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The Gravity Equation in International Trade:
An Explanation

Thomas Chaney

Sciences Po

The gravity equation in international trade states that bilateral exports
are proportional to economic size and inversely proportional to geo-
graphic distance. While the role of size is well understood, that of dis-
tance remains mysterious. I offer an explanation for the role of dis-
tance: If (i) the distribution of firm sizes is Pareto, (ii) the average
squared distance of a firm’s exports is an increasing power function
of its size, and (iii) a parameter restriction holds, then the distance
elasticity of trade is constant for long distances. When the firm size dis-
tribution follows Zipf’s law, trade is inversely proportional to distance.

I. Introduction

Half a century ago, Tinbergen (1962) used an analogy with Newton’s uni-
versal lawof gravitationtodescribe thepatternsofbilateral aggregate trade
flows between any two countries A and B as “proportional to the gross na-
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tional products of those countries and inversely proportional to the dis-
tance between them” (65):1

TradeA,B ∝
GDPAð Þa GDPBð Þb
DistanceABð Þz ,

witha,b, and z ≈ 1.The so-called “gravity equation” in international trade
has proven surprisingly stable over time and across different samples of
countries andmethodologies.Head andMayer (2014) use ameta-analysis
of 1,835estimates of thedistance coefficient z in gravity type regressions in
161 published papers; 328 of those estimates are “structural,” in the sense
that they use either importer/exporter fixed effects or a ratio-type method.
The mean distance elasticity is 21.1 (median 21.14 and standard devia-
tion [SD] 0.41) among the “structural” estimates and20.93 (median20.89
and SD 0.4) among all estimates. The distance elasticity is remarkably sta-
ble, hovering around 21 over a century and a half of data. The size coef-
ficients a and b are also stable and close to one.2

While the role of economic size (a, b ≈ 1) is well understood in a va-
riety of theoretical settings, to this day no explanation for the role of dis-
tance (2z ≈ 21) has been found. This paper offers an explanation for the
role of distance.
The first contribution of this paper, proposition 1, is to identify three

sufficient conditions under which the gravity equation holds. If (i) the dis-
tribution of firm sizes is Pareto, (ii) the average squared distance of a firm’s
exports is an increasing power function of its size, and (iii) a parameter
restriction holds, then the distance elasticity of trade converges to a con-
stant for long distances, equal to 21 in the special case of Zipf’s law.
The reason why the shape of the distribution of firm sizes matters is as

follows. If long-distance trade is mostly the prerogative of large firms and
short-distance trade that of small ones, then whether distance has a weak
or a strong negative impact on aggregate trade depends onwhether there
are many or few large firms relative to small ones. The fewer large firms
there are, the stronger the negative impact of distance on trade; the faster
the distance of exports rises with firm size, the milder the negative impact
of distance on trade.
Formally, when firm sizes are Pareto distributed and the average squared

distance of exports is an increasing power function of distance, the dis-

1 Since then, the empirical trade literature has typically used GDP as a measure of size
rather than GNP. Both measures give similar results.

2 Anderson and vanWincoop (2003) extend Bergstrand’s (1985) early contribution and
show how to structurally estimate gravity equations consistent with a simple Armington model
and how to deal with differences in country sizes. Santos Silva and Tenreyro (2006), Help-
man, Melitz, and Rubinstein (2008), and Eaton, Kortum, and Sotelo (2012) show how to
accommodate zeros in bilateral trade when estimating gravity equations.
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tance elasticity of trade is asymptotically negative and constant for long
distances. One of the strengths of this result is that, beyond condition (ii)
on the average squared distance of exports, I need not impose any re-
striction on how distance affects firm-level exports. I do not have to take
a stance on the specific nature of trade frictions at the firm level. In the
special case in which the distribution of firm sizes has a very thick upper
tail and converges to Zipf’s law, how much further away large firms ex-
port compared to small ones becomes negligible, and the distance elas-
ticity of aggregate trade is approximately 21.
Using data on French exporters, I show that Zipf’s law is a good approx-

imation of the distribution of firm sizes among large firms; larger firms
export over longer distances than small ones in a such way that the aver-
age squared distance of exports is approximately a power function of firm
size, the parameter restriction I need to impose is satisfied, and the dis-
tance elasticity of aggregate trade is close to 21, as the theory predicts.
Using data disaggregated into industrial sectors, I show that systematic
variations in the distribution of firm sizes and in the power function link-
ing firm size and average squared distance of exports are associated with
systematic variations in the distance elasticity of trade, as the theory pre-
dicts.
The second contribution of this paper is to build a micro-founded

model in which conditions (i) and (ii) are derived endogenously and (iii) has
a structural interpretation. In this model, firms are distributed over a geo-
graphic space and trade intermediate inputs with each other. I assume
that information about potential suppliers and customers is costly. Firms
gradually acquire this information over time and build a network of sup-
pliers and customers spanning increasingly long distances, becoming
larger and more efficient. This process of firm growth leads to (i) an in-
variant Pareto distribution of firm sizes and (ii) an average squared dis-
tance of exports that is an increasing power function of firm size, so that
the gravity equation for aggregate trade holds.
In contrast, within the strict confines of existing trade theories, to ex-

plain the21 distance elasticity of trade, some knife-edge alignment of all
deep parameters is required, with no a priori justification.3 Even if that
condition were coincidentally satisfied in a particular year, for a particu-

3 For example, in the Anderson (1979) or the Krugman (1980) models, the product of
the demand elasticity and of the distance elasticity of iceberg trade costs must equal21. In
the Eaton and Kortum (2002) or Bernard et al. (2003) models, the product of the Frechet
shape parameter of sectors’ or firms’ productivity and of the distance elasticity of iceberg
trade costs must equal21. Arkolakis, Costinot, and Rodriguez-Clare (2012) show that sim-
ilar predictions can be derived in many settings with or without heterogeneous firms.
Across all those models, a knife-edge condition on deep parameters must be imposed for
the distance elasticity to equal 21.
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lar sector and a particular country, it is hard to understand how it could
survive more than a century of changes in the technology of transporta-
tion, the political impediments to trade, the nature of the goods traded,
or the relative importance of the countries trading these goods. I show
instead that as long as the distribution of firm sizes is relatively stable,
as long as larger firms export over longer distances than smaller ones,
and even if the geography of firm-level trade undergoes radical changes,
the gravity equation for aggregate trade remains stable. Of course, within
my model, I must impose conditions such that the distribution of firm
sizes remains stable and approximately Zipf; but given evidence gathered
in advanced economies over several decades in which the firm size distri-
bution is indeed stable, the requirement for a distance elasticity of trade
stable and close to 21 in my model is milder than in other conventional
trade models.
Recent developments in trade theory have already shifted the attention

of trade economists toward properties of the size distribution of firms.
This is the case of the seminal models of Bernard et al. (2003) or Melitz
(2003), where the distribution of firm sizes does matter for the patterns
of aggregate trade, as demonstrated in Bernard et al. (2003) and in Cha-
ney’s (2008) extensionof theMelitzmodel. Those theories, however, have
remained attached to a rudimentary notion of trade frictions (iceberg
costs and, in the case of theMelitzmodel, fixed export costs). Interpreted
literally, such trade frictions impose too narrow a structure on the pat-
terns of firm-level trade, and the conditions for the21 distance elasticity
of trade are generically not satisfied.
Beyond generating endogenously the gravity equation in international

trade, my model also offers tractable tools to analyze an economy com-
posed of a complex network of input-output linkages between firms re-
lated to the model of Oberfield (forthcoming) and to my earlier model
in Chaney (2014). The main difference compared to Oberfield’s model
is that I allow firms to buy inputs frommore than one firm in equilibrium,
but I impose a strong symmetry condition to keep the model tractable.
The main substantive difference compared to that in Chaney (2014) is
that I characterize the aggregate properties of themodel, while I restricted
my analysis to firm-level outcomes in my earlier work. The main techni-
cal difference is that I do away with “direct search” and take a more lit-
eral network view of information transmission (firms meet new trading
partners only through their existing partners). To characterize the evo-
lution of firm-level outcomes and derive aggregate predictions in such a
complex network of firm linkages, I do not solve for the characteristics
of any particular firm, but rather for the probability distribution of those
characteristics. Using Fourier transforms offers solutions for those distri-
butions in a dynamic system. These tools are general purpose and can be
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used beyond the specific trade application in this paper, for instance, to
analyze first-, second-, or even higher-order moments of aggregate vari-
ables in a network economy.4

