not
change the results (available upon request).

44In Appendix H, we also calculate predicted probabilities using the continuous figure for the mixed-
gender games share by country.
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Table 7: Determinants of Women Dropping Out

Dependent Variable: Women Dropping Out in 2012

Estimator: Logit Probit LPM

(1) (2) (3) (4) (5)

Share of Mixed-Gender Games (>P(50)) 1.393a 1.440a 1.528a 1.296a 1.083a

(0.103) (0.143) (0.154) (0.079) (0.022)

Share of All-women Games 0.720 0.468 0.632 0.875
(0.483) (0.331) (0.268) (0.120)

Age in 2009 0.995c 0.997c 0.999c

(0.003) (0.002) (0.001)

Elo Rating in 2009 0.970c 0.981c 0.993b

(0.017) (0.010) (0.003)

Number of Games Played in 2009 0.900a 0.943a 0.986a

(0.009) (0.005) (0.001)

Observations 3,589 3,589 3,589 3,589 3,589
(Pseudo) R2 0.005 0.005 0.058 0.058 0.057
Log Likelihood -2153.0 -2152.8 -2037.2 -2038.7

Notes: The coefficients are exponential in columns 4 and 5 in order to be compared to the odds ratios
from the logit regressions. The sample is 3,589 women who were active in 2009. The dependent variable
is a (1,0) dummy for the player dropping out in 2012. The variable “Share of Mixed-Gender Games
(>P(50))” is a dummy for the share of mixed games in the woman’s country being above the median.
The variables Age, Elo rating and Number of Games refer to the woman’s characteristics in 2009. LPM
stands for the Linear Probability Model. Robust standard errors in parentheses, with a, b, and c denoting
significance at the 1%, 5% and 10% levels respectively.

by-playing” may take place, with women overcoming the negative effect of playing against

men or coping better with a male-dominated environment. In sum, the micro gender gap

may disappear or become substantially smaller over time. However, the entry of new

female players over time may keep the size of the micro gender gap constant.

6.2 Does Experience Eliminate the Micro Gender Gap?

Our empirical strategy here consists in focusing on a group of women for whom the gap

is most likely limited: experienced women of a high level who have played a sufficient

number of games. Ideally, we would like to use the amount of games played to measure

experience but two issues prevent us from doing so. First, we face a selection issue because

our tournament data start in February 2008 so that we do not observe the number of

games played in tournaments before that date. Second, our dataset only records games
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played between two rated players, which may introduce a downward bias in experience.

For instance, if a tournament contains a high proportion of unrated players, then games

played against unrated players will not be counted and reported.45 Luckily, the FIDE

provides two excellent proxies for experience: chess titles and the adjustment factor K,

representing the speed of Elo adjustment in Appendix Equation 7.

The FIDE awards eight performance-based titles to chess players, which we rank in

order of requirements from highest to lowest:46 (1) Grandmaster - GM, (2) International

Master - IM, (3) Woman Grandmaster - WGM, (4) FIDE Master - FM, (5) Woman

International Master - WIM, (6) Candidate Master - CM, (7) Woman FIDE Master -

WFM, and (8) Woman Candidate Master - WCM. The open titles (GM, IM, FM and

CM) may be earned by all players, while women’s titles (WGM, WIM, WFM and WCM)

are restricted to female players.47 Titles require a combination of achieving a certain Elo

rating and specific “norms,” which are performance criteria in competitions that include

other titled players. Once awarded, FIDE titles are held for life. These titles are a good

measure of experience as they require mastery. For instance, the Elo requirement for the

GM title is over 2500 Elo points and is 200 points higher than that for the WGM title.

Only 11.3% of the players in our sample are titled (see Panel A of Appendix Table A15),

with 11.6% of the games involving two titled players and about 19% one titled player

(Panel B of Appendix Table A15).

Second, the FIDE applies one of three K values to upgrade ratings.48 Under the FIDE

rules that were effective during our sample period, K = 30 for a player who is new to the

45Despite these potential issues, we report in Appendix Table A21 the estimates of the micro gender
gap while controlling for the difference in experience between the two players. Experience is measured
as the cumulative number of games played up to each tournament. We report estimates using linear
and non-linear estimators. Controlling for experience, the micro gender gaps are somewhat smaller in
magnitude than those in Table 2. One concern is endogeneity, in that the number of games played is
an outcome variable. If women who suffer from a large micro gender gap tend to play fewer games, the
micro gender gap estimate well be downward-biased. The two other measures of experience that we will
use may also be prone to endogeneity, but to a lesser extent as they vary less when women play.

46Details about the title requirements can be found on the website of the World Chess Federation —
https://handbook.fide.com/chapter/B01Regulations2017.

47A woman may hold a title in both systems, given also that some titles are equivalent in terms of
chess requirements, such as WGM and FM, or WIM and CM.

48These different K values have two aims. First, at the top end of the rating spectrum, a low K-factor
is set to reduce rating changes, making rapid rating inflation or deflation less likely. Second, at the
bottom end, a high K-factor ensures that the Elo increases faster as long as the player performs better
than expected, which is the case for young players who are expected to learn and improve quickly.
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rating list until he/she has played 30 games. Afterwards, K = 15 as long as the player’s

rating remains under 2400. Last, K = 10 once a player’s published rating reaches 2400,

with K thereafter remaining permanently at this level. Panel A of Appendix Table A16

shows the distribution of players across the K values.

For each game in our database, we know whether the players have a FIDE title (see

panel B of Table A15) and their K-value (see Panel B of Table A16). First, we distinguish

whether the woman holds a title, and then separate women with the most-demanding

titles (IM and GM) from the others (WGM, FM, WIM, WFM, CM, and WCM). With

this decomposition we create three gender-interaction dummy variables: Woman is a GM

or an IM vs. Man, Woman with another title vs. Man, and Woman with no titles vs.

Man.49 The estimated gender gaps for each of our three interactions appear in the first

three columns of Table 8, and the detailed results are in Table A17, with the predicted

probabilities used to calculate the gender gaps in Table A18.

Second, we estimate the gender gap for different values of K, distinguishing between

very experienced (K = 10), experienced (K = 15) and inexperienced (K = 30) women.

We create three new gender-interaction dummy variables for these three K values.50 The

resulting gender-gap estimates appear in the last three columns of Table 8 (the detailed

results are in Table A19, and the predicted probabilities used to calculate the gender gaps

are in Table A20).

As predicted by the model, the micro gender gap is lower for experienced than inexpe-

rienced women (see cols. 1 vs. 3, and cols. 4 vs. 6). However, the effect remains significant

even in the sub-sample of very-experienced women. So, the interplay of experience and

selection does not suffice to eliminate the gender gap.

49Note that we could have shown results with more gender interactions by separately considering each
of the 8 titles for women and each of the 4 open titles for men. This would have made the presentation
more cumbersome without adding much insight.

50Note that, as for titles above, we could have included more gender interactions. Again, the additional
numbers do not change the qualitative conclusions.
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Table 8: Gendered Outcomes, Experience and Titles

Estimator: Generalized Ordered Logit
Dep. Var.: Score of Player 1 against Player 2
Sample: Player 1 is a Woman or a Man and Player 2 is a Man

Woman’s Experience: GM or IM Other Title No Title K=10 K=15 K=30

(1) (2) (3) (4) (5) (6)

Micro -0.014a -0.020a -0.020a -0.014a -0.011a -0.032a

Gender Gap (0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

Notes: In each column, the dependent variable is the score of player 1 against player 2 (loss=0, draw=0.5,
win=1). The covariates are the age and Elo-rating differences between the two players, and a White
pieces dummy for player 1. GM stands for Grandmaster and IM for International Master. The other
titles awarded are Woman Grandmaster, FIDE Master, Woman International Master, Candidate Master,
Woman FIDE Master, and Woman Candidate Master. The value of K reflects player experience: K=10
(very experienced), K=15 (experienced) and K=30 (inexperienced). The gender gaps are calculated using
the predicted probabilities from generalized ordered logit estimates (see Tables A17 and A19 for columns 1
to 3 and 4 to 6 respectively). For instance, in column 1, the gap is [Pr(ScoreFM = 1)+0.5∗Pr(ScoreFM =
0.5)] − [Pr(ScoreMM = 1) + 0.5 ∗ Pr(ScoreMM = 0.5)] = −0.014, where Pr(ScoreFM = 1) = 0.2857
is the probability of Female (GM or IM) winning against Male, Pr(ScoreFM = 0.5) = 0.3919 that of
Female (GM or IM) drawing against Male, Pr(ScoreMM = 1) = 0.3161 that of Male winning against
Male, and Pr(ScoreMM = 0.5) = 0.3583 that of Male drawing against Male. See Tables A18 and A20
for more details. Standard errors in parentheses are calculated using the Delta method, with a denoting
significance at the 1% level.

6.3 Environmental Influences

We single out two “environmental influences.” We first check whether the micro gender

gap could be affected by the trade-off between career and family, which traditionally lies

behind many gender differences. Second, the gender gap in chess may differ in countries

that promote gender equality, and we thus check whether the process leading to a macro

gender gap varies across countries. We here benefit from both the country coverage of our

dataset and that it includes individuals aged from 5 to 90. We show that the micro gender

gap is not affected by these contextual factors, so that the macro-differences should be

similar across countries.

6.3.1 Career-Family Trade-off

In the United States, women between the ages of 21 and 55 spend roughly twice as much

time on child care as do men (Guryan et al., 2008). Similar figures are found in many

other countries. There are at least two reasons why we may want to consider these gender
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Table 9: Gendered Outcomes and Age

Estimator: Generalized Ordered Logit
Dependent Variable: Score of Player 1 against Player 2
Sample: Player 1 is a Woman or Man and Player 2 is a Man

Both Players: Below 16 Below 21 Above 55 Above 64
(1) (2) (3) (4)

Micro Gender Gap
-0.036a -0.034a -0.053a -0.050a

(0.004) (0.002) (0.007) (0.009)

Notes: In each column, the dependent variable is the score of player 1 against player 2 (loss=0, draw=0.5,
win=1). The covariates are the age and Elo-rating differences between the two players, and a White
pieces dummy for player 1. The gender gaps are calculated based on the predicted probabilities. For
instance, in column 1, the gap is [Pr(ScoreFM = 1) + 0.5 ∗ Pr(ScoreFM = 0.5)] − [Pr(ScoreMM =
1) + 0.5 ∗ Pr(ScoreMM = 0.5)] = −0.036, where Pr(ScoreFM = 1) = 0.3193 is the probability of
Female winning against Male, Pr(ScoreFM = 0.5) = 0.2763 that of Female drawing against Male,
Pr(ScoreMM = 1) = 0.3364 that of Male winning against Male, and Pr(ScoreMM = 0.5) = 0.3134 that
of Male drawing against Male. See Table A22 for more details on the predicted probabilities and the
estimation of the gender gaps. Standard errors in parentheses are calculated using the Delta method,
with a denoting significance at the 1% level.

asymmetries in the career-family trade-off. The first is that women may be less devoted to

their task, i.e. playing chess, during a classic game of several hours than men because of

childcare overload. Women may need to check, for example, whether they have received

urgent text messages regarding their children.51 The second is that with the burden

of domestic tasks, women devote less time and energy than do men to studying chess.

Women are then more likely to experience a relative fall in their Elo ratings. If Elo ratings

are slow to adjust, then the uncovered gender difference in performance would be wrongly

attributed to another cause. A similar point was raised in Section 4.

We here propose a simple way of addressing career-family trade-offs. We split our

sample by age and look at gender differences in performance at ages when career-family

trade-offs are likely less prevalent, i.e. under age 16 or 21, and over age 55 or 64.

The results appear in Table 9, where we consider different age thresholds: under 16

(column 1), under 21 (column 2), over 55 (column 3) and over 64 (column 4). We find a

micro gender gap for all of these ages at which career-family trade-offs are presumably less

relevant. Girls aged under 16 or 21 competing against boys of the same age face a gender

gap, as do women aged over 55 or 64. As such, the career-family trade-off is probably

51Note that nowadays the use of mobile phones is strictly forbidden during the game for anti-cheating
reasons.
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not the main explanation of the micro gap between men’s and women’s chess outcomes.

However, it should be mentioned that the actual performance of individuals above 55 or

64 may still be influenced by past career-family trade-offs. At the same time, anticipation

of gender differences in family trade-offs might lead to differences for young players aged

below 16 or 21.

6.3.2 Women-Friendly Countries and Cultural Differences

Does culture matter for the gender gap? “Culture” is certainly hard to define, but may

be understood as a body of shared knowledge, understanding, and practice (Fernández,

2010). We here make the simplifying but convenient assumption that players of the same

country share a common culture. We have already observed that the magnitude of the

macro gender gap is relatively constant across countries, but how does the micro gap

vary across countries? We first check whether more women-friendly countries succeed in

eliminating the micro gender gap. We then check whether gender differences are robust

across groups of countries that could be considered as geographically- and culturally-

homogeneous. Finally, we focus on countries with a sufficiently large number of gender-

mixed games to estimate the micro gender gap on a country-by-country basis. These

approaches are all intended to detect cultural effects.

