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1 Introduction

Most economic activities entail sunk and fixed costs stemming from the existence of technical,

regulatory and information barriers. Such barriers hinder the participation of agents in market

activities and bear serious welfare implications. From a static viewpoint, these may artificially

protect incumbents over potential entrants, thereby augmenting firm market power, increasing

prices and/or lowering quantities. From a dynamic viewpoint, participation costs may allow

incumbents to embark on uncertain and risky investments with potentially substantial sunk

costs, such as research and development activities. In all circumstances, knowledge of the costs

associated with market participation has immediate policy implications.

Whether agents decide to participate in a specific market – be it the product, labor, technol-

ogy or financial market – depends on their ability to cover such costs. Past contributions have

attempted to estimate the costs of market participation. Das et al. (2007) develop a structural

model that allows the empirical estimations of sunk and fixed costs of exporting for Colombian

manufacturing firms. They find that sunk entry costs into export markets amount to, on aver-

age, $400 thousand, while the fixed costs appear to be negligible. Using a dynamic model of

optimal stock market participation, Khorunzhina (2013) estimates that stock market participa-

tion costs for consumers amount to 4-6% of labor income. More recently, Fan and Xiao (2015)

estimate that entry costs in the US local telephone industry reach $6.5 million.

In this paper, we focus on market participation thresholds, not on participation costs. Thresh-

olds can be defined as unobservable barriers that condition the market participation of an eco-

nomic actor. An agent will participate in the market only if some of her attribute – say produc-

tivity – exceeds the required threshold value of productivity. Conversely if an agent’s attribute

falls short of the threshold, she will choose not to participate in the market – or to exit it. Hence,

it is the gap between the agent-specific attribute and the threshold value that ultimately dictates

the decision.

Thresholds are thus well suited to represent, in a concise fashion, the arbitrage underlying

market participation for one chief reason. Because they are different from costs, thresholds can

be expressed in various dimensions and can be easily adapted to different settings.1 Possible

examples include, inter alia, the presence of a minimum efficiency for a firm to participate in

foreign markets (Eaton et al., 2011); the existence of a minimum efficient plant size to enter an

1The difference between thresholds and costs is that the former are measured over a conditioning attribute
domain and the latter in monetary terms.
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industry (Lyons, 1980); a required level of absorptive capacity for a firm to efficiently assimi-

late new technologies (Cohen and Levinthal, 1989); the availability of sufficient collateral for a

bank to grant a loan (Jiménez et al., 2006); and the presence of a wage offer above the reserva-

tion wage for a worker to accept it (DellaVigna et al., 2017). In all these instances, thresholds

represent a minimum value above (below) which an economic agent decides (not) to partici-

pate in a given market.

The major problem is that thresholds are empirically unobservable to social scientists or

policy makers. When an economic agent truly makes her participation decisions according to

a threshold problem, the external observer can only witness the decision outcome itself, and

certainly not the threshold per se. Most often, thresholds appear as a theoretical parameter that

firms must overcome to participate in market activities (e.g., Melitz and Ottaviano, 2008, for ex-

port markets). In some instances, specific surveys may explicitly focus on particular thresholds.

In their analysis of wage formation and unemployment, Brown and Taylor (2013) exploit in-

formation on individual-specific reservation wages obtained from the British Household Panel

Survey (BHPS), a nationally representative random sample survey of more than 5000 private

households to elicit participation thresholds. However because of the setup costs for data gen-

eration, existence of such information remains necessarily limited in size and scope.

This paper presents a new method to estimate the parameters of an underlying distribution

of thresholds that hinder market participation. Key to our approach is the intuition that such

thresholds are agent-specific rather than common to all or a group of agents. The immedi-

ate consequence is that rather than estimating one threshold only, we estimate the parameters

underlying threshold distributions. Specifically, we develop a parametric method where the

observation of (i) the agents’ decision outcomes and (ii) some individual characteristics of the

decision makers fostering market participation are sufficient information for recovering the

statistical properties of the underlying threshold distribution. The distinctive feature of our

method lies in the absence of strong requirements: it needs few behavioral assumptions, it is

not data demanding, and it can adapt to various parametric distributions, institutional contexts

and, more important, markets.

Knowledge of threshold distributions is important for policy makers. Imagine two dis-

tributions with similar average values; however, one is symmetric, while the other exhibits

right skewness. In the symmetric distribution, all agents cluster around the mean with a given

standard deviation. In the asymmetric distribution, most agents cluster around the mode, but
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some agents face particularly high thresholds inhibiting market participation. The policy re-

sponses to these two distributions may vary substantially. In the former case, nondiscrimina-

tory/general policies designed to affect the common factors of all individual thresholds should

presumably be favored. In the latter case, discriminatory/targeted policies focusing on specific

agents might instead be privileged. Therefore, decisions on whether to implement discrimina-

tory or nondiscriminatory policies should be grounded on a knowledge of the entire shape of

the threshold distribution that goes beyond the first two moments.

Our contribution is fourfold. First, we develop a parametric maximum likelihood esti-

mation (MLE) method to reveal the underlying parameters characterizing threshold distribu-

tions. Conditional on the agent’s decision outcome and a critical variable called the θ-attribute,

we derive a likelihood function that allows the recovery of the concealed threshold distribu-

tion. Importantly, we make use of Vuong (1989) procedure to select the most qualified density

among the various candidate distribution laws. Second, we use stochastic Monte Carlo simu-

lations to study the reliability of our approach when two important underlying assumptions

– one distributional and one behavioral – are violated, and we broadly define the boundaries

of its application. Third, we provide a primer empirical application to the problem of export

thresholds. The existing literature on international trade generally assumes the existence of

fixed/sunk costs associated with export activities. We detect and estimate threshold distri-

butions at the sectoral level documenting significant right-skewness and leptokurtosis within

most industries. Fourth, we employ year by year estimates to investigate the possible effects of

policy shocks on different quantiles of threshold distributions. Overall, our results indicate that

accounting for agents’ heterogeneity and for higher order moments allows one to gain valuable

information regarding the discriminatory aspect of policies.

This paper is structured as follows. Section 2 formally describes the economic problem

under consideration and the tool employed to solve it. Section 3 presents the rationale for

Monte Carlo exercises and their results. An empirical application of our strategy to the export

decision problem of French firms is presented in Section 4, together with an exercise designed

to explain participation rates through the moments of the threshold distributions. Section 5

concludes the paper.
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2 Econometric Strategy

2.1 The intuition

We consider a series of agents i = 1, . . . , N making an economic decision, the outcome of

which can be encoded as a binary variable χi ∈ {0, 1} representing their market participation.

Each agent is characterized by a specific attribute θi that affects the decision outcome. This θ-

attribute can be considered a single characteristic or a combination of several distinct features

that ease or hinder the realization of a positive outcome χi = 1. We assume that an agent

decides to participate only when the θ-attribute is sufficiently large that it exceeds threshold

ci. Conversely, if an agent’s attribute falls short of the threshold, the agent will choose not to

participate in the market. Thresholds can thus be defined as unobservable barriers that dictate

the market participation of an economic agent. What we call the perfect sorting hypothesis can

be formalized as follows:


χi = 1 if θi ≥ ci

χi = 0 if θi < ci

(1)

The theoretical economic literature typically assumes homogeneous thresholds across agents

– i.e., ci ∼ δ, with δ representing the Dirac delta distribution (see Pissarides, 1974; McDonald

and Siegel, 1986; Dixit, 1989, as early developers of such an approach).2 Figure 1 describes this

particular case by assuming an agent-specific, normally distributed θi and a unique threshold

c. The shaded area highlights the part of the distribution where all the agents withdraw from

the market (χi = 0) over the θ-attribute domain (θi < c). This representation implies a com-

plete separation of agents, where only those whose θi values exceed threshold c participate in

the market.

[Figure 1 about here.]

From an empirical perspective, the issue is that the social scientist observes the decision

outcome χi and the agent’s θ-attribute. However, in most situations, the threshold variable ci is

the private information of the decision maker and is thus unobservable to the external observer.

This is why the empirical literature has instead focused on the probability of an agent’s market

2To the best of our knowledge, Cogan (1981) is the sole work to have estimated heterogeneous thresholds in the
labor market by means of a 2-step strategy relying on a structural equations model.
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participation, conditional on her θ-attribute (e.g., Kau and Hill, 1972; Wei and Timmermans,

2008, among a large series of papers). This type of exercise is technically straightforward using,

for example, a simple probit model. This approach matches the fraction of actors with a positive

(negative) decision outcome with the θ-attribute and produces the probability of participation

conditional on the θ-attribute: P (χ = 1|θi). The caveat is that such a modeling approach cannot

reveal the threshold distribution per se.

Furthermore, evidence in several empirical fields – in particular those on the efficiency of

exporters (Bernard and Jensen, 2004) and the efficiency of labor market bargaining processes

(Alogoskoufis and Manning, 1991) – generally contradicts the simple implication that nonpar-

ticipating agents locate in the left tail of the θ distribution, whereas participating agents locate

in the right tail. The rule appears to be that some agents well-endowed in their θ-attribute do

not participate in a given market, and conversely, some poorly endowed agents nevertheless

choose to participate. In other words, the supports of the two populations significantly overlap.

To account for this persistent overlap, one must relax the assumption of a unique threshold and

favor the converse assumption that thresholds are, instead, agent-specific, as is done, for ex-

ample, in the theoretical work of Mayer et al. (2014). This makes it possible that well-endowed

agents choose to withdraw from a market, given that their specific threshold ci exceeds their

own θ-attribute or, conversely, that poorly endowed agents choose to participate.

Assuming away the homogeneity of thresholds represents an opportunity to shift the tradi-

tional perspective of Figure 1. Our perspective inverts the representation proposed by Figure 1

of the θ distribution and a unique threshold c. Figure 2 now takes the observed, agent-specific

θ-attribute as given and locates it in an unknown distribution of agent-specific thresholds ci.3

The left panel represents the case where an agent participates in a given market. Given θi, ob-

serving a positive decision outcome χi = 1 implies that agent-specific threshold ci is located

somewhere to the left of θi, as indicated by the shaded area. The right panel represents the

converse: given the attribute θi, observing a negative decision outcome χi = 0 implies that

agent-specific threshold ci is located to the right of θi, as indicated by the shaded area.

[Figure 2 about here.]

Our framework does not change the fundamental mechanism at work, since Equation 1

holds. However, it allows the implementation of a new strategy that can estimate threshold

3In Figure 2, we arbitrarily assume normally distributed thresholds.
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distributions by means of maximum likelihood estimation, where the parameters of interest

are those that define the whole threshold distribution.

2.2 The formal model

We define the probability of an agent participating in the market as the probability that the

unobserved, agent-specific threshold ci is lower than the agent-specific attribute θi:

p(χ = 1|θi) = F (θi; Ω), (2)

where F represents the cumulative density function of the probability distribution f and Ω is

the vector of distribution-specific parameters to be estimated. In turn, the probability that the

unobserved, agent-specific threshold ci is higher than the agent-specific attribute θi is:

p(χ = 0|θi) = 1− F (θi; Ω). (3)

The likelihood function L(Ω) then takes the generic form:

L(Ω; θi, χi) =

N∏
i=1

[F (θi; Ω)]χi × [1− F (θi; Ω)]1−χi (4)

The log-likelihood ` function reads:

`(Ω; θi, χi) =

N∑
i=1

χi log [F (θi; Ω)] + (1− χi) log [1− F (θi; Ω)] (5)

The decision for the social scientist is to choose a given parametric density function f(Ω),

where Ω is the vector of parameters characterizing the distribution f . Given f , the objective

function is that of estimating Ω such that Ω̂ = arg max
Ω

L̂(Ω;χi, θi).

We have two remarks. First, an important ingredient of our framework is the monotonic-

ity of the relationship between the probability of participating in a given market and the θ-

attribute. If monotonicity is not empirically verified, then our behavioral assumption formal-

ized in Equation 1 does not hold, and the corresponding likelihood function L(Ω) will prove

difficult to converge. Besides, the case in which the θ-attribute is a limiting rather than an en-

hancing factor can easily be envisaged. The formal model simply becomes the complement of

Equation 1.4

4This yields following log-likelihood function:
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Second, in the case in which the cumulative distribution function is Gaussian, Equation 4

resembles a traditional probit model. However, it differs from it in two important aspects. On

the one hand, in a probit model, one assumes specific values for Ω by setting µ = 0 and σ = 1,

whereas in our case, our aim is to estimate Ω. On the other hand, while in our framework,

the domain of the support is fully observed with the vector of agent-specific attribute θi, in

a probit model, the support of the distribution is an unobserved domain. Given a vector of

explanatory variables Z and a decision variable yi, the objective function of the probit model is

then to choose a vector β such that β̂ = arg max
β

L̂(β; Z, yi|µ = 0, σ = 1).5

Taking stock of the above, our framework relies on the following core assumptions:

• Assumption A1. Agents are heterogeneous in their θ-attribute θi.

• Assumption A2. Thresholds are agent-specific (ci) and follow a density distribution f

with unknown vector of parameters Ω: C ∼ F (Ω).

• Assumption A3. The relationship between the probability of participating in a market

and the θ-attribute is either monotonically increasing p(χ = 1|θi) > p(χ = 1|θj),∀θi > θj ,

as in the case of an enhancing θ-attribute, or monotonically decreasing p(χ = 1|θi) <

p(χ = 1|θj),∀θi > θj , as in the case of a limiting θ-attribute.

• Assumption A4. Agents decide to participate if and only if their specific attribute θi

exceeds (is below) threshold ci (perfect sorting hypothesis).