The remainder of the paper is organized as follows. In Section II, I
show that three conditions are sufficient for the gravity equation in inter-
national trade to emerge. In Section III, I present empirical evidence that
those conditions are approximately satisfied in the data and can explain
key features of the geography of aggregate and industry-level trade. In
Section IV, I present a stylized dynamic model of firm-to-firm trade in
which those conditions emerge endogenously.

II. A Simple Explanation for the Gravity Equation
in Trade

In this section, I give three conditions sufficient for the gravity equation
in international trade to hold. This explanation is purely mathematical: I
do not propose, yet, any justification for those conditions. Section IV pre-
sents a micro-founded model in which they are derived endogenously.
The role of economic size (typically measured as GDP) is well under-

stood since at least Krugman (1980): When the size of a country doubles,
its production doubles so that its exports approximately double; its con-
sumption doubles so that its imports approximately double; that is, the
elasticity of aggregate trade with respect to importer and exporter size is
expected to be close to one, as it is in the data. Departures from the unit
elasticity with respect to size when countries of asymmetric size trade to-
gether are also well understood, as shown by Anderson and vanWincoop
(2003). As I have nothing new to say about the role of economic size, I
focus my attention entirely on the role of distance. For the remainder of
this paper, consider trade normalized by origin and destination country
size. The next proposition states my main result formally.
Proposition 1. If the following three conditions hold:

(i) firms sizes follow a Pareto distribution over [Kmin,1∞) with shape
parameter l ≥ 1;

(ii) the average squared distance of exports is an increasing power
function of firm size,meaning that the fractionof exports shipped
at a distance x by firms of size K is given by a function fK(x) such
that

4 Similar tools are used to study the percolation of information about some underlying
payoff-relevant information in a network of traders (see, e.g., Duffie and Manso 2007).
While the application is different, diffusion of information about the geographic location
of trading partners in my case, diffusion of information about the value of an asset in the
other, the underlying mathematical structure of the problem is similar.
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ð∞
0

x2fK xð Þdx 5 K m

ð∞
0

x2fKmin
xð Þdx

� �
with m > 0,

where I further impose that fK(x) and f 0
K ðxÞ are bounded from

above and that fK(x) is weakly decreasing above some threshold
�x; and

(iii) l < 1 1 m,

then 2z, the elasticity of aggregate trade between two countries A and
B normalized by country size (TradeA,B) with respect to distance, is as-
ymptotically constant:

TradeA,B DistanceA,B 5 xð Þ ∝
x →1∞

1

xz with z 5 1 1 2 l 2 1ð Þ=m:

Furthermore, if the distribution of firm sizes is close to Zipf’s law
(l ≈ 1), then aggregate trade is inversely proportional to distance
(z ≈ 1).

Proof. To save on notation, normalize size and distance units so that
Kmin 5 1 and

Ð ∞
0 x2f1ðxÞdx 5 1. Aggregate exports at a distance x, denoted

by J(x), are the sum of all firm-level exports at x. From condition (i), firm
sizes are Pareto distributed with parameter l:

J xð Þ ∝
ð∞
1

½Kf K xð Þ�K2l21dK :

Introduce the scaled function gK ðxÞ ; K m=2fK ðK m=2xÞ. Note that from con-
dition (ii), all the gK’s have the exact same second moment:ð∞

0

x2gK xð Þdx 5

ð∞
0

x2f1 xð Þdx 5 1 8K ≥ 1:

Plugging the gK’s in the expression for J and with the change of variable
u 5 K2m=2x,

J xð Þ ∝
ð∞
1

K2l2m=2gK ðK2m=2xÞdK

∝ x2½112ðl21Þ=m�
ðx
0

u2ðl21Þ=mg x=uð Þ2=m uð Þdu:

From lemma 1 in the appendix,

lim
x →∞

ðx
0

u2ðl21Þ=mg x=uð Þ2=m uð Þdu < ∞:
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This is to be expected as all the gK’s have the same finite second moment,
and 2ðl 2 1Þ=m < 2 from condition (iii). As proposed,

J xð Þ ∝
x →1∞

1

x112ðl21Þ=m :

Trivially, when the distribution of firm sizes is close to Zipf’s law (l ≈ 1),
then 1 1 2ðl 2 1Þ=m ≈ 1, and aggregate trade is inversely proportional to
distance, 1=x112ðl21Þ=m ≈ 1=x. QED
There is ample empirical evidence that the distribution of firm sizes

can be approximated by a Pareto distribution, as in condition (i), and that
among Pareto distributions, Zipf’s law (l ≈ 1) is a good candidate (see,
e.g., Axtell 2001). If Zipf’s law holds approximately, then condition (iii) is
easily satisfied, for any m > 0. So in practice, condition (iii) is unlikely to be
violated.5 Section III presents empirical evidence using French firm-level
trade data showing that conditions (i), (ii), and (iii) hold approximately,
with l ≈ 1:005 and m ≈ 0:11. Section IV offers a theoretical model in
which both conditions (i) and (ii) emerge endogenously and condition (iii)
has a structural interpretation.
To gain further intuition for the mathematics behind proposition 1,

I consider three special cases for the geography of firm-level exports in
which aggregate trade can be calculated analytically.
Firms export to a single location.—Let us start with the extreme simplify-

ing assumption that an exporter of size K exports toward a single location.
Condition (ii) imposes that the average squared distance of export of a size
K firm be proportional to K m, so the firm exports only at a distance x pro-
portional toK m/2 and nowhere else. Condition (i) further imposes that the
distribution of firm sizes is Pareto with shape parameter l: There are
dF ðK Þ ∝ K2l21dK firms of size K, with total sales proportional to K2ldK.
Only those firms export at a distance x ∝ K

m=2
, so K2ldK is the volume of

aggregate exports at that distance. With the simple change of variable
x ∝ K

m=2, exports at a distance x are inversely proportional to x112ðl21Þ=m, as
in proposition 1.
Firm-level trade independent of distance.—Now let us assume that the dis-

tribution of firm-level exports is a uniform function of distance. With
firm-level exports uniform in distance, condition (ii) imposes that a firm
of size K exports the same amount, K 12m=2=

ffiffiffi
3

p
, toward each distance x

in the interval ½0, ffiffiffi
3

p
K

m=2�, and nothing beyond. Only those firms with a
size K larger than 31=mx2=m export at a distance x. Aggregate exports at a dis-