Do Women-Friendly Countries Eliminate the Micro Gender Gap? — Our

dataset allows us to compare the micro gender gap across many countries. There are

significant differences in gender-based gaps for various outcomes across countries, such

as wages, labor-force participation and educational attainment. For instance, the World

Economic Forum constructs an index, the Gender Gap Index (GGI), that ranks countries

by their gender gaps in access to resources and opportunities (see Hausmann et al., 2013).

The GGI can be interpreted on a 0 to 100 scale as the distance to parity. The four highest-

ranked countries (Iceland, Finland, Sweden and Norway) have closed at least 85% of their

gap, while the figure for the lowest-ranked countries is only a little over 50%. To explore

our prediction about the role of culture, we first focus on the countries with the highest

GGI values to see whether they have successfully avoided most of the stereotypes that
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are detrimental to female performance. We first look at games between players from the

Top-10 or Top-20 countries in the GGI ranking, and then those with the lowest GGI

values (Bottom-10 or Bottom-20). We expect the bottom-ranked countries to have larger

gender gaps.

Table 10 shows the results for the Top-10, Top-20, Bottom-10, and Bottom-20 countries

(the countries concerned are listed in Appendix Table A1, and detailed estimates on the

covariates and the predicted probabilities used to calculate the gender gaps appear in

Appendix Table A23). The micro gender gap estimates here are similar to those found

in the full sample (see Table 2). As expected, the gender gaps are smaller in the most

female-friendly countries, but only marginally so: 2.1-2.4% versus 2.8-3.9%.

Table 10: Gendered Outcomes and the GGI Index

Estimator: Generalized Ordered Logit
Dep. Var.: Score of Player 1 against Player 2
Sample: Player 1 is a Woman or Man and Player 2 is a Man

Both Players: Top 10 GGI Top 20 GGI Bottom 10 GGI Bottom 20 GGI

(1) (2) (3) (4)
Micro Gender Gap -0.021a -0.024a -0.028b -0.039a

(0.003) (0.008) (0.013) (0.012)

Notes: In each column, the dependent variable is the score of player 1 against player 2 (loss=0, draw=0.5,
win=1). The covariates are the age and Elo-rating differences between the two players, and a White pieces
dummy for player 1. The gender gaps are calculated based on the predicted probabilities (see Table A23).
For instance, in column 1, the gap is [Pr(ScoreFM = 1) + 0.5 ∗ Pr(ScoreFM = 0.5)]− [Pr(ScoreMM =
1) + 0.5 ∗ Pr(ScoreMM = 0.5)] = −0.021, where Pr(ScoreFM = 1) = 0.2888 is the probability of
Female winning against Male, Pr(ScoreFM = 0.5) = 0.3728 that of Female drawing against Male,
Pr(ScoreMM = 1) = 0.2949 that of Male winning against Male, and Pr(ScoreMM = 0.5) = 0.4023 that
of Male drawing against Male. Standard errors in parentheses are calculated using the Delta method,
with a and b denoting significance at the 1 and 5% level, respectively.

Is the Micro Gender Gap Region-Specific? — We consider here eleven regions

that can be thought of as geographically- and culturally-homogeneous. Countries that

do not appear in one of the eleven categories fall into a catch-all group, called the Rest

of the World.52 Our purpose here is not to classify as many countries as possible, but

rather to create geographically- and culturally-homogeneous regions, with the additional

requirement that these contain sufficient observations. For example, countries with a

52The regions and countries are listed in Appendix Table A1.
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very large number of players, like Russia, are considered as one sole region. The dummy

variable, Female vs. Male, is then interacted with each region dummy to evaluate the

micro gender difference in each region.

Figure 4 indicates that the micro gender gap is found in every region.53 There is a

little heterogeneity in the estimates across regions, but with no clear pattern (what, for

example, lies behind the difference between Eastern and Southern Asia?).

Figure 4: Comparison across culturally-homogeneous regions
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Notes: Each dot represents the estimate of the micro gender gap in that region. See Table A1 for the
definition of the regions and Table A25 for the estimates of the gender gaps.

Is the Micro Gender Gap Country-Specific? — It can however be argued that re-

gions group together diverse countries, and that countries differ on a number of dimensions

that are not captured by the Gender Gap Index. For instance, the gender gap in Math

(measured using standardized tests) differs greatly from country to country, but with a

global ranking that differs from that of the GGI.54 Rather than relying on a country-

53Detailed results on the gender interactions and the covariates are presented in Table A24, while the
predicted probabilities used to calculate the gender gaps are in Table A25.

54For instance, Iran has one of the lowest GGI values in the world, but no gender Math gap (see Fryer
and Levitt, 2010, for detailed evidence and a discussion).
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specific index of gender differences, we simply add country fixed effects to the estimation

to capture unobservable time-invariant country characteristics, such as culture.55 The

gender gap of 2.4%, displayed in panel B of Appendix Table A26, confirms the gender

differences observed in previous sections while conditioning on unobserved fixed country

characteristics.

Figure 5 shows the results from a separate exercise, where we focus on countries

for which we have enough observations to estimate the gender gap within-country. We

consider all countries where women played more than two thousand games overall during

our sample period (from February 2008 to April 2013). Player 1 therefore comes from one

of the 17 countries listed in Figure 5.

Figure 5: Comparison across Countries
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Notes: Each dot represents the estimate of the micro gender gap in that country. See Table A28 for the
estimates of the gender gaps.

The micro gender gaps in Figure 5 are estimated from a generalized ordered logit

estimation (see Appendix Tables A27 and A28). The gender gap is significant in all

55Note that the incidental-parameter problem is not a concern here as the number of countries is fairly
fixed and does not grow with the number of observations. The 161 countries are listed in Appendix
Table A1.
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countries except Slovakia. The magnitudes range from -1.2% in Spain to -5.2% in Cuba.

In conclusion, assuming that culture, viewed as a body of shared knowledge, under-

standing, and practice, is captured by the country of the player, we do not find significant

cultural effects that can clearly explain the micro gender gap. This is an important result

that shows that the magnitude of the micro gender gap appears robust to variation across

countries, i.e., variation in culture but also in wealth, gender norms and chess popularity.

7 Discussion and Conclusion

We contribute to the literature on the effects of competition on gender differences by

uncovering a micro and a macro gender gap in Chess performance that occurs at all ages,

in many countries, and does not disappear even with substantial experience. We also

benefit from a large and rich dataset to investigate the robustness and heterogeneity of

the uncovered gender differences in competition.

The robustness of the micro gender gap lends credence to psychological explanations,

which suggest that women’s cognitive processes may be negatively affected when compet-

ing against men: e.g., stereotype threats or discouragement effects. However, the precise

nature of the cognitive processes which put women at disadvantage when playing against

men remains an open question (see Inzlicht and Schmader, 2012).

As noted by Bertrand (2020), psychological gender differences are small in size. For

instance, gender differences in risk aversion are consistently observed but are not large

(see Filippin and Crosetto, 2016). In relation to this line of research, we find a small micro

gender gap that equates to women having around a 2% lower chance of winning when

playing against men, which is equivalent to 7 Elo points.As such, women will lag behind,

but not by very much and should thus still be found regularly at the top or close to the

top. So the direct effect of the micro gender gap is too small to be held responsible for the

massive gender gap at the top. However, we show how small differences can accumulate

to explain some of the formation of the macro gender gap. We suggest here that economic

agents receive at each step (e.g., each game in chess) signals regarding their ability to move

up the hierarchical ladder (e.g., their chances to become Grandmasters). Psychological
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differences result in women receiving (slightly) more negative signals than men. This

small, and unconscious, difference accumulates by gradually lowering expectations and

lowering the optimal investment in human capital.

The massive gender attrition along the hierarchical ladder may therefore, to a large

extent, not be deliberate (on the contrary, Chess Federations actively try to promote

women).56 As noted by Schelling, “economists are familiar with systems that lead to

aggregate results that the individual neither intends nor needs to be aware of, results that

sometimes have no recognizable counterpart at the level of the individual.” (Schelling,

2006, p. 140)

The accumulation hypothesis changes somewhat the way we may think about policy

interventions. The ideal policy would target the accumulation process to prevent small

gender differences, related to repeated and routine interactions, from becoming larger

over time. What would a policy to limit accumulation look like? We know for instance

that girls exposed to classroom interventions aiming at fostering grit are more optimistic

about their future performance and more likely to persevere after initial failure (Alan

and Ertac, 2019). Among others, the intervention on grit eliminates the gender gap in

competitiveness. Policies that would be effective in helping women to be more optimistic

about their own abilities will limit accumulation, which is based on belief updating. The

mechanism and policy we suggest here may thus help women move up the hierarchy and

break the glass ceiling in their current activities.

56See for instance De Sousa and Niederle (2021) for the positive effects of gender affirmative action in
chess.
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Appendices

A List of Countries and Regions

For the sake of simplicity, we consider each Chess Federation as a country (see Table A1). In
some robustness checks, we group them geographically into 12 large areas, called regions. For this
grouping, we follow the United Nations classification with the aim of constructing homogeneous
regions and obtaining a sufficient number of observations per region.

Table A1: List of Countries and Regions

Region Countries
Number of
countries

Belgium-France Belgium§,�,c3 , France§,c3 , Monacoc2 3

Central Europe Austria§,�,c2 , Germany§,�c2 , Liechtensteinc3 , Luxembourg§,�c2 , Netherlands§,�,c3 , Switzerland§,?,c3 7

Eastern Asia China§,c1 , Hong Kongc3 , Macauc1 , Mongoliac1 , South Koreac2 , Thailandc2 , Taiwanc1 , Vietnam§,c1 8

Northern America Bermudac3 , Canada§,�,c2 , Puerto Ricoc1 , United States§,c3 4

Post-Soviet Asia
Armenia§,c1 , Azerbaijan§,c1 , Georgia§,c1 , Kazakhstan§,c2 , Kyrgyzstanc1 , Tajikistanc1 ,

8
Turkmenistanc1 , Uzbekistan§,c2

Post-Soviet Europe
Belarus§,c2 , Bulgaria§,c1 , Czech Republic§,c3 , Estoniac1 , Hungary§,c3 , Latvia§,�,c2 , Lithuania§,c2 ,

12
Moldova§,c2 , Poland§,c2 , Romania§,c2 , Slovakia§,c3 , Ukraine§,c2

Russia Russia§,c2 1

Scandinavia Denmark§,?,c3 , Finland§,?,c2 , Faroe Islandsc2 , Iceland§,?,c3 , Norway§,?c3 , Sweden§,?c2 6

South America
Argentina§,c2 , Boliviac1 , Brazil§,c2 , Chile§,c2 , Colombia§,c1 , Ecuador§,c2 , Guyanac3 , Paraguay§,c2 , 12
Peru§,c2 , Surinamec2 , Uruguay§,c2 , Venezuela§,c1

Southern Asia Afghanistanc3 , Bangladesh§,c2 , Bruneic2 , India§,c2 , Iran§,†,c1 , Malaysia§,c2 , Maldivesc3 , Myanmarc3 , 12
Nepal§,†,c3 , Pakistan†,c2 , Singaporec2 , Sri Lanka§,c1

Southern Europe
Albaniac1 , Andorrac3 , Bosnia-Herzegovina§,c1 , Croatia§,c2 , Cyprusc3 , Greece§,c2 , Italy§,c3 , 15
Macedoniac2 , Maltac3 , Montenegro§,c1 , Portugal§,c3 , San Marinoc3 , Serbia§,c1 , Slovenia§,c2 , Spain§,c3

Rest of the World Algeria‡,c1 , Angolac1 , Arubac3 , Australia§,c3 , Bahamas, Bahrain‡,c3 , Barbadosc1 , Botswanac1 , 73
British Virgin Islands, Cameroon‡,c3 , Costa Ricac1 , Cuba§,�,c2 , Dominican Republic§,c1 , Egypt§,†,c1 ,
El Salvadorc1 , England§,�,c3 , Ethiopia‡,c3 , Fiji‡,c2 , Ghanac3 , Guam, Guatemala‡,c1 , Guernseyc3 ,
Haiti, Hondurasc1 , Indonesiac2 , Iraq§,c1 , Ireland§,?,c2 , Israel§,c3 , Jamaicac2 , Japanc2 , Jerseyc3 ,
Jordan‡,c2 , Kenyac3 , Kuwaitc3 , Lebanon†,c1 , Libyac1 , Madagascar, Malawic3 , Mali†, Mauritania‡,
Mauritiusc3 , Mexico§,c1 , Morocco†,c3 , Mozambiquec1 , Namibiac3 , Netherlands Antillesc3 ,
Nigeriac1 , Nicaragua?,c1 , New Zealand?,c3 ,Palauc3 , Palestinec3 ,Panamac1 , Papua New Guinea,
Philippines§,?,c1 , Qatar‡,c1 , Rwanda, Sao Tome and Principec3 , Scotland§,c2 , Seychellesc3 ,
Sierra Leone, Somalia, South Africa�,c1 , Sudanc3 , Syrian Arab Republic†,c1 , Trinidad
and Tobagoc2 , Tunisiac1 , Turkey§,†,c1 , Ugandac2 , United Arab Emiratesc1 , Virgin
Islands U.S.c3 , Wales§,c2 , Yemen†,c1 , Zambia‡,c1 , Zimbabwec3

Notes: The columns show (1) the name of the region, (2) the 161 countries included in our full sample, and (3) the number of countries per region
(see Section 2). The superscript § indicates the 70 countries with more than 500 players during our period of investigation. The star (?) indicates
the top 10 countries in the Gender Gap Index (GGI) and the diamond (�) the next 10 countries in the top-20 GGI. The dagger (†) indicates the
bottom 10 countries in the GGI and the double dagger (‡) the next 10 countries in the bottom-20 GGI. c1 , c2 , and c3 represent the 150 countries
where the proportion of female-female pairings is random, close to random, or non-random, respectively (see Section 4.2).
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B The Elo Rating System

The Elo rating system was developed by Arpad Elo and officially adopted by the World Chess

Federation (FIDE) in 1970. The Elo measures the strength of chess players and is used for

various purposes: calculating pairings in chess tournaments, determining invitations to chess

tournaments including the world championship cycle, and granting titles. Elo ratings start at

1000 with no theoretical limit even though the highest Elo rating to date is 2882.57

Two Key Equations — The Elo rating system is a statistical method based on two key

equations. The first refers to the expected score, Eij , of a player i matched with a player j:

Eij =
1

1 + 10−
∆Eloij

400

, (6)

where ∆Eloij is the rating difference between players i and j. The “winning-expectation”

formula (6) then updates the ratings after a game:

Eloi,t = Eloi,t−1 +Ki(Sij − Eij), (7)

where the updated rating (Eloi,t) is based on the old rating (Eloi,t−1), plus the product of a

K-factor and the difference between the player’s i expected outcome, Eij , and the actual score

of the game Sij (0 for a loss, 0.5 for a draw and 1 for a win).