Provided that Assumptions A1-A4 hold, the observation of vector χ = (χ1, . . . , χi, . . . , χN )

stacking all decision outcomes χi and vector θ = (θ1, . . . , θi, . . . , θN ) of agent-specific attributes

θi is sufficient information to estimate the vector of parameters Ω defining the underlying

threshold distribution F . Hence the distinctive feature of our method resides in the absence

`(Ω) =
N∑
i=1

(1− χi) log [F (θi; Ω)] + χi log [1− F (θi; Ω)]

5In fact, the probit model is often presented as being derived from an underlying latent variable model similar to
Equation 1. Using our notation and modelling strategy in the context of a latent variable, the decision outcome χi
is set to unity if threshold c∗i < 0, and to zero otherwise. This implies that agent i participates only if the threshold
is negative. Variable c∗i is unobserved but defined as a linear function of – in our case – the θ-attribute such that
c∗i = β0 + β1θi + zi. If zi is modelled as a standard normal, then the model reads: p(χ = 1|θi) = p(c∗i < 0|θ) =
p(zi < −(β0 + β1θi)). If z ∼ N (0, 1), then p(zi < −(β0 + β1θi)) = Fz(−(β0 + β1θi)), where Fz is the standard
normal cumulative function, and p(χ = 1|θi) = F (θi|µ = 0, σ = 1). The corresponding likelihood function is
equivalent to our Equation 4, the only difference being in the parameter vector Ω. The direct implication of this is
that our framework, when using the normal distribution function as our prior density, and the probit model yield
exactly the same log-likelihood value. This is not surprising given that we exploit the same information in the data.
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of strong requirements: it needs few behavioral assumptions, it is not data demanding, and it

can adapt to various parametric distributions.

2.3 Model selection

The critical choice concerns the distribution of thresholds, as the scientist may choose among

a large series of data generating processes. In the absence of prior information about the true

distribution of thresholds, we rely on Vuong’s test (Vuong, 1989) for the selection of non-nested

models. The attractive features of Vuong’s test in our framework is twofold: (i) it does not

require preexisting knowledge of the true density; (ii) it is directional, allowing one to arbitrate

between any pair of assumed density functions.

The starting point is to select, among two candidate densities fp and fq, the model that is

closest to the true, unknown, density f0. The statistic tests the null hypothesis H0 that the two

models (fp and fq) are equally close to the true data generating process, against the alternative

that one model is closer. We write:

H0 : E0

[
log

fp(χi|θi,Ω∗fp)
fq(χi|θi,Ω∗fq)

]
= 0, (6)

where E0 is the expectation indicator, and Ω∗f is the candidate, pseudo-value of the true vector

Ω. Interestingly, Equation 6 does not necessitate knowledge of the true the true density f0,

but it provides information about the best model between the alternatives fp and fq. Under

the null hypothesis, the distributions Fp and Fq are equivalent (Fp ∼ Fq). The two directional

hypotheses read:

HFp : E0

[
log

fp(χi|θi,Ω∗fp)
fq(χi|θi,Ω∗fq)

]
> 0, (7)

meaning that Fp is a better fit than Fq (F1 � Fq), and:

HFq : E0

[
log

fp(χi|θi,Ω∗fp)
fq(χi|θi,Ω∗fq)

]
< 0, (8)

meaning that Fq is a better fit than Fp (Fp ≺ Fq). Vuong (1989) shows that the indicator E0 can

be estimated by the Likelihood Ratio statistic such that:

9



logLR(Ω̂fp , Ω̂fq) = `p(Ω̂fp)− `q(Ω̂fq) =
N∑
i=1

(
`p,i(χi|θi, Ω̂fp)− `q,i(χi|θi, Ω̂fq)

)
=

N∑
i=1

d`i, (9)

where `p,i(χi|θi, Ω̂fp) (resp. `q,i(χi|θi, Ω̂fq)) is observation i’s contribution to the log likelihood

`p (resp. lq) using density fp (resp. fq). The ratio d`i simply represents the difference in the

log-contributions of the ith observation. In addition, Vuong (1989) suggests to account for

differences in the number of parameters in the two models as the in the Akaike Information

Criterion such that:

log L̃R(Ω̂fp , Ω̂fq) = logLR(Ω̂fp , Ω̂fq)− (kp − kq)
logN

2
(10)

where kp and kq represent the number of parameters in density functions fp and fq, respectively.

Given the above setting, Vuong’s z statistic reads:

Vuong’s z = (σdl
√
N)−1 log L̃R(Ω̂fp , Ω̂fq) (11)

where σdl is the standard deviation of dl. Vuong test statistic is asymptotically normally dis-

tributed by the central limit theorem. In other words, cumulative function Fp is preferred over

cumulative density function Fq if Vuong’s z exceed the (1−α)th percentile of the standard nor-

mal distribution. Setting a 5% significance level, the corresponding z statistic in a bilateral test

is |z| >= 1.96.

A last attractive feature of Vuong’s test for the selection of non-nested models is that the

ranking between any pair of models is transitive. This implies that if Fp is preferred over Fq,

andFq is preferred overFr, thenFp is preferred overFr.6 This is relevant in that our method can

envisage a large number of density functions and then recover a complete rank order between

the competing models. If Nf densities are being tested, Nf × (Nf − 1)/2 pairwise comparisons

will allow one to recover a complete rank order of preferences across the competing density

functions.
6This is true for what concerns the comparisons of l scores. In few cases, the transitivity may be affected by the

denominator of Vuong’s z, that is, the standard deviation of individual log difference σdl.
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3 Monte Carlo Simulations

3.1 Monte Carlo settings

The first choice concerns the candidate parametric densities to fit to the data. The number of

candidate distribution being virtually infinite, we arbitrarily choose parametric densities with

two parameters only. Remember, however, that our framework can easily adapt to parametric

density functions which include a higher number of parameters.

We simulate the heterogeneous threshold distribution F as extracted from three distribu-

tion densities: the normal distribution N , the gamma distribution Γ, and the beta distribution

B: F ∈ {N ; Γ;B}. The choice of the normal, gamma and beta distributions for thresholds is

motivated by the fact that they allow us to compare a symmetric distribution in the case of

the normal and asymmetric distributions of thresholds in the case of the gamma and the beta.

In addition, the gamma, being very flexible, envisages various distributional shapes that may

prove empirically relevant in the presence of right-skewness. The choice of the gamma also

implies that we constrain the support of θ-attributes to be strictly positive: θ ∈ R+. The beta

distribution is by far the most flexible, as it encapsulates all sorts of distribution shapes, ranging

from left-skewed, symmetric or right-skewed distribution. The inclusion of the beta distribu-

tion implies that the support lies over the 0-1 segment: θ ∈ (0, 1). This is extremely binding,

because it implies that the cumulative distribution function be unity when θ exceeds one.

Following the description in Appendix A, we fix the number of agents to N = 50, 000,

the number of Monte Carlo simulations to M = 1, 000, and impose a normally distributed θ-

attribute θ ∼ N (.5, .15).7 In our simulation, threshold C is random variable drawn from: (i)

a normal distribution with µ = .7 and σ = .2, i.e. C ∼ N (.7, .2); (ii) a right-skewed gamma

distribution with shape and scale parameters αΓ = .1.5 and βΓ = .5, i.e. C ∼ Γ(1.5, .5); (iii) a

left-skewed beta distribution with shape-one and shape-two parameters αB = 5 and βB = 2, i.e.

C ∼ B(5, 2). For all three threshold distributions, given the vector of θ-attribute, we computed

the vector of decision outcomes χ according to Equation 1.8

In what follows, we conduct several Monte Carlo simulation exercises to investigate whether

the estimation of Equation 5 holds when Assumptions A1-A4 hold. We then explore the robust-

7We verified that our results are qualitatively robust to alternative distributions of θi. We tested Θ ∼
U(min,max), Θ ∼ B(α, β), and Θ ∼ P(min, α) where U ,B,P represent the uniform, beta and Pareto type-II
distributions, respectively. The results are available from the authors upon request.

8Details on the functional forms of the three distributions are available in Appendix B.
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ness of the estimator under violations of certain assumptions.

3.2 Baseline results

We begin with a perfect scenario, where all Assumptions A1-A4 hold. Using only limited

information θ and χ, we then apply our MLE algorithm to estimate the vector of parameters

Ω = {µ, σ} for the Gaussian case, Ω = {αΓ, βΓ} for the gamma case and Ω = {αB, βB} for

the beta case.9 The distributions of the estimated parameters across M = 1000 Monte Carlo

simulations are displayed in the different panels of Figures 3 for the normal, the gamma and

the beta scenarios, respectively.

[Figure 3 about here.]

Figure 3 shows that, on average, our estimation strategy accurately estimates the true pa-

rameters. In fact, a simple t-test never rejects the null hypothesis of equality of the estimated

parameters with the target, true, parameter. However, the MLE approach provides evidence

that our framework can sometimes be off target, i.e., it over- or underestimates the true pa-

rameters in a magnitude reaching approximately 10% of the true parameter, especially for the

gamma and beta cases. A closer inspection of the results suggests that this is due to a strong

– respectively negative and positive for the gamma and the beta distributions – correlation be-

tween the parameters α and β. As shown in Figure 4, there is a tight negative relationship

linking the estimates of the two parameters in the gamma case (left panel) and for the beta case

(right panel). Thus in the gamma case, when one of the two parameters is underestimated with

respect to the true value, the other compensates and becomes overestimated. In the beta case

the compensation effect goes instead in the same direction.

[Figure 4 about here.]

This compensation mechanism is a positive feature of the two asymmetric distributions.

The depicted correlation between α and β simply signifies that there are several parameter

combinations that allow us to unravel the density function f sufficiently close to the true one.

In Section 3.3 we move towards imperfect scenarios, testing the robustness of the estimation

when at least one of the assumptions fails. We focus on Assumptions A2 and A4, which may

prove hard to meet.
9Note that estimations of α and β for the gamma and the beta distributions allow one to analytically retrieve the

first four moments.

12



3.3 Violations of assumptions

3.3.1 Violation of A2

Assumption A2 concerns the functional form f of the threshold distribution. Since thresholds

are unobservable, we need a prior concerning the density function. A specification error occurs

when a functional form f assumed by the scientist is different from the true one. Without a

strong prior, any probability distribution is eligible. Given this uncertainty, understanding the

consequences of a violated Assumption A2 is of crucial importance. Our intuition is that the

probability density function f must be sufficiently flexible to encompass a variety of shapes, so

that it can adapt from case to case.

We set N = 50, 000 agents and run M = 1, 000 Monte Carlo simulations, comparing three

alternatives for the likelihood function where the cumulative distribution function F may be

either a normal, a gamma or a beta distribution F = {N (µ, σ),Γ(αΓ, βΓ),B(αB, βB)}. This

represents our prior about the threshold distribution. In turn, the true distribution of thresholds

C may alternatively follow a normal, a gamma or a beta distribution. For the gamma case, we

consider a parametric configuration giving rise to a right-skewness with a fat right tail. For

the beta distribution instead, we choose a left-skewed distribution. We set the θ-attribute such

that it follows a normal distribution: θ ∼ N (.5, .0225). The set of parameters for threshold

distributions is the following: (i) C ∼ N (.7, .04); (ii) C ∼ Γ(1.5, .5); and (iii) C ∼ B(5, 2).10

Combining all the possible choices for the prior F and the true distribution of C, we obtain

nine different cases. In three of them, Assumption A2 is satisfied and give rise to the situations

observed in the previous section. In six of them, Assumption A2 is violated.

To evaluate the performance of our framework under a violation of Assumption A2, we are

restricted to compare the moments estimated by our densities, since one cannot estimate the

parameters of the normal distribution (µ and σ) using a gamma or an beta prior. Instead, we

compute the root mean squared errors (RMSEs) of the estimated first four moments (the mean

µ; the variance σ2; the skewness sk; and the excess kurtosis k) and compare the estimated val-

ues with their true counterparts. We do this for all the scenarios combining our prior, assumed,

density for the MLE exercise and the true densities. The results displayed in Table 1 thoroughly

corroborate the results of the previous section. Absent a misspecification, the true moments are

10The guidelines for the algorithm followed for this Monte Carlo exercise are presented in the Appendix A.
Values for the variance σ2 in the normal distribution stem from setting σ to .15 for θ and .2 for the threshold normal
distributions.
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consistently recovered. However, when the false prior is used, a significant error is always

present.

The first three rows of the bottom panel display the performance of the three priors (F =

{N (µ, σ),Γ(αΓ, βΓ),B(αB, βB)}) when the normal density is true. Consistently with Section 3.2,

it shows that the normal prior performs well at recovering the first two moments of the true

normal, with errors amounting to only .3% and 2.3% of the true mean and variance, respec-

tively. Under violation of Assumption A2, the beta prior (with 2% and 24% errors for mean

and variance, respectively) outperforms the gamma prior (with errors amounting to 5% and

53%, respectively). Our interpretation is that the beta prior outperforms the gamma one due to

the impossibility of the latter to recover symmetric distributions.

We then investigate the case where thresholds are gamma distributed. Not surprisingly,

the gamma prior properly recovers the first four moments. The largest RMSE concerns the

second moment and reaches 5.2% of the true variance. Instead, both the normal and beta priors

deteriorate when applied to a gamma distribution. This observation spans over all investigated

moments: errors amounting to 20% and 23% of the true mean, and errors for all higher order

moments exceed 100% of the true moments. This is due to two conditions. First, it is impossible

for the normal prior to recover asymmetric and fat tailed distributions. Second, it is impossible

for a beta prior to recover distribution outside the 0-1 support. The final three rows presents

the results under a true beta distribution of thresholds. Our previous observation also prevail

in this case. The beta prior under a true beta distribution performs well, whereas the normal

and gamma priors fail in accurately estimating the first four moments of the distribution.

[Table 1 about here.]

The conclusion of the simulation exercise is clear: without proper knowledge about the true

threshold distribution, misspecification can generate off-target predictions, leading to a wrong

inference about participation threshold distributions. In this context, Vuong (1989) likelihood

ratio test for model selection is fully advocated in order to recover a complete ranking of the

candidate densities.