5 Even if condition (iii) were violated, trade is still proportional to 1=x112ðl21Þ=m as long as
fl admits a finite ⌈ 2ðl 2 1Þ=m ⌉th moment. If l > 1 1 m, this is a moment of order higher
than 2, so that f l’s finite second moment in condition (ii) is no longer sufficient. For many
conventional distributions, all moments exist and are finite, or at least several are (includ-
ing moments above the second one).
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tance x, J(x), are then the sum of exports of all firms larger than 31=mx2=m.
With Pareto distributed firms as in condition (i),

J xð Þ ∝
ð∞
K531=mx2=m

1ffiffiffi
3

p K 12m=2K2l21dK ∝
1

x112ðl21Þ=m 8x ≥
ffiffiffi
3

p
:

Aggregate trade is initially constant for distances shorter than
ffiffiffi
3

p
and then

falls off with distance with an elasticity exactly equal to 2½1 1 2ðl 2 1Þ=m�,
as in proposition 1.
Zipf ’s law and firm-level trade decays exponentially with distance.—Finally,

let us assume that the distribution of firm sizes follows Zipf ’s law and
firm-level trade decays as an exponential function of distance. With ex-
ponential decay, condition (ii) imposes that a firm of size K exports
K 12m=2 expð2K2m=2xÞ at a distance x. Aggregate exports at a distance x,
J(x), are the sum of all firm-level exports. With Pareto distributed firm
sizes as in condition (i),

J xð Þ ∝
ð∞
1

K 12m=2 exp 2K2m=2x
� �

K2l21dK

5

ð∞
0

2

m
exp 2u 1 1 2

l 2 1

m

� �
2 e2ux

� �
du,

where I use the change of variable K2m=2 5 e2u to get the last equation. If
the distribution of firm sizes is exactly Zipf (l 5 1), the last integral can
be solved in closed form:

J xð Þ ∝
ð∞
0

exp 2u 2 e2uxð Þdu 5
1 2 e2x

x
:

As the distance x grows large, aggregate exports behave like 1=x, as in
proposition 1.
Those three special cases show analytically that under conditions (i) and

(ii), the distance elasticity of aggregate trade is either constant or asymp-
totically constant and equal to 21 under Zipf’s law. Those examples also
make it obvious that the details of the geography of firm-level trade be-
yond condition (ii) are not very important. In particular, I do not need
to assume that firm-level trade follows a gravity type equation: Firm-level
trade can be amass point, a uniform distribution, or an exponential distri-
bution, each of which differs fundamentally from the constant distance
elasticity of the gravity equation (trade as a power function of distance). It
is also perfectly fine if not all firms of a given size export to the very same
locations. Some may export over short distances and some over long dis-
tances. Condition (ii) imposes only that among a set of firms of size K, the
average squared distance of exports is a power function of K.
The intuition for why the distribution of firm sizes (the parameter l)

and how far large firms export relative to small ones (the parameter m)
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matter for the geography of aggregate trade is straightforward. If small
firms mostly export over short distances, at least on average, and large firms
export over long distances, on average, then aggregate exports toward re-
mote locations are mostly coming from large firms. The more large firms
there are relative to small ones (the smaller l) or the faster the distance of
firm-level trade increases with firm size (the larger m), themilder the neg-
ative impact of distance on aggregate trade (the smaller 1 1 2ðl 2 1Þ=m).
Furthermore, if the distribution of firm sizes is very thick tailed and is close
to Zipf’s law (l ≈ 1), then surprisingly, whether the average distance of ex-
ports increases fast or slowly with firm size (m > 0 large or small) no longer
matters, and aggregate exports are inversely proportional to distance
2z 5 1 2 2ðl 2 1Þ ≈ 21.

This is not a tautological proposition. Zipf’s law is a statement about
how much different firms sell. The gravity equation is a statement about
where different countries export.
One strength of proposition 1 is to formally link one power law (the dis-

tribution of firm sizes) with another (the geographic distribution of ag-
gregate exports). It is as if the power law property of the size distribution
of firmswere “transferred” to the geographic distribution of aggregate ex-
ports. Proposition 1 is of general interest: It says that for any population of
agents with Pareto distributed sizes such that larger agents behave differ-
ently from small ones in one alternative dimension, this alternative di-
mension will also be Pareto distributed with a specific exponent. For in-
stance, if firms’ (or plants’) employment sizes are Pareto distributed and
firms (or plants) withmore employees pay higher wages in such a way that
average squared wages are a power function of firm or plant size, then ac-
cording to proposition 1, this implies that the income distribution should
also be Pareto distributed. Many economic variables are Pareto distrib-
uted (see Gabaix 2008), so proposition 1 may prove useful in various set-
tings. I leave such applications for future research.

III. Empirical Evidence

I now turn to an empirical exploration of proposition 1 using Frenchfirm-
level trade data. First, I present evidence that conditions (i)–(iii) and prop-
osition 1 hold in the data on all firms. Second, I explore amore subtle pre-
diction emanating from proposition 1: Variations across sectors in the
distribution of firm sizes and in how firm size affects the average squared
distance of exports ought to be associated with variations in the distance
elasticity of sectoral trade.

A. Data

Firm-level data.—To calibrate the distribution of firm sizes and the squared
distance of exports, I use data on French exporters in 1992. The data are
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collected by the French customs and are similar to the data I used in Cha-
ney (2014). For each exporter, I know how much (in French francs) and
where it exports. I restrict my sample to firms that export over 1 million
French francs (US$200,000 in 1992). There are around 28,000 such firms
in my sample. When needed, data are disaggregated into 82 industrial
sectors (three-digit).
Aggregate data.—Aggregate bilateral exports from France are constructed

by summing up firm-level exports, either across all firms or within each
industrial sector. I match this data set with data on population-weighted
distances between countries from the Centre d’Etudes Prospectives et
d’Informations Internationales (CEPII) and with data on bilateral trade
flows from the National Bureau of Economic Research.6

B. Variable Definitions and Parameter Estimation

Following Axtell (2001), I order all French exporters in increasing order
of size, where a firm’s size is the value of its worldwide exports. I con-
struct 50 bins of equal log width, b 5 1,… , 50, ranging from 1 million
French francs to the actual largest amount exported by a single firm.
The average size of firms in bin b is given by

Kb 5 oiocexportsi,c1 i ∈ b½ �
oi1 i ∈ b½ � , (1)

where exportsi,c are total exports of firm i to country c and 1[�] is the in-
dicator function.
The fraction of firms of size larger than Kb is given by

1 2 F Kbð Þ 5 o50
b 05boi1½i ∈ b 0�

o50
b 0051oi1½i ∈ b 00� : (2)

The average squared distance of exports among firms in bin b is given
by

D Kbð Þ 5 o
c

DistanceFrance,cð Þ2 oi∈b1½exportsi,c > 0�
oc 0oi∈b1½exportsi,c 0 > 0�
� �

, (3)

where DistanceFrance,c is the distance between France and country c. In
each bin b, there are many firms. From this large number of firms, the fre-

6 See Mayer and Zignago (2006) for further details on the construction of the distance
measures. See Feenstra et al. (2004) for further details on the construction of bilateral
trade data from the UN Comtrade data set. I am grateful to Thierry Mayer for providing
me with a concordance table between the pre-1993 French nomenclature of industrial sec-
tors (Nomenclature d’Activites et de Produits) and the international nomenclature (Inter-
national Standard Industrial Classification).
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quency at which firms in bin b export to country c is an empirical proxy for
the function fKb

ðDistanceFrance,cÞ.7
Proposition 1 relates the shape parameter of the distribution of firm

sizes (l) and the size elasticity of the average squared distance of exports
(m) to the distance elasticity of trade (z).
The shape parameter of the Pareto distribution of firm sizes, l, is es-

timated by ordinary least squares (OLS) from

ln½1 2 F Kbð Þ� 5 a 2 l ln Kbð Þ 1 eb: (4)

The size elasticity of the average squared distance of exports, m, is esti-
mated by OLS from

ln D Kbð Þ 5 a 1 m ln Kbð Þ 1 eb: (5)

The distance elasticity of aggregate exports, z, is estimated by OLS from

ln ExportsFrance,c
� �

5 a 1 b ln Importscð Þ 2 z ln DistanceFrance,cð Þ 1 ec , (6)

with ExportsFrance,c the sum of exports toward country c of all French firms
and Importsc the total imports by country c.8 As proposition 1 is an asymp-
totic result, I consider two specifications of (6): Either with all distances
or with only distances above 2,000 kilometers (approximately 1,200 miles,
about 80 percent of the sample).
The measures Kb, 1 2 F ðKbÞ, and D(Kb) in equations (1)–(3) and the

parameters l, m, and z in equations (4)–(6) are computed using either
data on all firms or data disaggregated into sectors.