The Adjustment Factor K — The K-factor is a critical element in maintaining accurate

ratings. Ki is player-specific. For instance, FIDE gives newcomers higher K values so that their

rating corresponds more closely to their current level. According to the FIDE rules effective

during our sample period, K = 30 for a player who is new to the rating list until he/she has

completed 30 games. Afterwards, K = 15 as long as a player’s rating remains under 2400.

Finally, K = 10 once a player’s published rating has reached 2400, and remains at this level

even if his/her rating subsequently drops back below 2400.

An Example — An example may clarify how ratings are updated. Consider a game in

which player i has a 20 point higher rating (∆ij = 20) than player j, so that from the winning-

expectation formula (6) her expected outcome is Eij = 0.529. If player i wins the game, she

will gain Ki(1 − 0.529) Elo points according to equation (7). The Elo update can be carried

out after each game or tournament, or after any suitable rating period. Our empirical analysis

takes into account differences in K-values and exploits an exogenous variation in the frequency

of Elo updates.

57An unrated player receives an Elo rating after playing a minimum of five games against opponents
with a rating of at least 1000 points. Games against unrated opponents are not rated.
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C The Macro Gender Gap in Performance

Table A2: Summary Statistics - Unweighted Averages

Men Women Women vs. Men

Variable Mean S.D. Mean S.D. Diff S.E.

Average Elo 1930.5 247.6 1780.8 264.2 -149.6a 2.59
Average Age 37.8 18.0 22.8 13.5 -15.0a 0.18

Note: Mean and standard deviation (S.D.) of average Elo rating and average age
of 116,422 players, of which 10,139 women (8.71%). Averages are computed from
February 2008 to April 2013 and are not weighted by the number of games. ‘Diff.’
stands for difference in means between women and men, and S.E. are standard errors,
with a denoting significance at the 1% level.

Figure A1: The Density of Age and Elo Ratings by Gender - Unweighted
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116,422 players, of whom 10,139 are women. Averages are computed from February 2008 to
April 2013 and are not weighted by the number of games.
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Table A3: Number of Games, Tournaments and Gender

Dependent Variable: Number of Games Number of Tournaments
(1) (2)

Elo Rating 0.270a 0.028a

(0.005) (0.001)

Woman 26.925a 2.549a

(3.346) (0.481)

Woman × Elo Rating 0.030a 0.002c

(0.011) (0.001)

Age -1.171a -0.127a

(0.054) (0.008)

Woman × Age -1.111a -0.125a

(0.206) (0.029)

Observations 6,545,154 6,545,154
Adjusted R2 0.262 0.148

Notes: The dependent variable is the player’s total number of games in column (1)
and total number of tournaments in column (2). Observations are at the player level
(with 6,545,154 observations corresponding to 3,272,577 games). Robust standard
errors, clustered at the player level, are in parentheses with a and c denoting signif-
icance at the 1% and 10% level, respectively. Since no players in the sample have
very low levels of rating and age, we estimate the gender differential at the average
rating and average age in the sample.
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D The Micro Gender Gap in Performance: Data and

Specifications

This Appendix shows all of the results and details of the models used to estimate the Micro

Gender Gap in Table 2. Subsection D.2 presents the parametric estimates of the first six columns,

while subsection D.3 covers the non-parametric results in the last three columns.

D.1 Sample Changes

To simplify the gender comparison of game outcomes and the discussion of the results, we make

two changes to the sample. First, we retain only the observations where player 2 is a man.58 In

this reduced sample of 2,942,759 games, the treatment is player 1 is a woman and the control is

player 1 is a man.

Second, the fact that women are on average younger and lower-rated (see Section 2) may

result in different distributions of covariates between the treatment group (female player 1

vs. male player 2) and the control group (male player 1 vs. male player 2). For instance,

games with low-rated teenage girls against high-rated senior players could be over represented

in the treatment group. To reduce this imbalance, we eliminate outliers with age or Elo-rating

differences in the top or bottom percentile: this corresponds to dropping observations where

player 1 is 52 years younger than player 2 or 51 years older, as well as observations where player

1 has an Elo at least 515 points lower than player 2 or 504 points higher.59 After removing these

outliers, we are left with 2,825,838 observations, of which 156,987 are games between men and

women.

Both of these changes are made so that the sample for the parametric estimates is the same

as that for the nonparametric estimates, which impose a common support. Nevertheless, in the

online appendix, we show that using the full sample (Table A29) or not eliminating outliers

(Table A30) does not much affect our parametric results.

D.2 Parametric Estimations

Linear Estimation — Table A4 presents the ordinary least squares estimates (OLS) of the

determinants of the outcome of a game between player 1 and player 2. The dependent variable

is the score of player 1 (loss=0, draw=0.5, win=1).

The estimated coefficient on the dummy variable Female vs. Male is the Gender Gap in

column 6 of Table 2. This dummy is equal to one if player 1 is a woman and player 2 a

man. We designed the sample so that the benchmark comparison is that both players are

men. Additionally, each estimation controls for other important covariates: the age and rating

58Recall that the roles of players 1 and 2 are assigned randomly for each game. This randomization is
gender-neutral and changes in the sample size affect only the interpretation of the results without altering
the main conclusions. The results with randomization are available upon request.

59The probability of winning the game for the better-rated player with an Elo difference of more than
500 points is over 95%.

47



Table A4: The Determinants of Outcomes in Chess Competitions. OLS Regressions

Dependent Variable: Score of Player 1 against Player 2

Female vs. Male -0.019a

(0.001)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 0.104a

(0.001)
Age Difference -0.003a

(0.000)
Player 1 has White 0.057a

(0.001)

Observations 2,825,838
R2 0.251

Notes: The model is estimated using OLS. The dependent variable is
the score of player 1. Female vs. Male is a dummy for player 1 being a
woman and player 2 a man. The other covariates are the age and Elo-
rating differences between the two players, and a White pieces dummy
for player 1. Robust standard errors are in parentheses with a denoting
significance at the 1% level. The estimated coefficient on Female vs. Male
is the Gender Gap in Column 6 of Table 2.

differences between the two players, and a White pieces dummy for player 1, as the literature

has underlined that White starts the game with a certain advantage.

The Female vs. Male coefficient shows that women are at a disadvantage when playing

against men. The estimated coefficients on the other covariates are as expected. Compared

to player 2, a higher rated and younger player 1 performs better. We also find a substantial

first-mover advantage, as shown by the coefficient on “Player 1 has White”.

Non-Linear Estimations — As the utility of the outcomes of a chess game are clearly

ranked, ordered statistical models are natural choices for the analysis. These non-linear estima-

tions yield estimates of both the coefficients on the regressors and the cutoff points that separate

adjacent values of the game’s outcome: win, draw and loss.

For a game between players 1 and 2, the probability of observing outcome k corresponds to

the probability that the estimated linear function, plus the normally or logistically-distributed

error ε, is within the range of the cutoff points c estimated for the outcome

Pr(S12 = k) = Pr(ck−1 < x1β + x2γ + ε12 ≤ ck), (8)

where S12 is the outcome, i.e. the score of the game between players 1 and 2, and x1 and x2

are the vectors of player-1 and player-2 regressors, respectively. The error term ε12 is assumed

to be logistically-distributed in the ordered logit. The model estimates the coefficients β and γ

together with the cutoff points c1 and c2, where c0 is taken as −∞, and c3 as +∞. For the sake

of robustness we also use an ordered probit model and a heteroskedastic ordered-logit model.
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The latter allows the variance of the unobservables to vary by gender.60 One reason why we

may expect gender differences in the variance of unobservables is that women may self-select

into women-only tournaments.

Table A5 shows the complete results using the ordered logit (col. 1 and 2), the heteroskedastic

ordered logit (col. 3) and the ordered probit (col. 4). The dependent variable is the score of

player 1 (loss, draw, win). All of the regressors are the same as in Table A4, and the results are

qualitatively similar.

The predicted probabilities displayed at the bottom of Table A5, based on the estimates

of the dummy variable Female vs. Male, are used to calculate the Gender Gaps in the first

three columns of Table 2. For instance, the GG estimate in column 1 of Table 2 is calculated as

[Pr(ScoreFM = 1)+0.5×Pr(ScoreFM = 0.5)]−[Pr(ScoreFF = 1)+0.5×Pr(ScoreFF = 0.5)] =

−0.023, where the predicted probabilities are that Female 1 wins (Pr(ScoreFM = 1) = 0.295)

or draws (Pr(ScoreFM = 0.5) = 0.355) against Male 2, and Male 1 wins (Pr(ScoreMM =

1) = 0.317) or draws (Pr(ScoreMM = 0.5) = 0.356) against Male 2. The standard errors are

calculated using the Delta method.

The estimates in Table A5 confirm that when a man plays against a woman (rather than

another man), he is at an advantage. The woman’s score is on average lower. To compare the

results from different specifications of the ordered regressions, we follow Buser et al. (2014) and

standardize the coefficient on the gender-interaction dummy. We divide the Female 1 vs. Male 2

dummy by the difference between the estimated ordered thresholds of the highest and the lowest

scores. The results in column 2 indicate that part of the gender gap is explained by differences

in Elo rating (ability performance) and age across players (women have, on average, lower

rankings and are younger). However, a gender difference remains after controlling for ability

performance and age. This gender difference spans 7.1% (= 0.1054/(0.904 + 0.586) = 0.071) of

the gap between loss and victory (col. 2). Almost one-quarter of the observed gender difference

(0.071/0.292 = 0.243) cannot be accounted for by Elo rating and age.

Marginal effects and odds ratios of the ordered logit estimations, in the online Appendix

(Tables A31 and A32, respectively), produce consistent results. In particular, the marginal

effects show that, on average, a woman playing against a man has a 2 to 3 percent higher

probability of losing the game than when playing against an otherwise-identical woman.

The ordered statistical models in Table A5 are parsimonious and easy to interpret. However,

experience suggests that their assumptions are frequently violated (Williams, 2016). In partic-

ular, the ordered logit model is also called the proportional-odds model model because, if the

assumptions of the model are met, the odds ratios will stay the same regardless of which of the

collapsed logistic regressions is estimated, that is loss vs. draw and win, or draw vs. loss and

win. The advantage of the generalized ordered logit, also called the partial odds model, is that

the assumption of proportional odds can be relaxed only for the variables where it is violated.

The results of the generalized ordered logit appear in Table A6.

The odds ratios and p-values of the last three variables - rating and age differences, and

60See Neumark (2012) for a simple presentation of the heteroskedastic (probit) model in the case of
race discrimination.