Table 2 presents the relative frequencies of each ranking of distributions, according to the

Vuong (1989) test using the simulations used above. Similarly to the sensitivity (detecting true

positives) and specificity (detecting true negatives) of a test, this exercise investigates whether

Vuong’s procedure correctly discriminates between the three alternative densities. Table 2 re-
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ports the results. We observe that the test is successful at pointing to the correct true density,

with the exception of only two cases in the 3, 000 simulation runs. Besides, the ranking of the

two remaining alternatives are, in the vast majority of cases, consistent with the percentage

errors reported in Table 1. When the true distribution of thresholds is normal, the order of

preference is N � B � Γ in the majority of cases; when the thresholds are gamma distributed,

then Γ � N � B is the typical ranking; and when the true density of thresholds is the beta

distribution, then B � N � Γ is the emerging ranking. In all instances, the sensitivity and

specificity of Vuong’s test hold under violations of Assumption A2.

[Table 2 about here.]

Confident that: (i) in the absence of a specification error, one can use the MLE to consistently

recover the true parameters, and (ii) Vuong’s test for model selection successfully discriminates

between competing prior densities, our procedure allows one to estimate participation thresh-

olds in various empirical setups.

3.3.2 Violation of A4

Assumption A4 concerns the decision process of economic agents and relates to the information

set available either to the entrepreneur or to the external investigator. We examine two potential

sources that may affect the robustness of the estimation framework.

The first source of imperfect sorting arises when economic agents have limited information

about either their own threshold ci or their own θ-attribute.11 The immediate consequence is

that agents base their decision on an erroneous inference, violating the perfect sorting hypoth-

esis. We define a sorting error as a situation in which agent i, characterized by θi > ci (resp.

θi < ci), selects the negative (resp. positive) outcome χi due to agent i having an imperfect

evaluation of her threshold ci. With respect to Figure 2, a sorting error implies that by observing

χi = 0 (resp. χi = 1), we wrongly assign a threshold ci to the right (resp. to the left) of the

observed θi. To generate a sorting error in our Monte Carlo exercise, we modify the problem in

Equation 1 as follows:


χi = 1 if θi ≥ ci + εci

χi = 0 if θi < ci + εci

(12)

11The contributions of Jovanovic (1982) and Hopenhayn (1992) on the dynamics of industries are examples of
models where agents – firms – learn about their own θ-attribute and may make erroneous decisions.
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where we assume that ci represents the true threshold and εci
iid∼ N (0, σε) measures instead the

erroneous information of the agent, which is summarized by σε.

The second source of imperfect sorting is due to measurement errors of the θ-attribute by the

observer. The quality of an agent’s decision is not at stake but this issue may harm the estima-

tion due to a measurement error in the support of the threshold distribution. With respect to

Figure 2, a measurement error yields a noisy location of the θ-attributes for all agents. To simulate

it, we hold the original decision problem of Equation 1 fixed, but we use the noisy measure of

the θ-attribute when maximizing the likelihood, defined as θi + εθi , where again εθi
iid∼ N (0, σε)

is a mean-preserving spread.

Both the sorting and measurement errors may occur simultaneously within an empirical

exercise.12 For all these scenarios exploring the robustness of the method under the violation of

Assumption A4, we instead set Assumption A2 to be valid: no specification error can therefore

arise. Combining the possibility of imperfect sorting (IS) or/and imperfect measurement (IM) give

rise to three possible scenarios (labeled as IS-PM, PS-IM and IS-IM). We also discriminated for

different sizes of the errors, characterized by σε which lies in 5%, 10% and 15% of the original

variance of the θ-attribute (σθ). This exercise is performed for all the three (i.e. normal, gamma

and beta) threshold densities.13

Each scenario gives rise to 1,000 Monte Carlo simulation, allowing us to compute the RMSE

for the estimated first four moments. We express each RMSE relatively to the true moments,

i.e. as percentage errors, in Table 3. We observe that, as long as the informational error is

small or medium sized (i.e. 5% or 10%) the moments are recovered without the generation of

large errors for all the three densities. The largest error is a 8.5% deviation from the true value

in the estimate of the kurtosis for the beta case in the PS-IM scenario. When the size of the

shock reaches its 15%, the central moment is typically precisely estimated, however, for the

IS-IM scenario both the gamma and the beta distribution commit errors a sizeable 10% for the

variance and the kurtosis.

[Table 3 about here.]

In general, we observe that the normal is more resilient to shocks, the gamma follows and

12Details of the algorithmic guidelines are presented in Appendix A.
13Unreported results show that for the gamma and beta distributions, a pattern similar to Figure 4 on the corre-

lation between estimates of α and β is found in each of the three scenarios. A downward bias in the estimates of αΓ

is compensated by an upward bias in the estimates of βΓ for the gamma case; and downward bias in the estimates
of αB is compensated by a downward bias in the estimates of βB for the beta case.
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eventually might inconsistently estimate the variance. The beta distribution seems instead the

least resilient to violations of A4, possibly leading to errors of higher magnitude when both

the θ-attribute is badly measured and a significant fraction of the firms do not take decisions

according to Equation 1.

3.3.3 Joint violation of A2 and A4

We have observed in Section 3.3.1 that, in the absence of measurement and sorting errors, the

true density function is correctly recovered and its true parameters consistently estimated. Sec-

tion 3.3.2 has documented that, with the correct prior density, sorting and measurement errors

mildly impact the estimation precision. We now turn to investigating the effect of a joint vio-

lation of Assumptions A2 and A4. This amounts to questioning the capacity of Vuong’s test to

correctly identify the true density in the presence of measurement and sorting errors. This is an

empirically relevant issue, as in most cases: (i) a researcher does not have any prior knowledge

about the true underlying density function (hence Assumption A2 is violated); (ii) some firms

do not behave according to Equation 1 and/or the θ-attribute is measured only imperfectly

(hence also Assumption A4 is violated).

We perform 1,000 Monte Carlo simulations combining the settings performed in the two

previous subsections. In particular, we use the three threshold distributions – namely the nor-

mal, the gamma, and the beta – with the joint presence of imperfect sorting and imperfect

measurement (the IS-IM scenario). For each simulation run, we confront the predicted density

as identified by Vuong’s procedure for model selection with the true density. The results are

presented in Table 4. They suggest that the Vuong’s test is successful at identifying the proper

density, even in presence of a joint violation of the Assumption A2 and Assumption A4. If the

true underlying density is normal, the test always excludes the gamma and beta alternatives.

Similarly, if thresholds are distributed gamma, the test predicts the correct density in virtually

all cases (99.9% of the performed simulations).

The only issue concerns the beta case. In 32% of the simulation runs, Vuong z statistics

points to a normal density, whereas the true density is the beta. The excess presence of false

normal in lieu of the beta one casts doubts on the reliability of Vuong’s test in the presence of

sorting and measurement errors. However, by truncating the normal distribution over the (0, 1)

support, we notice that the pattern of the estimated normal distribution has a shape similar to

the one of the true beta distribution. More generally, over the (0; 1) support, truncation of the
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normal distribution yields distribution similar extremely close to the beta case. We therefore

conclude that the prediction of a gamma or a beta distribution according to the Vuong’s test is

reliable. When estimating a normal distribution instead, there remains a substantial degree of

uncertainty about the true underlying density function.

[Table 4 about here.]

Collecting all results obtained by means of Monte Carlo simulations, we conclude that our

estimation strategy is robust under Assumptions A1-A4. Violations of Assumption A2 might

lead to severe errors in the predicted moments, but Vuong’s test for model selection allows one

to correctly select among the set of competing densities. When Assumption A4 does not hold,

both imperfect sorting and the imperfect measurement have similar effects on the robustness

of the framework. We found that estimation errors reflect the magnitude of the shock, i.e.

they increase with the shock size and that, in general, the estimation of the symmetric normal

distribution seems more resilient than the asymmetric ones. Applications to situations where

Assumptions A2 and A4 are violated leads to satisfactory results, although caution must be

taken when the normal law is identified as the correct density.

4 Empirical Application to International Trade

We apply our framework to the case of firm export decisions. Following the seminal contri-

butions by Melitz (2003) and Melitz and Ottaviano (2008), the recent international trade liter-

ature has modeled the export decision as being conditional on a unique export productivity

threshold called the export productivity cutoff. Only the most productive firms, which have

a productivity level that exceeds the homogeneous threshold, enter foreign markets. The as-

sumption of a unique threshold is extremely restrictive and is at odds with robust empirical

evidence about the coexistence of high-efficiency firms that do not export and inefficient firms

that export (Bernard and Jensen, 2004; Eaton et al., 2011; Impullitti et al., 2013).14

Based on Assumptions A1-A4, we estimate the export threshold distribution for French

manufacturing firms using firm-specific productive efficiency as the θ-attribute. Our frame-

work allows us to reconcile the appearing empirical paradox with the theory.

14The authors of the theoretical literature also recognize this limitation, but for reasons of analytical tractability,
they cannot leave this assumption aside. Only recent versions of these models overcome this issue by accounting
for product variety and a heterogeneous product mix. Thresholds are equal within varieties, but product mixes are
firm specific and, in turn, generate firm-specific productivity cutoffs (Mayer et al., 2014).
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4.1 Choice of support

We use a panel database of French manufacturing firms covering the period 1990–2007 found in

the annual survey of companies (Enquête annuelle d’entreprises) led by the statistical department

of the French Ministry of Industry. The survey covers all firms with at least 20 employees in

the manufacturing sectors (excluding food and beverages), and the data provide information

about their income statements and balance sheets. The complete dataset gathers the financial

statements of 43 thousand companies, yielding 350 thousand firm-year observations. We use

information on sales, exports, value added, the wage bill, the number of employees and hours

worked, capital stock, investment, and intermediate inputs as the main variables used to com-

pute the firm-specific θ-attribute.

We have two eligible measures for θ, namely apparent labor productivity (ALP) or total

factor productivity (TFP), as these two measures are used interchangeably in the empirical

literature.15 The choice between the two can, in principle, be based according to which variable

is most tightly associated with export decision. Based on footnote 5, one could compare the

log-likelihood value stemming from the use of rival variables as the support and simply choose

the one yielding the highest likelihood. Alternatively, one could tailor a statistical procedure

where a preliminary step would embed the choice of the most appropriate support. One can

argue, instead, that this choice be theoretically grounded, and not exclusively data-driven, or

say, information-content driven. Here, we decide to use TFP as θ-attribute. Although it is prone

to some measurement error, TFP accounts for more inputs and firm characteristics than mere

ALP.16 The fact that TFP is prone to mismeasurement is also a test for the robustness of our

framework.

The top panel of Table 5 provides the preliminary descriptive statistics for market partici-

pation. In our sample, the export participation rate reaches 74%. This is a relatively large par-

ticipation rate, which is due to the fact that our dataset comprises larger firms, which are more

likely to export vis-à-vis smaller firms. Table 5 also displays the export premium, that is, the

productivity differential between exporters and non-exporters. Consistent with the economic

literature, exporters are on average more productive than non-exporters, with a productiv-
15Appendix C provides the details of the industry-wide deflators used and the computations that yield labor and

total factor productivity.
16There are various reasons underlying mismeasurement in TFP. We mainly think of the potential misspecification

of the production function, measurement errors in capital stocks, or assumptions on the endogeneity of production
factors. See, among others, Atkinson and Stiglitz (1969), Wooldridge (2009), Ackerberg et al. (2015) and De Loecker
and Goldberg (2014) for a thorough discussion on these issues. Appendix D however, provides all the robustness
results with the apparent labor productivity.
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ity differential of 4.2% for all manufacturing. Although we observe significant cross-industry

variation, all sectors display a positive productivity premium, with the exception of Wood and

Paper.

[Table 5 about here.]

4.2 Export participation thresholds

We set the outcome decision variable χi to unity if we observe positive exports by firm i, 0

otherwise: χ = (χ1, . . . , χi, . . . , χN ). In our framework, total factor productivity represents

the θ-attribute: θ = (θ1, . . . , θi, . . . , θN ). Given vectors χ and θ, we estimate Equation 5 for all

manufacturing firms. Because the support must be strictly positive for the gamma density and

below unity for the beta density, we transform θ (whether ALP or TFP) such that θi ∈ (0; 1), as

follows:

θ̃i =

(
θ′i −min θ′

max θ′ −min θ′

)
,

where θ′ represents the labor productivity measure net of sector-year fixed effects, θ′i = θi −

θ̄sy + θ̄, and where subscript sy indicates the sector × year identifier. We also estimate Ω for

each sector:

Ω̂s = arg max
Ωs

L̂(Ωs;χi, θi) ∀s ∈ S

where subscript s stands for sector s. We have no prior about the functional form of the density

distribution for export thresholds. Therefore, we perform the estimation exercise using the

normal, the gamma and the beta densities. The results are reported in the top panel of Tables 6

for the goodness of fit and 7 for the estimated first two moments (µ and σ2). For the gamma and

beta densities, we also report the estimated median to provide initial insights into the presence

of skewness. We have four major observations.

First, the algorithm converges rapidly with an average of 5 iterations when assuming nor-

mal and beta densities. The number of iterations increases substantially when we assume

gamma distributed thresholds, reaching 27 iterations for Metallurgy, Iron and Steel, versus 5 and

6 iterations for normal and beta densities. This is evidence that assuming gamma distributed

thresholds introduces some computational complexity in the search grid. We find one instance
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of no convergence of the algorithm, regardless of the prior about the functional form of the

distribution (see Table 6) for Wood and Paper, where all three densities fail to converge. Our

interpretation is that this is due to a specification or measurement error. As a matter of fact, Ta-

ble 5 shows that the export premium is negative (−1.4%) for this industry. This implies that, on

average, Equation 1 does not hold, which may stem either from the absence of monotonicity

between the θ-attribute and the probability of exporting (Assumption A3) or from measure-

ment errors by the entrepreneur or the social scientist (Assumption A4). Although the gamma

density needs a larger number of iteration, it also yields the largest likelihood in the majority

of industries (8 out of 13), whereas the normal outperforms other densities in the remaining 5

industries. Hence the number of iterations is not a reliable proxy for the goodness of fit.

[Table 6 about here.]

[Table 7 about here.]

Second, a clear pattern emerges in the mean and variance of the three densities. The nor-

mal density systematically estimates the lowest mean, whereas the gamma estimated mean

is systematically the largest. Conversely, the normal density yields the largest variance (with

the exception of Metallurgy, Iron and Steel, whereas the beta distribution produces the lowest

one. Hence, the choice of the underlying density is a choice which predetermines the ultimate

distribution shape. This reinforces the need for Vuong’s procedure for model selection.

