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BY VICTOR CHERNOZHUKOV∗,1, ALFRED GALICHON†,2,
MARC HALLIN‡,3 AND MARC HENRY§,4

Massachusetts Institute of Technology∗, New York University†,
Université libre de Bruxelles‡ and Pennsylvania State University§

We propose new concepts of statistical depth, multivariate quantiles,
vector quantiles and ranks, ranks and signs, based on canonical transporta-
tion maps between a distribution of interest on R

d and a reference distribu-
tion on the d-dimensional unit ball. The new depth concept, called Monge–
Kantorovich depth, specializes to halfspace depth for d = 1 and in the case
of spherical distributions, but for more general distributions, differs from the
latter in the ability for its contours to account for non-convex features of the
distribution of interest. We propose empirical counterparts to the population
versions of those Monge–Kantorovich depth contours, quantiles, ranks, signs
and vector quantiles and ranks, and show their consistency by establishing a
uniform convergence property for empirical (forward and reverse) transport
maps, which is the main theoretical result of this paper.

1. Introduction. The concept of statistical depth was introduced in order to
overcome the lack of a canonical ordering in R

d for d > 1, hence the absence of the
related notions of quantile and distribution functions, ranks and signs. The earliest
and most popular depth concept is halfspace depth, the definition of which goes
back to Tukey [54]. Since then, many other concepts have been considered: simpli-
cial depth [37], majority depth ([52] and [40]), projection depth ([38], building on
[53] and [14, 61]), Mahalanobis depth [38, 40, 41], Oja depth [45], zonoid depth
([35] and [36]), spatial depth [6, 34, 44, 57], Lp depth [62], among many others
(see, for instance, [39]). An axiomatic approach, aiming at unifying all those con-
cepts, was initiated by Liu [37] and Zuo and Serfling [62], who list four properties
that are generally considered desirable for any statistical depth function, namely
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affine invariance, maximality at the center, linear monotonicity relative to the deep-
est points, and vanishing at infinity (see Section 2.2 for details). Halfspace depth
is the prototype of a depth concept satisfying the Liu–Zuo–Serfling axioms for the
family P of all absolutely continuous distributions on R

d .
An important feature of halfspace depth is the convexity of its contours, which

thus satisfy the star-convexity requirement embodied in the linear monotonic-
ity axiom. That feature is shared by most existing depth concepts and might be
considered undesirable for distributions with non-convex supports or level con-
tours, and multi-modal ones. Proposals have been made, under the name of local
depths, to deal with this, while retaining the spirit of the Liu–Zuo–Serfling axioms:
see [1, 7, 31] and [47] who provide an in-depth discussion of those various at-
tempts. In this paper, we take a totally different and more agnostic approach, on
the model of the discussion by Serfling in [51]: if the ultimate purpose of statistical
depth is to provide, for each distribution P , a P -related ordering of Rd producing
adequate concepts of quantile and distribution functions, ranks and signs, the rel-
evance of a given depth function should be evaluated in terms of the relevance of
the resulting ordering and the quantiles, ranks and signs it produces.

Now, the concepts of quantiles, ranks and signs are well understood in two par-
ticular cases, essentially, that should serve as benchmarks. The first case is that
of the family P1 of all univariate distributions with non-vanishing Lebesgue den-
sities (either over R, or over some interval of R). Here, the concepts of quan-
tile and distribution functions, ranks and signs are the “classical” univariate ones.
The second case is that of the family Pd

ell of all full-rank elliptical distributions
over Rd (d > 1) with radial densities over elliptical support sets. Recall that the
family Pd

ell;g = {Pμ,�,g} of elliptical distributions with given radial density g (a
density over R

+) and radial distribution function G is a parametric family in-
dexed by a location parameter μ and a scatter parameter � (a symmetric pos-
itive definite real matrix) such that a random vector X has distribution Pμ,�,g

iff the residual Y := �−1/2(X − μ), which results from transforming X into
isotropic position, has spherical distribution P0,I,g . Further, this is equivalent
to RP (Y ) := (Y/‖Y‖)G(‖Y‖) having the spherical uniform distribution Ud on
the unit ball Sd in R

d . By spherical uniform, we mean the distribution of a random
vector rϕ, where r is uniform on [0,1], ϕ is uniform on the unit sphere Sd−1, and r

and ϕ are mutually independent. There, spherical contours with Pμ,I,g-probability
contents τ coincide with the halfspace depth contours, and provide a natural defi-
nition of τ -quantile contours for Y , while RP (Y ), RP (Y )/‖RP (Y )‖ and ‖RP (Y )‖
play the roles of vector ranks, signs and ranks, respectively [23–27]: we call them
spherical vector ranks, signs and ranks. On the other hand, we call the inverse
map u �−→ QP (u) of the vector rank map y �−→ RP (y) = (y/‖y‖)G(‖y‖) the
vector quantile map. In both cases, the relevance of ranks and signs, whether tra-
ditional or spherical, is related to their role as maximal invariants under groups of
transformations minimally generating P1 or the family Pd

sph := {P0,I,f } of spher-
ical distributions, of which distribution-freeness of RP is just a by-product, as
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explained in [29]. We argue that an adequate depth function, when restricted to
those two particular cases, should lead to the same well-established concepts—
classical quantiles, ranks and signs for P1, and spherical ones for Pd

sph—hence
should coincide with halfspace depth.

Now, a closer look at those two particular cases reveals that halfspace depth
contours, in P1 and Pd

sph, are the images, by the vector quantile map QP , of the
hyperspheres S(τ ) with radii τ ∈ [0,1) centered at the origin. The map QP is
the gradient of a convex function and it transports the spherical uniform distribu-
tion Ud on the unit ball Sd of Rd into the univariate distribution P ∈P1 or into the
spherical distribution P = P0,I,f of interest.

For the case of general distributions P over Rd , we proceed similarly, and de-
fine the map QP as a gradient of a convex function that transform the spherical
uniform distribution Ud into the target distribution, namely, such that if U ∼ Ud

then Y = QP (U) ∼ P . It follows from McCann’s [42] extension of Brenier’s cel-
ebrated polar factorization theorem [4] that, for any distribution P on R

d , such a
gradient QP exists, and is essentially unique. Moreover, when P has finite mo-
ments of order two, that mapping QP is the Monge–Kantorovich optimal transport
map that transfers the spherical uniform distribution Ud to P , where optimality is
in the sense of minimizing the expected quadratic cost EU(Q(U) − U)2 subject
to U ∼ Ud and Q(U) ∼ P .

This suggests a new concept of statistical depth, which we call the Monge–
Kantorovich (or MK) depth DMK, the contours of which are obtained as the im-
ages by QP of the hyperspheres with radius τ ∈ [0,1]. When restricted to P1

or Pd
sph, Monge–Kantorovich and halfspace depths coincide. Under suitable reg-

ularity conditions due to Caffarelli (see [58], Section 4.2.2), QP is a homeomor-
phism, and its inverse RP := Q−1

P is also the gradient of a convex function; the
Monge–Kantorovich depth contours are continuous and the corresponding depth
regions are nested, so that Monge–Kantorovich depth indeed provides a center-
outward ordering of Rd , namely,

y2 ≥DMK
P

y1 if and only if
∥∥RP (y2)

∥∥ ≤ ∥∥RP (y1)
∥∥.(1)

Thus, our approach based on the theory of measure transportation allows us to
define

(a) an MK vector quantile map QP , and the associated MK quantile correspon-
dence, which maps τ ∈ [0,1] to QP (S(τ )),

(b) an MK vector rank (or MK signed rank) function RP , which can be decom-
posed into an MK rank function rP from R

d to [0,1], with rP (x) := ‖RP (x)‖, and
an MK sign function uP , mapping x ∈ R

d to uP (x) := RP (x)/‖RP (x)‖ ∈ Sd−1.

To the best of our knowledge, this is the first proposal of a depth concept based on
the Monge–Kantorovich theory of measure transportation—hence, the first attempt
to provide a measure-driven ordering of Rd based on measure transportation the-
ory. Previous proposals have been made, however, of measure transportation-based
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vector quantile functions in Ekeland, Galichon and Henry [18] and Galichon and
Henry [19] (with moment conditions) and Carlier, Chernozhukov and Galichon
[5] (dropping moment conditions) who also extended the notion to vector quantile
regression, creating a vector analogue of Koenker and Basset’s [33] scalar quantile
regression. More recently, Decurninge [10] proposed a new concept of multivari-
ate Lp moments based upon a similar notion. In these contributions, however, the
focus is not statistical depth and the associated ranks and quantiles, and the lead-
ing case for the reference distribution is uniform on the unit hypercube in R

d , as
opposed to the spherical uniform distribution Ud we adopt here as leading case,
while pointing out that other reference distributions may be entertained, such as
the standard Gaussian distribution on R

d or the uniform on the hypercube [0,1]d
as previously mentioned.

We then proceed to define the empirical notions corresponding to the concepts
given above. We define the empirical MK vector quantiles and ranks as the es-
sentially unique gradients Q̂n and R̂n of a pair of convex functions solving the
Kantorovich dual problem for a Monge optimal transport with quadratic costs in-
volving the empirical distribution of the observations. Using the plug-in principle,
we then define the empirical rank and sign maps as ‖R̂n‖ and R̂n/‖R̂n‖, and the
empirical τ -quantile sets and contours as Q̂n(S(τ )) and Q̂n(S(τ )). We establish
the uniform convergence of these quantities to their theoretical counterparts. We
derive these results as a consequence of the uniform convergence of empirical
transport (vector quantile and rank) maps Q̂n and R̂n to their theoretical counter-
parts QP and RP on compact subsets of the domain’s interior. Although the defi-
nitions, in Section 2, address very general densities, consistency results are limited
to compactly supported ones, due to the lack of more general convergence results
in the measure transportation literature. This is the main theoretical result of the
paper, presented in Theorem 3.1. This result is derived through an application of
the extended continuous mapping theorem and a set of new theorems on stability
of transports under deterministic perturbations of the source and target measures,
given as Theorems A.1 and A.2 in the Appendix, which are new results of inde-
pendent interest. Application of the extended continuous mapping theorem allows
to us then to replace the deterministic perturbations by stochastic perturbations of
measures and obtain the stochastic uniform convergence of the empirical transport
maps.

