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We calculate the bias of the profile score for the regression coefficients in a mul-
tistratum autoregressive model with stratum-specific intercepts. The bias is free of
incidental parameters. Centering the profile score delivers an unbiased estimating
equation and, upon integration, an adjusted profile likelihood. A variety of other
approaches to constructing modified profile likelihoods are shown to yield equiva-
lent results. However, the global maximizer of the adjusted likelihood lies at infinity
for any sample size, and the adjusted profile score has multiple zeros. Consistent pa-
rameter estimates are obtained as local maximizers inside or on an ellipsoid centered
at the maximum likelihood estimator.

1. INTRODUCTION

With nuisance parameters, inference based on the profile likelihood can be highly
misleading. In an N × T data array setting with stratum nuisance parameters, the
maximum likelihood estimator is often inconsistent as the number of strata, N ,
tends to infinity. This is the incidental-parameter problem (Neyman and Scott,
1948). It arises because profiling out the nuisance parameters from the likelihood
introduces a nonnegligible bias into the (profile) score function. One possible
solution is to calculate this bias and to subtract it from the profile score, as
suggested by Neyman and Scott (1948) and McCullagh and Tibshirani (1990).
When the bias is free of incidental parameters this yields a fully recentered
score function which, in principle, paves the way for consistent estimation under
Neyman–Scott asymptotics (Godambe and Thompson, 1974). This is the case in
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AUTOREGRESSIONS WITH FIXED EFFECTS 1179

the classic many-normal-means example, but little is known about this possibility
in other situations.

In this paper we consider a time series extension of the classic example of
Neyman and Scott (1948). The problem here is to estimate a pth order au-
toregressive model, possibly augmented with covariates, from data on N short
time series of length T . The model has stratum-specific intercepts, the fixed
effects. The distribution of the initial observations is left unrestricted and the
p-vector of autoregressive parameters, ρ, may lie outside the stationary region.
The incidental-parameter problem in this model is the subject of a substantial lit-
erature; see Arellano (2003b) for an overview and many references. The bias of
the profile score is found to depend only on ρ and T . Hence, adjusting the profile
score by subtracting its bias gives a fixed T unbiased estimating equation and,
upon integration, an adjusted profile likelihood in the sense of Pace and Salvan
(2006).

However, contrary to what standard maximum likelihood theory would sug-
gest, the parameters of interest are local maximizers of the expected adjusted
likelihood. The global maximum is reached at infinity. This phenomenon is not
a small-sample problem or an artifact of an unbounded parameter space. The
adjusted likelihood has its global maximum at infinity for any sample size, and
may already be re-increasing in the stationary parameter region and reach its max-
imum at the boundary. Consistent estimation is achieved by locally maximizing
the adjusted likelihood over a certain ellipsoid that is centered at the maximum
likelihood estimator and is defined by the (unadjusted) likelihood function. The
adjusted likelihood is re-increasing because the initial observations are unre-
stricted. This difficulty does not arise when stationarity of the initial observations
is imposed, as in Cruddas, Reid, and Cox (1989). Further, when the data carry
only little information, in a sense that we specify, the Hessian of the adjusted
likelihood is singular, implying first-order underidentification (Sargan, 1983) and
nonstandard asymptotic properties of the resulting point estimates, as derived in
the case p = 1 by Kruiniger (2014).