Third, most estimated mean export thresholds lie within the (0; 1) interval. This is especially

true when we assume gamma or beta distributed thresholds. This is consistent with the idea

that the participation rates are generally high, exceeding 70% in most industries. When we

focus on the assumption of normally distributed thresholds, we also observe negative mean

values when we impose normally distributed thresholds on the data, for Automobile, Chemicals,

Metallurgy, Iron and Steel and Pharmaceuticals. Although this is at odds with the positive support

for the θ-attribute, it reflects an interesting feature of the normal law. In fact, a negative mean

implies that the shape of the distribution is truncated normal on R+, allowing for the presence

of right skewness and fat right tails in threshold distributions.

Fourth, the gamma and beta densities discard the possibility of normally distributed thresh-

olds. In fact, we observe positive skewness in most, if not all sectors, including All Manufac-

turing, and the estimated median is significantly below the estimated average. Metallurgy, Iron
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and Steel and Pharmaceuticals stand out with median values which are extremely low. These

two sectors are precisely those with the lowest (positive) productivity premium (Metallurgy,

Iron and Steel) and highest export participation rates (Pharmaceuticals). Looking at the param-

eter estimates for these two sectors suggests that searching for alternative densities may be

advocated.

Altogether, we find heterogeneity in two dimensions. We find cross-density heterogeneity

and cross-sectoral heterogeneity in the shapes of the threshold distributions, their mean values,

their variances, their medians and their (unreported) higher moments.

4.3 Threshold distributions for entry and remaining into export markets

Our method also applies to decisions about market entry and exit, conditional on the avail-

ability of a time dimension in the data. We now exploit this time dimension and condition the

decision on the export status observed the preceding year. We define (i) the pool of potential

entrants into export markets as the firms that do not export at time t − 1 and (ii) the pool of

potential remaining firms as those that already exported at time t − 1. We then define actual

entering and actual remaining firms those that decide to start exporting or remain exporters at

time t. We now estimate entry and remaining threshold distributions.17

We first focus on results for threshold distributions for entry into export markets. Table 5

shows that the share of firms entering into export markets reaches 23% for all manufacturing.

This suggests that, although export market participation is pervasive in the data, entry into

export market reflects a fiercer selection process. The estimation results are reported in the

middle panel of Tables 6 and 7. The most immediate observation is the poor performance of the

beta prior but this is not surprising. Entry thresholds are presumably higher than mere market

participation as it focuses on pure entry, incorporating sunk entry costs which are otherwise

not born. Hence one should expect entry thresholds to significantly increase, notably above the

maximum value of the θ-attribute. Remember, however, that the beta distribution imposes an

upper limit for the support at unity. This imposes that the cumulative distribution of beta be

unity when θ = 1. In practice, this is very unlikely to hold. On the contrary, when focusing on

entry, we should expect the threshold distribution to go well beyond the θ support.

This is confirmed when looking at the estimated mean values for the normal and the gamma
17Whether we focus on remaining or exit thresholds is essentially a matter of semantic. By setting χi = 1 if

the firm exits export markets and 0 otherwise would become an exit decision. In this case, we would need to
adapt Equation 4 as presented in footnote 4. The likelihood function is ultimately the same maximization problem,
yielding an identical vector of parameter Ω̂.
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entry threshold distributions. When using the normal prior instead, we find convergence for all

industries with the exception of Clothing and Footwear, Pharmaceuticals and Wood and Paper. This

is not surprising for Pharmaceuticals and Wood and Paper, due to their negative export premia

(−.039% for the former, −.019% and for the latter), implying that Equation 1, on average, does

not hold for these two sectors. There is less convergence with the gamma density, although the

algorithm seem successful in industries where the normal density fails to converge.

We now turn to threshold distributions for remaining in export markets. Table 5 shows that

the share of firms remaining in export markets reaches almost 93% for all manufacturing. This

suggests that exit from export market is a relatively rare phenomenon, and that the associated

threshold distribution must allow for the vast majority of firm to remain in export market,

once overcome the entry hurdle. The estimation results are reported in the bottom panel of

Tables 6 and 7. Looking at All Manufacturing, the average threshold for remaining in export

markets is substantially lower than that for market entry. This result is valid across all sectors

and irrespective of the prior MLE densities. Since entry costs are essentially sunk, one would

expect higher thresholds for entering firms than for remaining firms. Previous exporters have

already borne any sunk entry costs and only have to cope with fixed and variable costs. It

suggests that whereas the entry thresholds are substantial, the remaining thresholds are of a

much lower magnitude. This is consistent with Das et al. (2007), who find that fixed costs

borne each period are negligible, whereas sunk entry costs are of a considerable magnitude.

The normal density yields systematically negative mean values for thresholds for market

remaining. In fact, this reflects the flexibility of the normal distribution whose support spans

over the entire spectrum for real numbers. This search for the maximum likelihood produces

a distribution that easily accommodates for a truncation at zeros. In all instances, all densities

estimate low mean thresholds with a low variance. This suggests that for the vast majority of

companies, remaining into export markets is far less challenging than market entry into export

markets.

4.4 Vuong’s test for model selection of export markets

The key question is to discriminate between the candidate densities. We perform Vuong’s

model selection procedure testing the best fit among the three selected densities. Any pairwise

comparison can be interpreted as evidence of a specification error when we find evidence that

a tested density provides less information than a rival density. Vuong’s test for model selection
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provides us with a tool to detect specification error, it cannot confirm that the selected model is

indeed the optimal fit for our data. However, the sign and magnitude of Vuong’s z allow for a

direct interpretation of the better model, among the finite set of alternatives, on the basis of the

following hypotheses testing:

Fp ∼ Fq if |zFp,Fq | < +1.96

Fp � Fq if zFp,Fq ≥ +1.96

Fq � Fp if zFp,Fq ≤ −1.96

where F represent the cumulation distribution function, p, q ∈ {N ,Γ, B}, and p 6= q. Table 8

displays all pairwise Vuong’s z: zN ,Γ comparing the normal and the gamma density, zN ,B com-

paring the normal and the beta density, and zΓ,B comparing the gamma and the beta density.

The last two columns of Table 8 provide the overall ranking of densities and the conclusion of

model selection, where the proper density is displayed with the associated vector of parameter

estimates.

The most immediate observation is that the gamma density outperforms the normal and

the beta densities for All Manufacturing and for market participation, market entry and mar-

ket remaining. This is evidence of the presence of right-skewness and leptokurtosis in export

thresholds. For market participation and remaining, this implies that most firms cope relatively

low export thresholds, whereas a minority of them cope with higher export thresholds. As for

market entry, the presence of right-skewness is secondary. Bearing in mind that the average

thresholds exceeds 6, that the median thresholds locates at almost 3, whereas the θ support

ranges from 0 to unity, the policy recommendation is to act upon those firms located in the

left part of the threshold distributions. In this case, most firms are excluded from international

trade.

[Table 8 about here.]

The second observation concerns the cross-sectoral heterogeneity in the best density func-

tions among the three alternatives. Although the gamma distribution dominates the overall in-

dustry threshold distribution, sector-specific threshold distributions do not necessarily follow

a gamma density. We find evidence of beta densities for market remaining in Transportation Ma-

chinery and Wood and Paper. In many instances, the normal distribution is the advocated better
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density according to Vuong’s z test for model selection. In Electric and Electronic Components

and Electric and Electronic Equipment for example, the normal density is systematically selected

as the best fit among the three, irrespective of the type of market participation (participation,

entry, remaining). More generally, caution is needed when the diagnosis is dominance of the

normal over the gamma

[Figure 5 about here.]

Figure 5 plots the estimated density functions for All Manufacturing and for three selected 2-

digits industries: Clothing and Footwear; Electric and Electronic Components; and Printing and Pub-

lishing. It is important to notice the difference in the magnitude of the support when consider-

ing alternatively mere market participation, market entry or market remaining, as it underlines

the different types of costs to be borne for participation in general, entry, and remaining. The

top two panels provide examples of the variety of possible shapes for threshold distributions

that stem from a gamma density: whether the mode is located at the minimum and higher

values, whether there exist fat tails, etc. The three distributions for Electric and Electronic Com-

ponents are instead example of normal distributions truncated at zero. For market remaining,

we observe that the mode of the distribution is located at the left of the minimum θ-attribute,

corroborating that for the vast majority of already exporting firms, remaining thresholds are

virtually nil. The threshold distributions for Printing and Publishing displays various densities.

[Table 9 about here.]

Last, we estimate the vector of parameters for the normal, gamma and the beta densities at

the industry×year level such that:

Ω̂st = arg max
Ωst

L̂(Ωst;χi, θi) ∀s ∈ S and t ∈ T

where subscripts s and t stand for sector s at time t. This amounts to running 13 industries

× 18 years Vuong’s procedures for model selection for market participation, yielding various

ranking in densities. We proceed similarly for market entry and market remaining. Accounting

for entry or remaining imply the loss of the first year of observation due to the use of a lagged

year in identifying firm market entry and/or remaining. Table 9 presents the various rankings

obtained and the associated count.
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Of the 234 estimations performed for market participation (221 for market remaining), con-

vergence is achieved in 204 (respectively 194) cases for all three candidate densities. In 22

(respectively 19) cases only, none of the candidate densities succeed in estimating the densi-

ties. This is in contrast with market entry, where no convergence is achieved for 67 of the 221

industry-year estimations, whereas all three candidate densities can be estimated in only 37

cases. The lack of convergence for market entry may stem from: (i) a violation of Assump-

tion A2 on the proper density and the need for alternative densities with possibly more pa-

rameters; (ii) a violation of Assumption A3 on the monotonicity of the relationship between

the support and the probability of export; (iii) a strong violation of Assumption A4 on perfect

sorting, stemming from either wrong decisions by firms or measurement errors in the support.

In fact, entry into export markets involves a host of factors that may stem well beyond mere

productivity. This suggests that a possible development of our framework is to consider more

than one support to accurately estimate the thresholds hindering entry decisions by agents.

Table 9 illustrates the various rankings and arbitrage in the better fit. Of all the three can-

didate densities, the gamma distribution dominates in all type of market decision. However,

there is a need for alternative densities. We see, for example, that the beta distribution repre-

sents a better fit in a seizable number of occurrences. Table D.5 of Appendix D shows that one

shall not conclude that the gamma density is the best prior, irrespective of the support. In fact, it

reveals that when using labor productivity as the θ-attribute, the normal density (left-truncated

at 0) is the dominating density. Table D.5 also implies that all three densities are relevant when

using the alternative support.

4.5 Threshold dynamics and globalization

We use our method to evaluate the impact of policy shocks on export thresholds between 1990

and 2007. This period is characterized by major structural shocks, all intended to reduce ex-

port barriers: the establishment of the single market in 1993; the birth of the euro in 1999; the

implementation of the single currency for all transactions in 2002; and the entry of China, In-

dia, and more generally the BRICS countries as major players on the international trade scene.

Much has been written about the pro-competitive consequences of European integration (e.g.,

Boulhol, 2009, amongst a large series of contributions) or globalization (De Loecker and Gold-

berg, 2014) on markups, but evidence of decreased export thresholds has yet to emerge. One

should expect a significant decrease in thresholds overall. However, we remain agnostic about
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the effect of the aforementioned shocks on higher moments of the distribution. We explore this

issue by estimating the threshold distribution for market participation as follows:

Ω̂t = arg max
Ωt

L̂(Ωt;χi, θi) ∀t ∈ T = (1990, . . . , t, . . . , 2007)

We do not report the results of our estimations, but consistently with prior findings, the

gamma density is the best fit according the Vuong’s test. Figure 6 displays the dynamics of the

first four moments of export thresholds. As expected, we observe an overall downward trend

in thresholds by 15%. A closer look at the evolution of the mean suggest that the establishment

of the single market in 1993 was a major step towards lower export thresholds (−8%). The

introduction of the euro as a common currency for all transactions is concomitant to significant

decreases in the mean value of export thresholds. This may be due to increased competition

by rival eurozone firms or the simultaneous arrival of major players outside Europe, such as

China joining the World Trade Organization in 2001, in the export markets, both of which

would exclude the least efficient firms from export markets.

[Figure 6 about here.]

Looking at higher moments of the distribution, we observe that the establishment of the

single market and the introduction of the euro represent shocks of different natures. The sig-

nificant decrease in the mean in 1993 leaves all higher moments nearly unchanged. By securing

the free movement of goods, services, capital and persons and by removing customs barriers

between member states, the establishment of the single market represented a shock homoge-

neous to all manufacturing firms. Higher moments of the distribution exhibit an important

upward trend from 1999 onwards, that is, at the birth of the euro. The synchronized increase

in the variance, skewness and kurtosis implies that the euro constituted an asymmetric shock

to French firms: it created threshold distributions with more extreme values (higher kurtosis)

located in the right tail of the distribution (positive skewness). Regarding the dynamics of the

last decile in Figure 6, we immediately observe that the birth of the euro in 1999 is associated

with higher thresholds values; conversely, the lower percentiles of the distributions enjoy per-

sistently decreasing thresholds.

Overall, the establishment of the single market and the introduction of the euro – together

with the arrival of major countries in export markets – represented major shocks for French

manufacturing firms. These shocks translated into significantly lower thresholds for the ma-
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jority of firms. Whereas the former represented a homogeneous shock to all firms, the latter

constituted an asymmetric shock, definitely excluding a minor share of large manufacturing

firms from international trade.

5 Conclusion

This paper has developed a new method to estimate the parameters of the threshold distri-

bution for market participation, requiring few working assumptions. Stochastic Monte Carlo

simulations have shown that our method is resilient to specification, sorting and measurement

errors. We have applied our method to unravel the productivity threshold distribution for ex-

port markets for French manufacturing firms. In most cases, the likelihood function needs few

iterations to converge, except when some underlying assumption is not empirically supported.