Notation, conventions and preliminaries. Let (�,A,P) be some probability
space. Throughout, P denotes a class of probability distributions over Rd—unless
otherwise specified, the class of all Borel probability measures on R

d . Denote
by S

d := {x ∈ R
d‖x‖ ≤ 1} the unit ball, and by Sd−1 := {x ∈ R

d : ‖x‖ = 1}
the unit sphere, in R

d . For τ ∈ (0,1], S(τ ) := {x ∈ R
d : ‖x‖ ≤ τ } is the ball,

and S(τ ) := {x ∈ R
d : ‖x‖ = τ } the sphere, of radius τ . Let PX stand for the

distribution of the random vector X. The symbol ∂ will denote either the bound-
ary of a set or the subdifferential, as will be clear from the context. Following
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Villani [58], we denote by g#μ the image measure (or push-forward) of a mea-
sure μ ∈ P by a measurable map g : Rd → R

d . Explicitly, for any Borel set A,
g#μ(A) := μ(g−1(A)). For a Borel subset D of a vector space equipped with the
norm ‖ · ‖ and f :D→R, let

‖f ‖BL(D) := sup
x

∣∣f (x)
∣∣ ∨ sup

x �=x′

∣∣f (x) − f
(
x′)∣∣∥∥x − x′∥∥−1

.

For two probability distributions P and P ′ on a measurable space D, define the
bounded Lipschitz metric as

dBL
(
P,P ′) := ∥∥P − P ′∥∥

BL := sup
‖f ‖BL(D)≤1

∫
f d

(
P − P ′),

which metrizes the topology of weak convergence. Throughout the paper, we
let U ⊆ R

d and Y ⊆ R
d denote convex subsets of R

d with non-empty inte-
riors. A convex function on U is a function ψ : U →R∪ {+∞} for which

ψ((1 − t)x + tx′) ≤ (1 − t)ψ(x) + tψ(x′)
for any t ∈ (0,1) and any (x, x ′) such that ψ(x) and ψ(x′) are finite. Such a func-
tion is continuous on the interior of the convex set domψ := {x ∈ U : ψ(x) < ∞},
and differentiable Lebesgue-almost everywhere in domψ , by Rademacher’s theo-
rem. Write ∇ψ for the gradient of ψ . For any function ψ : U �→ R ∪ {+∞}, the
conjugate ψ∗ : Y �→R∪ {+∞} of ψ is defined for each y ∈ Y by

ψ∗(y) := sup
z∈U

[
y�z − ψ(z)

]
.(2)

The conjugate ψ∗ of ψ is a convex lower-semi-continuous function on Y . Call
conjugate pair of potentials over (U,Y) any pair of lower-semi-continuous convex
functions (ψ,ψ∗) that are conjugates of each other. The transpose of a matrix A is
denoted A�. We call weak order a complete reflexive and transitive binary relation.
Finally, recall the definition of Hausdorff distance between two non-empty sets A

and B in R
d :

dH (A,B) := sup
b∈B

inf
a∈A

‖a − b‖ ∨ sup
a∈A

inf
b∈B

‖a − b‖.

Outline of the paper. Section 2 introduces and motivates the concepts of sta-
tistical depth, vector quantiles and vector ranks based on optimal transport maps.
Section 3 describes estimators of depth contours, quantiles and ranks, and proves
consistency of these estimators. Section 4 describes computational characteriza-
tions. The Appendix presents additional theoretical results and proofs.

2. Statistical depth and vector ranks and quantiles.

2.1. Statistical depth, regions and contours. The notion of statistical depth
serves to define a center-outward ordering of points in the support of a distribution
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on R
d , for d > 1. As such, it emulates the notion of quantile for distributions on

the real line. We define it as a real-valued index on R
d as follows.

DEFINITION (Depth and ordering). A depth function is an upper semi-
continuous mapping D : Rd �−→ R. In our context these functions will be indexed
by a distribution P . The quantity DP (x) is called the depth of x relative to P . For
each P ∈ P , the depth ordering ≥DP

associated with DP is the weak order on R
d

defined, for (y1, y2) ∈ R
2d , by

y1 ≥DP
y2 if and only if DP (y1) ≥ DP (y2),

in which case y1 is said to be deeper than y2 relative to P .

The depth function thus defined allows graphical representations of the distri-
bution P through depth contours, which are collections of points of equal depth
relative to P .

DEFINITION (Depth regions and contours). Let DP be a depth function rel-
ative to distribution P on R

d . The region of depth d is the upper contour set of
level d of DP , namely CP (d) := {x ∈ R

d : DP (x) ≥ d}; the contour of depth d is
the boundary of that region: CP (d) := ∂CP (d).

By construction, the depth regions are nested:

∀(
d, d ′) ∈R

2+, d ′ ≥ d �⇒ CP

(
d ′) ⊆CP (d).

Hence, the depth ordering qualifies as a center-outward ordering of points in R
d

relative to the center given by the set of the deepest points, arg supx∈Rd DP (x).
It is often convenient to work with depth regions indexed by their probability

content.

DEFINITION (Depth regions with probability content τ ). For τ ∈ [0,1], the
depth region with probability content at least τ is

KP (τ ) := CP

(
d(τ)

)
, d(τ ) := inf

{
d ∈ R : P (

C(d)
) ≥ τ

};
the corresponding contour region is the boundary KP (τ ) := ∂KP (d).

2.2. Liu–Zuo–Serfling axioms and Tukey’s halfspace depth. The four axioms
proposed by Liu [37] and Zuo and Serfling [62] to unify the diverse depth functions
proposed in the literature are the following:

(A1) (Affine invariance) DPAX+b
(Ax + b) = DPX

(x) for any x ∈ R
d , any full-

rank d × d matrix A, and any b ∈R
d .

(A2) (Maximality at the center) If x0 is a center of symmetry for P (symetry
here can be either central, angular or halfspace symmetry), it is deepest, that
is, DP (x0) = maxx∈Rd DP (x).
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(A3) (Linear monotonicity relative to the deepest points) If x0 is deepest,
then DP (x) ≤ DP ((1 − α)x0 + αx) for all α ∈ [0,1] and x ∈ R

d : depth is mono-
tonically decreasing along any straight line running through a deepest point.

(A4) (Vanishing at infinity) lim‖x‖→∞ DP (x) = 0.

The earliest and most popular depth function is halfspace depth proposed by
Tukey [54]:

DEFINITION (Tukey’s halfspace depth). The halfspace depth DTukey
P (x) of a

point x ∈ R
d with respect to the distribution PX of a random vector X on R

d is
defined as

DTukey
PX

(x) := min
ϕ∈Sd−1

PX

[
(X − x)�ϕ ≥ 0

]
.

Halfspace depth relative to any distribution with non-vanishing density on R
d

satisfies (A1)–(A4). The appealing properties of halfspace depth are well known
and well documented: see Donoho and Gasko [15], Mosler [43], Koshevoy [36],
Ghosh and Chaudhuri [20], Cuestas-Albertos and Nieto-Reyes [9], Hassairi and
Regaieg [30], to cite only a few. Halfspace depth takes values in [0,1/2], and its
contours are continuous and convex; the corresponding regions are closed, con-
vex and nested as d decreases. Under very mild conditions, halfspace depth more-
over fully characterizes the distribution P . For somewhat less satisfactory features,
however, see Dutta et al. [16]. An important feature of halfspace depth is the con-
vexity of its contours, which implies that halfspace depth contours cannot pick
non-convex features in the geometry of the underlying distribution, as illustrated
in Figure 1.

Below, we propose a new depth concept, the Monge–Kantorovich (MK) depth,
that relinquishes the affine equivariance and star convexity of contours imposed
by axioms (A1) and (A3) and does account for the possible non-convex features
of the underlying distribution. As a preview of the concept, without going through
any definition, we illustrate in Figure 2 (using the same banana-shaped distribution
as in Figure 1) the ability of the MK depth to capture non-convexities. In what fol-
lows, we characterize these abilities more formally. We shall emphasize that this
notion comes in a package with new, interesting notions of vector ranks and quan-
tiles, based on optimal transport, which reduce to classical notions in the univariate
and multivariate spherical cases.

2.3. Monge–Kantorovich depth. The principle behind the notion of depth we
define here is to map the depth regions and contours relative to a well-chosen
reference distribution F , into depth contours and regions relative to a distribu-
tion of interest P on Rd , using an adequate mapping. The mapping proposed here
is the gradient ∇ψ of a convex function ψ such that if U has distribution F ,
then Y := ∇ψ(U) has distribution P . The gradient ∇ψ is said to push F forward
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FIG. 1. Tukey halfspace depth contours for a banana-shaped distribution, produced with the algo-
rithm of [28] and [46] from a sample of 9999 observations. The banana-like geometry of the data
cloud is not picked by the convex contours, and the deepest point is close to the boundary of the
support.

to P , which is conventionally denoted by the push-forward notation ∇ψ#F = P

defined in the notation section.
The gradient of a convex function property is a generalization of the one-

dimensional monotonicity property. When F and P have finite second-order mo-
ments, these maps are the optimal Monge–Kantorovich transport maps from F

to P for the quadratic cost, as explained below. In the unidimensional case, when F

is the standard uniform, the gradient/optimal transport map ∇ψ coincides with the
classical quantile function.