49



Table A5: The Determinants of Outcomes in Chess Competitions. Non-Linear Estima-
tions

Dependent Variable: Score of Player 1 against Player 2

Ordered Outcomes (Loss<Draw<Win)

Ologit Ologit Ologit Het Oprobit

(1) (2) (3) (4)

Female vs. Male -0.343a -0.105a -0.128a -0.062a

(0.005) (0.005) (0.006) (0.003)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 0.565a 0.568a 0.335a

(0.001) (0.001) (0.000)
Age Difference -0.015a -0.015a -0.009a

(0.000) (0.000) (0.000)
Player 1 has White 0.317a 0.319a 0.188a

(0.002) (0.002) (0.001)

Cut 1 (C1) -0.585a -0.586a -0.589a -0.349a

Cut 2 (C2) 0.592a 0.904a 0.900a 0.537a

Female 1 vs. Male 2/(C2 - C1) -0.292a -0.071a -0.085a -0.070a

Predicted Probabilities of Female vs. Male:
Pr(score=0) 0.440a 0.350a 0.368a 0.356a

Pr(score=0.5) 0.278a 0.355a 0.325a 0.341a

Pr(score=1) 0.282a 0.295a 0.307a 0.302a

Predicted Probabilities of Male vs. Male:
Pr(score=0) 0.358a 0.327a 0.326a 0.334a

Pr(score=0.5) 0.286a 0.356a 0.358a 0.342a

Pr(score=1) 0.356a 0.317a 0.316a 0.324a

Notes: There are 2,825,838 observations in each regression. The dependent variable is the score of
player 1 (loss=0, draw=0.5, win=1). The coefficients come from Ordered Logit (Col 1 and 2), Ordered
Heteroskedastic Logit (Col. 3), and Ordered Probit (Col. 4) regressions. In column 3, the estimation
is carried out using a heteroskedastic model, which allows the variance of the unobservables to vary
with the gender interaction Female vs. Male, which is a dummy for player 1 being a woman and
player 2 a man. The other covariates are the Elo rating and age differences between the two players,
and a White pieces dummy for player 1. Robust standard errors are in parentheses with a denoting
significance at the 1% level. The p-values for (Female vs. Male)/(C2−C1) ratios and the probabilities
are calculated using the Delta method. The predicted probabilities help calculate the Gender Gaps in
Table 2. For instance, the MGG estimate of Female vs. Male in column 1 of Table 2 is calculated as
[Pr(ScoreFM = 1) + 0.5 ∗ Pr(ScoreFM = 0.5)] − [Pr(ScoreMM = 1) + 0.5 ∗ Pr(ScoreMM = 0.5)] =
−0.023, the probabilities (see column 2 here) are that Female 1 wins (Pr(ScoreFM = 1) = 0.295) or
draws (Pr(ScoreFM = 0.5) = 0.355) against Male 2, and Male 1 wins (Pr(ScoreMM = 1) = 0.317) or
draws (Pr(ScoreMM = 0.5) = 0.356) against Male 2.
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Table A6: The Determinants of Outcomes in Chess Competitions. Generalized Ordered
Logit

Outcomes and Odds Ratios

Loss vs. Draw vs.
Draw, Win Loss, Win

(1) (2)

Female vs. Male 0.838a 0.992
(0.005) (0.006)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.760a 1.758a

(0.002) (0.002)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.375a 1.371a

(0.004) (0.004)

Notes: The table lists generalized ordered logit regression co-
efficients, with 2,825,838 observations. The dependent variable
is the score of player 1 (loss=0, draw=0.5, win=1). Female vs.
Male is a dummy for a mixed-gender interaction between players
1 and 2. Player 1 may have the White or Black pieces. Robust
standard errors are in parentheses with a and b denoting signif-
icance at the 1% and 5% level respectively. Pseudo-R2 = 0.145,
Prob > χ2 = 0.000.

Player 1 has White - are virtually identical to those above (see column 1 of Table A31) and can

be interpreted the same way. The results on the dummy variable (Female vs. Male) and tests

(not reported here) show that the gender-interaction variable does not satisfy the proportional-

odds assumption. The results are slightly different when the assumption is relaxed for this

variable, but the gender differences persist. A woman is more likely to lose to a man than she is

to win or draw (column 1). The mixed-gender games do not tend to be more decisive, resulting

in a loss or win rather than a draw, as shown in column 2 by the statistically insignificant

coefficient on Female vs. Male. The marginal effects, in online Appendix Table A32, confirm

that women suffer a small disadvantage in mixed-gender games: a 3 percent higher probability

of losing the game. There is, however, an interesting twist in the results from the proportional-

odds models. The higher probability of losing comes from a lower probability of drawing the

game. We explore this insight in the core of the paper.

As a robustness check, we also run a multinomial logit regression: the results appear in

Table A7. We designate the draw as the reference category. The probability of winning and

losing is thus compared to the probability of drawing the game. Hence, for each case, there will

be two predicted log odds, one for each category relative to the reference category. Designating

the draw as the reference seems natural, but the utility of chess outcomes is clearly ordered.

Given that the multinomial logit makes no use of information about the ordering of categories
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we should be cautious in interpreting the results. The multinomial logit results confirm our

previous findings. Comparing the coefficients Female vs. Male for loss (col. 1) and win (col.

2) tells us that women tend to lose relatively more than they win against men. The marginal

effects, in online Appendix Table A32, are consistent with the results of the generalized ordered

logit: women are at a slight disadvantage in mixed-gender games, and this higher probability of

losing comes from a lower probability of drawing the game.

Table A7: The Determinants of Outcomes in Chess Competitions. Multinomial Logit

Outcomes

Loss Win

(1) (2)

Female vs. Male 0.229a 0.111a

(0.007) (0.007)

Male vs. Male Benchmark Comparison

Elo-Rating Difference -0.383a 0.378a

(0.001) (0.001)
Age Difference 0.010a -0.010a

(0.000) (0.000)
Player 1 has White -0.219a 0.211a

(0.003) (0.003)

Notes: These are multinomial logistic regression coefficients
with 2,825,838 observations. The dependent variable is the
score of player 1 (loss=0, draw=0.5, win=1). The reference
category is the draw. Female vs. Male is a dummy for a
mixed-sex game between players 1 and 2. Player 1 may have
the White or Black pieces. Robust standard errors are in
parentheses, with a denoting significance at the 1% level.
Pseudo-R2 = 0.131, Prob > χ2 = 0.000.

D.3 Non-Parametric Estimations

Both the linear and non-linear regressions make assumptions about the functional form linking

game outcomes to the covariates. We may also want to estimate the size and significance of

the gender gap using a less-parametric approach based on matching estimators. The principle

of matching here is to find, for each game played by a woman against a man, a “twin” or

counterfactual game played between two men. The key identifying assumption is selection on

observables, so that all the relevant differences between the treated and non-treated are captured

in terms of rating and age differences.

Formally, consider a game g between a man and an opponent who can be a man or a

woman. Denote the game status by a dummy variable with two possible values {F,M}, where

F indicates a female-male pairing and M a male-male pairing. Ideally, for each female-male

game g with an observed score SFg, we want to establish the counterfactual score, SMg, had
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the male played against a man who is very similar to the female opponent. There is a gender

effect if the average difference SFg−SMg across games is statistically different from zero. Using

the terminology of difference-in-differences estimations (Imbens, 2004), we consider gender as

our treatment variable and the difference SFg − SMg as our treatment effect.

The estimation of SFg − SMg is unbiased if male and female players are randomly selected

in sets of the distribution of the covariates. The game status here, M or F , would then be

independent of the covariates, X, such as the rating and age differences. However, as noted

in the stylized facts section, there are some significant gender differences in X. For example,

women are on average 14 years younger than men, are lower-rated, and there are fewer of them.

The sets of female-male and male-male games are thus not balanced, which may produce a

biased estimate of the average treatment effect.

Matching techniques are one way of overcoming selection bias. The principle here is to cre-

ate two balanced groups by finding a counterfactual game for each male-female F game in the

large set of M games. The distribution of covariates will thus be the same in the treatment

and matched control groups. There are a number of ways of creating these two samples, de-

pending, for instance, on the matching technique and the number of matches allowed for each

observation. We here apply two standard techniques: Propensity Score Matching (PSM) and

Nearest-Neighbor Matching (NNM).

Rebalancing the Data: Plots and Tests — Our sample comprises 2,825,838 observa-

tions, of which 156,987 are games between a man and a woman. We now try to find a “twin” or

counterfactual game played between two men in the remaining 2,668,851 observations for each

of those mixed-gender games.

We focus here on the PSM, as the propensity score is a useful tool to account for imbalance

in covariates between treated and control groups. We use a logit regression to calculate a

propensity score representing the probability that the game be between a female player 1 and

a male player 2, conditional on a set of observed covariates. As in the parametric estimations,

the covariates are the differences in rating and age between the two players, and a White pieces

dummy for player 1. We then match the set F of female-male games to the set M of male-

male games via their propensity scores. We perform a 1:1 matching with the nearest neighbor

and no replacement, and so have the same number of treated and control games (assuming all

observations are in the range of the common support). We also specify a small caliper width of

0.0001, which is the maximum distance at which two observations are potential neighbors.

Figure A2 compares the Kernel density functions of two key covariates pre- and post-

matching in the treated and control groups. The two covariates are the rating and age differences

between player 1 and player 2.

In the unmatched sample, the treated and control groups are visibly different in terms of

the two covariates. The empirical distributions of the treated group for rating and age are

to the left of those in the control group. This pattern is to be expected, as women are, on

average, younger and lower-rated. However, the matching of the treated and control groups

balances these differences. A crucial feature of our dataset is that there is considerable overlap

between the two sets of games: although men are older and better-ranked on average, there

53



Figure A2: Density Balance Plots: Rating and Age
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Notes: The treated group consists of a woman (player 1) versus a man (player 2). A twin control
male-male game is found for each treated game using the PSM estimator on the covariates X (rating
difference, age difference and a White pieces dummy). The Unmatched sample contains 2,825,838 game
observations between player 1, who can be either male or female, and player 2, who is always male. The
Matched sample contains 313,936 matched observations with 156,968 female-male (treated) games and
156,968 twin male-male (control) games.
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are still enough observations to produce high-quality matches. The unmatched sample contains

2,825,838 games, of which 156,987 are female-male pairings. The matched sample is restricted

to the 156,968 female-male (treated) games for which there are 156,968 twin control games and

for which the common support assumption holds.61 For both covariates, Figure A2 shows that

the post-matching distributions are more similar than those pre-matching.

Table A8 shows that the averages between matched treated and matched control are not

significantly different from each other, whereas as expected there are differences when comparing

unmatched treated and control groups. In the unmatched sample, women are on average 79 Elo

points lower-rated and 9 years younger.

Table A8: Covariate Imbalance: Tests

Mean t-test

Variable Sample Treated Control t p > |t|

Elo-Rating Difference
Unmatched −79.66 −0.87 -151.93 0.000
Matched −79.61 −79.82 0.27 0.786

Age Difference
Unmatched −9.23 −0.82 -182.24 0.000
Matched −9.22 −9.21 0.25 0.806

White Pieces
Unmatched 0.50 0.50 -0.14 0.886
Matched 0.50 0.50 0.22 0.822

Notes: The unmatched sample contains 2,825,838 games, of which 156,987 are male-female
games and 2,668,851 male-male games. The matched sample is restricted to 156,968 treated
female-male games and 156,968 twin male-male control games. The t-tests are of mean-
comparisons between the treated and control groups.

Last, we employ the balancing test from Smith and Todd (2005), which applies a regres-

sion framework. For each of the covariates in the propensity score, we estimate the following

regression:

Xij = β0 + β1p̂(Xij) + β2p̂(Xij)
2 + β3p̂(Xij)

3 + β4p̂(Xij)
4

+ α0D + α1Dp̂(Xij) + α2Dp̂(Xij)
2 + α3Dp̂(Xij)

3 + α4Dp̂(Xij)
4 + ηij , (9)

where Xij is the Elo-rating difference between players i and j or their age difference,62 p̂ is the

estimated propensity score using the logit, and D is the treatment dummy variable Female vs.

Male. We then test the joint null that the coefficients on all of the terms involving the treatment

dummy are equal to zero. Essentially, this tests whether the treatment being a female player 1

(facing a male player 2) provides any information about Xij conditional on a quartic in the

estimated propensity score. If the propensity score satisfies the balancing condition, this should

not be the case. The results appear in Table A9, along with the F-test for the joint null that

61The common-support assumption ensures that there is overlap in the range of propensity scores across
the treated and control groups. The 19 female-male games that are outside the range of the common
support are between low-rated teenage girls and high-rated male players between the ages of 57 and 67.

62We do not report the results for the White Pieces dummy as the estimated coefficients are far short
of statistical significance.
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the coefficients on all of the terms involving the treatment dummy are zero. None of the F-

statistics are above the conventional critical value, suggesting that balance has been achieved.

The downside to this test is that it requires the selection of the order of the polynomial, but

lower or higher orders do not affect our test results here.63

Table A9: Rebalancing test: Smith and Todd (2005)

(1) (2)
Covariate (Xij) Elo-rating differenceij Age differenceij

p̂(Xij) -196.512a -1,016.396a

(1.747) (13.868)

p̂(Xij)
2 1700.291a 8753.929a

(28.296) (224.569)

p̂(Xij)
3 -6495.401a -48,424.850a

(178.570) (1417.213)

p̂(Xij)
4 8450.855a 100,500.900a

(379.280) (3010.131)

D = Female vs. Male -0.034 0.263
(0.049) (0.393)

p̂(Xij)×D 1.824 -14.264
(2.471) (19.613)

p̂(Xij)
2 ×D -24.262 189.607

(40.017) (317.595)

p̂(Xij)
3 ×D 104.477 -815.156

(252.543) (2004.296)

p̂(Xij)
4 ×D -124.603 969.302

(536.404) (4257.137)

F-statistic of the joint significance of all of the terms involving D

F(5,313926) 0.583 0.570
p-value 0.713 0.723

Observations 313,936 313,936
Adjusted R2 0.574 0.638

Notes: The regression balancing test of Smith and Todd (2005) uses OLS. The
sample of 313,936 observations contains 156,968 treated female-male games and
156,968 twin male-male control games. We do not show the results for the third
covariate (the White dummy) as all of the estimates fall far short of statistical
significance. Robust standard errors are in parentheses, with a denoting signifi-
cance at the 1% level.