We have implemented an hypothesis testing procedure based upon Vuong (1989) to discrimi-

nate between a set of competing priors. We find that heterogeneity is relevant across several

domains: (i) within-sector estimates suggest that participation thresholds are characterized by

right-skewness and leptokurtosis; (ii) between-sector estimates, conditional upon participat-

ing, entering or remaining in a market, suggest that gamma, normal or beta densities are all

empirically relevant; (iii) across-year estimates, suggest that European integration policies and

access to foreign markets have decreased average thresholds, at the cost of an increased het-

erogeneity, captured by an increase in higher order moments and on the top decile thresholds.

Overall, our results indicate that accounting for heterogeneity in thresholds allows one to gain

new insights on policy effectiveness and in particular about the perils of basing policies solely

on centrality statistics.

The distinctive feature of our method is its flexibility: it needs few behavioral assumptions,

is not data demanding, and can adapt to various parametric distributions. Two column vectors

– one about the decision outcome and one about the θ-attribute supporting the decision – suffice

to recover the distribution parameters and to test for alternative priors. The critical assumption

is to choose the parametric form of the unobserved thresholds. In this paper, we experimented

with the normal, gamma and beta distributions. Whether simulated or empirical, our findings

unambiguously support the idea that, in the absence of a strong prior about the distribution of

thresholds, it is important to use an hypothesis testing procedure to discriminate between the

set of priors.
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Our method can be applied to various issues within the realm of economics. Beyond ex-

port productivity threshold distributions, our method could be used to unravel distributions

of reservation wages, skill requirements, and financial constraints: all agent-specific charac-

teristics that support or limit the decision to participate in a market. All that is required is to

gather the two vectors of agent-specific decision outcomes and θ-attributes. The existence of

dynamic information on whether agents enter or exit a market can also be exploited to reveal

distributions of entry and remaining thresholds. Moreover, this method may also be of interest

outside the realm of economics, although the range of relevance is difficult to forecast.

We intend to extend this work in three directions. The most immediate extension is to con-

dition the vector of parameters on agent-specific characteristics. The gain is twofold. First, one

can analyze the determinants affecting the parameters of the threshold distribution. Second,

one could then compute agent-specific thresholds. In other words, beyond the estimation of

distribution shapes, one could locate each agent within the distribution with a certain degree

of confidence. Such an exercise would be particularly useful for policy purposes. In the case of

export thresholds, policy markers could target export subsidies to a set of identified firms that

combine a high level of productivity but a high export threshold; alternatively, policies could

be designed to maximize participation, conditional on a given budget. Second, by broaden-

ing the meaning of the θ-attribute toward a multivariate context, we could envisage narrowing

the definition of a market to a more fine-grained scale. One could, for example, distinguish

among destinations for export markets or among industries for labor markets. In all instances,

the road ahead is to extend the univariate case presented in this paper to multivariate (normal,

gamma and beta) distributions while accounting for the correlation between markets. Third,

we intend to identify the underlying relationship between thresholds and costs. While the first

can be applied to more domains, the second can provide a direct monetary evaluation of the

problem under investigation for policy makers. Increases in thresholds imply higher barriers

to market participation. Although the support of the thresholds is expressed in a linear scale,

the underlying series of investments and efforts allowing agents to climb the threshold ladder

is likely to involve highly convex costs.
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Figure 1: Example of a θ-attribute distribution with a common threshold c for all the individuals

θi ~ f(Θ)

c

0

1

2

0.4 0.8 1.2 1.6
θ

Agents deciding to participate in a market are those whose θ-attribute values exceed threshold c. Conversely, agents deciding
not to participate in a market are those whose θ-attribute lies to the left of threshold c, as indicated by the shaded area.

In this example, we assume a normally distributed θ-attribute.
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Figure 2: Example of threshold distribution with observed θ-attribute

ci ~ f(Θ)

θi pi(χi = 1 | θi) = F(θi,Θ)

0

1

2

0.50 0.75 1.00 1.25 1.50 1.75
c

ci ~ f(Θ)

θi pi(χi = 0 | θi) = 1 − F(θi,Θ)

0

1

2

0.50 0.75 1.00 1.25 1.50 1.75
c

Left panel: Given the θ-attribute θi, observing a positive decision outcome χi = 1 implies that agent-specific threshold ci is
located to the left of θi, as indicated by the shaded area. Right panel: Given the θ-attribute θi, observing a negative decision

outcome χi = 0 implies that agent-specific threshold ci is located to the right of θi, as indicated by the shaded area.
In this example, we assume normally distributed thresholds.
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Figure 3: Distribution of Monte Carlo estimates of the parameters Ω for three different threshold distributions.

mean variance

0.692 0.696 0.700 0.704 0.038 0.040 0.042

0.00

0.25

0.50

0.75

1.00

shape scale

1.40 1.45 1.50 1.55 1.60 1.650.44 0.48 0.52 0.56

0.00

0.25

0.50

0.75

1.00

shape 1 shape 2

4.8 5.0 5.2 1.9 2.0 2.1 2.2

0.00

0.25

0.50

0.75

1.00

M = 1, 000 Monte Carlo simulations with N = 50, 000 agents. The true values are represented by a black vertical line with short
dashes. The average estimate is represented by the blue vertical line with dots. Top panels: estimates of normal distributed

thresholds. Middle panel: estimates of gamma distributed thresholds. Bottom panels: estimates of beta distributed thresholds.
For all simulations, we set the θ-attribute such that it follows a normal distribution: θ ∼ N (.5, .0225). Set of parameters for

threshold distributions: (i)C ∼ N (.7, .004); (ii)C ∼ Γ(1.5, .5); and (iii)C ∼ B(5, 2).
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Figure 4: Scatter plot of the parameters’ estimates for the gamma and beta scenarios
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M = 1, 000 Monte Carlo simulations with N = 50, 000 agents. Left panel: estimates of shape and scale parameters of gamma
distributed thresholds. Right panel: estimates of shape 1 and shape 2 parameters of beta distributed thresholds.
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Figure 5: Threshold distributions for all manufacturing and three selected sectors.
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For each industry and type of market participation, the formal definition of the density function can be found in Table 8.
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Figure 6: The dynamics of threshold distributions in French manufacturing: 1990-2007
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The moments and percentiles of the threshold distribution are based on the estimated gamma parameters for all manufacturing
using total factor productivity as the θ-attribute, net of industry×year effects. p10, p25, p75 and p90 stand for the 1st decile, the

1st quartile, the 3rd quartile and the 9th decile of the threshold distribution, respectively.
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Table 1: Mean squared errors of the estimated first four moments over the different scenarios.

Assumed c True c A2 µ σ2 sk k

True Values

N 0.700 0.040 0.000 0.000
Γ 0.750 0.375 1.633 4.000
B 0.714 0.026 0.596 0.120

RMSE as Share of True Values

N N 3 0.003 0.023 - -
Γ N 7 0.049 0.533 - -
B N 7 0.022 0.242 - -

N Γ 7 0.203 0.452 1.000 1.000
Γ Γ 3 0.012 0.052 0.015 0.029
B Γ 7 0.243 0.731 1.152 1.321

N B 7 0.104 1.508 1.000 1.000
Γ B 7 0.074 1.158 2.025 5.675
B B 3 0.002 0.016 0.015 0.064

M = 1, 000 Monte Carlo simulations with N = 50, 000
agents. 3: Assumption A2 holds. 7: Assumption A2 is vi-
olated. sk: Skewness. ku: Kurtosis. For all simulations, we
set the θ-attribute such that it follows a normal distribution:
θ ∼ N (.5, .0225). Set of parameters for threshold distri-
butions: (i) C ∼ N (.7, .004); (ii) C ∼ Γ(1.5, .5); and (iii)
C ∼ B(5, 2).
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Table 2: Vuong’s ranking of distributions, by type of true threshold distribution

Vuong diagnosis True c: N True c: Γ True c: B

N � B � Γ 0.961
N � Γ ∼ B 0.025
N � Γ � B 0.011
N ∼ B � Γ 0.001 0.001

Γ � N ∼ B 0.026
Γ � N � B 0.707
Γ � B � N 0.267

B � N � Γ 0.002 0.867
B � Γ � N 0.131
B � Γ ∼ N 0.001

M = 1, 000 Monte Carlo simulations with N =
50, 000 agents for each true threshold distribution. Fig-
ures represent the share of simulation representing
Vuong’s diagnosis appearing as row heads. For exam-
ple: N � B � Γ must be read as "The normal distri-
bution is preferred over the beta distribution which is
preferred over the gamma distribution.
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Table 3: Root Mean Squared Errors (RMSE) as a share of the true value for the estimated first four moments over the
different scenarios

MSE IS IM σε = 5% σε = 10% σε = 15%

N distributed thresholds

µ 3 0.003 0.003 0.003
σ2 3 0.023 0.024 0.026
sk 3 - - -
ku 3 - - -

µ 3 0.003 0.003 0.003
σ2 3 0.023 0.023 0.023
sk 3 - - -
ku 3 - - -

µ 3 3 0.003 0.003 0.003
σ2 3 3 0.023 0.024 0.026
sk 3 3 - - -
ku 3 3 - - -

Γ distributed thresholds

µ 3 0.012 0.012 0.012
σ2 3 0.052 0.052 0.052
sk 3 0.015 0.015 0.015
ku 3 0.030 0.030 0.030

µ 3 0.012 0.014 0.020
σ2 3 0.053 0.065 0.098
sk 3 0.015 0.018 0.027
ku 3 0.030 0.037 0.056

µ 3 3 0.012 0.014 0.021
σ2 3 3 0.054 0.066 0.101
sk 3 3 0.015 0.018 0.028
ku 3 3 0.031 0.037 0.056

B distributed thresholds

µ 3 0.002 0.002 0.002
σ2 3 0.016 0.017 0.020
sk 3 0.015 0.015 0.015
ku 3 0.064 0.063 0.068

µ 3 0.002 0.003 0.006
σ2 3 0.017 0.025 0.047
sk 3 0.016 0.025 0.045
ku 3 0.066 0.085 0.137

µ 3 3 0.002 0.003 0.005
σ2 3 3 0.017 0.029 0.058
sk 3 3 0.016 0.025 0.046
ku 3 3 0.066 0.077 0.111

M = 1, 000 Monte Carlo simulations with N = 50, 000 agents. 3: As-
sumption in the specific column is violated. sk: Skewness. ku: Kurtosis.
For all simulations, we set the θ-attribute such that it follows a normal dis-
tribution: θ ∼ N (.5, .0225). Set of parameters for threshold distributions: (i)
C ∼ N (.7, .004); (ii) C ∼ Γ(1.5, .5); and (iii) C ∼ B(5, 2). The true moment
values are displayed in Table 1.
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Table 4: Vuong’s ranking of distributions, by type of true threshold distribution

Vuong diagnosis True c: N True c: Γ True c: B

N � B � Γ 0.990 0.326
N � Γ ∼ B 0.008
N � Γ � B 0.002
N ∼ B � Γ 0.015

Γ � N ∼ B 0.016
Γ � N � B 0.110
Γ � B � N 0.873

B � N � Γ 0.550
B � Γ � N 0.001 0.109

M = 1, 000 Monte Carlo simulations with N =
50, 000 agents for each true threshold distribution un-
der the presence of imperfect sorting and imperfect
measurement (IS-IM) with a 5% shock size. Figures
represent the share of simulation representing Vuong’s
diagnosis appearing as row heads. For example: N �
B � Γ must be read as "The normal distribution is
preferred over the beta distribution which is preferred
over the gamma distribution.
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Table 5: Participation rates and productivity premium, by industry

Industry Name ] Obs. PR TFPP

Market participation

All Manufacturing 339,088 .740 .042

Automobile 9,276 .798 .022
Chemicals 35,360 .836 .025
Clothing and Footwear 27,632 .675 .136
Electric and Electronic Components 14,421 .773 .059
Electric and Electronic Equipment 18,522 .752 .063
House Equipment and Furnishings 23,707 .822 .049
Machinery and Mechanical Equipment 62,094 .702 .043
Metallurgy, Iron and Steel 60,856 .728 .008
Pharmaceuticals 9,067 .914 .030
Printing and Publishing 29,307 .612 .046
Textile 21,659 .800 .075
Transportation Machinery 5,125 .795 .057
Wood and Paper 22,062 .692 -.014

Market entry

All Manufacturing 74,832 .231 .017

Automobile 1,635 .252 .006
Chemicals 5,026 .266 .008
Clothing and Footwear 7,358 .197 .055
Electric and Electronic Components 2,858 .246 .035
Electric and Electronic Equipment 3,775 .218 .018
House Equipment and Furnishings 3,488 .280 .029
Machinery and Mechanical Equipment 15,612 .236 .014
Metallurgy, Iron and Steel 14,362 .231 .006
Pharmaceuticals 660 .312 -.039
Printing and Publishing 9,735 .218 .020
Textile 3,687 .234 .037
Transportation Machinery 886 .234 .003
Wood and Paper 5,750 .203 -.019

Market remaining

All Manufacturing 219,747 .929 .044

Automobile 6,577 .947 .021
Chemicals 26,278 .956 .029
Clothing and Footwear 15,974 .913 .129
Electric and Electronic Components 9,762 .943 .056
Electric and Electronic Equipment 11,918 .942 .074
House Equipment and Furnishings 17,018 .948 .048
Machinery and Mechanical Equipment 38,160 .912 .048
Metallurgy, Iron and Steel 38,957 .926 .010
Pharmaceuticals 7,334 .975 .062
Printing and Publishing 15,490 .870 .044
Textile 15,233 .947 .071
Transportation Machinery 3,570 .947 .073
Wood and Paper 13,476 .920 .001

PR: participation rate. TFPP: Total Factor Productivity Premium.
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Table 6: Maximum likelihood scores and number of iterations, by industry