The following theorem, due to Brenier [4] and McCann [42], establishes the
existence of gradients of convex functions with the required properties.

THEOREM 2.1 (Brenier–McCann’s existence result). Let P and F be two dis-
tributions on R

d . (1) If F is absolutely continuous with respect to the Lebesgue
measure on R

d , the following holds: for any convex set U ⊆ R
d containing the sup-

port of F , there exists a convex function ψ : U →R∪{+∞} such that ∇ψ#F = P .
The gradient ∇ψ of that function exists and is unique, F -almost everywhere.
(2) If, in addition, P is absolutely continuous on R

d , the following holds: for
any convex set Y ⊆ R

d containing the support of P , there exists a convex func-
tion ψ∗ : Y →R∪ {+∞} such that ∇ψ∗#P = F . The gradient ∇ψ∗ of ψ∗ exists,
is unique, and ∇ψ∗ = ∇ψ−1, P -almost everywhere.
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FIG. 2. The Monge–Kantorovich depth contours for the same banana-shaped distribution from a
sample of 9999 observations, as in Figure 1. The banana-like geometry of the data cloud is correctly
picked up by the non-convex contours.

REMARK 2.1 (Interpretation as a Monge–Brenier optimal transport). If P

and F have finite second moments, ∇ψ is an optimal transport plan from F to P

for quadratic cost: more precisely, any transport coinciding, on U (hence a.e.),
with ∇ψ solves the problem

inf
Q

∫ (
u − Q(u)

)2
dF(u) : Q#F = P,

or, equivalently,

sup
Q

∫
u�Q(u)dF (u) : Q#F = P.(3)

This definition has a classical counterpart in the univariate case. When d = 1 and F

is uniform on [0,1], the optimal transport u �→ ∇ψ(u) is the classical quantile
function for distribution P .

We now state a fundamental duality result due to Kantorovich and Brenier, on
which we explicitly rely in Section 3.

THEOREM 2.2 (Kantorovich–Brenier, see [58]). Suppose hypothesis (1) of
Theorem 2.1 holds and P and F have finite second moments: then the conjugate
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pair of potentials (ψ,ψ∗) solves the optimization problem∫
ψ dF +

∫
ψ∗ dP = inf

(ϕ,ϕ∗)

(∫
ϕ dF +

∫
ϕ∗ dP

)
,(4)

where the infimum is taken over the class of conjugate pairs of potentials (ϕ,ϕ∗)
over (U,Y).

Such pair (ψ,ψ∗) of potentials is called optimal.

REMARK 2.2. This problem is dual to the optimal transport problem (3).
Moreover, under the hypotheses of Theorem 2.2, ∇ψ is the unique optimal trans-
port map from F to P for quadratic cost, in the sense that any other optimal trans-
port coincides with ∇ψ on a set of F -measure one (see [58]). Under the hypothe-
ses of Theorem 2.2 and hypothesis (2) of Theorem 2.1, ∇ψ∗ is the unique optimal
(reverse) transport map from P to F for quadratic cost, in the sense that any other
optimal transport coincides with ∇ψ∗ on a set of P -measure one (see [58]).

Next, we use Theorem 2.1 to define a natural notion of vector quantiles and
vector ranks.

DEFINITION 2.1 (Monge–Kantorovich vector quantiles and ranks). Let F be
an absolutely continuous reference distribution, and let P be an arbitrary distri-
bution over R

d . Let U ⊆ R
d and Y ⊆ R

d be convex and contain the supports
of F and P , respectively. Denote by ∇ψ the F -almost surely unique gradient of
a convex function ψ in part (1) of Theorem 2.1, and let ψ∗ be the conjugate of ψ

over (U,Y) in the sense of (2). Vector quantiles QP and vector ranks RP are de-
fined as follows:

QP (u) ∈ arg sup
y∈Y

[
y�u − ψ∗(y)

]
, u ∈ U;

(5)
RP (y) ∈ arg sup

u∈U
[
y�u − ψ(u)

]
, y ∈ R

d .

REMARK 2.3. Thus, we define the MK vector quantiles QP and ranks RP

as any solutions of the optimization problems in (5). Our definition here does not
impose any moment condition and ensures that the quantities are defined for every
value of the argument in the appropriate domains. By the envelope theorem and
Rademacher’s theorem [58], the maps QP and RP essentially coincide with the
gradients ∇ψ and ∇ψ∗ of conjugate potentials ψ and ψ∗, namely

QP = ∇ψ a.e. on U, RP = ∇ψ∗ a.e. on Y,(6)

where “a.e.” abbreviates “almost everywhere with respect to the Lebesgue mea-
sure.” In fact, the equality holds everywhere on certain domains under condition
(C) stated below. Under the additional moment conditions of Theorem 2.2, the pair
(ψ,ψ∗) has the variational characterization given in (4).
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When requiring regularity of vector quantiles and ranks, we shall impose the
following condition on the conjugate pair of potentials (ψ,ψ∗) of Definition 2.1:

(C) Let ψ : U �→ R and ψ∗ : Y �→ R form a conjugate pair over (U,Y),
where U ⊆ R

d and Y ⊆ R
d are closed convex subsets of Rd . We say that (ψ,ψ∗)

satisfies condition (C) if there exist open, non-empty subsets U0 ⊂ U and Y0 ⊂ Y
such that (i) ψ and ψ∗ possess gradients ∇ψ(u) for all u ∈ U0, and ∇ψ∗(y)

for all y ∈ Y0, respectively, (ii) the restrictions ∇ψ |U0 : U0 �→ Y0 of ∇ψ

and ∇ψ∗|Y0 : Y0 �→ U0 of ∇ψ∗ are homeomorphisms, and (iii) ∇ψ |U0 =
(∇ψ∗|Y0)

−1.

Under condition (C), we have, for the vector quantiles and ranks defined in (5),

QP (u) = ∇ψ(u) for all u ∈ U0,
(7)

RP (y) = ∇ψ∗(y) = (∇ψ)−1(y) for all y ∈ Y0;
that is, vector ranks and quantiles are defined as gradients of conjugate potentials
for each (as opposed to almost every) value in the indicated sets, and inverse func-
tions of each other.

Sufficient conditions for condition (C) in the context of Definition 2.1 are pro-
vided by Caffarelli’s regularity theory (Villani [58], Theorem 4.14). One set of
sufficient conditions is as follows.

LEMMA 2.1 (Caffarelli’s regularity, [58], Theorem 4.14). Suppose that P

and F admit densities, which (i) are of smoothness class Cβ for some β > 0 on
non-empty convex, compact support sets cl(Y0) and cl(U0), and (ii) are bounded,
and bounded away from zero, uniformly over cl(Y0) and cl(U0). Then condition (C)
is satisfied for the conjugate pairs (ψ,ψ∗) (the existence of which follows from
Theorem 2.1) such that ∇ψ#F = P and ∇ψ∗#P = F .

We now can give our main definition—that of multivariate notions of quantiles
and ranks, through which a depth function will be inherited from the reference
distribution F = Ud .

DEFINITION 2.2 (Monge–Kantorovich depth, quantiles, ranks and signs).
Let F be the spherical uniform distribution Ud on the unit ball U = S

d , and let P

be an arbitrary distribution with support in a convex region Y ⊆R
d . Denote by QP

and RP the vector quantiles and ranks as in (6). MK quantiles, ranks, signs and
depth are defined as follows:

1. The MK rank of y ∈ R
d is ‖RP (y)‖ and the MK sign is RP (y)/‖RP (y)‖.

2. The MK τ -quantile contour is the set QP (S(τ )), and the MK depth region
with probability content τ is QP (S(τ )).
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3. The MK depth of y ∈ R
d with respect to P is the depth of RP (y) under

DTukey
Ud

:

DMK
P (y) := DTukey

Ud

(
RP (y)

)
.

The notion of depth proposed in Definition 2.2 is based on a transport map
from the reference spherical uniform distribution F = Ud to the distribution of
interest P . Under condition (C), QP and RP are continuous and are mutually in-
verse maps, so that the MK τ -quantile contours are continuously deformable into
spheres and the MK depth regions with probability content τ are nested.

EXAMPLE 2.1. When the distribution P is spherically symmetric uniform on
the ball with radius 2, a simple calculation yields ψ(u) = ‖u‖2 and ψ∗(y) =
‖y‖2/4. The vector quantile is then QP (u) = 2u, and the vector rank RP (y) = y/2.
Hence,

DMK
P (y) = DTukey

Ud

(
RP (y)

) = DTukey
P (y);

thus, in this case, the Monge–Kantorovich and Tukey depths coincide—as shown
in Section 2.4, this is a general property of spherical distributions.

By choosing other reference distributions F , such as the uniform distribution
on a unit hypercube, or the standard Gaussian distribution, we can give a more
general definition of MK ranks, quantiles and signs, which may be of interest.

DEFINITION 2.3 (Monge–Kantorovich depth, quantiles, ranks and signs for
general F ). Let F be an absolutely continuous reference distribution with sup-
port contained in a convex region U ⊆ R

d , and let ‖ · ‖ be a norm on U .
Let DF : Rd → R+ be an associated reference depth function, K(τ ) the asso-
ciated τ -quantile contour and K(τ ) the associated depth region with probability
content τ . Still denoting by QP and RP the vector quantiles and ranks as in (6),
the MK quantiles, ranks, signs and depth are defined as follows:

1. The MK rank of y ∈ R
d is ‖RP (y)‖ and the MK sign is RP (y)/‖RP (y)‖.

2. The MK τ -quantile is the set QP (K(τ )) and the MK depth region with prob-
ability mass τ is QP (K(τ )).

3. The MK depth of y ∈ R
d is the depth of RP (y) under DF :

DMK
P (y) := DF

(
RP (y)

)
.