C. Testing Proposition 1 across All Firms

Figure 1 shows that conditions (i)–(iii) in proposition 1 are approximately
satisfied. The top panel shows that the distribution of firm sizes is well

7 I could instead use a value-weighted measure of this frequency:

D Kbð Þ 5 o
c

DistanceFrance,cð Þ2 oi∈bexportsi,c1 exportsi,c > 0
	 


oc 0oi∈bexportsi,c 01 exportsi,c 0 > 0
	 
 !

:

Using value weights introduces some additional amount of residual noise, but the statisti-
cal tests in this section are all robust to using this alternative specification, as shown in the
online appendix.

8 I use data only on French exports, so that I cannot include both importer and exporter
fixed effects, which Head and Mayer (2014) recommend as good practice for estimating
gravity equations. This specification with a control for aggregate imports rather than
GDP is, however, immune to the omitted variable critique of Anderson and van Wincoop
(2003): Aggregate imports by country c control for any unobserved differences in prices
between c and other exporters (the inward resistance term of Anderson and vanWincoop);
the constant a controls for any difference in prices between France and other exporters
(the outward resistance term).
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FIG. 1.—Conditions (i) and (ii) in the data



approximated by Zipf ’s law, 1 2 F ðK Þ ∝ K2l with l 5 1.0048, as in con-
dition (i). The bottom panel shows that the average squared distance of
exports is approximately a power function of firm size, DðK Þ ∝ K

m
with

m 5 0.113, as in condition (ii).9 The parameter restriction of condition (iii)
is satisfied for the point estimates (1.005 < 1.113).
Table 1 presents formal statistical tests for conditions (i)–(iii) and for

proposition 1.
The Pareto distribution in condition (i) offers a precise approximation

of the distribution of firm sizes. The R2 from estimating equation (4) is
98.1 percent. The shape parameter l is precisely estimated and is close to
the unity Zipf’s law benchmark (l 5 1.0048, standard error [SE] 0.0213).
The relationship between firm size and the average squared distance of
exports is close to the log-linear relation of condition (ii). The R2 from es-
timating equation (5) is 81.7 percent. The elasticity parameter m is pre-
cisely estimated (m5 0.113, SE 0.0078). To test the parameter restriction
l < 1 1 m of condition (iii), I form the probability Prðl ≥ 1 1 mÞ by esti-
mating the parameters l and m from 10,000 bootstrapped samples. Con-
dition (iii) is violated for 0.02 percent of the estimates only.

9 The straight lines in the top and bottom panels of fig. 1 correspond to fitted regression
lines from estimating eqq. (4) and (5), respectively.

TABLE 1
Testing Proposition 1 across All Firms

Condition (i): distribution of firm sizes l 5 1.0048 (SE 5 0.0213, R 2 5 .981)
Condition (ii): average squared distance
of exports m 5 0.113 (SE 5 0.0078, R 2 5 .817)

Condition (iii): parameter restriction
(l < 1 1 m) Pr(l ≥ 1 1 m) 5 0.02%

Distance elasticity of trade:
All distances zall 5 0.767 (SE 5 0.111, R 2 5 .810)
Long distances (>2,000 km) zlong 5 1.090 (SE 5 0.215, R 2 5 .720)
Predicted distance elasticity of trade 1 1 2(l 2 1)/m 5 1.086 (SE 5 0.520)

Proposition 1:
Wald test for zall 5 1 1 2(l 2 1)/m p-value of x2 test 5 99.3%
Wald test for zlong 5 1 1 2(l 2 1)/m p-value of x2 test 5 99.4%

Source.—French customs, CEPII, and NBER.
Note.—This table tests proposition 1 using data on all 27,903 French firms that export

more than 1 million French francs in 1992 (≈US$200,000). The variable l is the Pareto
shape coefficient for the distribution of firm sizes, estimated from (4); m is the size elas-
ticity of the average squared distance of exports, estimated from (5); Pr(l ≥ 1 1 m) is calcu-
lated using 10,000 bootstrapped estimates of l and m; z is the distance elasticity of aggre-
gate exports, estimated from eq. (6). The standard error of the predicted distance elasticity
of trade, 1 1 2(l 2 1)/m, is computed using 10,000 bootstrapped estimates of l and m.
The p-value for the Wald test of z 5 1 1 2(l 2 1)/m is computed by comparing the Wald
statistic W 5 fz 2 ½1 1 2ðl 2 1Þ=m�g2=fVarðzÞ 1 Var½1 1 2ðl 2 1Þ=m�g to a x2, where
Var[1 1 2(l 2 1)/m] is calculated using 10,000 bootstrapped estimates of l and m. Robust
standard errors and adjusted R 2 are in parentheses.

162 journal of political economy



The distance elasticity of aggregate trade is z long 5 1:090 (SE 5 0.215,
R 2 5 .720) when using “long” distances only (>2,000 km) and z all 5 0:767
(SE5 0.111, R 2 5 .810) when using all distances. The predicted distance
elasticity of trade is 1 1 2ðl 2 1Þ=m 5 1:086 (SE 5 0.520), where I use
10,000 bootstrapped estimates to compute the standard error. It is very
close to the actual distance elasticity for long distances but larger than
the elasticity for all distances. To formally test the equality between the ac-
tual and predicted distance elasticities of trade, I form aWald test for the
equality z 5 1 1 2ðl 2 1Þ=m. The p-value for this x2 test is high (99.4 per-
cent for long distances and 99.3 percent for all distances), so that the ac-
tual and predicted distance elasticities of trade are statistically indistin-
guishable from each other. The data do not reject proposition 1.