These features are not unique to our approach. We show that several other
routes to constructing modified objective functions for the dynamic linear fixed-
effect model yield equivalent results. When p = 1, the adjusted profile likelihood
coincides with the marginal posterior in Lancaster (2002), which, in the absence
of covariates, is a Bayesian version of a Cox and Reid (1987) approximate condi-
tional likelihood (see Sweeting, 1987). For general p, it is an integrated likelihood
in the sense of Kalbfleish and Sprott (1970) and Arellano and Bonhomme (2009)
where the fixed effects have been integrated out using a new data-independent
bias-reducing prior. Such a prior was thought not to exist for this model. The ad-
justed likelihood can also be seen as a penalized likelihood as defined by Bester
and Hansen (2009) (see DiCiccio, Martin, Stern, and Young, 1996, and Severini,
1998, for related approaches). The adjusted profile score equation, in turn, is a
Woutersen (2002) integrated moment equation and a locally-orthogonal Cox and
Reid (1987) moment equation, as defined in Arellano (2003a), and solving it is
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1180 GEERT DHAENE AND KOEN JOCHMANS

equivalent to inverting the probability limit of the least-squares estimator, as pro-
posed by Bun and Carree (2005) for the case p = 1.

The equivalence results allow to connect and complement various earlier least-
squares and likelihood-based approaches. In particular, our analysis of the global
properties of the modified objective function shows that it has to be maximized
locally or, when solving the modified estimating equation, the appropriate solu-
tion has to be selected accordingly, an issue that has been overlooked. Corrected
least-squares and likelihood-based methods have been proposed in this model as
alternatives to the generalized method-of-moments estimators of Arellano and
Bond (1991) and Ahn and Schmidt (1995). The latter estimators are well known
to deliver biased point estimates and confidence regions with poor coverage when
the data are persistent (Blundell and Bond, 1998) or when T is not negligible
compared to N (Alvarez and Arellano, 2003). Inference based on the adjusted
likelihood also becomes more fragile in the vicinity of a unit root, but does not
deteriorate when T/N is nonnegligible. On a more general level, our findings
highlight the difficulty of point identification under Neyman–Scott asymptotics
and show that global maximization of a bias-adjusted profile likelihood, as if it
were an ordinary likelihood, may fail badly.

Our focus is on short panels, that is, we treat T as fixed in the asymptotics. In
related work, Kiviet (1995) and Hahn and Kuersteiner (2002) proposed methods
to approximately bias-correct the within-group least-squares estimator. These ap-
proaches do not fully remove the bias but, rather, reduce its order from O(T −1)
down to O(T −2). Hence, they are more suited for panels where T/N is non-
negligible. On the other hand, while a complete re-centering of the profile score
equation is not generally possible in nonlinear fixed-effect models, approximate
bias-corrected estimators have been derived under fairly general conditions; see,
e.g., Hahn and Newey (2004), Arellano and Hahn (2006), Hahn and Kuersteiner
(2011), and Dhaene and Jochmans (2015).

Sections 2 to 6 derive and study the adjusted profile likelihood. Proofs are given
in the Appendix.

2. ADJUSTED PROFILE LIKELIHOOD

2.1. Model and profile likelihood

Suppose we observe a scalar variable y, the first p ≥ 1 lags of y, and a q-vector
of covariates x , for N strata i and T periods t . Consider the model

yit = y�
i t−ρ + x�

i t β +αi + εi t , i = 1, . . . , N ; t = 1, . . . ,T, (2.1)

where yit− = (yit−1, . . . , yit−p)
�, ρ and β are parameter vectors, αi is a fixed

effect, and εi t is an error term. Let zit = (y�
i t−, x�

i t )
�and θ = (ρ�,β�)�. Fur-

ther, let yi = (yi1, . . . , yiT )�, Yi− = (yi1−, . . . , yiT −)�, Xi = (xi1, . . . , xiT )�,
εi = (εi1, . . . ,εiT )�, and Zi = (Yi−, Xi ), so that Myi = M Ziθ + Mεi where
M = IT − T −1ιι� and ι is a T -vector of ones. Also, let y0

i = (yi(1−p), . . . , yi0)
�

denote the initial values (which are observed). We make the following assumption.
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AUTOREGRESSIONS WITH FIXED EFFECTS 1181

Assumption 2.1. The variable yit is generated by (2.1) and

(i) (Zi ,εi ) and (Zi ′ ,εi ′) are independent for all i and i ′ �= i ;

(ii) εi t is i.i.d. for all i and t , is independent of Xi , has finite fourth moment,
and satisfies

E
(
εi t |Xi , yit−1, . . . , yi1, y0

i

)= 0,

Var
(
εi t |Xi , yit−1, . . . , yi1, y0

i

)= σ 2 > 0;

(iii) N−1∑N
i=1 Z�

i M Zi and plimN→∞ N−1∑N
i=1 Z�

i M Zi < ∞ are nonsin-
gular.