EXAMPLE 2.2. When the reference distribution F is N (0, I ) and the distri-
bution P is N (μ,�), one sees that ψ(u) = (

u��1/2u + 2u�μ + μ��1/2μ
)
/2,

and ψ∗(x) = (x − μ)��−1/2(x − μ)/2. Thus, RP (x) = �−1/2(x − μ) and the
MK depth is DMK

P (y) = 1 − 
(‖�−1/2(y − μ)‖), where 
 as usual stands for the
univariate standard normal distribution function.
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Of course, all the quantities thus defined depend on the choice of the reference
distribution F and the depth function DF .

REMARK 2.4. When the reference distribution F is spherical, it is natural to
use Tukey’s depth function DF = DTukey

F to define the MK depth of y ∈ R
d rela-

tive to P as the halfspace depth of RP (y) relative to the reference distribution F ,
namely

DMK
P (y) := DTukey

F

(
RP (y)

)
.

The choice of halfspace depth may be less natural for non-spherical ref-
erence distributions. One example is where F is the standard uniform distri-
bution U [0,1]d on the unit cube [0,1]d . On [0,1]d , it seems natural to use the
sup norm ‖ · ‖∞ as the norm ‖ · ‖ and the depth function

DU [0,1]d (y) = 1/2 − ‖y − 1/2‖∞,

where 1 = (1, . . . ,1)′, in which case K(τ ) is a cube of diameter τ 1/d centered
at 1/2, yielding MK depth

DMK
P (y) := DU [0,1]d

(
RP (y)

)
.

2.4. Monge–Kantorovich depth with spherical uniform reference distribution.
Here, we consider in more detail the Monge–Kantorovich depth defined from a
baseline spherical uniform distribution Ud supported on the unit ball Sd of R

d .
Recall that this distribution is that of a random vector rϕ, where r is uniform
on [0,1], ϕ is uniform on the unit sphere Sd−1, and r and ϕ are mutually indepen-
dent.

The spherical symmetry of distribution Ud produces halfspace depth contours
that are concentric spheres centered at the origin, the deepest point being the origin
itself. The radius τ of the ball S(τ ) = {x ∈ R

d : ‖x‖ ≤ τ } is also its Ud -probability
contents, that is, τ = Ud(S(τ )). Letting θ := arccos τ , the halfspace depth with
respect to Ud of a point τu ∈ S(τ ) := {x ∈ R

d : ‖x‖ = τ }, where τ ∈ (0,1]
and u ∈ S

d , is

DU(τu) =
{

π−1[
θ − cos θ log | sec θ + tan θ |], d ≥ 2,

(1 − τ)/2, d = 1.
(8)

Note that for d = 1, u takes values ±1 and, in agreement with rotational symmetry
of Ud , the depth DU(τu) does not depend on u.

The principle behind the notion of depth we investigate further here is to map
the depth regions and contours relative to the spherical uniform distribution Ud ,
namely, the concentric spheres, into depth contours and regions relative to a distri-
bution of interest P on R

d using the optimal transport plan from Ud to P . Under
the sufficient conditions for (C) provided in Lemma 2.1 (note that the conditions
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on F are automatically satisfied in case F = Ud ), QP and RP are continuous, and
are inverse maps of each other, so that the MK depth contours are continuously de-
formable into spheres, the MK depth regions are nested, and regions and contours,
when indexed by probability content, take the respective forms

QP

(
S(τ )

)
and QP

(
S(τ )

)
, for τ ∈ (0,1].

MK depth is halfspace depth in dimension 1. The halfspace depth of a
point x ∈ R relative to a distribution P over R takes the very simple form

D
Tukey
P (x) = min

(
P(x),1 − P(x)

)
,

where, by abuse of notation, P stands for both distribution and distribution func-
tion. The non-decreasing map defined for each x ∈ R by x �→ RP (x) = 2P(x) − 1
is the derivative of a convex function, and transports distribution P to U1, which is
uniform on [−1,1], that is, RP #P = U1. Hence, RP coincides with the MK vector
rank of Definition 2.1. Therefore, for each x ∈R,

DP (x) = D
Tukey
Ud

(
RP (x)

) = min
(
P(x),1 − P(x)

)
and MK depth coincides with Tukey depth for all distributions P with non-
vanishing densities on the real line.

More generally (still in the univariate case), denoting by F1 and F2 the distribu-
tion functions associated with two absolutely continuous distributions P1 and P2,
the mapping F−1

2 ◦ F1, being monotone increasing, is also the optimal transport
from P1 to P2. The same transformation has been studied, in a different context, by
Doksum [12] and Doksum and Sievers [13], and plays a central role in the asymp-
totic representation of linear rank statistics [22]; see also the concept of convex
ordering proposed by van Zwet [55].

MK depth is halfspace depth for elliptical families. As explained in the Intro-
duction, a d-dimensional random vector X has elliptical distribution Pμ,�,g with
location μ ∈ R

d , positive definite symmetric d × d scatter matrix � and radial
density function g (radial distribution function G) if and only if, denoting by �1/2

the symmetric root of �, Y := �−1/2(X−μ) has spherical distribution P = P0,I,g

(hence, ‖Y‖ has density f ), which holds if and only if

RP (Y ) := Y

‖Y‖G
(‖Y‖)

is distributed according to Ud.(9)

Let 
(t) = ∫ t
−∞ G(r)dr , and note that the map z �→ RP (z) is the gradient

of ψ∗(z) := 
(‖z‖) so that, from (9), ∇ψ∗#P = Ud as Definition 2.1 requires.
That ψ∗ is convex follows from Theorem 5.1 of [49] by noting that ψ∗ is a compo-
sition of 
 : R → R, a convex, non-decreasing map, and ‖ · ‖ : Rd → R, a convex
function by definition of the norm. As a consequence, the mapping RP in (9) is the
MK vector rank function associated with P = P0,I,f ; and, the MK depth contours
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(with probability content τ ) of P are spheres with radii G−1(τ ) centered at the
origin:

DP (x) = {
y ∈ R

d : ‖y‖ ≤ G−1(τ )
}
.

These spheres are halfspace depth contours for P . This is the precise sense in
which MK depth reduces to halfspace depth for elliptical families.

It should be noted above that we treat location and scatter parameters as known,
and transform X to a vector Y in isotropic position. This transformation ensures
basic invariance properties of the resulting depth, ranks and quantiles with respect
to affine transformations. When those parameters are unknown, they will have to
be replaced with by affine-equivariant estimators, as in the usual definition of ellip-
tical ranks and signs (see, e.g., [23]) in order to insure similar invariance properties
for the empirical analogs. Without the aforementioned transformation, however,
the invariance properties are not guaranteed, owing to the fact that composition
of two gradients of convex functions is not necessarily the gradient of a convex
function, unless the composition has a specific structure, as is the case above.

3. Empirical depth, ranks and quantiles. Having defined Monge–
Kantorovich vector quantiles, ranks and depth relative to a distribution P based
on reference distribution F on R

d , we now turn to the estimation of these quan-
tities. Hereafter, we shall assume that condition (C) holds. Then the MK vector
quantiles and ranks of Definition 2.1 are

QP (u) := ∇ψ(u), RP (y) := ∇ψ∗(y) = (∇ψ)−1(y),(10)

for each u ∈ U0 and y ∈ Y0, respectively. We define 
0(U,Y) as a collection
of conjugate potentials (ϕ,ϕ∗) on (U,Y) such that ϕ(u0) = 0 for some fixed
point u0 ∈ U0. Under the conditions of Theorem 2.2, the potentials (ψ,ψ∗) solve
the dual problem∫

ψ dF +
∫

ψ∗ dP = inf
(ϕ,ϕ∗)∈
0(U,Y)

(∫
ϕ dF +

∫
ϕ∗ dP

)
.(11)

Constraining the conjugate pair to lie in 
0(U,Y) is a normalization that (with-
out any loss of generality) pins down the constant, so that (ψ,ψ∗) are uniquely
determined, as argued in the proof.

We propose empirical versions of MK quantiles and ranks based on estima-
tors P̂ of P . The typical case is when the reference measure F is known. How-
ever, our theory allows us to handle the case where F is itself unknown, and es-
timated by some F̂ . This is indeed useful for at least two reasons. First, we may
be interested in a classical problem of comparing one distribution P to a reference
distribution F , both of which are known only via a random sample available from
each of them. Second, we may be interested in discretizing F for computational
reasons, as we discuss in Section 4, in which case the discretized F is the estimator
of F .
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3.1. Conditions on the estimators of P and F . Suppose that {P̂n}∞n=1

and F̂n}∞n=1 are sequences of random measures on Y and U , with finite total mass,
that are consistent for P and F , in the sense that

dBL(P̂n,P )→
P∗ 0, dBL(F̂n,F )→

P∗ 0,(12)

where →P∗ throughout denotes convergence in (outer) probability under the prob-
ability measure P driving P̂n and F̂n; see van der Vaart and Wellner [56]. A basic
example is where P̂n is the empirical distribution of a random sample (Yi)

n
i=1

drawn from P and F̂n is the empirical distribution of a random sample (Ui)
n
i=1

drawn from F . Other, much more complicated examples, including smoothed em-
pirical measures and data originating from dependent processes, satisfy sufficient
conditions fo (12) that we now give. In order to develop some examples, we intro-
duce an ergodicity condition:

(E) Let W be a measurable subset of R
d . A data stream {(Wt,n)

n
t=1}∞n=1,

with Wt,n ∈ W ⊆ R
d for each t and n, is ergodic for the probability law PW on W

if for each g : W �→R such that ‖g‖BL(W) < ∞, the law of large numbers holds:

1

n

n∑
t=1

g(Wt,n)→
P

∫
g(w)dPW(w).(13)

The class of ergodic processes is extremely rich, including in particular the fol-
lowing cases:

(E.1) Wt,n = Wt , where (Wt)
∞
t=1 are independent, identically distributed ran-

dom vectors with distribution PW ;
(E.2) Wt,n = Wt , where (Wt)

∞
t=1 is stationary strongly mixing process with

marginal distribution PW ;
(E.3) Wt,n = Wt , where (Wt)

∞
t=1 is an irreducible and aperiodic Markov chain

with invariant distribution PW ;
(E.4) Wt,n = wt,n, where (wt,n)

n
t=1 is a deterministic sequence of points such

that (13) holds deterministically.