D. Testing Proposition 1 across Sectors

Proposition 1 also predicts that variations in the Pareto shape parameter
for the distribution of firm sizes (l) and in the size elasticity of the aver-
age squared distance of firms’ exports (m) should be associated with sys-
tematic variations in the distance elasticity of trade (z). To test this predic-
tion, I exploit variations in those parameters across sectors. I estimate the
parameters ls, ms, and zs from equations (1)–(6) separately for each sector
s, where zs is estimated using trade over long distances only (>2,000 km),
and estimate the following equation:

z s 5 a 1 b 2
ls 2 1

ms

� �
1 es: (7)

To get unbiased estimates for a and b and account for estimation error
in my right-hand-side variable, I use a generalized least squares method
(GLS) and weigh each observation 2ðls 2 1Þ=ms by the inverse of its boot-
strapped variance, where I use 100 bootstraps for each sector. To prevent
my results from being driven by precisely estimated but extreme outliers,
all coefficients are 90 percent winsorised.
Figure 2 offers a visual representation of equation (7), a scatter plot of

the sectoral distance elasticity of trade, zs, as a function of 2ðls 2 1Þ=ms.
The straight line on figure 2 is the fitted line of a GLS estimation of equa-
tion (7). The raw correlation between the two variables is 31 percent, and
theweighted correlation is 89percent, where eachobservation 2ðls 2 1Þ=ms

is weighted by the inverse of its estimated (bootstrapped) variance, as in
the GLS estimation of equation (7). Variations across sectors in the Pareto
distribution of firm sizes (ls) and the size elasticity of the average squared
distance of exports (ms) are systematically associated with variations in the
distance elasticity of trade (zs), in the direction the theory predicts.
Formally, the parameter estimates from a GLS regression of equa-

tion (7) are a 5 1.113 (SE 5 0.0073) and b 5 0.113 (SE 5 0.007), and

gravity equation in international trade 163



F
IG
.
2
.—

P
ro
p
o
si
ti
o
n
1
ac
ro
ss

se
ct
o
rs



the R 2 is 79 percent. Both estimates a and b are positive and significant at
the 1 percent level, as the theory predicts. A literal interpretation of prop-
osition 1 predicts a, b5 1. This quantitative implication of proposition 1
is only partially confirmed empirically. While the estimated a is close to
one, b is close to 1/9, substantially below the predicted b 5 1. There are
several possible explanations for this discrepancy between the theory and
the data. First, estimates of the parameters l and m are only imprecisely es-
timated when the data are disaggregated into sectors, as many sectors con-
tain only a small number of firms. This may cause a downward bias in the
estimate of b. The GLS method corrects only partially for this attenuation
bias. Second, the theory behind proposition 1 is extremely stylized. It ab-
stracts from many other factors that may affect the patterns of interna-
tional trade. In trying to stay as close as possible to the theory, I have es-
timated the most minimalist gravity equation, controlling only for size
and distance. It is possible that other elements I have purposefully left
out of proposition 1 attenuate its sharp prediction and bias the estimates
of b downward.

IV. A Dynamic Model of Firm-to-Firm Trade

In this section, I present a dynamic model of firm-to-firm trade in which
conditions (i) and (ii) in proposition 1 emerge endogenously, and the pa-
rameter restriction (iii) has a structural interpretation. This model is styl-
ized. It is meant as an illustration of amechanism that generates sufficient
conditions for the gravity equation in international trade.

A. Setup

The world is made of a continuum of locations. Within each location,
there is a continuum of firms, born at a constant rate. Once born, a firm
gradually acquires new trading partners in increasingly remote locations.
A firm trades intermediate inputs with all its trading partners (buys from
suppliers and sells to customers). Older firms havemore trading partners
so that they are larger and export more and over longer distances. I take
all the parameters governing the dynamic evolution of firms as well as the
determinants of the amounts traded as exogenous. In the online appen-
dix, I offer a micro-founded model in which those parameters are deter-
mined endogenously. As this micro-foundedmodel is not the primary fo-
cus of this paper, I have decided to relegate it to the online appendix for
the benefit of the curious reader only.10

10 The model is one in which firms combine equipped labor with differentiated interme-
diate inputs. As in Romer (1990), the diversity of a firm’s suppliers acts in a way similar to
physical capital. As firms “invest” into acquiring information about new suppliers, they be-
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Space.—Firms are uniformly distributed over an infinite one-
dimensional continuous space represented by R. While this topology
is not a good description of the actual world, I nonetheless generate rich
predictions regarding the geography of firm-level and aggregate trade. As
the model will be symmetric, I focus my attention on a firm located at the
origin, that is, coordinate x 5 0.
Time.—Time is continuous, with new firms born at a rate g in each lo-

cation, so at time t, there is the same density of firms egt in every location.
This parameter g is endogenously determined from the free entry of new
firms in the online appendix.
Birth and death of a firm.—When a firm is born, it samples a mass K0 of

contacts among other newborn firms only. This symmetry assumption is
strong but seems a good compromise between tractability and keeping
rich predictions for firm heterogeneity.
The K0 contacts of a newborn firm are distributed geographically ac-

cording to the density function k0(�): the mass of contacts in the interval
[a, b] is

Ð b
a k0ðxÞdx. I assume that k0 is symmetric and has a finite second

moment but can take any arbitrary shape otherwise.
Firms are infinitely lived. All results carry throughwith exogenous Pois-

son death shocks.
Birth and death of contacts.—New contacts are continuously created. At

any point in time, each existing contactmay reveal one of its own contacts
according to a Poisson process with arrival rate b. In other words, a firm
directly learns about new contacts from the contacts of its existing con-
tacts. This corresponds to what I call remote search in Chaney (2014).
This parameter b is endogenously determined from the optimal decision
to acquire new contacts in the online appendix.
Existing contacts are continuously lost to an exogenous Poisson shock

with rate d.
Firm-to-firm trade.—As a result of informational frictions, a firm sells its

output only to its existing contacts. I normalize the value of individual
shipments to one for all firms for simplicity. The number of contacts of a
firm, K, is therefore also a measure of its size. The main conclusions of
themodel are robust to allowing an active intensivemargin of shipments,
for example, with larger firms sending not only more but also larger ship-
ments. I derive the value of shipments endogenously and the conditions
under which all shipments have equal size in the online appendix.

come larger andmore efficient. I show how to use the analogy between physical capital and
diversity of suppliers to rephrase the dynamic problem of the firm as a classical Lucas
(1967) model of investment. The model delivers endogenous entry of new firms at a con-
stant rate and Gibrat’s law, a growth rate of individual firms independent of size. I charac-
terize along a steady-state growth path the equilibrium of an economy made up of increas-
ingly complex vertical production chains.
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I assume g > b 2 d > 0. The assumption b 2 d > 0 is not required, but
it rules out the counterfactual prediction of infinitesimally small firms
and firm sizes shrinking over time. The assumption g > b 2 d rules out
a degenerate equilibrium in which older firms become “too” large.
I now define two variables: The function ka describes the geographic

distribution of the contacts of a firm of age a, and Ka describes the total
mass of contacts of this firm,

ka :R→R1, Ka ;
ð
R

ka xð Þdx,

where ka(x) is the density of contacts a firm of age a has in location x: The
mass of contacts in the interval [a, b] is

Ð b
a kaðxÞdx. The total mass of con-

tacts a firm of age a has worldwide is Ka.
The distribution of contacts evolves recursively according to the partial

differential equation (PDE)

∂
∂a

ka xð Þ 5 b

ð
R

ka x 2 yð Þ
Ka

ka yð Þdy 2 dka xð Þ, (8)

with the initial condition k 0(x). Multiplying both sides by dxda, (8) de-
scribes the net creation of new contacts in a neighborhood dx of location
x over a short time interval da. Any existing contact of the firm (there are
ka(y)dy of them in each neighborhood dy of y) reveals with probability
bda one of their contacts. This contact happens to be in a neighborhood
dx of x with probability ½kaðx 2 yÞ=Ka�dx.11 To count all newly acquired
contacts, I add the names coming from all possible sources (I integrate
y over R), and I remove the dka(x)dxda old contacts exogenously lost.
With continuous time, space, and a continuous measure of contacts, I

have removed all sources of randomness from the model. Age fully de-
termines size and the geography of trade. A discrete and stochastic ver-
sion of this model would break the tight link between age and firm char-
acteristics.
I show in the next section that the law of motion (8) for the distribu-

tion of a firm’s contacts implies that conditions (i) and (ii) of proposi-
tion 1 are exactly satisfied. But before doing so, I present one interme-
diate result that sheds light on the mechanics of the model.