Industry Name lN (µ, σ) lΓ(α, β) lB(α, β) ]ite.N ]ite.Γ ]ite.B

Market participation

All Manufacturing -191,631.4 -191,567.3 -191,782.3 4 7 5

Automobile -4,640.3 -4,639.1 -4,642.3 4 9 7
Chemicals -15,669.5 -15,663.3 -15,672.1 6 9 6
Clothing and Footwear -15,806.7 -15,791.5 -15,895.9 6 12 7
Electric and Electronic Components -7,541.9 -7,550.2 -7,549.3 4 9 4
Electric and Electronic Equipment -10,084.2 -10,115.2 -10,095.5 4 9 4
House Equipment and Furnishings -10,886.4 -10,882.5 -10,897.3 5 7 6
Machinery and Mechanical Equipment -37,089.7 -37,100.5 -37,117.1 4 9 3
Metallurgy, Iron and Steel -35,626.5 -35,615.8 -35,629.7 5 27 6
Pharmaceuticals -2,639.4 -2,634.0 -2,642.3 6 11 8
Printing and Publishing -19,319.5 -19,320.6 -19,326.8 5 12 5
Textile -10,488.5 -10,475.7 -10,509 4 7 3
Transportation Machinery -2,540.8 -2,540.8 -2,542.7 3 10 5
Wood and Paper - - - - - -

Market entry

All Manufacturing -40,329.1 -40,325.9 - 4 18 -

Automobile -922.6 - - 4 - -
Chemicals -2,908.5 - - 4 - -
Clothing and Footwear - -3,598.5 -3,598.5 - 11 4
Electric and Electronic Components -1,581.9 -1,583.4 -1,583.1 19 6 6
Electric and Electronic Equipment -1,974.8 -1,975.3 - 6 22 -
House Equipment and Furnishings -2,053.9 -2,054.6 - 4 11 -
Machinery and Mechanical Equipment -8,510.4 -8,509.9 - 8 16 -
Metallurgy, Iron and Steel -7,753 - - 3 - -
Pharmaceuticals - - - - - -
Printing and Publishing -5,092.6 -5,090.6 - 5 22 -
Textile -1,991.1 -1,989.7 -1,992.7 9 8 5
Transportation Machinery -481.6 - - 5 - -
Wood and Paper - - - - - -

Market remaining

All Manufacturing -55,426.8 -55,410.1 -55,466.6 5 6 12

Automobile -1,359.1 -1,358.3 -1,359.4 5 13 12
Chemicals -4,686.9 -4,686.5 -4,687.2 5 13 11
Clothing and Footwear -4,403.4 -4,398.2 -4,427.9 4 9 5
Electric and Electronic Components -2,086.7 -2,086.9 -2,086.7 4 7 9
Electric and Electronic Equipment -2,565 -2,571.7 -2,567.7 4 8 8
House Equipment and Furnishings -3,446.9 -3,445.1 -3,449.4 4 6 8
Machinery and Mechanical Equipment -11,113.9 -11,118.9 -11,119.8 4 12 7
Metallurgy, Iron and Steel -10,308.2 -10,305.3 -10,309.2 7 24 13
Pharmaceuticals -852.3 -848.7 -855.5 4 7 9
Printing and Publishing -5,919.8 -5,920.7 -5,920.6 4 8 9
Textile -3,070.6 -3,068.4 -3,073.8 5 6 6
Transportation Machinery -717.3 -718.2 -717.2 4 7 7
Wood and Paper -3,746.7 - -3,746.7 9 - 12

θ-attribute: Total Factor Productivity. l: log likelihood value. ]ite: Number of iterations.
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Table 7: Maximum likelihood estimation of participation threshold distributions, using Total Factor Productivity as the
θ-attribute

Industry Name Nµ Nσ2 Γµ Γσ2 Γp50 Bµ Bσ2 Bp50

Market participation

All Manufacturing .195 .284 .397 .189 .254 .315 .100 .198

Automobile -.079 .550 .336 .291 .118 .238 .103 .050
Chemicals -.212 .587 .276 .230 .079 .198 .090 .023
Clothing and Footwear .419 .060 .455 .050 .419 .426 .049 .412
Electric and Electronic Components .229 .168 .359 .119 .256 .307 .077 .227
Electric and Electronic Equipment .279 .142 .382 .116 .287 .334 .074 .272
House Equipment and Furnishings .105 .216 .302 .105 .197 .247 .075 .131
Machinery and Mechanical Equipment .332 .152 .436 .120 .348 .375 .080 .325
Metallurgy, Iron and Steel -.995 6.451 1.463 18.098 .022 .279 .174 .000
Pharmaceuticals -1.253 1.711 .157 .215 .002 .094 .063 .000
Printing and Publishing .370 .363 .582 .387 .381 .425 .126 .359
Textile .194 .161 .334 .087 .252 .281 .072 .194
Transportation Machinery .185 .181 .337 .101 .244 .284 .075 .194
Wood and Paper - - - - - - - -

Market entry

All Manufacturing 1.581 2.048 6.516 87.751 2.878 - - -

Automobile 2.354 7.426 - - - - - -
Chemicals 2.022 5.666 - - - - - -
Clothing and Footwear - - 1.665 2.133 1.263 .771 .090 .934
Electric and Electronic Components 1.018 .526 2.073 4.856 1.364 .741 .110 .930
Electric and Electronic Equipment 1.532 1.692 6.988 99.457 3.128 - - -
House Equipment and Furnishings 1.002 .673 2.017 5.164 1.254 - - -
Machinery and Mechanical Equipment 1.456 1.665 4.701 4.062 2.322 - - -
Metallurgy, Iron and Steel 3.060 11.710 - - - - - -
Pharmaceuticals - - - - - - - -
Printing and Publishing 1.605 1.918 5.241 49.044 2.620 - - -
Textile 1.140 .748 2.220 5.665 1.449 .755 .116 .965
Transportation Machinery 6.046 57.867 - - - - - -
Wood and Paper - - - - - - - -

Market remaining

All Manufacturing -.335 .355 .148 .065 .043 .109 .045 .004

Automobile -.873 .769 .100 .077 .002 .071 .037 .000
Chemicals -.719 .543 .089 .052 .004 .066 .031 .000
Clothing and Footwear .126 .094 .256 .037 .210 .206 .042 .136
Electric and Electronic Components -.265 .259 .132 .049 .041 .105 .037 .009
Electric and Electronic Equipment -.084 .157 .158 .042 .083 .131 .036 .038
House Equipment and Furnishings -.357 .305 .125 .046 .036 .091 .035 .003
Machinery and Mechanical Equipment -.021 .173 .210 .054 .133 .168 .047 .067
Metallurgy, Iron and Steel -2.765 5.249 .210 .989 .000 .079 .060 .000
Pharmaceuticals -.898 .537 .063 .026 .003 .036 .019 .000
Printing and Publishing -.287 .546 .227 .161 .061 .165 .077 .010
Textile -.263 .243 .136 .041 .056 .100 .035 .007
Transportation Machinery -.087 .148 .164 .035 .100 .129 .034 .042
Wood and Paper -3.187 476.9 - - - .080 .072 .000

Nµ: Estimated mean of the normal distribution;Nσ2 : estimated variance of the normal distribution; Γµ: es-
timated mean of the gamma distribution; Γσ2 estimated variance of the gamma distribution; Γp50 : estimated
median of the gamma distribution; Bµ: estimate mean of the beta distribution; Bσ2 : estimated variance of
the beta distribution; Bp50 : estimated median of the beta distribution.
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Table 8: Vuong’s z test for model selection using Total Factor Productivity as the θ-attribute

Industry Name zN ,Γ zN ,B zΓ,B Ranking Conclusion

Market participation

All Manufacturing -371.9 1,601.1 66.5 Γ � N � B C ∼ Γ(.8, .5)

Automobile -146.3 1,001.6 246.9 Γ � N � B C ∼ Γ(.4, .9)
Chemicals -397.5 608.2 352.3 Γ � N � B C ∼ Γ(.3, .8)
Clothing and Footwear -49 127.1 69.6 Γ � N � B C ∼ Γ(4.2, .1)
Electric and Electronic Components 75.4 372.3 -8.9 N � B � Γ C ∼ N (.2, .4)a

Electric and Electronic Equipment 84.7 132.1 -111.8 N � B � Γ C ∼ N (.3, .4)a

House Equipment and Furnishings -8.4 524.4 15.3 Γ � N � B C ∼ Γ(.9, .3)
Machinery and Mechanical Equipment 14.7 1,146.0 132.1 N � Γ � B C ∼ N (.3, .4)
Metallurgy, Iron and Steel -1,031.4 1,551.8 704.4 Γ � N � B C ∼ Γ(.1, 12.4)
Pharmaceuticals -307.5 284.2 165.6 Γ � N � B C ∼ Γ(.1, 1.4)
Printing and Publishing 26.6 30.5 63.7 N � Γ � B C ∼ N (.4, .6)
Textile -193.2 23.3 14.8 Γ � N � B C ∼ Γ(1.3, .3)
Transportation Machinery -.6 179.5 42.4 N ∼ Γ � B C ∼ N (.2, .4) or C ∼ Γ(1.1, .2)
Wood and Paper - - - ∅ ∅

Market entry

All Manufacturing -18.7 - - Γ � N C ∼ Γ(.5, 13.5)

Automobile - - - N C ∼ N (2.4, 2.7)
Chemicals - - - N C ∼ N (2.0, 2.4)
Clothing and Footwear - - .3 Γ ∼ B C ∼ Γ(1.3, 1.3) or C ∼ B(.7, .2)
Electric and Electronic Components 33.3 98.8 -23.6 N � B � Γ C ∼ N (1.0, .7)a

Electric and Electronic Equipment 133.6 - - N � Γ C ∼ N (1.5, 1.3)
House Equipment and Furnishings 75.6 - - N � Γ C ∼ N (1.0, .8)
Machinery and Mechanical Equipment -149.1 - - Γ � N C ∼ Γ(.6, 8.5)
Metallurgy, Iron and Steel - - - N C ∼ N (3.1, 3.4)
Pharmaceuticals - - - ∅ ∅
Printing and Publishing -287.4 - - Γ � N C ∼ Γ(.6, 9.4)
Textile -154 337.9 171 Γ � N � B C ∼ Γ(.9, 2.6)
Transportation Machinery - - - N C ∼ N (6.0, 7.6)
Wood and Paper - - - ∅ ∅

Market remaining

All Manufacturing -402.3 868.1 467.7 Γ � N � B C ∼ Γ(.3, .4)

Automobile -223.7 517.3 196.2 Γ � N � B C ∼ Γ(.1, .8)
Chemicals -106.7 236 94.6 Γ � N � B C ∼ Γ(.2, .6)
Clothing and Footwear -71.7 68.5 48.6 Γ � N � B C ∼ Γ(1.8, .1)
Electric and Electronic Components 9.7 -.4 -13.7 N ∼ B � Γ C ∼ N (−.3, .5) or C ∼ B(.0, 1.4)
Electric and Electronic Equipment 77 193.7 -84.1 N � B � Γ C ∼ N (−.1, .4)a

House Equipment and Furnishings -157.4 372.2 15.6 Γ � N � B C ∼ Γ(.3, .4)
Machinery and Mechanical Equipment 228.6 832.6 22.4 N � Γ � B C ∼ N (−.0, .4)
Metallurgy, Iron and Steel -94.9 1,005.0 562.4 Γ � N � B C ∼ Γ(.0, 4.7)
Pharmaceuticals -225.2 236.3 125.3 Γ � N � B C ∼ Γ(.2, .4)
Printing and Publishing 92.5 68.2 -4.3 N � B � Γ C ∼ N (−.3, .7)a

Textile -175.9 435.2 161.8 Γ � N � B C ∼ Γ(.4, .3)
Transportation Machinery 19.6 -30 -11.5 B � N � Γ C ∼ B(.3, 2.0)
Wood and Paper - -993.3 - B � N C ∼ B(.0, .0)

zN ,Γ: HN∼Γ : |z| < +1.96 HN�Γ : z ≥ +1.96 HΓ�N : z ≤ −1.96.
zN ,B : HN∼B : |z| < +1.96 HN�B : z ≥ +1.96 HB�N : z ≤ −1.96.
zΓ,B : HΓ∼B : |z| < +1.96 HΓ�B : z ≥ +1.96 HB�Γ : z ≤ −1.96.
The [a] symbol indicates that caution is needed in the dominance ofN overB, as revealed by Monte Carlo results presented
in Section 3.3.3.
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Table 9: Occurrence of diagnosis, according to the type of market participation

Ranking Participation Entry Remaining

No density fit

∅ 22 67 19

Unique density fit

N 1 20 0
Γ 0 20 1
B 1 10 0

Two density fits

N � Γ 0 6 0
N � Ba 3 2 2
Γ � B 0 23 0
Γ � N 0 22 0
B � N 3 0 5
B � Γ 0 12 0
Γ ∼ B 0 2 0

Tree density fits

N � Γ � B 25 3 16
N � B � Γa 44 7 32
N ∼ Γ � B 5 0 1
N ∼ Γ ∼ B 2 2 1
N ∼ B � Γ 0 1 0
Γ � N � B 98 13 78
Γ � B � N 11 7 14
Γ ∼ B � N 2 0 0
B � N � Γ 14 2 48
B � Γ � N 3 2 3
B � N ∼ Γ 0 0 1

Overall dominance

N 80 47 51
Γ 111 87 94
B 21 26 57

Total

234 221 221

Figures represent counts of estimated densities for
market participation, market entry or market remain-
ing. The overall number of estimated densities for
market participation is 13 industries observed for 18
years, yielding 234 trials of density estimation. Ac-
counting for entry or remaining imply the loss of the
first year of observation due to the use of a lagged
year in identifying firm market entry and/or remain-
ing.
The [a] symbol indicates that caution is needed in the
dominance of N over B, as revealed by Monte Carlo
results presented in Section 3.3.3.
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Appendix A. Algorithms for the Monte Carlo simulation exercises

Baseline Monte Carlo Settings

The Monte Carlo simulations are carried out as follows:

1. fix a sufficiently large number of agents N ;

2. simulate the true θ-attribute data θT from a known distribution g;

3. simulate the true threshold dataCT from a known distribution f ;

4. let the agents compute their individual decision outcomes χ according to Equation 1;

5. using the information available to the social researcher (i.e., θ and χ), estimate via maximum likeli-

hood the parameters Ω̂ that characterize the threshold distribution f ;

6. repeat steps 2 to 5 a sufficient number of times M ; and

7. use the M estimates Ω̂ to evaluate the goodness of the estimation.