For a detailed motivation and discussion of the use of deterministic sequences such
as the so-called low-discrepancy sequences; see, for example, Chapter 9 of [32]
and, more particularly, page 314.

Thus, if the data stream {(Wt,n)
n
t=1}∞n=1 is ergodic for PW , we can estimate PW

by the empirical and smoothed empirical measures

P̂W (A) = 1

n

n∑
t=1

1{Wt,n ∈ A},

P̃W (A) = 1

n

n∑
t=1

∫
Rd

1{Wt,n + hnε ∈ A ∩W}d
(ε),
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where 
 is the probability law of the standard d-dimensional Gaussian vec-
tor N(0, Id), and hn ≥ 0 a semi-positive-definite matrix of bandwidths such
that ‖hn‖ → 0 as n → ∞. Note that P̃W may not integrate to 1, since we are
forcing it to have support in W .

LEMMA 3.1. Suppose that PW is absolutely continuous with support in the
compact set W ⊂ R

d . If {(Wt,n)
n
t=1}∞n=1 is ergodic for PW on W , then

dBL(P̂W ,PW)→
P∗ 0, dBL(P̃W ,PW)→

P∗ 0.

Thus, if PY := P and PU := F are absolutely continuous with support sets con-
tained in compact sets Y and U , and if {(Yt,n)

n
t=1}∞n=1 is ergodic for PY on Y

and {(Ut,n)
n
t=1}∞n=1 is ergodic for PU on U , then P̂n = P̂W or P̃W and F̂n = P̂U

or P̃U satisfy condition (12).

Absolute continuity of PW in Lemma 3.1 is invoked to show that the smoothed
estimator P̃W is asymptotically non-defective.

3.2. Empirical vector quantiles and ranks. We base empirical versions of MK
quantiles, ranks and depth on estimators P̂n for P and F̂n for F satisfying (12).
This includes cases where the reference measure F is known, that is, F̂n = F .
Recall assumption (C) is maintained throughout this section.

DEFINITION 3.1 (Empirical Monge–Kantorovich vector quantiles and ranks).
Empirical vector quantile Q̂n and vector rank R̂n are any pair of functions satisfy-
ing, for each u ∈ U and y ∈ Y ,

Q̂n(u) ∈ arg sup
y∈Y

[
y�u − ψ̂∗

n(y)
]
, R̂n(y) ∈ arg sup

u∈U
[
y�u − ψ̂n(u)

]
,(14)

where (ψ̂n, ψ̂
∗
n) ∈ 
0(U,Y) is such that∫

ψ̂n dF̂n +
∫

ψ̂∗
n dP̂n = inf

(ϕ,ϕ∗)∈
0(U,Y)

(∫
ϕ dF̂n +

∫
ϕ∗ dP̂n

)
.(15)

We now state the main result of Section 3.

THEOREM 3.1 (Uniform convergence of empirical transport maps). Suppose
that the sets U and Y are compact subsets of Rd , and that the probability mea-
sures P and F are absolutely continuous with respect to the Lebesgue measure,
with support(P ) ⊆ Y and support(F ) ⊆ U . Suppose that {P̂n} and {F̂n} are se-
quences of random measures on Y and U , with finite total mass, that are consistent
for P and F in the sense of (12). Suppose that condition (C) holds for the solution
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of (11) with Y0 := int(support(P )) and U0 := int(support(F )). Then, as n → ∞,
for any closed set K ⊂ U0 and any closed set K ′ ⊂ Y0,

sup
u∈K

∥∥Q̂n(u) − QP (u)
∥∥→
P∗ 0, sup

y∈K ′

∥∥R̂n(y) − RP (y)
∥∥→
P∗ 0,

and

sup
A⊆K

dH

(
Q̂n(A),QP (A)

)→
P∗ 0, sup

A′⊆K ′
dH

(
R̂n

(
A′),RP

(
A′))→

P∗ 0,

where the suprema are taken over non-empty subsets.

The first result establishes the uniform consistency of empirical vector quan-
tile and rank maps, hence also of empirical ranks and signs. The set QP (K)

with K = K(τ ) is the statistical depth contour with probability content τ . The
second result, therefore, establishes consistency of the approximation Q̂n(K) to
the theoretical depth region QP (K).

3.3. Empirical MK quantiles, ranks and signs, and their convergence. We
work with the conditions of the previous theorem, but here, for the sake of sim-
plicity, we first consider the lead case where F is known, that is, F̂n = F .

DEFINITION 3.2(Empirical MK depth, quantiles, ranks and signs for known F ).
Let F be an absolutely continuous reference distribution with support contained in
a convex region U ⊆R

d , and let ‖ ·‖ be a norm on U . The MK empirical quantiles,
ranks, signs and depth are defined as follows:

1. The MK empirical rank and sign of y ∈R
d are ‖R̂n(y)‖ and R̂n(y)/‖R̂P (y)‖.

2. The MK empirical τ -quantile contour is the set Q̂n(K(τ )) and the MK em-
pirical depth region with probability mass τ is Q̂n(K(τ )).

3. The MK empirical depth of y ∈ R
d is the depth of R̂n(y) under DF :

D̂MK
P,n(y) := DF

(
R̂n(y)

)
.

Uniform convergence of empirical MK rank, signs and depth to their theoret-
ical counterparts follows by an application of the extended continuous mapping
theorem.

COROLLARY 3.1. Under the assumptions of Theorem 3.1, and assuming
that DF is continuous on U0, for any closed set K ′ ⊂ Y0, as n → ∞,

sup
y∈K ′

∣∣∥∥R̂n(y)
∥∥ − ∥∥RP (y)

∥∥∣∣ →
P∗ 0,

sup
y∈K ′

∣∣R̂n(y)/
∥∥R̂n(y)

∥∥ − Rn(y)/
∥∥RP (y)

∥∥∣∣ →
P∗ 0,

sup
y∈K ′

∣∣D̂MK
P,n(y) − DMK

P (y)
∣∣ →
P∗ 0.
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Uniform convergence of MK empirical τ -quantile contours and MK empirical
depth regions with probability content τ follows also through an application of the
extended continuous mapping theorem.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, for any T ⊂ (0,1)

such that cl(
⋃

τ∈T K(τ )) ⊂ U0, as n → ∞,

sup
τ∈T

dH

(
Q̂n

(
K(τ )

)
,QP

(
K(τ )

))→
P∗ 0, sup

τ∈T
dH

(
Q̂n

(
K(τ )

)
,QP

(
K(τ )

))→
P∗ 0.

The main results are derived for a fully specified reference distribution F and
the associated depth function DF , depth regions K(τ ) and quantile contours K(τ ).
There are cases where these will be approximated numerically or using data-driven
substitutes. The same definitions and results extend naturally when DF , K(τ ) and
K(τ ) are replaced by uniformly consistent estimators D̂F,n, K̂n(τ ) and K̂n(τ ) such
that

sup
u∈K

∣∣D̂F,n(u) − DF (u)
∣∣ →
P∗ 0,

sup
τ∈T

dH

(
K̂n(τ ),K(τ )

) →
P∗ 0,(16)

sup
τ∈T

dH

(
K̂n(τ ),K(τ )

) →
P∗ 0,

where K is any closed subset of U0. These high-level conditions hold trivially for
the numerical approximations we use in Section 4. They also hold, for example,
for Tukey’s halfspace depth under regularity conditions. We will not discuss these
conditions here.

DEFINITION 3.3 (Empirical MK depth, quantiles, ranks and signs with esti-
mated F ). Let F be an absolutely continuous reference distribution with support
contained in a convex and compact region U ⊂ R

d , and let ‖ · ‖ be a norm on U .
Given estimators D̂F,n, K̂n(τ ) and K̂n(τ ) satisfying (16), the MK empirical quan-
tiles, ranks, signs and depth are defined as follows:

1. The MK empirical rank and sign of y ∈ R
d are ‖R̂n(y)‖ and R̂n(y)/‖R̂P (y)‖.

2. The MK empirical τ -quantile contour is the set Q̂n(K̂n(τ )), and the MK
empirical depth region with probability mass τ is Q̂n(K̂n(τ )).

3. The MK empirical depth of y ∈ R
d is the depth of R̂n(y) under D̂F,n:

D̂MK
P,n(y) := D̂F,n

(
R̂n(y)

)
.

COROLLARY 3.3. Under the assumptions of the previous corollary and con-
ditions (16), the conclusions of Corollary 3.1 hold, and the conclusions of Corol-
lary 3.2 hold in the following form:

sup
τ∈T

dH

(
Q̂n

(
K̂n(τ )

)
,QP

(
K(τ )

))→
P∗ 0, sup

τ∈T
dH

(
Q̂n

(
K̂n(τ )

)
,QP

(
K(τ )

))→
P∗ 0.
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4. Computing empirical quantiles and depth regions. Here, we provide
computational characterizations of the empirical quantiles, ranks and depth regions
for various cases of interest.