63As in Smith and Todd (2005), the use of a quartic polynomial should suffice to capture potential non-
linearities. The results are qualitatively similar is we use a quadratic polynomial (Felo(3, 313930) = 0.32;
Fage(3, 313930) = 0.34), a cubic polynomial (Felo(4, 313928) = 0.71; Fage(4, 313928) = 0.70) or a quintic
polynomial (Felo(6, 313924) = 0.57; Fage(6, 313924) = 0.57).

56



Average Treatment Effect on the Treated — Table A10 shows the average treatment

effects on the treated (ATT) from our matching estimations using Propensity Score Matching

(col. 1) and Nearest-Neighbor Matching with Euclidean (col. 2) and Mahalanobis (col. 3)

distances. These ATTs are the gender gaps in the last three columns of Table 2. It is worth

recalling that in the PSM (col. 1), the ATT estimate is based on single nearest neighbor match-

ing without replacement. The common support condition is also imposed and a small caliper

(0.0001). The NNM looks for the closest game using the Euclidean (col. 2) or Mahalanobis (col.

3) distances in the covariate space, i.e. the age and rating differences between the two players,

and who has the White pieces.64

The gender gap or ATT is significant at all conventional levels. The estimated gaps are

similar to the parametric estimates: the expected score of a man playing against a woman

(instead of a comparable man) is 1.7% to 2.2% higher on average.

Table A10: Determinants of Outcomes in Chess Competitions. Matching Estimates

Matching PSM NNM1 NNM2

(1) (2) (3)

Score (diff-in-diff) -0.017a -0.022a -0.020a

(0.002) (0.001) (0.001)

Notes: The dependent variable is the score of player 1
(loss, draw or win). PSM = Propensity Score Matching;
NNM1 = Nearest-Neighbor Matching (NNM) with Eu-
clidean distance; and NNM2 = NNM with Mahalanobis
distance. The unmatched sample contains 2,825,838 ob-
servations, of which 156,987 are female-male pairings.
Standard errors appear in parentheses, with a denoting
significance at the 1% level. We bootstrap the standard
error of the PSM estimate to take into account that the
propensity score is estimated. The table shows the es-
timates of the average treatment effect on the treated
group, which is the difference between the outcomes of
player 1, being a woman or a man, when playing against
a male player 2. The matching estimates control for both
age and Elo-rating differences between players, as well as
player 1 having the White pieces.

64We follow Abadie and Imbens (2006, 2011), and correct for the large-sample bias arising when
matching on more than one continuous covariate.
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E Rating Effects

The odds ratios and p-values of the last three variables in panel A of Table A11 - rating and

age difference, and Player 1 has White - are virtually identical to the previous results (see

Table A31) and can be interpreted in the same way. The results for the first two variables on

gender interactions confirm that gender differences persist: a woman is more likely to lose to a

man than she is to win or draw (column 1). Interestingly, the magnitude of the gender gap is

greater for women facing a majority of men than for women facing a majority of women.

Table A11: Gender Differences in Rating Acquisition

Panel A: Generalized Ordered Logit Estimates

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

Woman (facing mostly women) vs. Man 0.869a 1.006
(0.009) (0.012)

Woman (facing mostly men) vs. Man 0.827a 0.987c

(0.006) (0.007)

Man vs. Man Benchmark Comparison

Elo-Rating Difference 1.760a 1.758a

(0.002) (0.001)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.375a 1.371a

(0.004) (0.004)

Panel B: Predicted Probabilities and Gender Gaps (see Table 3)

Column 1: Woman (facing mostly women) vs. Man
Gender Gap: 0.3176 + 0.5*0.3253 - 0.3162 - 0.5*0.3583 ≈ -0.015a.

Column 2: Woman (facing mostly women) vs. Man
Gender Gap: 0.3134 + 0.5*0.3182 - 0.3162 - 0.5*0.3583 ≈ -0.023a.

Notes: Panel A lists the generalized ordered logit regression coefficients with 2,825,838 observations.
An observation is a game between player 1 (female or male) and player 2 (male). The dependent
variable is the score of player 1 (loss=0, draw=0.5, win=1). Female (facing mostly women) vs. Male is
a gender-interaction dummy for player 1, a woman playing mostly against women, facing a male player
2. Female (facing mostly men) vs. Male is a gender-interaction dummy for player 1, a woman playing
mostly against men, facing a male player 2. Robust standard errors are in parentheses, with a and c

denoting significance at the 1% and 10% levels respectively. Panel B shows the gender gaps in columns
1 and 2 of Table 3 based on predicted probabilities. In this panel, standard errors are calculated with
the delta method.

The results in column 2 of Table A11 are suggestive of a greater effect for women facing

mostly men. These games tend to be more decisive, with fewer draws and more wins and losses.

Given the results in column 1, the evidence suggests that men are able to convert some potential
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draws into wins. In Panel B, the micro gender gap is again calculated as [Pr(ScoreFM =

1) + 0.5 ∗ Pr(ScoreFM = 0.5)]− [Pr(ScoreMM = 1) + 0.5 ∗ Pr(ScoreMM = 0.5)].

Table A12: Gender as a Treatment Variable

Panel A: Generalized Ordered Logit Estimates

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

Female (from country-type I) vs. Male 0.825a 1.036c

(0.015) (0.021)

Female (from country-type II) vs. Male 0.853a 0.986c

(0.007) (0.009)

Female (from country-type III) vs. Male 0.819a 0.990
(0.008) (0.010)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.760a 1.758a

(0.002) (0.001)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.375a 1.371a

(0.004) (0.004)

Panel B: Predicted Probabilities and Gender Gaps (see Table 3)

Column 3: Female vs. Male in country-type I
Gender Gap: 0.3240 + 0.5*0.3070 - 0.3162 - 0.5*0.3583 ≈ -0.018a.

Column 4: Female vs. Male in country-type II:
Gender Gap: 0.3131 + 0.5*0.3256 - 0.3162 - 0.5*0.3583 ≈ -0.019a.

Column 5: Female vs. Male in country-type III:
Gender Gap: 0.3140 + 0.5*0.3152 - 0.3162 - 0.5*0.3583 ≈ -0.024a.

Notes: Panel A lists the generalized ordered logit regression coefficients, with 2,825,838 observations.
An observation is a game between player 1 (female or male) and player 2 (male). The dependent variable
is the score of player 1 (loss=0, draw=0.5, win=1). Female vs. Male is a gender-interaction dummy
between players 1 and 2. This dummy is interacted with three types of countries: Type I where the
proportion of female-female pairings is random; Type II where it is close to random; and Type III where
it is not random. Robust standard errors are in parentheses, with a and c denoting significance at the
1% and 10% level respectively. Panel B shows the predicted probabilities and gender gaps in columns
3, 4 and 5 of Table 3. In this panel, standard errors are calculated with the delta method.
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Table A13: Gender as a Treatment Variable

Panel A: Generalized Ordered Logit Estimates

Outcomes and Odds Ratios

Loss vs. Draw vs.
Draw, Win Loss, Win

Female vs. Male (4-Month update) 0.829a 0.955a

(0.010) (0.013)

Female vs. Male (2-Month update) 0.844a 0.988
(0.006) (0.008)

Female vs. Male (Monthly update) 0.832a 1.052a

(0.011) (0.015)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.760a 1.758a

(0.002) (0.001)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.375a 1.371a

(0.004) (0.004)

Panel B: Predicted Probabilities and Gender Gaps (see Table 3)

Column 6: Female vs. Male in Period 1
Gender Gap: 0.3062 + 0.5*0.3259 - 0.3162 - 0.5*0.3583 ≈ -0.026a.

Column 7: Female vs. Male in Period 2
Gender Gap: 0.3136 + 0.5*0.3225 - 0.3162 - 0.5*0.3583 ≈ -0.020a.

Column 8: Female vs. Male in Period 3
Gender Gap: 0.3272 + 0.5*0.3056 - 0.3162 - 0.5*0.3583 ≈ -0.015a.

Notes: Panel A lists the generalized ordered logit regression coefficients, with
2,825,838 observations. An observation is a game between player 1 (female or
male) and player 2 (male). The dependent variable is the score of player 1 (loss=0,
draw=0.5, win=1). Female vs. Male is a gender-interaction dummy between
players 1 and 2. This dummy is interacted with three different updating periods:
4-months (from 02.2008 to 06.2009); 2-months (from 07.2009 to 06.2012); and
monthly (from 07.2012 to 04.2013). Robust standard errors are in parentheses,
with a and b denoting significance at the 1% and 5% level respectively. Panel B
shows the predicted probabilities and gender gaps displayed in columns 6, 7 and
8 of Table 3. In this panel, standard errors are calculated with the delta method.
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F Individual Gender Differences in the Dynamics of

Moves

We explore here the dynamics of the moves in a game. As information on the number of moves

is not available in our dataset, we have merged our games with the ChessBase’s Mega database,

which is a commercial database of millions of chess games. While large, the ChessBase’s Mega

database does not cover all FIDE games. Nevertheless, this database provides the number of

moves for a quarter of our 3,272,577 games, which still represents 838,773 games. Figure A3

depicts the distribution of the ply number (half-moves) in these games. A ply is one turn taken

by one of the players and measures more precisely when the game ends. The average number

of plies is 79.27 (with a standard deviation of 32.97), corresponding to roughly 40 moves. This

number of moves coincides with the first control of time in the FIDE standard way of play: 90

minutes for the first 40 moves followed by 30 minutes for the rest of the game with an addition

of 30 seconds per move starting from move one (see the FIDE Handbook, Article C.07).

Figure A3: Distribution of the Number of Game Moves
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Note: 838,773 games from February 2008 to April 2013.
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G A Model Linking the Micro and Macro Gender

Gaps

Players are modeled as rational agents who choose how much effort to invest into their (chess)

skills. Players’ optimal decisions depend on their beliefs about their “true” chess ability. Intu-

itively, if a player believes she is very talented, sufficiently say to become a Grandmaster, her

expected return to effort will be high. It is then in her best interest to put in significant effort

in order to reap the benefits. However, players do not ex ante exactly know their true ability,

and will update their beliefs from the signals given by the outcomes of successive games.

G.1 Notation

Consider a player who plays one game in each period t against a randomly-selected opponent.

In each period, the player chooses a level of effort µt, without being able to perfectly observe the

return of her effort, α. Therefore, she does not observe with certainty her “true” rating, Elo∗,

which we assume takes the following form, based on the sum of her past efforts:

Elo∗t = Elo∗t−1 + αµt = Elo∗0 + α
`=t∑
`=1

µ`. (10)

Under some assumptions, set out in the next subsection, players’ beliefs are entirely deter-

mined by their sequence of wins and losses, Rt. The micro gender gap, denoted ε, introduces a

gender asymmetry so that women are more likely to lose when playing against men. As a result,

they receive more negative signals regarding their return to effort.

The player’s objective function in each period is to maximize expected utility U , given a

series of efforts, MT = (µ1, ..., µT ), with future utility being discounted at a constant rate of δ:

U(MT ) =

T∑
t=1

δt{g(Elot)− C(µt)}, (11)

where rewards are defined purely based on official Elot and assessed using the g function, which

is increasing and is assumed to be linear. Effort entails a cost, C, which is assumed to be

identical across players.

G.2 Assumptions

Our model relies on simplifying assumptions:

1. All players have identical initial Elo, Elo0, identical initial beliefs and update beliefs the

same way using Bayesian updating.

2. The return to effort takes on two values, α ∈ {α, α} such that α ≤ 0 < α.

3. The outcome of each game is assumed to be either a win or a loss (we thus simplify the

analysis by ruling out draws).
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Under the first assumption, beliefs are only a function of the sequence of wins and losses,

Rt. In other words, two players with the same sequence of wins and losses hold the same belief

regarding their true ability. Thus, pt(Rt) = Prob(α = α | Rt) is the belief at time t that the

player’s actual type is high, given the history of wins and losses Rt.

G.3 Preliminary Results: The Dynamic of Beliefs

The evolution of beliefs is represented in Figure A4. At period t, a player holds a belief pt that

her actual type is ᾱ. Each game conveys a signal about her underlying ability. The main idea

is that women may not realize that they are prone to a micro gender gap. They may believe

that the represented probabilities are correct, while the probability of a win is in fact slightly

lower. This misspecification leads to bias their belief. Probabilities of a win are computed as

the objective probabilities deriving from differences in Elo ratings. The player will compute this

probability based on the difference between her belief about her “true” Elo at period t, Elot

(which may differ from the official Elo) and the official Elo of her opponent, denoted by Eloadv.

For simplicity, in the state of the world were α = ᾱ, this difference is denoted by ∆:

∆ = −(Elot − Eloadv)/400 = −(Elo0 + ᾱ
∑
k<t

µk − Eloadv)/400,

and by ∆ in the state of the world where α = α:

∆ = −(Elot − Eloadv)/400 = −(Elo0 + α
∑
k<t

µk − Eloadv)/400.