11 The distribution of contacts for a firm of age a located in y, call it ky,a, is the same as that
of a firm of the same age a located in the origin (y 5 0), k 0,a, except all coordinates are
simply shifted by the constant 2y: k0,aðxÞ 5 ky,aðx 2 yÞ 5 kaðxÞ. I rely here on the simplify-
ing assumption that a firm of age ameets only other firms in the same cohort, which them-
selves have the same distribution ka. I show in the online appendix how this strong assump-
tion can be substantially relaxed.
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Proposition 2. For any initial distribution k 0 that is symmetric and
admits a finite second moment, the normalized distribution of contacts
of a firm of age a, fa 5 ka=Ka, converges when age a grows large to a La-
place distribution (a two-sided exponential),

fa xð Þ ∼
a →∞

1

2
ffiffiffiffiffiffiffiffiffiffi
D0=2

p
eba=2

exp 2
xj jffiffiffiffiffiffiffiffiffiffi

D0=2
p

eba=2

 !
:

This property holds exactly for all a’s if

f0 xð Þ 5 1

2
ffiffiffiffiffiffiffiffiffiffi
D0=2

p exp 2
xj jffiffiffiffiffiffiffiffiffiffi
D0=2

p !
:

Proof. To save on notation, normalize units so that
ffiffiffiffiffiffiffiffiffiffi
D0=2

p
5 1. Inte-

grate over R the law of motion (8) for a firm’s contacts to get a simple
ordinary differential equation (ODE) for Ka, ð∂=∂aÞKa 5 ðb 2 dÞKa with
initial condition K 0, which admits the solution Ka 5 K 0e ðb2dÞa . Use this so-
lution for Ka and simple manipulations to derive from (8) a PDE for the
normalized distribution of contacts fa 5 ka=Ka :

∂
∂a

fa xð Þ 5 b

ð
R

fa x 2 yð Þfa yð Þdy 2 fa xð Þ
� �

, (9)

with initial condition f0 5 k0=K 0. Taking a Fourier transform of (9), with
the notation f̂ for the transform of f, recognizing a convolution product
in the integral on the right-hand side of (9), and using the convolution
theorem gives a simple ODE for f̂a ,12

∂
∂a

f̂a 5 bf̂að f̂a 2 1Þ, (10)

with initial condition f̂0. Introducing hðeba=2is, aÞ 5 f̂aðsÞ, simple algebra
gives

∂
∂a

h y, að Þ 5 bf½h y, að Þ�2 2 h y, að Þg 2
b

2
y
∂
∂y

h y, að Þ:

12 The Fourier transform of a function f is defined as f̂ ðsÞ 5 Ð
R e

2isx f ðxÞdx. If f is the
probability density function (pdf) of a random variable X, it is intimately related to the
characteristic function: JX ðsÞ 5 E½eisX � 5 f̂ ð2sÞ. The convolution f ∗ g of two functions f
and g is defined by f ∗ g ðxÞ ; Ð

R f ðxÞg ðy 2 xÞdy. Remember also that the pdf of the sum
of two randomvariables is the convolution of their pdfs. The convolution theorem states that
the Fourier transform of the convolution product of two functions is the pointwise product
of their Fourier transforms, df ∗ g ðsÞ 5 f̂ ðsÞ � ĝ ðsÞ.
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From lemma2 in the appendix, lima →1∞ð∂=∂aÞhðy, aÞ 5 0. So as a→1∞,
h(y, a) is defined by

½h y, að Þ�2 2 h y, að Þ 5 1

2
y
∂
∂y

h y, að Þ:

This ODE admits the solution hðy, aÞ 5 1=ð1 2 y2Þ. Recognizing the
transform of a Laplace distribution,

f̂a sð Þ ∼
a →∞

1

1 2 ðeba=2isÞ2 5
1

1 1 ðe ba=2sÞ2 8s

⇔ fa xð Þ ∼
a →∞

1

2eba=2
exp 2

xj j
e ba=2

� �
8x:

In the special case in which the initial distribution of contacts is exactly
a two-sided exponential, f0ðxÞ 5 1=2 expð2jxjÞ, a simpler guess and verify
proof is in order. Guess faðxÞ 5 1=2jðaÞ expð2jðaÞjxjÞ for some j(a) to
be determined; insert this guess into (9); calculating some easy integral
results in the ODE j0ðaÞ 5 2ðb=2ÞjðaÞ, which is solved by jðaÞ 5 e2ba=2.
QED
The intuition for proposition 2 is as follows. As a firm grows larger, it

meets the contacts of its contacts. Information about distant contacts dif-
fuses through this network of firm-to-firm trade. Any individual firm grad-
ually escapes gravity. The distribution of its contacts converges to what
resembles a uniform distribution over the entire real line: For any two lo-
cations x and y, no matter how far apart from each other, the fractions of
contacts in x and in y become equal for a large. In other words, the world
does become “flat” for individual firms as they grow large. But, as the
reader can already guess, this does not mean the world becomes “flat” in
the aggregate.

B. Three Sufficient Conditions for Gravity

The next proposition shows formally that in my model of firm-to-firm
trade, the distribution of firm sizes is exactly Pareto, as in condition (i)
of proposition 1, and the average squared distance of exports is exactly
a power function of firm size, as in condition (ii) of proposition 1.
Proposition 3. If the population of firms grows at a constant rate g

and the contacts of individual firms evolve according to equation (8), then
the distribution of firm sizes is Pareto,

F Kð Þ 5 1 2
K

K0

� �2g=ðb2dÞ
 for K ≥ K0, (11)
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and the average squared distance from a firm’s contacts is a power func-
tion of its size,

D Kð Þ ;
ð
R

x2fK xð Þdx 5 D0

K

K0

� �b=ðb2dÞ
, (12)

where fK is the distribution of contacts of a firm with K contacts ( fK 5
kaðK Þ=K with a(K ) such that KaðK Þ 5 K ) and D0 ;

Ð
R x

2f0ðxÞdx is the aver-
age squared distance from initial contacts.
Proof. I derive each equation in turn.
Equation (11): From the proof of proposition 2, Ka 5 K0e ðb2dÞa . The re-

lation between a firm’s number of contacts K and its age a is therefore
given by ea 5 ðKa=K0Þ1=ðb2dÞ. The population grows at an exponential rate
g, so that at any time t, the fraction of firms younger than a is ð1 2 e2gaÞ.
Since a firm of age a has a total number of contacts Ka, use the above ex-
pression for e a to get the proposed formula for the fraction of firms with
fewer than K contacts:13

F Kð Þ 5 1 2
K

K 0

� �2g=ðb2dÞ
:

Equation (12): The average squared distance between a firm of age a
and its contacts, Da, is the second moment of the normalized density of
contacts, fa 5 ka=Ka . Using theproperty of the Fourier transform, this sec-
ond moment is simply minus the second derivative of f̂aðsÞ evaluated at
zero. The ODE (10) for f̂a with initial condition f̂0 admits the explicit so-
lution

f̂a sð Þ 5 f̂0 sð Þ
f̂0 sð Þ 1 ½1 2 f̂0 sð Þ�eba : (13)

Simple algebra gives the second derivative of f̂aðsÞ,

f̂ 00
a sð Þ 5 eba f̂ 00

0 sð Þ eba 2 1ð Þf̂0 2 eba
	 


2 2f̂ 0
0 sð Þ2 eba 2 1ð Þ� �

eba 2 1
� �

f̂0 sð Þ 2 eba
	 
3 :

Since f0 is a well-defined symmetric pdf with second moment D0, I use
the following properties of its Fourier transform: f̂0ð0Þ 5

Ð
R f0ðxÞdx 5 1

(a pdf sums up to one), f̂ 0
0 ð0Þ 5 ð2iÞ ÐR xf 0ðxÞdx 5 0 ( f0 is symmetric),

and f̂ 00
0 ð0Þ 5 ð2iÞ2 ÐR x2f0ðxÞdx 5 2D0 ( f0’s finite second moment is D0).