Smooth P̂n and F̂n. Suppose P̂n and F̂n satisfy Caffarelli regularity conditions,
so that Q̂n = ∇ψ̂n and R̂n = ∇ψ̂∗

n , with (ψ̂n, ψ̂
∗
n) satisfying (C). The MK empir-

ical vector quantile maps Q̂n and R̂n can then be computed with the algorithm of
Benamou and Brenier [3].

Discrete P̂n and smooth F̂n. Suppose now P̂n is a discrete estimator of P

and F̂n an absolutely continuous distribution with convex compact support U ⊂R
d.

Let P̂n be of the form P̂n = ∑Kn

k=1 pk,nδyk,n
for some integer Kn, some non-negative

weights p1,n, . . . , pKn,n such that
∑Kn

k=1 pk,n = 1, and y1,n, . . . , yKn,n ∈ R
d . The

leading example is when P̂n is the empirical distribution of a random sam-
ple (Yi)

n
i=1 drawn from P .

The MK empirical vector quantile map Q̂n is then equal (almost everywhere) to
the gradient of a convex map ψ̂n such that ∇ψ̂n#F̂n = P̂n, that is, the F̂n-almost
surely unique map Q̂n = ∇ψ̂n satisfying the following:

(1) ∇ψ̂n(u) ∈ {y1,n, . . . , yKn,n}, for Lebesgue-almost all u ∈ U ,
(2) F̂n({u ∈ U : ∇ψ̂n(u) = yk,n}) = pk,n, for each k ∈ {1, . . . ,Kn},
(3) ψ̂n is a convex function.

The following characterization of ψ̂n specializes Kantorovich duality to this
discrete-continuous case (see, e.g., [18]).

LEMMA 4.1. There exist unique (up to an additive constant) n-tuples of
weights {v∗

1 , . . . , v∗
n} such that ψ̂n(u) = max1≤k≤Kn{u�yk,n − v∗

k } satisfies con-

ditions (1), (2) and (3). The function v = {v1, . . . , vn} �→ ∫
ψ̂n dF̂n + ∑Kn

k=1 pk,nvk

is convex and minimized at v∗ = {v∗
1 , . . . , v∗

n}.

This lemma allows efficient computation of Q̂n using a gradient algorithm pro-
posed in [2]. The map ψ̂n is piecewise affine and the empirical vector quantile Q̂n

is piecewise constant. The correspondence Q̂−1
n defined for each k ≤ Kn by

yk,n �→ Q̂−1
n (yk,n) := {

u ∈ U : ∇ψ̂n(u) = yk,n

}
maps {y1,n, . . . , yKn,n} into Kn regions of a partition of U , called a power dia-
gram. The estimator R̂n of the MK vector rank can be computed according to
formula (14) after computing the conjugate ψ̂∗

n of ψ̂n via

ψ̂∗
n(y) = sup

u∈U
{u�y − ψ̂n(u)}.

The empirical depth, depth regions and quantiles can be computed using the depth
function according to their theoretical definitions.
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Discrete P̂n and F̂n. Particularly amenable to computation is the case when
both distribution estimators P̂n and F̂n are discrete with uniformly distributed
mass on sets of points of the same cardinality. Let P̂n = ∑n

j=1 δyj
/n for some

n-tuple Yn = {y1, . . . , yn} of points in R
d and F̂n = ∑n

j=1 δuj
/n, for some other

n-tuple Un = {u1, . . . , un} of points in R
d . The restriction of the quantile map Q̂n

to Un is the bijection u �−→ y = Q̂n|Un(u) from Un onto Yn and R̂n|Yn is its inverse.
The solutions Q̂n and R̂n can be computed with any optimal assignment algorithm.
More generally, in the case of any two discrete estimators P̂n and F̂n, the problem
of computing Q̂n or R̂n is a linear programming problem.

Visualization of empirical MK depth and quantile contours. Whenever P̂n is
finitely discrete, then the MK empirical depth regions and quantile contours are
finite sets of points. For visualization purposes it may be helpful to transform them
into nicer looking objects which are close to the original objects in terms of Haus-
dorff distance. In the example below, we used α-hulls to create approximations to
the depth regions and took the boundaries of the set as a numerical approximation
to the quantile contours. It may also be possible to use polygonization methods
such as those in [11] for d = 2 and [21] for d = 3.

EXAMPLE 4.1 (Computing MK depth regions). In the example illustrated in
Figure 2, we use a discrete approximation F̂n to the spherical uniform reference
distribution. Figure 2 shows the MK empirical depth contours for the same banana-
shaped distribution as in Figure 1. The specific construction used for Figure 2 is the
following: P̂n is the empirical distribution of a random sample Yn drawn from the
banana-shaped distribution in R

2, with n = 9999; F̂n is a discrete approximation
to F with mass 1/n on each of the points in Un. The latter is a collection of 99
evenly spaced points on each of 101 circles, of evenly spaced radii in (0,1]. The
sets Yn and Un are matched optimally with the assignment algorithm of the adagio
package in R. MK empirical depth regions are α-hulls of Q̂n(Un ∩ S(τ )) for 11
values of τ ∈ (0,1) (see [17] for a definition of α-hulls). The α-hulls are computed
using the alphahull package in R, with α = 0.3. The banana-shaped distribution
considered is the distribution of the vector (X + R cos
,X2 + R sin
), where X

is uniform on [−1,1], 
 is uniform on [0,2π ], Z is uniform on [0,1], X, Z and 


are independent, and R = 0.2Z(1 + (1 − |X|)/2).

APPENDIX A: UNIFORM CONVERGENCE OF SUBDIFFERENTIALS AND
TRANSPORT MAPS

A.1. Uniform convergence of subdifferentials. Let U and Y be convex,
closed subsets of R

d . A pair (ψ,ψ∗) of convex potentials ψ : U �→ R ∪ {∞}
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and ψ∗ : Y �→R∪{∞} is a conjugate pair over (U,Y) if, for each u ∈ U and y ∈ Y ,

ψ(u) = sup
y∈Y

[
y�u − ψ∗(y)

]
, ψ∗(y) = sup

u∈U
[
y�u − ψ(u)

]
.

In the sequel, we consider a fixed pair (ψ,ψ∗) satisfying condition (C) and
a sequence (ψn,ψ

∗
n), n ∈ N, of conjugate potentials approaching (ψ,ψ∗) in the

following sense:

(A) ψn(u) → ψ(u) in R ∪ {∞} pointwise in u in a dense subset of U ,
and ψ∗

n(y) → ψ∗(y) in R∪{∞} pointwise in y in a dense subset of Y , as n → ∞.

Condition (A) is equivalent to requiring that either ψn or ψ∗
n converge pointwise

over dense subsets. There is no loss of generality in assuming that both converge.
Define the maps

Q(u) := arg sup
y∈Y

[
y�u − ψ∗(y)

]
, R(y) := arg sup

u∈U
[
y�u − ψ(u)

]
,

for each u ∈ U0 and y ∈ Y0. By the envelope theorem,

R(y) = ∇ψ∗(y), for y ∈ Y0; Q(u) = ∇ψ(u), for u ∈ U0.

Let us define, for each u ∈ U and y ∈ Y ,

Qn(u) ∈ arg sup
y∈Y

[
y�u − ψ∗

n(y)
]
, Rn(y) ∈ arg sup

u∈U
[
y�u − ψn(u)

]
.(17)

It is useful to note that

Rn(y) ∈ ∂ψ∗
n(y) for y ∈ Y; Qn(u) ∈ ∂ψn(u) for u ∈ U,

where ∂ denotes the subdifferential of a convex function. Conversely, any pair
of elements of ∂ψ∗

n(y) and ∂ψn(u), respectively, could be taken as solutions to
the problem (17) (by Proposition 2.4 in Villani [58]). Hence, the problem of con-
vergence of Qn and Rn to Q and R is equivalent to the problem of convergence
of subdifferentials. Moreover, by Rademacher’s theorem, ∂ψ∗

n(y) = {∇ψ∗
n(y)}

and ∂ψn(u) = {∇ψn(u)} almost everywhere with respect to the Lebesgue measure
(see, e.g., [58]), so the solutions to (17) are unique almost everywhere on u ∈ U
and y ∈ Y .

THEOREM A.1 (Local uniform convergence of subdifferentials). Suppose that
conditions (A) and (C) hold. Then, as n → ∞, for any compact set K ⊂ U0 and
any compact set K ′ ⊂ Y0,

sup
u∈K

∥∥Qn(u) − Q(u)
∥∥ → 0, sup

y∈K ′

∥∥Rn(y) − R(y)
∥∥ → 0.
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REMARK A.1. This result appears to be new. It complements the result stated
in Lemma 5.4 in Villani [59] for the case U0 = U = Y0 = Y =R

d . This result also
trivially implies convergence in Lp norms, 1 ≤ p < ∞:∫

U

∥∥Qn(u) − Q(u)
∥∥p

dF (u) → 0,

∫
Y

∥∥Rn(y) − R(y)
∥∥p

dP (y) → 0,

for probability laws F on U and P on Y , whenever, for some p̄ > p,

sup
n∈N

∫
U

∥∥Qn(u)
∥∥p̄ + ∥∥Q(u)

∥∥p
dF (u) < ∞,

sup
n∈N

∫
Y

∥∥Rn(y)
∥∥p̄ + ∥∥R(y)

∥∥p
dP (y) < ∞.

Hence, the new result is stronger than available results on convergence in measure
(including Lp convergence results) in the optimal transport literature (see, e.g.,
Villani [58, 60]).