A first result is to formally establish that beliefs will move up after a win and down after a

loss. Using our notations, we need to prove that

Pt+1 (α = ᾱ|Win)

Pt+1 (α = ᾱ|Loss)
> 1
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According to Bayes rule, we can decompose the ratio as:

Pt+1 (α = ᾱ|Win)

Pt+1 (α = ᾱ|Loss)
=

P (Win|α = ᾱ)

P (Loss|α = ᾱ)
× P (Loss)

P (Win)

=

1

1+10∆
×
[

1

1+10−∆
Pt + 1

1+10−∆ (1− Pt)
]

1

1+10−∆
×
[

1

1+10∆
Pt + 1

1+10∆ (1− Pt)
]

=
Pt +

[
1+10−∆

1+10−∆

]
(1− Pt)

Pt +
[

1+10∆

1+10∆

]
(1− Pt)

.

Therefore,

Pt+1 (α = ᾱ|Win)

Pt+1 (α = ᾱ|Loss)
> 1 ⇔

[
1 + 10−∆

1 + 10−∆

]
>

[
1 + 10∆

1 + 10∆

]

⇔

[
1 + 10−∆

1 + 10∆

]
>

[
1 + 10−∆

1 + 10∆

]
.

Since, f(x) = 1+10−x

1+10x is strictly decreasing in x, we have

Pt+1 (α = ᾱ|Win)

Pt+1 (α = ᾱ|Loss)
> 1 ⇔ ∆ < ∆.

Thus, as long as the probability of a win is larger when α = ᾱ than when α = α, we also see a

more optimistic belief after a win than after a loss.

G.4 On the Dynamic of Elo ratings

As explained, effort at each period is determined by the current belief. We here make an

additional assumption which allows us to solve the dynamic problem and get a closed-form

solution. We assume that players are myopic.65 In each period k, we thus assume that players

solve the dynamic problem by considering only the impact of µk on subsequent periods. At period

1, the optimization problem has then only a single control variable left, namely µ1. Recall from

Equation 11, that the player’s objective function in each period is to maximize expected utility

U , given a series of efforts, MT = (µ1, ..., µT ), with future utility being discounted at a constant

rate of δ. As a result of our simplifying assumption, we get:

65Players are myopic in the sense that they do not anticipate that by paying a large cost in the early
periods they would learn about their true ability faster.
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max
µ1∈R+

U(Rt) = max
µ1

[ ∞∑
t=1

δtg(Elo)− C(µ1)

]

= max
µ1

[ ∞∑
t=1

δt

(
Elo0 + α1

(∑
k<t

µk + µ1

))
− 1

2
µ2

1

]

= max
µ1

[ ∞∑
t=1

δtElo0 +

∞∑
t=1

(
δtα1

∑
k<t

µk

)
+

∞∑
t=1

δtα1µ1 −
1

2
µ2

1

]

= max
µ1

[
Cst+ α1µ1

∞∑
t=1

δt − 1

2
µ2

1

]

= max
µ1

[
µ1 ×

α1

1− δ
− 1

2
µ2

1

]
⇒

{
µ∗1 = α1

1−δ if α1 > 0

µ∗1 = 0 if α1 < 0

The belief at period t can thus be rewritten as:

Elot = Elo0 + αt

t∑
k=1
αk>0

αk

In sum, what matters is the sum of all (positive) past beliefs. Assuming that women and

men have equal ability to play chess, the proportion of high types (i.e. α = ᾱ) and low types

will be identical (note that we neglect the possibility that selection into chess as generated a

difference in intrinsic ability but this assumption is not crucial).

G.5 Predictions

We now turn to our predictions and provide a proof of each.

Prediction 1: The likelihood of women dropping out of competition increases with the size

of the micro gender gap: the larger the gap, the greater the probability that women drop out of

competition. As a result, women are more likely than men to drop out.

Proof. Using our notations, the first prediction states that there exists a threshold under

which optimal effort is zero. We assimilate the situation in which the effort falls to zero to

quitting. Under the assumptions made in the previous section, the effort drops to zero as soon

as the belief falls below zero. The proof can be extended as the assumptions used to get a closed

form solution are not required. We first prove that if α ≤ 0 < α, there exists a threshold βt > 0

such that P (Rt) < βt ⇒ µt(Rt) = 0. The proof is by continuity. We indeed observe that, for any

t, optimal effort µt monotonically decreases with the belief pt. For pt = 0, the player believes

with certainty that the true value of α is α, which is assumed to be negative. The optimal effort

is thus zero. At the other extreme, a player who believes with certainty that pt = 1 would exert

a positive effort. Since the considered function is monotonic, there exist a value of beliefs under
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which effort falls to zero.

The consequence of the micro gender gap is to increase the probability of a loss for women

when playing against men. A larger micro-gap will result in a larger probability of a loss.

Formally, let’s denote by ε the size of the gender gap. The likelihood of a win in a game

involving two players of the same gender is given by:

P (win) =
1

1 + 10∆

where

∆ = −Elo1 − Elo2

400

For mixed gender games, the probabilities are perceived in the same way, but actual probability

(assuming player 1 is a women) changes to

P (win) =
1

1 + 10∆′

where

∆′ = −Elo1 − Elo2 − ε
400

So a larger ε would mechanically lead to more losses for women and a growing gap between men

and women.

Consider players who hold positive beliefs but are one loss away from reaching the threshold.

The women in that particular subset of players, who face a male opponent, are more likely to

reach the threshold. Furthermore, the larger the gender gap, the greater the number of women

included in this particular subset. Thus, at every period, there are more women who reach the

threshold than men.

Prediction 2: The higher the fraction of mixed-gender games, the higher the probability

that women drop out.

Proof. We have assumed that there are two states of the world. Players receive independent

signals in each period, but these signals are not necessarily identically distributed. For instance,

winning against a much stronger player conveys more information than winning against a much

weaker opponent. By accumulating signals, and absent any micro gender gap, players would

converge toward the true state of the world. The effect of the micro gender gap is thus to

accelerate convergence for women who are of the low type and for men who are of the high type:

they receive more signals congruent with the true state of the world. Symmetrically, low type

men drop out later than they would have in the absence of the micro gender gap.

Prediction 3: The higher rate of female dropouts generates selection and a decrease in the

micro gender gap over time, in particular for the most successful women (those who received

the most positive signals). The reduction in the micro gender gap could also be the result of

women slowly finding ways to overcome the gap itself. Both effects predict a fall in the size of

micro gender gap with experience.
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Proof. At each period, the average belief is always lower for women than for men. However,

in the long run, high type women will find out their true type as long as the micro gender gap

is not too large. Sample selection will eliminate low type women and the high type women with

a too large gender gap. Note that as long as that there is a micro gender gap, high type women

will exert less effort than high type men. Overtime, however, the gap will converge to zero. In

other words, only the high type players will survive and if women overcome their micro gender

gap, there will be no difference in the long run. Our model does not predict how fast this would

happen. Thus, we have no clear prediction on whether the gap would become insignificant for

the most experienced women.
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H Dropouts vs. Stayers

Table A14: Gender Gaps and Dropout Effects

Panel A: Generalized Ordered Logit Estimates

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

Dropouts Stayers Dropouts Stayers

Female vs. Male 0.759a 0.880a 0.908a 1.022
(0.024) (0.014) (0.033) (0.018)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.785a 1.783a 1.784a 1.781a

(0.004) (0.004) (0.004) (0.004)
Age Difference 0.985a 0.985a 0.986a 0.986a

(0.000) (0.000) (0.000) (0.000)
Player 1 has White 1.390a 1.392a 1.390a 1.390a

(0.010) (0.009) (0.010) (0.009)

Observations 456,663 471,961 456,663 471,961

Panel B: Predicted Probabilities and Gender Gaps - See Table 6

Column 1. Female vs. Male: Dropouts
Gender Gap: 0.2934 + 0.5 ∗ 0.3275− 0.3139− 0.5 ∗ 0.3695 ≈ −0.041a

Column 2. Female vs. Male: Stayers
Pr(score=0) = 0.3540a; Pr(score=0.5) = 0.3367a; Pr(score=1) = 0.3093a.
Gender Gap: 0.3171 + 0.5 ∗ 0.3363− 0.3124− 0.5 ∗ 0.3693 ≈ −0.012a

Notes: Panel A lists the generalized ordered logit regression coefficients by different age
groups. The dependent variable is the score of player 1 (loss=0, draw=0.5, win=1).
Female vs. Male is a dummy for a mixed-gender interaction between players 1 and 2.
The covariates are the Elo rating and age differences between player 1 and player 2, and
a White pieces dummy for player 1. Robust standard errors are in parentheses, with a

denoting significance at the 1% level.
Panel B shows the predicted probabilities and gender gaps displayed in Table 6. In this
panel, standard errors are calculated with the delta method.
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Figure A5: The Share of Mixed-Gender Games and the Probability of Women Dropping
Out
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Notes: The figure presents the adjusted predictions of the share of mixed-gender games on the probability
of women dropping out with 95% confidence intervals. These predictions come from column 3 of Table 7,
where the dummy variable for the country share being above the median has been replaced by the share
itself.
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I Experience Effects

We present here descriptive statistics and additional results on experience. As information on

chess titles and the adjustment factor K are not available in our dataset, we construct them

based on FIDE data (https://ratings.fide.com/download lists.phtml).

Table A15: Players, Games, and Titles

Panel A: Number and Percentage of Titled and Untitled Players

Number % Cum. %

Grandmaster (GM) 6,220 1.63 1.63
International Master (IM) 12,753 3.34 4.97
Woman Grandmaster (WGM) 669 0.18 5.14
FIDE Master (FM) 19,619 5.14 10.28
Woman International Master (WIM) 281 0.07 10.35
Candidate Master (CM) 1,518 0.40 10.75
Woman FIDE Master (WCM) 1,927 0.50 11.26
Woman Candidate Master (WCM) 295 0.08 11.33
No Title 338,646 88.67 100.00

Total 381,928 100.00

Notes to Panel A: 381,928 player-year observations. The information is displayed at the annual level

as some players won a title during our analysis period (2008-2013).

Panel B: Number and Percentage of Games with Titled and Untitled Players

Man or Woman vs. Man Woman vs. Man

Number % Cum. % Number % Cum. %

Untitled vs. Untitled 1,970,737 69.74 69.74 107,139 68.25 68.25
Titled vs. Titled 327,840 11.60 81.34 25,810 16.44 84.69
Titled vs. Untitled 271,211 9.60 90.94 14,970 9.54 94.22
Untitled vs. Titled 256,050 9.06 100.00 9,068 5.78 100.00

Total 2,825,838 100.00 156,987 100.00

Note to Panel B: 2,825,838 games; 156,987 games between a woman as player 1 vs. a man as player 2.
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Table A16: K Players and Games

Panel A: Number and Percentage of K Playersa

All Players Women Only

Number % Cum. % Number % Cum. %

K=10 20,935 5.48 5.48 1,457 6.12 6.12
K=15 195,146 51.09 56.58 7,885 33.11 39.23
K=30 165,847 43.42 100.00 14,469 60.77 100.00

Total 381,928 100.00 23,811 100.00

Notes to Panel A: 381,928 player-year observations; 23,811 female player-year observations.

Panel B: Number and Percentage of Games between K Playersa

Woman vs. Man

Woman’s K Number % Cum. %

K=30 64,992 41.40 41.40
K=15 77,170 49.16 90.56
K=10 14,825 9.44 100.00

Total 157,395 100.00

Note to Panel B: 157,395 games between a woman as player 1 vs. a man as player 2.

Notes: a K-players: K=10 (very experienced), K=15 (experienced), and K=30 (inexperienced).
The K-factor is defined according to the FIDE rules in effect during our analysis period from
2008 to 2013 (see Appendix B). K = 10 for players with any rating of at least 2400 and at
least 30 games played in previous events; thereafter K remains permanently at 10. K = 15 for
players with a rating always under 2400. K = 30, for a player new to the rating list until the
completion of events with a total of 30 games. In Panel A, the information is displayed at the
annual level as some players changed K during our analysis period (2008-2013).
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Table A17: Gender, Experience and Titles

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

(1) (2)

Female (GM or IM) vs. Male 1.015 0.866a

(0.020) (0.016)

Female (Other Title) vs. Male 0.898a 0.926a

(0.013) (0.013)

Female (No Title) vs. Male 0.811a 1.035a

(0.006) (0.008)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.759a 1.759a

(0.002) (0.002)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.375a 1.375a

(0.004) (0.004)

Notes: This table summarizes the estimates from a generalized ordered logit (GOL) model
based on 2,825,838 observations. An observation is a game between player 1 (female or
male) and player 2 (male). The dependent variable is the score of player 1 against player 2
(loss=0, draw=0.5, win=1). The covariates are the Elo rating and age differences between
player 1 and player 2, and a White pieces dummy for player 1. Robust standard errors
are in parentheses, with a denoting significance at the 1% level. GM stands for Grandmas-
ter and IM for International Master. The other awarded titles are Woman Grandmaster,
FIDE Master, Woman International Master, Candidate Master, Woman FIDE Master, and
Woman Candidate Master. The GOL estimates allow us to calculate the predicted proba-
bilities indicated in Table A18.