Thus, we assume cross-sectional independence, strict exogeneity, homoskedas-
ticity, and no multicollinearity. On the other hand, we do not assume normality
of εi t and place no restrictions on how

(
y0

i ,αi , Xi
)
, i = 1, . . . , N , are generated,

thus allowing for nonstationarity across t . The unknown parameters are θ , σ 2,
and α1, . . . ,αN . Let θ0 and σ 2

0 be the true values of θ and σ 2. Our interest lies
in consistently estimating θ0 under large N and fixed T asymptotics. We do not
require ρ0 to lie in the stationary region of Rp, i.e., we allow any ρ0 ∈ Rp.

We shall work with the Gaussian quasi-likelihood (i.e., acknowledging that
εi t may be nonnormal) but simply refer to it as the likelihood. Conditional on
y0

1 , . . . , y0
N and divided by N T , the log-likelihood is

− 1

2N T

N∑
i=1

T∑
t=1

(
logσ 2 + 1

σ 2

(
yit − z�

i t θ −αi
)2)+ c,

where, here and later, c is a nonessential constant. Profiling out α1, . . . ,αN and σ 2

gives the profile log-likelihood (divided by N T ) for θ ,

l(θ) = −1

2
log

(
1

N

N∑
i=1

(yi − Ziθ)�M(yi − Ziθ)

)
+ c.

The profile score, s(θ) = ∇θ l(θ), has elements

sρj (θ) = ∇ρj l(θ) =
∑N

i=1(yi − Ziθ)�Myi,− j∑N
i=1(yi − Ziθ)�M(yi − Ziθ)

, j = 1, . . . , p,

sβj (θ) = ∇βj l(θ) =
∑N

i=1(yi − Ziθ)�Mxi, j∑N
i=1(yi − Ziθ)�M(yi − Ziθ)

, j = 1, . . . ,q,

where yi,− j is the j th column of Yi− and xi, j is the j th column of Xi .
For the analysis below, rewrite (2.1) as

Dyi = Cy0
i + Xiβ + ιαi + εi , i = 1, . . . , N ,
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1182 GEERT DHAENE AND KOEN JOCHMANS

where D = D(ρ) and C = C(ρ) are the T × T and T × p matrices

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0

−ρ1
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

−ρp
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 −ρp · · · −ρ1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρp · · · · · · · · · ρ1

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · · · · 0 ρp
0 · · · · · · · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then(
y0

i
yi

)
= ξi + Fεi , (2.2)

where

ξi =
(

y0
i

D−1
(
Cy0

i + Xiβ + ιαi
)) , F =

(
0

D−1

)
,

and yi,− j = Sj (ξi + Fεi ) for selection matrices Sj = (0T ×(p− j), IT ,0T × j ).

2.2. Bias of the profile score

The profile score is asymptotically biased, that is, plimN→∞s(θ0) �= 0. Therefore,
the maximum likelihood estimator, solving s(θ) = 0, is inconsistent. (Here and
later, probability limits and expectations are taken conditionally on

(
y0

i ,αi , Xi
)
,

i = 1, . . . , N .) Lemma 2.1 below shows that the profile-score bias is a polynomial

in the parameter ρ0. For k = (k1, . . . ,kp)
� ∈ Np, let ρk = ∏p

j=1 ρ
kj
j . Also, let

τ = (1, . . . , p)�,

ϕt =
∑

τ�k=t

(
ι�k
)
!

k1! · · ·kp!
ρk, t = 1, . . . ,T −1, (2.3)

and set ϕ0 = 0.