REMARK A.2. The following example also shows that, in general, our result
cannot be strengthened to the uniform convergence over entire sets U and Y . Con-
sider the sequence of potential maps ψn : U = [0,1] �→R:

ψn(u) =
∫ u

0
Qn(t) dt, Qn(t) = t · 1(t ≤ 1 − 1/n) + 10 · 1(t > 1 − 1/n).

Then

ψn(u) = 1

2
u21

(
u ≤ 1 − 1

n

)
+

{
10

(
u −

(
1 − 1

n

))
+ 1

2

(
1 − 1

n

)2}
1
(
u > 1 − 1

n

)

converges uniformly on [0,1] to ϕ(u) = 2−1u2. The latter potential has the
gradient map Q : [0,1] �→ Y0 = [0,1] defined by Q(t) = t . We clearly have
that supt∈K |Qn(t) − Q(t)| → 0 for any compact subset K of (0,1). However,
the uniform convergence over the entire region [0,1] fails, since, for all n,
supt∈[0,1] |Qn(t) − Q(t)| ≥ 9. Therefore, the theorem cannot be strengthened in
general.

We next consider the behavior of image sets of gradients defined as follows:

Qn(A) := {
Qn(u) : u ∈ A

}
, Q(A) := {

Q(u) : u ∈ A
}
, A ⊆ K,

Rn

(
A′) := {

Rn(y) : y ∈ A′}, R
(
A′) := {

R(y) : y ∈ A′}, A′ ⊆ K ′,

where K ⊂ U0 and K ′ ⊂ Y0 are compact sets, and the subsets A and A′ are under-
stood to be non-empty.
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COROLLARY A.1 (Convergence of sets of subdifferentials). Under the condi-
tions of Theorem A.1, we have that

sup
A⊆K

dH

(
Qn(A),Q(A)

) → 0, sup
A′⊆K ′

dH

(
Rn

(
A′),R

(
A′)) → 0.

COROLLARY A.2 (Convergence of sets of subdifferentials). Assume the con-
ditions of Theorem A.1 hold. For any sequence of sets {An} ⊆ K and {A′

n} ⊆ K ′
such that dH (An,A) → 0 and dH (A′

n,A
′) → 0 for some sets A and A′, we

have

dH

(
Qn(An),Q(A)

) → 0, dH

(
Rn

(
A′

n

)
,R

(
A′)) → 0.

A.2. Uniform convergence of transport maps. We next consider the prob-
lem of convergence for potentials and transport (vector quantile and rank) maps
arising from the Kantorovich dual optimal transport problem.

Equip Y and U with absolutely continuous probability measures P and F , re-
spectively, and let

Y0 := int
(
support(P )

)
, U0 := int

(
support(F )

)
.

We consider sequences of measures Pn and Fn approximating P and F :

(W) There are sequences of measures {Pn}n∈N on Y and {Fn}n∈N on U , with
finite total mass, that converge to P and F , respectively, in the topology of weak
convergence:

dBL(Pn,P ) → 0, dBL(Fn,F ) → 0.

Recall that we defined 
0(U,Y) as a collection of conjugate potentials (ϕ,ϕ∗)
on (U,Y) such that ϕ(u0) = 0 for some fixed point u0 ∈ U0. Let the pair (ψn,ψ

∗
n)

in 
0(U,Y) solve the Kantorovich problem for the pair of measures (Pn,Fn):∫
ψn dFn +

∫
ψ∗

n dPn = inf
(ϕ,ϕ∗)∈
0(U,Y)

(∫
ϕ dFn +

∫
ϕ∗ dPn

)
.(18)

Also, let (ψ,ψ∗) ∈ 
0(U,Y) solve the Kantorovich problem for the pair (P,F ):∫
ψ dF +

∫
ψ∗ dP = inf

(ϕ,ϕ∗)∈
0(U,Y)

(∫
ϕ dF +

∫
ϕ∗ dP

)
.(19)

It is known that solutions to these problems exist; see, for example, Vil-
lani [58]. Recall also that we imposed the normalization condition in the definition
of 
0(U,Y) to pin down the constants.

THEOREM A.2 (Local uniform convergence of transport maps). Suppose that
the sets U and Y are compact subsets of R

d , and that the probability mea-
sures P and F are absolutely continuous with respect to the Lebesgue measure,
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with support(P ) ⊆ Y and support(F ) ⊆ U . Suppose that condition (W) holds, and
that condition (C) holds for a solution (ψ,ψ∗) of (19) for the sets U0 and Y0 de-
fined as above. Then the conclusions of Theorem A.1 and Corollaries A.1 and A.2
hold.

APPENDIX B: PROOFS

B.1. Proof of Theorem A.1. The proof of Theorem A.1 relies on the equiva-
lence of the uniform and continuous convergence.

LEMMA B.1 (Uniform convergence via continuous convergence). Let D

and E be complete separable metric spaces, with D compact. Suppose f : D �→ E

is continuous. Then a sequence of functions fn : D �→ E converges to f uni-
formly on D if and only if, for any convergent sequence xn → x in D, we have
that fn(xn) → f (x).

For the proof, see, for example, Rockafellar and Wets [50]. The proof also re-
lies on the following convergence result, which is a consequence of Theorem 7.17
in Rockafellar and Wets [50]. For a point a and a non-empty set A in R

d , de-
fine d(a,A) := infa′∈A ‖a − a′‖.

LEMMA B.2 (Argmin convergence for convex problems). Suppose that g is a
lower semi-continuous convex function mapping R

d to R ∪ {+∞}
that attains a minimum on the set X0 = arg infx∈Rd g(x) ⊂ int(D0),
where D0 = {x ∈ R

d : g(x) < ∞}, and int(D0) is a non-empty, open set in R
d .

Let {gn} be a sequence of convex, lower semi-continuous functions mapping R
d

to R ∪ {+∞} and such that gn(x) → g(x) pointwise in x ∈ R
d
0 , where R

d
0 is a

countable dense subset of Rd . Then any xn ∈ arg infx∈Rd gn(x) satisfies

d(xn,X0) → 0.

In particular, if X0 is a singleton {x0}, xn → x0.

The proof of this lemma is given below, immediately after the conclusion of the
proof of Theorem A.1.

Define the extension maps y �→ gn,u(y) and u �→ ḡn,y(u) mapping R
d

to R∪ {−∞}

gn,u(y) :=
{

y�u − ψ∗
n(y), if y ∈ Y,

−∞, if y /∈ Y ,

ḡn,y(u) :=
{

y�u − ψn(u), if u ∈ U,

−∞, if u /∈ U .
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By the convexity of ψn and ψ∗
n over convex, closed sets Y and U , we have that the

functions are proper upper semi-continuous concave functions. Define the exten-
sion maps y �→ gu(y) and u �→ ḡy(u) mapping R

d to R ∪ {−∞} analogously, by
removing the index n in the definitions of gn,u and ḡn,y above.

Condition (A) assumes pointwise convergence of ψ∗
n to ψ∗ on a dense subset

of Y . By Theorem 7.17 in Rockafellar and Wets [50], this implies the uniform con-
vergence of ψ∗

n to ψ∗ on any compact set K ′ ⊂ intY that does not overlap with the
boundary of the set D1 = {y ∈ Y : ψ∗(y) < +∞}. Hence, for any sequence {un}
such that un → u ∈ K , a compact subset of U0, and any y ∈ (intY) \ ∂D1,

gn,un(y) = y�un − ψ∗
n(y) → gu(y) = y�u − ψ∗(y).

Next, consider any y /∈ Y , in which case, gn,un(y) = −∞ → gu(y) = −∞. Hence,

gn,un(y) → gu(y) in R∪ {−∞}, for all y ∈ R
d
1 = R

d \ (∂Y ∪ ∂D1),

where R
d
1 is a dense subset of Rd . We apply Lemma B.2 to conclude that

arg sup
y∈Rd

gn,un(y) � Qn(un) → Q(u) ∈ arg sup
y∈Rd

gu(y) = {∇ψ(u)
}
.

Take K as any compact subset of U0. The above argument applies for every
point u ∈ K and every convergent sequence un → u. Therefore, since by assump-
tion (C) the map u �→ Q(u) = ∇ψ(u) is continuous in u ∈ K , we conclude by the
equivalence of the continuous and uniform convergence, Lemma B.1, that

Qn(u) → Q(u) uniformly in u ∈ K.

By symmetry, the proof of the second claim is identical to the proof of the first
one.

B.2. Proof of Lemma B.2. By assumption, X0 = arg ming ⊂ int(D0), and X0
is convex and closed. Let x0 be an element of X0. We have that, for all 0 < ε ≤ ε0
with ε0 such that Bε0(X0) ⊂ int(D0),

g(x0) < inf
x∈∂Bε(X0)

g(x),(20)

where Bε(X0) := {x ∈ R
d : d(x,X0) ≤ ε} is convex and closed.

Fix an ε ∈ (0, ε0]. By convexity of g and gn and by Theorem 7.17 in Rockafellar
and Wets [50], the pointwise convergence of gn to g on a dense subset of Rd is
equivalent to the uniform convergence of gn to g on any compact set K that does
not overlap with ∂D0, that is, K ∩∂D0 = ∅. Hence, gn → g uniformly on Bε0(X0).
This and (20) imply that eventually, that is, for all n ≥ nε ,

gn(x0) < inf
x∈∂Bε(X0)

gn(x).
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By convexity of gn, this implies that gn(x0) < infx /∈Bε(X0) gn(x) for all n ≥ nε ,
which is to say that, for all n ≥ nε ,

arg infgn = arg mingn ⊂ Bε(X0).

Since ε > 0 can be set as small as desired, it follows that any xn ∈ arg infgn is such
that d(xn,X0) → 0.