Monte Carlo Settings - Testing Assumption A2

The Monte Carlo simulations are carried out as follows:

1. fix a sufficiently large number of agents N ;

2. fix a set of probability density functions F = f1, f2, . . . , fK to be used for the generation of the true

thresholds and as priors (i.e. F̂) for the estimation of the threshold distribution parameters;

3. simulate the true θ-attribute data θT from a known distribution g;

4. simulate the true threshold dataCT from the distribution fk;

5. let the agents compute their individual decision outcomes χ according to Equation 1;

6. using the information available to the social researcher (i.e., θ and χ), estimate via maximum likeli-

hood the parameters Ω̂ that characterize all the threshold distributions priors F̂ ;

7. compute all the pairwise Vuong z statistics;

8. repeat steps 3 to 7 a sufficient number of times M ;

9. use all the M estimates Ω̂ to evaluate the goodness of the estimation;

10. repeat steps 3 to 9 K times, each time using as true distribution of threshold a new the density

function belonging to the set F , as defined at step 2;

11. for each of the true fk evaluate and compare the estimation errors generated by all the priors in F̂ ;

12. for each of the true fk evaluate and compare the Vuong tests, to verify if the correct prior density f̂k

has been preferred to the alternative priors in the set F̂ .

i



Monte Carlo Settings - Testing Assumption A4

The Monte Carlo simulations are carried out as follows:

1. fix a sufficiently large number of agents N ;

2. fix a vector of noise σ = σ1, σ2, . . . , σK ;

3. simulate the true θ-attribute data θT from a known distribution g;

• generate also the noisy θ-attribute data θε = θT + εθ ;

4. simulate the true threshold dataCT from the known distribution fk;

• generate also the noisy threshold dataCε = CT + εc;

5. let the agents compute their individual decision outcomes χ according to Equation 12;

6. using the information available to the social researcher, estimate via maximum likelihood the param-

eters Ω̂ that characterize the threshold distribution fk;

7. repeat steps 3 to 6 a sufficient number of times M ;

8. use the M estimates Ω̂ to evaluate the goodness of the estimation;

9. repeat steps 3 to 8 for all the noise levels σ, as defined at step 2; and

10. evaluate and compare the goodness of all the values of σ.
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Appendix B. Distributions

B.1 Univariate normal distribution

In the case of a normal distribution, the probability density function is defined as:

f(x) =
1

σ
√

2π
exp

(
−1

2

(x− µ)2

σ2

)
(B.1)

where µ and σ represent the average and the standard deviation, respectively. This distri-

bution is typically denoted as x ∼ N (µ, σ2). Integrating over the interval (−∞, x̄] yields the

cumulative density function:

F (x) =
1

σ
√

2π
exp

∫ x̄

−∞

(
−1

2

(x− µ)2

σ2

)
dx (B.2)

B.2 Univariate gamma distribution

In the case of a gamma distribution, the probability density function is defined as:

f(x) =
1

Γ(α)βα
xα−1exp

(
−x
β

)
(B.3)

where α > 0 and β > 0 represent the shape and scale parameters, respectively, and Γ(α) =∫∞
0 tα−1exp(−t)dt is the gamma function. The mean and variance of this distribution are a

combination of shape and scale parameters and read as µ = αβ and σ2 = αβ2, respectively.

This distribution is typically denoted as x ∼ Γ(α, β). Integrating over the interval (0, x̄] yields

the cumulative density function:

F (x) =
1

Γ(α)βα

∫ x̄

0
xα−1exp

(
−x
β

)
dx (B.4)

B.3 Univariate beta distribution

For a beta distribution, the probability density function is defined as:

f(x) =
1

B(α, β)
xα−1(1− x)β−1 (B.5)
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Figure B.1: Examples of normal, gamma and beta distributions.
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Figures are drawn with parametrizationN (0.5, 0.0225) for the normal, Γ(1.5, .2) for the gamma and B(5, 2) for the beta.

where α > 0 and β > 0 represent the shape1 and shape2 parameters, and B(α, β) = Γ(α+β)
Γ(α)Γ(β) is

the beta function, a normalization constant derived from the composition of gamma functions

and that ensures the total probability is one. The mean and variance of this distribution are a

combination of shape1 and shape2 parameters and read as µ = α
α+β and σ2 = αβ2, respectively.

This distribution is typically denoted as x ∼ B(α, β). Integrating over the interval (0, 1) yields

the cumulative density function:

F (x) = Ix(α, β) =

∫ x
0 t

α−1(1− t)β−1dt∫ 1
0 t

α−1(1− t)β−1dt
(B.6)

where Ix(α, β) is the regularized incomplete beta function, which is the ratio between the in-

complete beta function (integral between 0 and x), while the denominator the complete beta

function (integral between 0 and 1).

Examples of the three distributions are reported in Figure B.1.
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Appendix C. Productivity measures

All nominal output and input variables are available at the firm level. Industry-level data are

used for price indexes, hours worked and depreciation rates.

Output

Gross output deflated using sectoral price indexes published by INSEE (French System of

National Accounts).

Labor

Labor input is obtained by multiplying the number of effective workers (i.e., the number of

employees plus the number of outsourced workers minus workers taken from other firms) by

average hours worked. The annual series for hours worked are available at the 2-digit industry

level and provided by GGDC Groningen Growth Development Center). This choice has been made

because there are no data on hours worked in the EAE survey. Note also that a large decline in

hours worked occurred between 1999 and 2000 because of the specific "French 35 hours policy"

(on average, hours worked fell from 38.39 in 1999 to 36.87 in 2000).

Capital input

Capital stocks are computed from the investment and book value of tangible assets follow-

ing the traditional perpetual inventory method (PIM):

Kt = (1− δt−1) Kt−1 + It (C.1)

where δt is the depreciation rate and It is real investment (deflated nominal investment).

Both investment price indexes and depreciation rates are available at the 2-digit industrial clas-

sification from INSEE data series.

Intermediate inputs

Intermediate inputs are defined as purchases of materials and merchandise, transport and

traveling, and miscellaneous expenses. They are deflated using sectoral price indexes for inter-

mediate inputs published by INSEE (French System of National Accounts).

Input cost shares

Withw, c andm denoting the wage rate, user cost of capital and price index for intermediate

inputs, respectively, CTkt = wktLkt + cItKkt +mItMkt represents the total cost of production of
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firm k at time t. Labor, capital and intermediate input cost shares are then respectively given

by

sLkt =
wktLkt
CTkt

; sKkt =
cItKkt

CTkt
; sMkt =

mItMkt

CTkt
(C.2)

To compute the labor cost share, we rely on the variable "labor compensation" in the EAE

survey. This value includes total wages paid as salaries plus income tax withholding and is

used to approximate the theoretical variable wktLkt. To compute the intermediate input cost

share, we use variables on intermediate goods consumption in the EAE survey and the price

index for intermediate inputs in industry I provided by INSEE.

We compute the user cost of capital by using the Hall (1988) methodology where the user

cost of capital (i.e., the rental price of capital) in the presence of a proportional tax on business

income and of a fiscal depreciation formula is given by18

cIt = (rt + δIt − πet )
(

1− τtzI
1− τt

)
pIKt (C.3)

where τt is the business income tax in period t and ZI denotes the present value of the de-

preciation deduction on one nominal unit investment in industry I . A complex depreciation

formula can be employed for tax purposes in France. To simplify, we choose to rely on the

usual following depreciation formula

zI =

n∑
t=1

(1− δ̄I)t−1δ

(1 + r̄)t−1

where δ̄I is a mean of the industrial deprecation rates for the period 1984-2002 and r̄ is the mean

nominal interest rate over the period 1990-2002.

We measure firm productive efficiency by means of two complementary indicators, namely

apparent labor productivity (ALP) and total factor productivity (TFP). Labor productivity is de-

fined as the log-ratio of real value added on labor (hours worked):

lnLPit = ln

(
Vit
Lit

)
(C.4)

where Vit denotes the value added of the firm deflated by sectoral price indexes published

18In this equation, we abstract from tax credit allowance.
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by INSEE (French System of National Accounts). Next, we compute total factor productivity

by using the so-called multilateral productivity index first introduced by Caves et al. (1982) and

extended by Good et al. (1997). This methodology consists of computing the TFP index for firm

i at time t as follows:

lnTFPit = ln Yit − ln Yt +
t∑

τ=2

(
ln Yτ − ln Yτ−1

)
−


N∑
n=1

1
2 (Snit + Snt) (ln Xnit − ln Xnt)

+
t∑

τ=2

N∑
n=1

1
2 (Snτ + Snτ−1) (ln Xnτ − ln Xnτ−1)

 (C.5)

where Yit denotes real gross output produced by firm i at time t using the set of n inputs

Xnit and input X is alternatively capital stocks (K), labor in terms of hours worked (L) and

intermediate inputs (M ). Snit is the cost share of input Xnit in the total cost. Subscripts τ and n

are indexes for time and inputs, respectively. Symbols with upper bar correspond to measures

for the reference point (the hypothetical firm), computed as the means of the corresponding

firm-level variables, over all firms in year t. Note that Eq.(C.5) implies that references points

lnY and lnX are the geometric means of the firm’s output quantities and input quantities,

respectively, whereas the cost share of inputs of the representative firms S is computed as the

arithmetic mean of the cost share of all firms in the dataset.

This methodology is particularly well suited for comparisons within firm-level panel data

sets across industries because it guarantees the transitivity of any comparison between two

firm-year observations by expressing each firm’s input and output as deviations from a single

reference point.
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Appendix D. Robustness checks: application to labor productivity

This appendix presents robustness checks for all results on participation, entry and remaining

threshold distributions using labor productivity as the θ-attribute. We stack all tables without

commenting further.

Table D.1: Participation rates and labor productivity premium, by industry

Industry Name ] Obs. PR ALPP

Market participation

All Manufacturing 337,275 .738 .171

Automobile 9,213 .797 .154
Chemicals 34,886 .836 .161
Clothing and Footwear 27,475 .668 .422
Electric and Electronic Components 14,413 .772 .252
Electric and Electronic Equipment 19,006 .753 .217
House Equipment and Furnishings 23,526 .822 .162
Machinery and Mechanical Equipment 61,870 .701 .131
Metallurgy, Iron and Steel 60,768 .727 .080
Pharmaceuticals 8,677 .915 .170
Printing and Publishing 29,001 .608 .145
Textile 21,418 .796 .256
Transportation Machinery 5,076 .794 .221
Wood and Paper 21,946 .691 .168

Market entry

All Manufacturing 74,832 .231 .017

Automobile 1,635 .252 .006
Chemicals 5,026 .266 .008
Clothing and Footwear 7,358 .197 .055
Electric and Electronic Components 2,858 .246 .035
Electric and Electronic Equipment 3,775 .218 .018
House Equipment and Furnishings 3,488 .280 .029
Machinery and Mechanical Equipment 15,612 .236 .014
Metallurgy, Iron and Steel 14,362 .231 .006
Pharmaceuticals 660 .312 -.039
Printing and Publishing 9,735 .218 .020
Textile 3,687 .234 .037
Transportation Machinery 886 .234 .003
Wood and Paper 5,750 .203 -.019

Market remaining

All Manufacturing 218,102 .929 .157

Automobile 6,517 .946 .122
Chemicals 25,926 .956 .193
Clothing and Footwear 15,708 .911 .373
Electric and Electronic Components 9,759 .943 .220
Electric and Electronic Equipment 12,286 .943 .220
House Equipment and Furnishings 16,890 .948 .143
Machinery and Mechanical Equipment 37,983 .912 .122
Metallurgy, Iron and Steel 38,870 .925 .070
Pharmaceuticals 7,015 .974 .241
Printing and Publishing 15,241 .869 .137
Textile 14,981 .946 .214
Transportation Machinery 3,535 .946 .256
Wood and Paper 13,391 .920 .161

PR: participation rate. ALPP: Labor Productivity Premium.
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Table D.2: Maximum likelihood scores and number of iterations, by industry

Industry Name lN (µ, σ) lΓ(α, β) lB(α, β) ]ite.N ]ite.Γ ]ite.B

Market participation

All Manufacturing -187,902.0 -188,348.8 -188,093 5 12 8

Automobile -4,523.7 -4,530.3 - 4 14 -
Chemicals -15,244.2 -15,248.2 - 4 6 -
Clothing and Footwear -15,086.9 -15,079.5 -15,186.7 6 12 4
Electric and Electronic Components -7,260.6 -7,291.9 -7,275 4 12 7
Electric and Electronic Equipment -10,073.6 -10,136.9 -10,102.6 4 9 7
House Equipment and Furnishings -10,704.3 -10,716.2 - 4 9 -
Machinery and Mechanical Equipment -36,738.3 -36,828.9 -36,765.6 5 8 7
Metallurgy, Iron and Steel -35,334.9 -35,345.3 - 4 10 -
Pharmaceuticals -2,493.6 -2,488.3 - 4 7 -
Printing and Publishing -19,030.4 -19,071.4 -19,037.7 6 10 6
Textile -10,271.1 -10,301.5 -10,287.1 3 9 6
Transportation Machinery -2,474 -2,483.6 -2,479.4 3 9 7
Wood and Paper -13,105.3 -13,157.5 -13,116.1 5 9 7

Market entry

All Manufacturing - -40,166.9 -40,162.0 - 13 7

Automobile -923.1 -923.8 -923.5 4 15 6
Chemicals - - - - - -
Clothing and Footwear - -3,541.8 -3,549.8 - 13 8
Electric and Electronic Components -1,569.1 -1,570.9 -1,570.4 8 6 5
Electric and Electronic Equipment - -2,010.8 -2,009.6 - 12 7
House Equipment and Furnishings -2,026.7 -2,027.7 -2,026.7 9 8 6
Machinery and Mechanical Equipment - -8,484.5 -8,483.7 - 12 7
Metallurgy, Iron and Steel -7,741.5 -7,740.4 -7,741.4 7 16 7
Pharmaceuticals - - - - - -
Printing and Publishing - -5,075.3 -5,073.9 - 19 6
Textile -1,985.3 -1,988.5 -1,987.3 27 7 8
Transportation Machinery -474.0 -473.8 -474 6 22 8
Wood and Paper - -2,872.4 -2,871.2 - 11 9

Market remaining

All Manufacturing -54,869.3 -54,950.6 - 4 7 -

Automobile -1,346.4 -1,346.6 -1,347.1 5 7 12
Chemicals -4,555.4 -4,560.4 - 4 8 -
Clothing and Footwear -4,367.9 -4,364.7 -4,381.7 4 13 7
Electric and Electronic Components -2,048.8 -2,055.4 - 4 5 -
Electric and Electronic Equipment -2,571.2 -2,581.8 - 4 6 -
House Equipment and Furnishings -3,410.4 -3,411.6 - 4 5 -
Machinery and Mechanical Equipment -11,092.9 -11,111.6 - 4 10 -
Metallurgy, Iron and Steel -10,301.8 -10,304.5 - 4 8 -
Pharmaceuticals -816.5 -815.3 - 4 6 -
Printing and Publishing -5,836.5 -5,846.5 -5,837.1 5 8 9
Textile -3,066.6 -3,071.1 -3,068.8 4 5 9
Transportation Machinery -709.6 -714.1 - 3 5 -
Wood and Paper -3,645.2 -3,653.6 - 3 9 -

θ-attribute: Apparent Labor Productivity. l: log likelihood value. ]ite: Number of iterations.
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Table D.3: Maximum likelihood estimation of participation threshold distributions.