LEMMA 2.1. Suppose Assumption 2.1 holds. Then, the asymptotic bias of the
profile score is plimN→∞s(θ0) = b(ρ0), where b(ρ) = (b1(ρ), . . . ,bp+q(ρ))� and

bj (ρ) = −∑T − j−1
t=0

T − j−t
T (T −1)ϕt , j = 1, . . . , p,

bj (ρ) = 0, j = p +1, . . . , p +q.
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AUTOREGRESSIONS WITH FIXED EFFECTS 1183

The bias of the profile score depends only on ρ0 and T . It does not depend
on the distribution of εi t . It is, furthermore, independent of the initial observa-
tions, the fixed effects, and the covariates. This is in sharp contrast with the bias
of the maximum likelihood estimator, which was first derived by Nickell (1981)
for the first-order autoregressive model under the assumption of stationarity of the
initial observations. This bias depends on the initial observations, the fixed effects,
and the covariate values.

2.3. Adjusted profile likelihood

By construction, the centered (or adjusted) profile score,

sa(θ) = s(θ)−b(ρ),

is asymptotically unbiased, i.e., plimN→∞sa(θ0) = 0. Hence, sa(θ) = 0 is a bias-
adjusted estimating equation. The question arises whether there is a corresponding
adjustment to the profile likelihood. This indeed turns out to be the case, as the
following lemma shows.

LEMMA 2.2. Let b(ρ) be as defined in Lemma 2.1. Up to an arbitrary constant
of integration, the solution to ∇θa(ρ) = b(ρ) is given by

a(ρ) =
∑
S∈S

aS(ρ), aS(ρ) =−
T −1∑
t=|S|

T − t

T (T −1)

∑
k∈KS :τ�k=t

(
ι�k −1

)
!

k1! · · ·kp!
ρ

kS
S , (2.4)

where S is the collection of the nonempty subsets of {1, . . . , p}; |S| is the sum of
the elements of S; KS = {k ∈ Np|kj > 0 if and only if j ∈ S}; and ρS = (ρj

)
j∈S

and kS = (kj
)

j∈S are subvectors of ρ and k determined by S.

It follows that sa(θ) = 0 is an estimating equation associated with the function

la(θ) = l(θ)−a(ρ),

which we call an adjusted profile log-likelihood. Every subvector ρS of ρ
contributes to la(θ) an adjustment term, −aS(ρ), which takes the form of a mul-
tivariate polynomial in ρj , j ∈ S, with positive coefficients that are independent
of p.

3. CONNECTIONS WITH THE LITERATURE

Before studying the adjusted profile likelihood as a tool for inference about θ0
we show that it can also be obtained through various other routes that have been
suggested in the literature.

Lancaster (2002) studied the first-order autoregressive model, with and without
covariates, from a Bayesian perspective. With p = 1, we have ϕt = ρt and

b1(ρ) = −
T −1∑
t=1

T − t

T (T −1)
ρt−1, a(ρ) = −

T −1∑
t=1

T − t

T (T −1)t
ρt .
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1184 GEERT DHAENE AND KOEN JOCHMANS

Consider the reparametrized effects ηi = αi e−(T −1)a(ρ). With independent uni-
form priors on the ηi and on θ and logσ 2, Lancaster’s posterior for ϑ = (θ�,σ 2

)�
is

f (ϑ |data) ∝ σ−N (T −1)−2 exp
(− N (T −1)a(ρ)− Q2(θ)σ−2/2

)
,

where Q2(θ) = ∑N
i=1(yi − Ziθ)�M(yi − Ziθ) ∝ e−2l(θ). Integrating over σ 2

gives

f (θ |data) ∝ e−N (T −1)a(ρ)
(
Q2(θ)

)−N (T −1)/2

and, hence,

f (θ |data) ∝ eN (T −1)la(θ). (3.1)

Thus, the posterior and the adjusted likelihood are equivalent. More generally,
for any p and q , independent uniform priors on η1, . . . ,ηN ,θ, logσ 2, with ηi =
αi e−(T −1)a(ρ) and a(ρ) as in Lemma 2.2, yield a posterior f (θ |data) that is related
to la(θ) as in (3.1).