B.3. Proof of Corollary A.1. By Theorem A.1 and the definition of Haus-
dorff distance, for any non-empty subset A,

sup
A⊆K

dH

(
Qn(A),Q(A)

)

= sup
A⊆K

(
sup
u∈A

inf
ū∈A

∥∥Qn(ū) − Q(u)
∥∥ ∨ sup

ū∈A

inf
u∈A

∥∥Qn(ū) − Q(u)
∥∥)

≤ sup
A⊆K

(
sup
u∈A

∥∥Qn(u) − Q(u)
∥∥ ∨ sup

ū∈A

∥∥Qn(ū) − Q(ū)
∥∥)

= sup
u∈K

∥∥Qn(u) − Q(u)
∥∥ → 0,

as was to be shown. The proof of the second claim is identical.

B.4. Proof of Corollary A.2. We have that

dH

(
Qn(An),Q(A)

)
≤ dH

(
Qn(An),Q(An)

) + dH

(
Q(An),Q(A)

)
≤ sup

A⊆K

dH

(
Qn(A),Q(A)

)
+ sup

ū,u∈K

{
Q(ū) − Q(u) : ‖ū − u‖ ≤ dH (An,A)

} → 0,

where the first inequality holds by the triangle inequality, the second inequality
holds by definition and by An,A ⊆ K , and the last conclusion follows by Corol-
lary A.1 and continuity of the map u �−→ Q(u) on u ∈ K .

The proof of the second claim is identical.

B.5. Proof of Theorem A.2. Step 1. Here, we show that the set of conjugate
pairs is compact in the topology of uniform convergence. First, we notice that, for
any pair (ϕ,ϕ∗) ∈ 
0(U,Y),

‖ϕ‖BL(U) ≤ (
2‖Y‖‖U‖) ∨ ‖Y‖ < ∞,

∥∥ϕ∗∥∥
BL(Y) ≤ (

2‖Y‖‖U‖) ∨ ‖U‖ < ∞,

with ‖A‖ := supa∈A ‖a‖ for A ⊆ R
d , where we have used the fact that ϕ(u0) = 0

for some u0 ∈ U as well as compactness of Y and U .
The Arzela–Ascoli theorem implies that 
0(U,Y) is relatively compact in the

topology of uniform convergence. We want to show compactness, namely that
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this set is also closed. For this, we need to show that all uniformly convergent
subsequences (ϕn,ϕ

∗
n)n∈N′ (where N

′ ⊆ N) have their limit points in this set:(
ϕ,ϕ∗) := lim

n∈N′
(
ϕn,ϕ

∗
n

) ∈ 
0(U,Y).

This is true, since uniform limits of convex functions are necessarily convex
(see [50]), and since

ϕ(u) = lim
n∈N′

[
sup
y∈Y

[
u�y − ϕ∗

n(y)
]]

≤ lim sup
n∈N′

[
sup
y∈Y

[
u�y − ϕ∗(y)

] + sup
y∈Y

∣∣ϕ∗
n(y) − ϕ∗(y)

∣∣]

= sup
y∈Y

[
u�y − ϕ∗(y)

]
and

ϕ(u) = lim
n∈N′

[
sup
y∈Y

[
u�y − ϕ∗

n(y)
]]

≥ lim inf
n∈N′

[
sup
y∈Y

[
u�y − ϕ∗(y)

] − sup
y∈Y

∣∣ϕ∗
n(y) − ϕ∗(y)

∣∣]

= sup
y∈Y

[
u�y − ϕ∗(y)

]
.

Analogously, ϕ∗(y) = supu∈U [u�y − ϕ(y)].
Step 2. The claim here is that

In :=
∫

ψn dFn +
∫

ψ∗
n dPn →

n∈N

∫
ψ dF +

∫
ψ∗ dP =: I0.(21)

Indeed,

In ≤
∫

ψ dFn +
∫

ψ∗ dPn →
n∈N I0,

where the inequality holds by definition, and the convergence follows from∣∣∣∣
∫

ψ d(Fn − F)

∣∣∣∣ +
∣∣∣∣
∫

ψ∗ d(Pn − P)

∣∣∣∣ � dBL(Fn,F ) + dBL(Pn,P ) → 0,

where x � y means x ≤ Ay, for some constant A that does not depend on n.
Moreover, by definition,

IIn :=
∫

ψn dF +
∫

ψ∗
n dP ≥ I0,

but

|In − IIn| ≤
∣∣∣∣
∫

ψn d(Fn − F)

∣∣∣∣ +
∣∣∣∣
∫

ψ∗
n d(Pn − P)

∣∣∣∣
� dBL(Fn,F ) + dBL(Pn,P ) → 0.
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Step 3. Here we conclude. First, we observe that the solution pair (ψ,ψ∗) to the
limit Kantorovich problem is unique on U0 × Y0 in the sense that any other solu-
tion (ϕ,ϕ∗) agrees with (ψ,ψ∗) on U0 ×Y0. Indeed, suppose that ϕ(u1) �= ψ(u1)

for some u1 ∈ U0. By the uniform continuity of elements of 
0(U,Y) and
openness of U0, there exists a ball Bε(u1) ⊂ U0 such that ψ(u) �= ϕ(u) for
all u ∈ Bε(u1). By the normalization assumption ϕ(u0) = ψ(u0) = 0, there does
not exist a constant c �= 0 such that ψ(u) = ϕ(u) + c for all u ∈ U0, so this must
imply that ∇ψ(u) �= ∇ϕ(u) on a set K ⊂ U0 of positive measure [otherwise, if
they disagree only on a set of measure zero, we would have

ψ(u) − ψ(u0) =
∫ 1

0
∇ψ(u0 + v�(u − u0))

�(u − u0) dv

=
∫ 1

0
∇ϕ(u0 + v�(u − u0))

�(u − u0) dv

= ϕ(u) − ϕ(u0)

for almost all u ∈ Bε(u1), which is a contradiction]. However, the statement
that ∇ψ �= ∇ϕ on a set K ⊂ U0 of positive Lebesgue measure would contradict
the fact that any solution ψ or ϕ of the Kantorovich problem must obey∫

h ◦ ∇ϕ dF =
∫

h ◦ ∇ψ dF =
∫

hdP

for each bounded continuous h, that is, ∇ϕ#F = ∇ψ#F = P , see page 72 in Vil-
lani [58]. Analogous arguments apply to establish uniqueness of ψ∗ on the set Y0.

Second, we can split N into subsequences N= ⋃∞
j=1 Nj such that, for each j ,(

ψn,ψ
∗
n

) →
n∈Nj

(
ϕj ,ϕ

∗
j

) ∈ 
0(U,Y), uniformly on U ×Y .(22)

But by step 2, this means that∫
ϕj dF +

∫
ϕ∗

j dP =
∫

ψ dF +
∫

ψ∗ dP.

It must be that each pair (ϕj , ϕ
∗
j ) is the solution to the limit Kantorovich problem,

and by the uniqueness established above we have that(
ϕj ,ϕ

∗
j

) = (
ψ,ψ∗)

on U0 ×Y0.

By condition (C), we have that, for u ∈ U0 and y ∈ Y0,

Q(u) = ∇ψ(u) = ∇ϕj (u),

R(u) = ∇ψ∗(u) = ∇ϕ∗
j (u).

By (22) and condition (C), we can invoke Theorem A.1 to conclude that Qn → Q
uniformly on compact subsets of U0, and Rn → R uniformly on compact subsets
of Y0.
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B.6. Proof of Lemma 3.1. The proof is a variant of standard arguments, for
example, those given in [48], proof of Theorem 2.1, so is relegated to the supple-
mentary material, Appendix [8].

B.7. Proof of Theorem 3.1. The proof is an immediate consequence of the
extended continuous mapping theorem, as given in van der Vaart and Wellner [56],
Theorem A.1 and Corollary A.1.

That theorem, specialized to our context, reads as follows: Let D and E be
normed spaces and let x ∈ D. Let Dn ⊆ D be arbitrary subsets and gn : Dn �→ E

be arbitrary maps (n ≥ 0), such that for every sequence xn ∈ Dn such that xn → x

along a subsequence, we have that gn(xn) → g0(x), along the same subsequence.
Then, for arbitrary (i.e., possibly non-measurable) maps Xn : � �→ Dn such
that Xn →P∗ x, we have that gn(Xn) →P∗ g0(x).

In our case, Xn = (P̂n, F̂n) is a stochastic element of D, viewed as an arbitrary
map from � to D, and x = (P,F ) is a non-stochastic element of D, where D is
the space of linear operators D acting on the space of bounded Lipschitz functions.
This space can be equipped with the norm (see notation section) ‖ · ‖D, where∥∥(x1, x2)

∥∥
D

:= ‖x1‖BL(Y) ∨ ‖x2‖BL(U).

Moreover, Xn →P∗ x with respect to this norm, that is,

‖Xn − x‖D := ‖P̂n − P‖BL(Y) ∨ ‖F̂n − F‖BL(U) →
P∗ 0.

Then gn(Xn) := (Q̂n, R̂n) and g(x) := (Q,R) are viewed as elements of the
space E = �∞(K × K ′,Rd × R

d) of bounded functions mapping K × K ′
to R

d × R
d , equipped with the supremum norm. The maps have the continuity

property: if ‖xn − x‖D → 0 along a subsequence, then ‖gn(xn) − g(x)‖E → 0
along the same subsequence, as established by Theorem A.1. Hence, conclude
that gn(Xn) →P∗ g(x).

The second claim follows by the extended continuous mapping theorem and
Corollary A.1.

B.8. Proof of Corollaries 3.1, 3.2 and 3.3. Corollaries 3.1 and 3.2 follow by
Theorem 3.1 and the extended continuous mapping theorem; Corollary 3.3 follows
by Theorem 3.1, the extended continuous mapping theorem and Corollary A.2.
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SUPPLEMENTARY MATERIAL

Supplement to “Monge–Kantorovich depth, quantiles, ranks and signs”
(DOI: 10.1214/16-AOS1450SUPP; .zip). In the online supplement [8], we provide
a proof of Lemma 3.1.
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