The previous expression evaluated at zero simplifies into

Da 5 2f̂ 00
a 0ð Þ 5 D0e

ba :

13 Trivially in this model, the distribution of firm sizes is time invariant: F does not de-
pend on calendar time t.
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Plug the expression ea 5 ðKa=K0Þ1=ðb2dÞ into the above formula for Da to
derive the proposed

D Kð Þ 5 D0

K

K0

� �b=ðb2dÞ
:

QED
As a firm ages, the number (mass) of its contacts grows at a constant

rate equal to the net birthrate of contacts (birthrate b minus death date
d), Ka 5 K0e ðb2dÞa . Both the number of a firm’s contacts and the number
of firms grow exponentially, and the model predicts that the distribution
of the number (mass) of contacts within the population is Pareto with
shapeparameterg=ðb 2 dÞ. The upper tail of the distribution of firm sizes
is fatter (g=ðb 2 dÞ smaller) if there are more old/large firms relative to
young/small ones (g smaller) or if firm size increases faster with age
(b 2 d larger).
Note there is nothing mysterious or very elaborate about this result: A

constant growth rate of existing firms (Gibrat’s law) combined with a con-
stant growth rate of the population of firm sizes is probably the simplest
way to generate an invariant Pareto distribution of firm sizes. This corre-
sponds exactly to the Steindl (1965)model. Note also that I do not offer a
direct justification for why Zipf ’s law (g=ðb 2 dÞ ≈ 1) is a better candidate
than any other Pareto distribution. Several explanations for Zipf ’s law
have already been proposed, and I refer to them for this result.14

Themodel also predicts that as a firm ages and acquiresmore contacts,
those contacts become increasingly dispersed over space. The intuition
for this result is as follows. A firm’s initial contacts are some distance away.
Each wave of new contacts comes from firms that are themselves further
away, so each new wave is geographically more dispersed than the previ-
ous one. The average squared distance of exports increases faster with size
(g=ðb 2 dÞ larger) if firmsmeet new contacts of contacts at a faster rate (b
larger) or if their size grows at a slower rate (b 2 d smaller).
Formally, each time a firmmeets the “contacts of its contacts,” the new

average squared distance of the firm’s exports becomes the sum of the ex-
isting squared distance of the firm’s exports and the average squared dis-
tance of exports of the firm’s contacts. The reason why average squared
distances are simply added to each other can be seen from the law of mo-

14 See in particular the stochastic models in Gabaix (1999) or Luttmer (2011), which de-
liver endogenously an invariant size distribution that is close to Zipf ’s law. I choose to use
simpler tools to derive the distribution of firm sizes while adding substantial complexity on
the geographic dimension of the model. But for the addition of geographic space and the
removal of many stochastic elements, my model is close to a network interpretation of Lutt-
mer’s model, where firms innovate both on their own and by learning from other firms; if
the second channel for innovation (learning from each other) dominates, Luttmer’s model
behaves similarly to mine.
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tion of the firm’s contacts in the PDE (9). Mathematically, the integral
over y of the function fa(y)multiplied by faðx 2 yÞ is a convolution product
of the function fa with itself. In probability theory, the convolution prod-
uct is used to characterize the probability density of the sum of two ran-
dom variables. In my model, a firm located in 0 meets a contacts in x via
its existing contact in y, so that I simply add up vectors: x 2 0

!
5 y 2 0
!

1
x 2 y!. If one thinks of the signed distance of a firm’s exports as being
drawn from a random variable, then the average squared distance of
the firm’s exports is simply the variance of that random variable. Equa-
tion (9) says that the average squared distances get added up each period,
just as the variance of the sum of two random variables is the sum of their
variances.15 The firm’s contacts themselves are each forming trade links
with the contacts of their own contacts, the average squared distance of
their exports is also the sum of their existing squared distance of exports
and that of their contacts, and so on. From one period to the next, the
increase in the average squared distance of exports is proportional to the
numberofafirm’s contacts.Theaveragesquareddistanceofexportsgrows
exponentially over time. Since firm size also grows exponentially, the av-
erage squared distance of exports is a power function of size.
The key assumption necessary for equation (12) to hold is that a firm

forms new trade links with the contacts of its existing contacts or, more
generally, that it learns about new trading opportunities from its existing
trading partners. Anymodel that features such a diffusion of information
will be such that the distance of exports grows over time, and the world
becomes flat for individual firms as they get large. If this information dif-
fusion process follows an exponential growth (firms meet new trading
partners at a constant rate), then the firm size distribution is Pareto and
the average squared distance of exports is precisely a power function of
firm size.
Both conditions (i) and (ii) of proposition 1 are derived endogenously,

with g=ðb 2 dÞ the solution for the shape parameter of the Pareto distri-
bution of firm sizes (l in proposition 1) and b=ðb 2 dÞ the elasticity of the
average squared distance of exports with respect to firm size (m in prop-
osition 1). Furthermore, the parameter restriction (iii) now has a structural
interpretation: The entry rate of new firms (g) should not exceed the
sum of the growth rates of individual firms (b 2 d) and the gross creation
of new contacts (b),

15 This adding up explains why the law of motion for the location of contacts in my
model, my eq. (9), is exactly identical to the law of motion for the posterior about the type
of a payoff-relevant variable in Duffie and Manso (2007, 205, eq. [3]): In my model, infor-
mation about locations percolates whenfirms trade with each other, so that signed distances
are added up; in their model, information about an asset percolates when agents meet, so
that priors are averaged to form posteriors, i.e., they get added up (and divided by 2).
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g < b 2 dð Þ 1 b: (14)

To satisfy this restriction, it is enough that the process for creating new
contacts exhibits a lot of churning: If firms gain and lose contacts often
(b and d are large), then even if the growth rate of individual firms (b 2 d)
does not differ much from the entry rate of new firms (g), as is the case
in the data, the parameter restriction (iii) will be satisfied.
To recap, under the structural parameter restriction (14), conditions (i)–

(iii) of proposition 1 are satisfied, and the gravity equation for international
trade emerges endogenously.
The model presented above shares many features of modern hetero-

geneous firm trade models such as Melitz (2003). It is populated by het-
erogeneous firms of various sizes. Larger firms are more productive and
export more toward more countries and toward more remote countries.
The distribution of firm sizes is Pareto as in Chaney’s (2008) extension
of the Melitz model. But on a more conceptual level, this model departs
from traditional trade models in its treatment of distance and trade bar-
riers. In existing models, distance captures or proxies physical trade bar-
riers, with a direct mapping from the geography of trade barriers to the
geography of trade. Unless the geography of trade barriers is time invari-
ant, such models cannot explain why distance plays the same role today
as it did a century ago. Inmymodel, on the other hand, distance captures
informational barriers and the network that transmits information.16 Un-
like physical trade barriers, informational barriers can be circumvented
indirectly whenpeople interact and share information. Advances in trans-
portation or communication technologies affect the direct cost of infor-
mation (the function f0), even the frequency of interactions between
firms (the parameters g, b, and d). The patterns of trade at the firm level
do change with f0, g, b, and d, which I of course expect to happen along
with technological progress. But as long as the distribution of firm sizes
remains close to Zipf ’s law, the patterns of aggregate trade flows remain
essentially unchanged.