Lancaster’s choice of a prior on the ηi that is independent of ϑ is motivated
by a first-order autoregression without covariates. There, ηi is orthogonal to ϑ
and the posterior f (θ |data) (and, hence, also ela(θ)) has an interpretation as a Cox
and Reid (1987) approximate conditional likelihood; see also Sweeting (1987).
Orthogonalization to a multidimensional parameter is generally not possible
(Severini, 2000, pp. 340–342). Here, orthogonalization is not possible when the
model is augmented with covariates, as shown by Lancaster, or when the autore-
gressive order, p, is greater than one, as we show in the Appendix. From a bias
correction perspective, however, orthogonality is not required. In the present
model, for any p and q, sa(θ) = 0 is an unbiased estimating equation, and the
bias calculation underlying it is immune to the nonexistence of orthogonalized
fixed effects.

The approach of Arellano and Bonhomme (2009) shares the integration step
with Lancaster (2002) but allows nonuniform priors on fixed effects or, equiv-
alently, nonorthogonalized fixed effects. Of interest are bias-reducing priors,
i.e., weighting schemes that deliver an integrated likelihood whose score equation
has bias o(T −1) as opposed to the standard O(T −1). The present model (with
general p and q) illustrates an interesting result of Arellano and Bonhomme that
generalizes the scope of uniform integration to situations where orthogonalization
is impossible. For a given prior πi (αi |ϑ), the log integrated likelihood (divided
by N T ) is

lint(ϑ) = 1

N T

N∑
i=1

log
∫

σ−T/2e
− 1

2σ2

∑T
t=1
(
yit −z�

i t θ−αi
)2

πi (αi |ϑ) dαi + c.

Choosing πi (αi |ϑ) ∝ e−(T −1)a(ρ) yields

lint(ϑ) = −T −1

2T
logσ 2 − T −1

T
a(ρ)− Q2(θ)

2N T σ 2
+ c.
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AUTOREGRESSIONS WITH FIXED EFFECTS 1185

Profiling out σ 2 gives σ 2(θ) = argmaxσ 2 lint(ϑ) = Q2(θ)/(N (T −1)), and so

lint(θ) = max
σ 2

lint(ϑ) = T −1

T
la(θ)+ c.

Thus lint(θ) and la(θ) are equivalent. Because a(ρ) does not depend on true
parameter values, πi (αi |ϑ) ∝ e−(T −1)a(ρ) is a data-independent bias-reducing
(in fact, bias-eliminating) prior in the sense of Arellano and Bonhomme. Now,
πi (αi |ϑ) ∝ e−(T −1)a(ρ) is equivalent to πi (ηi |ϑ) ∝ 1, i.e., to setting a uniform
prior on ηi = αi e−(T −1)a(ρ), as it leads to the same lint(ϑ). Further, Arellano
and Bonhomme (2009) give a necessary and sufficient condition for a uniform
prior to be bias-reducing. With �i (ϑ,ηi ) = T −1∑T

t=1 �i t (ϑ,ηi ) denoting i’s log-
likelihood contribution (divided by T ) in a parametrization ηi , the condition is
that

plimN→∞
1

N

N∑
i=1

∇ηi

(
A−1

i Bi
)= o(1) as T → ∞, (3.2)

where

Ai = Ai (ϑ,ηi ) = −Eϑ,ηi ∇ηi ηi �i (ϑ,ηi ), Bi = Bi (ϑ,ηi ) =Eϑ,ηi ∇ϑηi �i (ϑ,ηi ),

and where ∇ηi

(
A−1

i Bi
)

is evaluated at the true parameter values. When ηi and
ϑ are orthogonal, Bi = 0 and (3.2) holds. However, Condition (3.2) is consider-
ably weaker than parameter orthogonality. In the present model, when p > 1 or
q > 0, and thus no orthogonalization is possible, it follows from our analysis and
Arellano and Bonhomme (2009) that (3.2) must hold for ηi = αi e−(T −1)a(ρ).
Indeed, as we show in the Appendix,