Table A18: Experience and Titles: Predicted Probabilities and Gender Gaps

Columns of Table 8 Gender Interactions

Col 1. Female (GM or IM) vs. Male:
Gender Gap: 0.2857 + 0.5*0.3919 - 0.3161- 0.5*0.3583 ≈ -0.014a

Col 2. Female (Other Title) vs. Male:
Gender Gap: 0.2997 + 0.5*0.3507 - 0.3161- 0.5*0.3583 ≈ -0.020a

Col 3. Female (No Title) vs. Male:
Gender Gap: 0.3236 + 0.5*0.3032 - 0.3161- 0.5*0.3583 ≈ -0.020a

Notes: The predicted probabilities are calculated from the generalized ordered logit
regression coefficients in Table A17. The gender gaps calculated here appear in Table 8,
as well as the standard errors. a denotes significance at the 1% level.
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Table A19: Gender, Experience and the Adjustment Factor: Generalized Ordered Logit

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

(1) (2)

Female (K = 10) vs. Male 1.016 0.864a

(0.020) (0.016)

Female (K = 15) vs. Male 0.887a 1.022a

(0.007) (0.009)

Female (K = 15) vs. Male 0.759a 0.999a

(0.007) (0.011)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.759a 1.759a

(0.002) (0.002)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.375a 1.371a

(0.004) (0.004)

Notes: The K-factor reflects the player’s experience: K=10 (very experienced), K=15
(experienced), and K=30 (inexperienced). This table summarizes the estimates from a
generalized ordered logit (GOL) model based on 2,825,838 observations. An observation
is a game between player 1 (female or male) and player 2 (male). The dependent
variable is the score of player 1 against player 2 (loss=0, draw=0.5, win=1). The
covariates are the Elo rating and age differences between player 1 and player 2, and
a White pieces dummy for player 1. Robust standard errors are in parentheses, with
a denoting significance at the 1% level. The GOL estimates allow us to calculate the
predicted probabilities indicated in Table A20.

Table A20: Experience and the Adjustment Factor: Predicted Probabilities and Gender
Gaps

Columns of Table 8 Gender Interactions

Col 4. Female (K = 10) vs. Male
Gender Gap: 0.2855 + 0.5 ∗ 0.3924− 0.3161− 0.5 ∗ 0.3582 ≈ −0.014a

Col 5. Female (K = 15) vs. Male:
Gender Gap: 0.3209 + 0.5 ∗ 0.3266− 0.3161− 0.5 ∗ 0.3582 ≈ −0.011a

Col 6. Female (K = 30) vs. Male:
Gender Gap: 0.3160 + 0.5 ∗ 0.2951− 0.3161− 0.5 ∗ 0.3582 ≈ −0.032a

Notes: The predicted probabilities are calculated from the generalized ordered logit regression
coefficients in Table A19. The gender gaps calculated here appear in Table 8, as well as the
standard errors. a denotes significance at the 1% level.
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Table A21: Experience and the Number of Games

Dependent Variable: Score of Player 1 against Player 2

Non-Linear Linear

Estimator: Ologit Ologit Het Oprobit GOL MNL OLS

(1) (2) (3) (4) (5) (6)

Micro Gender Gap
-0.013a -0.016a -0.012a -0.010a -0.009a -0.011a

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Notes: The figures here refer to probabilities. The gender gaps are estimated via different methods:
the details appear in Appendix D. Each estimation covers 2,825,838 observations. An observation
is a game between player 1 (female or male) and player 2 (male). Standard errors are in parentheses
with a denoting significance at the 1 percent level. In each column, the dependent variable is the
score of player 1 against player 2 (loss=0, draw=0.5, win=1). The covariates are the number of
games played, age and Elo-rating differences between the two players, and a White pieces dummy
for player 1. The different estimation methods are: Col 1: Ordered Logit (Ologit); Col. 2: Ordered
Heteroskedastic Logit (Ologit Het); Col. 3: Ordered Probit (Oprobit); Col. 4: Generalized Ordered
Logit (GOL); Col. 5: Multinomial Logit (with the draw as the baseline); Col 6: Ordinary Least
Squares (OLS). The standard errors are calculated using the Delta method in columns 1 to 5.
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J Age Effects

Table A22: Gender Gaps and Age Effects

Panel A: Generalized Ordered Logit Estimates

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

Age of Both Players < 16 < 21 > 55 > 64 < 16 < 21 > 55 > 64

Female vs. Male 0.794a 0.804a 0.787a 0.810a 0.925a 0.922a 0.780a 0.767a

(0.015) (0.009) (0.027) (0.038) (0.019) (0.011) (0.032) (0.046)

Male vs. Male Benchmark Comparison Benchmark Comparison

Elo-Rating Difference 1.651a 1.686a 1.826a 1.850a 1.645a 1.681a 1.828a 1.861a

(0.006) (0.004) (0.007) (0.011) (0.006) (0.004) (0.007) (0.011)
Age Difference 1.034a 0.979a 0.985a 0.983a 1.037a 0.982a 0.986a 0.985a

(0.004) (0.001) (0.001) (0.001) (0.004) (0.001) (0.001) (0.001)
Player 1 has White 1.321a 1.356a 1.335a 1.330a 1.341a 1.360a 1.321a 1.333a

(0.016) (0.010) (0.015) (0.023) (0.016) (0.010) (0.015) (0.023)

Observations 145,491 389,424 171,789 71,732 145,491 389,424 171,789 71,732

Panel B: Predicted Probabilities and Gender Gaps of the Columns in Table 9

Column 1. Female vs. Male: Below 16 years age
Gender Gap: 0.3193 + 0.5 ∗ 0.2763− 0.3364− 0.5 ∗ 0.3134 ≈ −0.036a

Column 2. Female vs. Male: Below 21 years age
Gender Gap: 0.3100 + 0.5 ∗ 0.2960− 0.3276− 0.5 ∗ 0.3290 ≈ −0.034a

Column 3. Female vs. Male: Above 55 years age
Gender Gap: 0.2639 + 0.5 ∗ 0.3576− 0.3149− 0.5 ∗ 0.3611 ≈ −0.053a

Column 4. Female vs. Male: Above 64 years age
Gender Gap: 0.2526 + 0.5 ∗ 0.3814− 0.3059− 0.5 ∗ 0.3754 ≈ −0.050a

Notes: Panel A lists the generalized ordered logit regression coefficients by different age groups. The dependent variable
is the score of player 1 (loss=0, draw=0.5, win=1). Female vs. Male is a dummy for a mixed-gender interaction between
players 1 and 2. The covariates are the Elo rating and age differences between player 1 and player 2, and a White pieces
dummy for player 1. Robust standard errors are in parentheses, with a denoting significance at the 1% level.
Panel B shows the predicted probabilities and gender gaps displayed in Table 9. In this panel, standard errors are
calculated with the delta method.
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K Cultural Effects

K.1 Women-Friendly Countries and the Gender Gap

Table A23: Gender Gaps and the GGI index

Panel A: Generalized Ordered Logit Estimates

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

GGI Index Top 10 Top 20 Bot. 10 Bot. 20 Top 10 Top 20 Bot. 10 Bot. 20

(1) (2) (3) (4) (5) (6) (7) (8)

Female vs. Male 0.849a 0.831a 0.850a 0.812a 0.971 0.964 0.922 0.880c

(0.014) (0.034) (0.052) (0.046) (0.018) (0.043) (0.065) (0.058)

Male vs. Male Benchmark Comparison Benchmark Comparison

Elo-Rating Difference 1.800a 1.770a 1.667a 1.675a 1.798a 1.762a 1.668a 1.675a

(0.004) (0.008) (0.010) (0.010) (0.004) (0.008) (0.011) (0.010)
Age Difference 0.984a 0.985a 0.983a 0.983a 0.985a 0.986a 0.983a 0.983a

(0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001)
Player 1 has White 1.386a 1.309a 1.273a 1.287a 1.357a 1.282a 1.301a 1.296a

(0.009) (0.018) (0.028) (0.027) (0.009) (0.018) (0.029) (0.027)

Observations 500,506 109,760 41,406 46,443 500,506 109,760 41,406 46,443

Panel B: Predicted Probabilities and Gender Gaps (see Table 10)

Column 1. Female vs. Male: top 10 GGI index
Gender Gap: 0.2888 + 0.5 ∗ 0.3728− 0.2949− 0.5 ∗ 0.4023 ≈ −0.021a

Column 2. Female vs. Male: top 20 GGI index
Gender Gap: 0.3019 + 0.5 ∗ 0.3428− 0.3097− 0.5 ∗ 0.3763 ≈ −0.024a

Column 3. Female vs. Male: bottom 10 GGI index
Gender Gap: 0.3322 + 0.5 ∗ 0.2680− 0.3504− 0.5 ∗ 0.2881 ≈ −0.028a

Column 4. Female vs. Male: bottom 20 GGI index
Gender Gap: 0.3217 + 0.5 ∗ 0.2691− 0.3503− 0.5 ∗ 0.2897 ≈ −0.039a

Notes: “Bot.” stands for bottom. The table lists the generalized ordered logit regression coefficients focusing on different
country groups. The dependent variable is the score of player 1 (loss=0, draw=0.5, win=1). Female vs. Male is a dummy
for a mixed-gender interaction between players 1 and 2. The covariates are the Elo rating and age differences between
player 1 and player 2, and a White pieces dummy for player 1. Robust standard errors are in parentheses, with a and c

denoting significance at the 1% and 10% levels respectively. Panel B shows the predicted probabilities and gender gaps in
Table 10. In this panel, standard errors are calculated with the delta method.

76



K.2 Regions and the Gender Gap

Table A24: Gender Gaps by Region: Generalized Ordered Logit

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

(1) (2)

Female (Eastern Asia) vs. Male 0.699a 0.971
(0.040) (0.059)

Female (Southern Asia) vs. Male 0.906a 0.965
(0.017) (0.021)

Female (South America) vs. Male 0.770a 0.947c

(0.021) (0.028)

Female (Southern Europe) vs. Male 0.878a 0.999
(0.012) (0.015)

Female (Russia) vs. Male 0.848a 1.006
(0.015) (0.018)

Female (Post-Soviet Europe) vs. Male 0.807a 0.986
(0.010) (0.013)

Female (Post-Soviet Asia) vs. Male 0.751a 1.048
(0.025) (0.037)

Female (Central Europe) vs. Male 0.868a 0.985
(0.017) (0.021)

Female (Belgium-France) vs. Male 0.816a 0.940a

(0.015) (0.019)

Female (Scandinavia) vs. Male 0.865a 0.980
(0.035) (0.043)

Female (Northern America) vs. Male 0.807a 0.928
(0.038) (0.048)

Female (Rest of the World) vs. Male 0.794a 0.924a

(0.018) (0.024)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.755a 1.754a

(0.001) (0.001)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.376a 1.373a

(0.004) (0.004)

Region Fixed Effects
For player 1 Yes Yes
For player 2 Yes Yes

Notes: This table summarizes the estimates from a generalized ordered logit (GOL) estimation with
2,825,838 observations. An observation is a game between player 1 (female or male) and player 2
(male). The dependent variable is the score of player 1 against player 2 (loss=0, draw=0.5, win=1).
We interact the dummy variable, Female vs. Male, with a dummy for the region of player 1. The
regions are defined in Table A1. The covariates are the age and Elo-rating differences between players
1 and 2, a White pieces dummy for player 1, and region fixed effects for each player. Robust standard
errors are in parentheses, with a and c denoting significance at the 1% and 10% levels respectively.
The GOL estimates allow us to calculate the predicted probabilities in Table A25.
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Table A25: Regional Effects: Predicted Probabilities and Gender Gaps

Estimates of Figure 4

Female (Eastern Asia) vs. Male
Gender Gap: 0.3101 + 0.5 ∗ 0.2787− 0.3165− 0.5 ∗ 0.3553 ≈ −0.045a

Female (South America) vs. Male
Gender Gap: 0.3050 + 0.5 ∗ 0.3072− 0.3166− 0.5 ∗ 0.3554 ≈ −0.036a

Female (Rest of the World) vs. Male
Gender Gap: 0.2999 + 0.5 ∗ 0.3195− 0.3166− 0.5 ∗ 0.3554 ≈ −0.035a

Female (Northern America) vs. Male
Gender Gap: 0.3007 + 0.5 ∗ 0.3222− 0.3165− 0.5 ∗ 0.3553 ≈ −0.032a

Female (Belgium-France) vs. Male
Gender Gap: 0.3034 + 0.5 ∗ 0.3225− 0.3166− 0.5 ∗ 0.3554 ≈ −0.030a

Female (Post-Soviet Asia) vs. Male
Gender Gap: 0.3266 + 0.5 ∗ 0.2795− 0.3165− 0.5 ∗ 0.3554 ≈ −0.028a

Female (Post-Soviet Europe) vs. Male
Gender Gap: 0.3136 + 0.5 ∗ 0.3101− 0.3166− 0.5 ∗ 0.3558 ≈ −0.026a

Female (Scandinavia) vs. Male
Gender Gap: 0.3121 + 0.5 ∗ 0.3272− 0.3165− 0.5 ∗ 0.3553 ≈ −0.018a

Female (Central Europe) vs. Male
Gender Gap: 0.3135 + 0.5 ∗ 0.3267− 0.3165− 0.5 ∗ 0.3554 ≈ −0.017a

Female (Russia) vs. Male
Gender Gap: 0.3179 + 0.5 ∗ 0.3170− 0.3165− 0.5 ∗ 0.3555 ≈ −0.018a

Female (Southern Europe) vs. Male
Gender Gap: 0.3163 + 0.5 ∗ 0.3265− 0.3165− 0.5 ∗ 0.3556 ≈ −0.015a

Female (Southern Asia) vs. Male
Gender Gap: 0.3089 + 0.5 ∗ 0.3409− 0.3166− 0.5 ∗ 0.3554 ≈ −0.015a

Notes: The predicted probabilities are calculated from the generalized ordered logit
regression coefficients in Table A24. The gender gaps calculated here appear in
Figure 4. a denotes significance at the 1% level, based on standard errors calculated
with the delta method.
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K.3 Countries and the Gender Gap

Table A26: Gender Differences and Country Fixed Effects

Panel A: Generalized Ordered Logit Estimates

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

Female vs. Male 0.834a 0.965a

(0.005) (0.006)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.753a 1.752a

(0.001) (0.001)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.378a 1.375a

(0.004) (0.004)

Country Fixed Effects
For player 1 Yes Yes
For player 2 Yes Yes

Panel B: Predicted Probabilities and Gender Gap

Column 1: Female vs. Male
Gender Gap: 0.3097 + 0.5*0.3231 - 0.3172 - 0.5*0.3565 ≈ -0.024a.