V. Conclusion

This paper offers a theoretical explanation for the gravity equation in in-
ternational trade and in particular the mysterious 21 distance elasticity
of trade. If larger firms export over longer distances than small ones, then
the impact of distance on aggregate trade depends on the distribution of
firm sizes. If firm sizes are well approximated by Zipf ’s law and if the av-
erage squared distance of firms’ exports is a power function of firm size,
as the data suggest, then the distance elasticity of trade ought to be close

16 See Allen (2014) and Dasgupta and Mondria (2014) for recent trade models with in-
formation frictions.
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to 21. This result holds irrespective of the precise impact of geographic
distance on firm-level trade. In contrast to existing models, this explana-
tion is immune to the critique that the impact of distance on trade should
evolve with changes in the technology for trading goods, in the types of
goods traded, in the political barriers to trade, in the set of countries in-
volved in trade, and so forth. As long as the distribution of firm sizes is
stable and larger firms export over longer distances than smaller ones, ag-
gregate trade should be close to inversely proportional to distance.

Mathematical Appendix

Lemma 1. The function gK ðxÞ ; K m=2fK ðK m=2xÞ, where fK satisfies the condi-
tions in proposition 1, is such that

lim
x →1∞

ðx
0

u2ðl21Þ=mg x=uð Þm=2 uð Þdu < ∞:

Proof. Defining gK ðxÞ 5 0 for K ∈ ½0, 1Þ, the integral of interest can be split
into two parts:ðx

0

u2ðl21Þ=mg x=uð Þ2=m uð Þdu 5

ð∞
0

u2ðl21Þ=mg x=uð Þ2=m uð Þdu

5

ð1
0

u2ðl21Þ=mg x=uð Þ2=m uð Þdu 1

ð∞
1

u2ðl21Þ=mg x=uð Þ2=m uð Þdu:

For 0 ≤ u ≤ 1, from l ≥ 1 in condition (i) and fK(x)’s boundedness in condi-
tion (ii),

u2ðl21Þ=mg x=uð Þ2=m uð Þ ≤ g x=uð Þ2=m uð Þ ≤ sup
x,K

gK xð Þf g

and ð1
0

sup
x,K

gK xð Þdu < ∞:

Integrate
Ð x
0 u2gK ðuÞdu by part to get

gK xð Þ 5 3

x3

ðx
0

u2gK uð Þdu 1

ðx
0

u3

3
g 0
K uð Þdu

� �
,

with
Ð x
0 u2gK ðuÞdu ≤ 1 from gK’s second moment equal to one,ð�x

0

u3

3
g 0
K uð Þdu ≤

�x4

12
sup
x,K

fg 0
K xð Þg

from f 0
K ðxÞ boundedness in condition (ii), and

Ð x
�x ðu3=3Þg 0

K ðuÞdu ≤ 0 from fK(x)
weakly decreasing above �x in condition (ii). So for all u ≥ 1,

u2½ðl21Þ=m�g x=uð Þ2=m uð Þ ≤ Au2½ðl21Þ=m�23,

where I define
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A ; 3 1 1
�x4

12
sup
x,K

gK xð Þf g
 !

< ∞:

From l < 1 1 m in condition (iii),ð∞
1

Au2½ðl21Þ=m�23du < ∞:

Invoking Lebesgue’s dominated convergence theorem,

lim
x →1∞

ðx
0

u2ðl21Þ=mg x=uð Þm=2 uð Þdu

5

ð1
0

lim
x →1∞

u2ðl21Þ=mg x=uð Þm=2 uð Þdu

1

ð∞
1

lim
x →1∞

u2ðl21Þ=mg x=uð Þm=2 uð Þdu < ∞,

as proposed. QED
Lemma 2. If f̂a , the Fourier transform of the density of contacts fa, is governed

by the ODE (10) with initial condition f̂0; if the pdf f0 is symmetric and admits a
finite second moment; if h is defined as hðeba=2is, aÞ 5 f̂aðsÞ, then

lim
a→1∞

∂
∂a

h y, að Þ 5 0:

Proof. Using the solution to the ODE (10) with initial condition f̂0 in the
proof of proposition 3, equation (13), and using hðeba=2is, aÞ 5 f̂aðsÞ, the solution
for h(y, a) is

h y, að Þ 5 f̂0 ye2ba=2ð Þ
f̂0 ye2ba=2
� �

1 1 2 f̂0 ye2ba=2
� �	 


eba
:

With the change of variable u 5 e2ba=2, the object I will take the limit of is given
by

∂
∂a

h y, að Þ 5 2
b

2
u

∂
∂u

h y,2
2

b
lnu

� �
:

From the solution for h, I get

h y,2
2

b
lnu

� �
5

f̂0 uyð Þ
f̂0 uyð Þ 1 1 2 f̂0 uyð Þ	 


u22

so that

2
b

2
u

∂
∂u

h y,2
2

b
lnu

� �
5 2

b

2

�
yf̂ 0

0 uyð Þu f̂0 uyð Þ 1 1 2 f̂0 uyð Þ	 

u22

� �
2f̂0 uyð Þ uyf̂ 0

0 uyð Þ 2 2u22 1 2 f̂0 uyð Þ	 

2 yu21 f̂ 0

0 uyð Þ� ��
� f̂0 uyð Þ 1 1 2 f̂0 uyð Þu22

	 
� �2
� �

:
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Taking limits for u→ 0 and using the following results, f̂0ð0Þ 5
Ð
R f0ðxÞdx 5 1 be-

cause f0 is a well-defined pdf that sums to one, f̂ 0
0 ð0Þ 5 ð2iÞ ÐR xf0ðxÞdx 5 0 be-

cause f0 is symmetric, and f̂ 00
0 ð0Þ 5 ð2iÞ2 ÐR x2f0ðxÞdx 5 2D0 > 2∞ because f0 ad-

mits a finite second moment, I have the following:

• limu→ 0 yf̂ 0
0 ðuyÞ 5 yf̂ 0

0 ð0Þ 5 0.
• Using L’Hopital’s rule,

lim
u → 0

f̂0 uyð Þ 1 ½1 2 f̂0 uyð Þ�u22 5 f̂0 0ð Þ 1 lim
u→ 0

1 2 f̂0 uyð Þ
u2

5 1 1 y lim
u→ 0

f̂ 0
0 uyð Þ
2u

5 1 1
y2

2
lim
u→ 0

f̂ 00
0 uyð Þ
1

5 1 2
y2

2
f̂ 00
0 0ð Þ

positive and finite for y small enough.17

•

lim
u→ 0

2 f̂0ðuyÞ uyf̂ 0
0 uyð Þ 2 2u22 1 2 f̂0 uyð Þ	 


2 yu21 f̂ 0
0 uyð Þ

n o
5 0 1 2 lim

u→ 0

1 2 f̂0 uyð Þ
u2 1 y lim

u→ 0

f̂ 0
0 uyð Þ
u

5 y2 f̂ 00
0 0ð Þ 1 y2 f̂ 00

0 0ð Þ 5 0,

where I use L’Hopital’s rule again.

Collecting all terms, I confirm

lim
a →1∞

∂
∂a

h y, að Þ 5 lim
u→ 0

2
b

2
u

∂
∂u

h y,2
2

b
lnu

� �
5 0:

QED
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