Industry Name Nµ Nσ2 Γµ Γσ2 Γp50 Bµ Bσ2 Bp50

Market participation

All Manufacturing .255 .116 .350 .087 .271 .311 .062 .255

Automobile .192 .113 .301 .068 .229 - - -
Chemicals -.001 .232 .242 .099 .125 - - -
Clothing and Footwear .385 .031 .405 .025 .385 .391 .028 .381
Electric and Electronic Components .281 .062 .332 .047 .286 .311 .041 .279
Electric and Electronic Equipment .298 .063 .346 .053 .296 .323 .044 .292
House Equipment and Furnishings .148 .122 .274 .065 .200 - - -
Machinery and Mechanical Equipment .310 .097 .385 .085 .314 .347 .059 .308
Metallurgy, Iron and Steel .138 .316 .380 .240 .201 - - -
Pharmaceuticals -.654 .669 .130 .111 .006 - - -
Printing and Publishing .353 .203 .499 .242 .350 .400 .095 .349
Textile .230 .081 .306 .052 .252 .280 .046 .233
Transportation Machinery .214 .096 .301 .066 .232 .273 .052 .215
Wood and Paper .321 .094 .391 .085 .321 .354 .058 .318

Market entry

All Manufacturing - - 2.653 1.074 1.543 .732 .120 .939

Automobile 1.117 1.044 4.421 4.311 1.956 .719 .138 .960
Chemicals - - - - - - - -
Clothing and Footwear - - .843 .268 .740 .668 .070 .725
Electric and Electronic Components .784 .273 1.300 1.481 .946 .678 .101 .791
Electric and Electronic Equipment - - 2.599 9.076 1.568 .738 .112 .930
House Equipment and Furnishings .782 .343 1.344 1.836 .925 .661 .110 .779
Machinery and Mechanical Equipment - - 2.572 9.387 1.503 .728 .120 .932
Metallurgy, Iron and Steel 1.397 1.644 6.125 8.437 2.613 .750 .135 .990
Pharmaceuticals - - - - - - - -
Printing and Publishing - - 5.002 47.2 2.393 .757 .125 .983
Textile .805 .271 1.318 1.453 .974 .690 .098 .807
Transportation Machinery 1.804 3.528 21.6 1,522.1 5.438 .754 .150 .999
Wood and Paper - - 2.960 11.9 1.777 .759 .109 .956

Market remaining

All Manufacturing -.203 .215 .136 .047 .048 - - -

Automobile -.389 .289 .103 .041 .020 .080 .030 .002
Chemicals -.340 .225 .093 .030 .021 - - -
Clothing and Footwear .120 .071 .233 .027 .195 .196 .032 .144
Electric and Electronic Components -.080 .122 .139 .031 .075 - - -
Electric and Electronic Equipment -.025 .099 .151 .029 .094 - - -
House Equipment and Furnishings -.312 .235 .108 .036 .030 - - -
Machinery and Mechanical Equipment -.094 .179 .165 .052 .078 - - -
Metallurgy, Iron and Steel -.636 .600 .120 .096 .005 - - -
Pharmaceuticals -.806 .424 .047 .022 .000 - - -
Printing and Publishing -.158 .326 .202 .115 .064 .163 .061 .029
Textile -.222 .186 .118 .034 .044 .095 .028 .012
Transportation Machinery -.043 .101 .138 .028 .079 - - -
Wood and Paper -.114 .177 .155 .047 .072 - - -

Nµ: Estimated mean of the normal distribution; Nσ2 : estimated variance of the normal distribution; Γµ:
estimated mean of the gamma distribution; Γσ2 estimated variance of the gamma distribution; Γp50 : es-
timated median of the gamma distribution; Bµ: estimate mean of the beta distribution; Bσ2 : estimated
variance of the beta distribution; Bp50 : estimated median of the beta distribution.
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Table D.4: Vuong’s z test for model selection using Labor Productivity as the θ-attribute

Industry Name zN ,Γ zN ,B zΓ,B Ranking Conclusion

Market participation

All Manufacturing 712.4 1,294.7 -523.3 N � B � Γ C ∼ N (.3, .3)a

Automobile 115 - - N � Γ C ∼ N (.2, .3)
Chemicals 51.2 - - N � Γ C ∼ N (−.0, .5)
Clothing and Footwear -1.4 113.6 44.3 Γ � N � B C ∼ Γ(6.6, .1)
Electric and Electronic Components 13.8 227.2 -82.3 N � B � Γ C ∼ N (.3, .2)a

Electric and Electronic Equipment 42.7 67.8 -78.9 N � B � Γ C ∼ N (.3, .3)a

House Equipment and Furnishings 252.2 - - N � Γ C ∼ N (.1, .3)
Machinery and Mechanical Equipment 591.6 1,39.1 -643.8 N � B � Γ C ∼ N (.3, .3)a

Metallurgy, Iron and Steel 275.8 - - N � Γ C ∼ N (.1, .6)
Pharmaceuticals -196.4 - - Γ � N C ∼ Γ(.2, .9)
Printing and Publishing 37.8 51.6 -432.9 N � B � Γ C ∼ N (.4, .5)a

Textile 219.9 506.6 -76.9 N � B � Γ C ∼ N (.2, .3)a

Transportation Machinery 91.6 428.3 -49.2 N � B � Γ C ∼ N (.2, .3)a

Wood and Paper 409.6 64.8 -586.1 N � B � Γ C ∼ N (.3, .3)a

Market entry

All Manufacturing - - -197.1 B � Γ C ∼ B(.5, .2)

Automobile 14.9 366.5 -179.4 N � B � Γ C ∼ N (1.1, 1.0)a

Chemicals - - - ∅ ∅
Clothing and Footwear - - 72.6 Γ � B C ∼ Γ(2.7, .3)
Electric and Electronic Components 76.6 198.3 -41 N � B � Γ C ∼ N (.8, .5)a

Electric and Electronic Equipment - - -28.8 B � Γ C ∼ B(.5, .2)
House Equipment and Furnishings 81.5 29.3 -176.6 N � B � Γ C ∼ N (.8, .6)a

Machinery and Mechanical Equipment - - -176 B � Γ C ∼ B(.5, .2)
Metallurgy, Iron and Steel -154.4 -93.2 315.3 Γ � B � N C ∼ Γ(.5, 13.1)
Pharmaceuticals - - - ∅ ∅
Printing and Publishing - - -165.4 B � Γ C ∼ B(.4, .1)
Textile 10.8 297.6 -78.2 N � B � Γ C ∼ N (.8, .5)a

Transportation Machinery -67 92.8 121.1 Γ � N � B C ∼ Γ(.3, 7.5)
Wood and Paper - - -303.9 B � Γ C ∼ B(.5, .2)

Market remaining

All Manufacturing 1,036.7 - - N � Γ C ∼ N (−.2, .5)

Automobile 29.9 525.6 52.8 N � Γ � B C ∼ N (−.4, .5)
Chemicals 214.4 - - N � Γ C ∼ N (−.3, .5)
Clothing and Footwear -4.3 352.2 89.9 Γ � N � B C ∼ Γ(2.0, .1)
Electric and Electronic Components 245.2 - - N � Γ C ∼ N (−.1, .3)
Electric and Electronic Equipment 179 - - N � Γ C ∼ N (−.0, .3)
House Equipment and Furnishings 118.1 - - N � Γ C ∼ N (−.3, .5)
Machinery and Mechanical Equipment 636.9 - - N � Γ C ∼ N (−.1, .4)
Metallurgy, Iron and Steel 376.4 - - N � Γ C ∼ N (−.6, .8)
Pharmaceuticals -10.7 - - Γ � N C ∼ Γ(.1, .5)
Printing and Publishing 443.2 224.6 -42.2 N � B � Γ C ∼ N (−.2, .6)a

Textile 244.9 191.4 -54.8 N � B � Γ C ∼ N (−.2, .4)a

Transportation Machinery 23.1 - - N � Γ C ∼ N (−.0, .3)
Wood and Paper 44.4 - - N � Γ C ∼ N (−.1, .4)

zN ,Γ: HN∼Γ : |z| < +1.96 HN�Γ : z ≥ +1.96 HΓ�N : z ≤ −1.96.
zN ,B : HN∼B : |z| < +1.96 HN�B : z ≥ +1.96 HB�N : z ≤ −1.96.
zΓ,B : HΓ∼B : |z| < +1.96 HΓ�B : z ≥ +1.96 HB�Γ : z ≤ −1.96.
The [a] symbol indicates that caution is needed in the dominance ofN over B, as revealed by Monte Carlo
results presented in Section 3.3.3.
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Table D.5: Occurrence of diagnosis, according to the type of market participation

Ranking Participation Entry Remaining

No density fit

∅ 1 38 4

Unique density fit

B 0 9 0
N 0 4 1

Two density fits

N � Γ 49 0 83
N � Ba 0 9 0
N ∼ Γ 1 0 3
Γ � N 22 0 25
Γ � B 0 45 0
Γ ∼ B 0 3 0
B � N 0 6 0
B � Γ 0 21 0

Tree density fits

N � Γ � B 13 4 15
N � B � Γa 101 38 45
N ∼ Γ ∼ B 7 0 0
N ∼ Γ � B 4 0 0
Γ � N � B 28 11 28
Γ � B � N 1 24 6
B � Γ � N 1 2 0
B � N � Γ 6 6 11
B � N ∼ Γ 0 1 0

Overall dominance

N 174 55 147
Γ 52 83 59
B 7 45 11

Total

234 221 221

Figures represent counts of estimated densities for
market participation, market entry or market remain-
ing. The overall number of estimated densities for
market participation is 13 industries observed for 18
years, yielding 234 trials of density estimation. Ac-
counting for entry or remaining imply the loss of the
first year of observation due to the use of a lagged
year in identifying firm market entry and/or remain-
ing.
The [a] symbol indicates that caution is needed in the
dominance of N over B, as revealed by Monte Carlo
results presented in Section 3.3.3.

xii



  

 

ABOUT OFCE 

The Paris-based Observatoire français des conjonctures économiques (OFCE), or French Economic Observatory is an 
independent and publicly-funded centre whose activities focus on economic research, forecasting and the evaluation of 
public policy. 
 
Its 1981 founding charter established it as part of the French Fondation nationale des sciences politiques (Sciences Po), 
and gave it the mission is to “ensure that the fruits of scientific rigour and academic independence serve the public debate 
about the economy”. The OFCE fulfils this mission by conducting theoretical and empirical studies, taking part in 
international scientific networks, and assuring a regular presence in the media through close cooperation with the French 
and European public authorities. The work of the OFCE covers most fields of economic analysis, from macroeconomics, 
growth, social welfare programmes, taxation and employment policy to sustainable development, competition, innovation 
and regulatory affairs. 
 
 

ABOUT SCIENCES PO 

Sciences Po is an institution of higher education and research in the humanities and social sciences.   Its work in law, 
economics, history, political science and sociology is pursued through ten research units and several crosscutting 
programmes. 
Its research community includes over two hundred twenty members and three hundred fifty PhD candidates.  Recognized 
internationally, their work covers a wide range of topics including education, democracies, urban development, 
globalization and public health.   
One of Sciences Po’s key objectives is to make a significant contribution to methodological, epistemological and theoretical 
advances in the humanities and social sciences.  Sciences Po’s mission is also to share the results of its research with 
the international research community, students, and more broadly, society as a whole.   

 

 

PARTNERSHIP 

 

http://www.sciencespo.fr/recherche/en/content/research-centers
http://www.sciencespo.fr/recherche/en/spire-list
http://www.sciencespo.fr/recherche/en/content/phd
http://www.sciencespo.fr/recherche/en/chercheurs-finder

	THRESHOLD_GMN_JAE.pdf
	Introduction
	Econometric Strategy
	The intuition
	The formal model
	Model selection

	Monte Carlo Simulations
	Monte Carlo settings
	Baseline results
	Violations of assumptions
	Violation of A2
	Violation of A4
	Joint violation of A2 and A4


	Empirical Application to International Trade
	Choice of support
	Export participation thresholds
	Threshold distributions for entry and remaining into export markets
	Vuong's test for model selection of export markets
	Threshold dynamics and globalization

	Conclusion
	Algorithms for the Monte Carlo simulation exercises
	Distributions
	Univariate normal distribution
	Univariate gamma distribution
	Univariate beta distribution

	Productivity measures
	Robustness checks: application to labor productivity