Notes: Panel A lists the generalized ordered logit regression coefficients with
2,825,838 observations. An observation is a game between player 1 (female or
male) and player 2 (male). The dependent variable is the score of player 1 (loss=0,
draw=0.5, win=1). Female vs. Male is a gender-interaction dummy for player 1 as
a woman facing player 2 as a man. Robust standard errors are in parentheses, with
a denoting significance at the 1% level. Panel B shows the predicted probabilities
and the gender gap. In this panel, standard errors are calculated with the delta
method.
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Table A27: Gender Gaps by Country: Generalized Ordered Logit

Outcomes and Odds Ratios

Loss vs. Draw, Win Draw vs. Loss, Win

(1) (2)

Female (Cuba) vs. Male 0.684a 0.935
(0.031) (0.046)

Female (Czech Republic) vs. Male 0.800a 0.875a

(0.027) (0.033)
Female (Germany) vs. Male 0.865a 0.963

(0.020) (0.026)
Female (Spain) vs. Male 0.916a 0.981

(0.019) (0.022)
Female (France) vs. Male 0.826a 0.919a

(0.016) (0.019)
Female (Georgia) vs. Male 0.667a 1.012a

(0.039) (0.059)
Female (Greece) vs. Male 0.861a 0.927c

(0.031) (0.037)
Female (Hungary) vs. Male 0.794a 0.999

(0.023) (0.031)
Female (India) vs. Male 0.898a 0.963

(0.019) (0.023)
Female (Italy) vs. Male 0.880a 0.916b

(0.033) (0.036)
Female (Netherlands) vs. Male 0.857a 0.967

(0.044) (0.052)
Female (Poland) vs. Male 0.801a 0.984

(0.019) (0.026)
Female (Romania) vs. Male 0.840a 0.990

(0.035) (0.043)
Female (Russia) vs. Male 0.845a 0.999

(0.014) (0.018)
Female (Slovakia) vs. Male 1.006 0.965a

(0.046) (0.047)
Female (Ukraine) vs. Male 0.800a 1.039

(0.030) (0.043)
Female (United States) vs. Male 0.811a 0.909c

(0.041) (0.049)
Male vs. Male Benchmark Comparison
Elo-Rating Difference 1.749a 1.747a

(0.002) (0.002)
Age Difference 0.985a 0.985a

(0.000) (0.000)
Player 1 has White 1.375a 1.372a

(0.004) (0.005)

Country fixed effects for player 1 Yes Yes
Country fixed effects for player 2 Yes Yes

Notes: This table summarizes the estimates from a generalized ordered logit (GOL) estimation
with 1,986,837 observations. An observation is a game between player 1 (female or male) and
player 2 (male), where player 1 comes from one of the 17 countries considered in the table. The
dependent variable is the score of player 1 against player 2 (loss=0, draw=0.5, win=1). We
interact the dummy variable, Female vs. Male, with a dummy for the region of player 1. The
covariates are the age and Elo-rating differences between players 1 and 2, a White pieces dummy
for player 1, and country fixed effects for each player. Robust standard errors are in parentheses,
with a, b, and c denoting significance at the 1%, 5% and 10% levels respectively. The GOL
estimates allow us to calculate the predicted probabilities in Table A28.
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Table A28: Country Effects: Predicted Probabilities and Gender Gaps

Estimates in Figure 5

Female (Cuba) vs. Male:
Gender Gap: 0.3051 + 0.5 ∗ 0.2732− 0.3195− 0.5 ∗ 0.3474 ≈ −0.052a

Female (Czech Republic) vs. Male:
Gender Gap: 0.2913 + 0.5 ∗ 0.3246− 0.3196− 0.5 ∗ 0.3474 ≈ −0.040a

Female (Germany) vs. Male:
Gender Gap: 0.3114 + 0.5 ∗ 0.3228− 0.3196− 0.5 ∗ 0.3474 ≈ −0.020a

Female (Spain) vs. Male:
Gender Gap: 0.3155 + 0.5 ∗ 0.3317− 0.3195− 0.5 ∗ 0.3473 ≈ −0.012a

Female (France) vs. Male:
Gender Gap: 0.3017 + 0.5 ∗ 0.3218− 0.3196− 0.5 ∗ 0.3475 ≈ −0.031a

Female (Georgia) vs. Male:
Gender Gap: 0.3220 + 0.5 ∗ 0.2502− 0.3195− 0.5 ∗ 0.3474 ≈ −0.046a

Female (Greece) vs. Male:
Gender Gap: 0.3034 + 0.5 ∗ 0.3297− 0.3196− 0.5 ∗ 0.3473 ≈ −0.025a

Female (Hungary) vs. Male:
Gender Gap: 0.3192 + 0.5 ∗ 0.2949− 0.3195− 0.5 ∗ 0.3475 ≈ −0.027a

Female (India) vs. Male:
Gender Gap: 0.3115 + 0.5 ∗ 0.3313− 0.3196− 0.5 ∗ 0.3474 ≈ −0.016a

Female (Italy) vs. Male:
Gender Gap: 0.3008 + 0.5 ∗ 0.3372− 0.3196− 0.5 ∗ 0.3473 ≈ −0.024a

Female (Netherlands) vs. Male:
Gender Gap: 0.3123 + 0.5 ∗ 0.3196− 0.3195− 0.5 ∗ 0.3473 ≈ −0.021a

Female (Poland) vs. Male:
Gender Gap: 0.3160 + 0.5 ∗ 0.3002− 0.3195− 0.5 ∗ 0.3475 ≈ −0.027a

Female (Romania) vs. Male:
Gender Gap: 0.3173 + 0.5 ∗ 0.3100− 0.3195− 0.5 ∗ 0.3474 ≈ −0.021a

Female (Russia) vs. Male:
Gender Gap: 0.3192 + 0.5 ∗ 0.3097− 0.3195− 0.5 ∗ 0.3477 ≈ −0.019a

Female (Slovakia) vs. Male:
Gender Gap: 0.3119 + 0.5 ∗ 0.3562− 0.3195− 0.5 ∗ 0.3473 ≈ −0.003

Female (Ukraine) vs. Male:
Gender Gap: 0.3278 + 0.5 ∗ 0.2879− 0.3195− 0.5 ∗ 0.3474 ≈ −0.021a

Female (United States) vs. Male:
Gender Gap: 0.2992 + 0.5 ∗ 0.3198− 0.3195− 0.5 ∗ 0.3473 ≈ −0.034a

Notes: S stands for the score of player 1. The predicted probabilities are calculated
from the generalized ordered logit regression coefficients in Table A27. The gender
gaps calculated here appear in Figure 5. a denotes significance at the 1% level, based
on standard errors calculated with the delta method.
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L Online Appendix - Not Intended for Publication

Table A29: The Micro Gender Gap in Performance - Table 2 with the Full Sample

Dependent Variable: Score of Player 1 against Player 2

Non-Linear Linear

Estimator: Ologit Ologit Het Oprobit GOL MNL OLS

(1) (2) (3) (4) (5) (6)

Micro Gender Gap
-0.023a -0.026a -0.023a -0.021a -0.021a -0.019a

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Notes: The figures here refer to probabilities. The gender gaps (female player 1 vs. male player 2) are estimated via
different methods: the details appear in Appendix D. Each estimation covers 3,272,577 observations. An observation
is a game between player 1 (female or male) and player 2 (male or female). Standard errors are in parentheses with
a denoting significance at the 1 percent level. In each column, the dependent variable is the score of player 1 against
player 2 (loss=0, draw=0.5, win=1). The covariates are the age and Elo-rating differences between the two players,
and a White pieces dummy for player 1. We also control for two dummy variables: female player 1 vs. female player
2, and male player 1 vs. male player 2. The different estimation methods are: Col 1: Ordered Logit (Ologit); Col.
2: Ordered Heteroskedastic Logit (Ologit Het); Col. 3: Ordered Probit (Oprobit); Col. 4: Generalized Ordered Logit
(GOL); Col. 5: Multinomial Logit (with the draw as the baseline); Col 6: Ordinary Least Squares (OLS).

Table A30: The Micro Gender Gap in Performance - Table 2 with Outliers not Dropped

Dependent Variable: Score of Player 1 against Player 2

Non-Linear Linear

Estimator: Ologit Ologit Het Oprobit GOL MNL OLS

(1) (2) (3) (4) (5) (6)

Micro Gender Gap
-0.023a -0.026a -0.022a -0.021a -0.021a -0.019a

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Notes: The figures here refer to probabilities. The gender gaps are estimated via different methods: the details appear
in Appendix D. Each estimation covers 2,942,579 observations. An observation is a game between player 1 (female
or male) and player 2 (male). Standard errors are in parentheses with a denoting significance at the 1 percent level.
In each column, the dependent variable is the score of player 1 against player 2 (loss=0, draw=0.5, win=1). The
covariates are the age and Elo-rating differences between the two players, and a White pieces dummy for player 1.
The different estimation methods are: Col 1: Ordered Logit (Ologit); Col. 2: Ordered Heteroskedastic Logit (Ologit
Het); Col. 3: Ordered Probit (Oprobit); Col. 4: Generalized Ordered Logit (GOL); Col. 5: Multinomial Logit (with
the draw as the baseline); Col 6: Ordinary Least Squares (OLS).
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Table A31: Determinants of Outcomes in Chess Competitions; Odds Ratios

Ordered Outcomes: Loss<Draw<Win

Ologit Ologit Het

(1) (2)

Female vs. Male 0.900a 0.880a

(0.005) (0.005)

Male vs. Male Benchmark Comparison

Elo-Rating Difference 1.759a 1.765a

(0.001) (0.001)
Age Difference 0.985a 0.985a

(0.001) (0.000)
Player 1 has White 1.373a 1.375a

(0.003) (0.003)

Cut 1 (c1) -0.587a -0.590a

Cut 2 (c2) 0.904a 0.909a

Notes: There are 2,825,838 observations in all regressions. The
dependent variable is the S of player 1 (loss=0, draw=0.5,
win=1). The odds ratios come from Ordered Logit (Ologit) and
Ordered Heteroskedastic Logit (Ologit Het) models. Robust stan-
dard errors are in parentheses, with a denoting significance at the
1% level.
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Table A32: Determinants of Outcomes in Chess Competitions; Average Marginal Effects

Average Marginal Effects of Pr(Score)

for Female vs. Male

Loss Draw Win

Ologit

0.019a -0.000 - 0.019a

(0.001) (0.000) (0.001)

Ologit Het

0.031a -0.018a -0.013a

(0.001) (0.001) (0.001)

Oprobit

0.019a -0.001a - 0.019a

(0.001) (0.000) (0.001)

GOL

0.032a -0.031a - 0.001
(0.001) (0.001) (0.001)

MNL

0.033a -0.033a 0.000
(0.001) (0.001) (0.001)

Notes: There are 2,825,838 observations in all regres-
sions. The dependent variable is the score of player 1
(loss=0, draw=0.5, win=1). The average marginal ef-
fects come from Ordered Logit (Ologit), Ordered Het-
eroskedastic Logit (Ologit Het), Ordered Probit (Opro-
bit), Generalized Ordered Logit (GOL), and Multino-
mial Logit (MNL) models. The benchmark category
is Male versus Male, which is not significantly different
from the estimate of Female versus Female (not reported
here). Robust standard errors in parentheses are calcu-
lated using the Delta method, with a denoting signifi-
cance at the 1% level.
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Figure A6: The Distribution of the Number of Moves – All Densities

A. All Outcomes
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