∇ηi

(
A−1

i Bi
)= 0 (3.3)

because A−1
i Bi is free of ηi .

Woutersen (2002) derived a likelihood-based moment condition in which pa-
rameters of interest and fixed effects are orthogonal by construction even though
orthogonality in the information matrix may not be possible. With �i = �i (ϑ,αi ) =∑T

t=1 �i t (ϑ,αi ) a generic log-likelihood for stratum i , let

gi = gi (ϑ,αi ) = ∇ϑ�i −∇αi �i
Eϑ,αi ∇αi ϑ�i

Eϑ,αi ∇αi αi �i
. (3.4)

Then Eϑ,αi gi = 0 and parameter orthogonality holds in the sense that
Eϑ,αi ∇αi gi = 0 (under regularity conditions). The integrated moment estimator of
ϑ minimizes g�

intgint where gint = (N T )−1∑N
i=1 ginti and

ginti = ginti (ϑ) =
[

gi − 1

2

∇αi αi gi

∇αi αi �i
+ 1

2

∇αi αi αi �i

∇αi αi �i
∇αi gi

]
αi =α̂i (ϑ)

,
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1186 GEERT DHAENE AND KOEN JOCHMANS

with α̂i (ϑ) = argmaxαi �i . The function ginti is the Laplace approximation to∫
gi e�i dαi/

∫
e�i dαi , that is, to gi with αi integrated out using likelihood

weights.1 Arellano (2003b) obtained the same ginti as a locally orthogonal
Cox and Reid (1987) moment function. Woutersen and Voia (2004) calculated
gint for the present model with p = 1. For any p and q, the integrated moment
condition essentially coincides with the adjusted profile score. In the Appendix it
is shown that

ginti
(
θ,σ 2)=

(
σ−2 Z�

i M(yi − Ziθ)− (T −1)b(ρ)

σ−4(yi − Ziθ)�M(yi − Ziθ)/2−σ−2 (T −1)/2

)
. (3.5)

On profiling out σ 2 from the minimand g�
intgint we obtain

gint(θ) = T −1

T

(
s(θ)−b(ρ)

)= T −1

T
sa(θ).

Thus, the estimator of θ by Woutersen (2002) minimizes the norm of the adjusted
profile score.

The adjusted likelihood can also be viewed as a penalized log-likelihood in
the sense of Bester and Hansen (2009). With � =∑N

i=1
∑T

t=1 �i t , �i t = �i t (ϑ,αi ),
again denoting a generic log-likelihood, let πi = πi (ϑ,αi ) be a function such that

plimN→∞∇αi πi = lim
T →∞E

[
1

T

T∑
t=1

∇αi αi �i t

T∑
t=1

ψi t

]

+ 1

2
E
[∇αi αi αi �i t

]
lim

T →∞E
[

1

T

T∑
t=1

ψi t

T∑
t=1

ψi t

]
,

plimN→∞∇ϑπi = lim
T →∞E

[
1

T

T∑
t=1

∇αi ϑ�i t

T∑
t=1

ψi t

]

+ 1

2
E
[∇αi αi ϑ�i t

]
lim

T →∞E
[

1

T

T∑
t=1

ψi t

T∑
t=1

ψi t

]
,

where ψi t = −E[∇αi αi �i t
]−1∇αi �i t . Then �π = �−∑n

i=1 πi is a penalized log-
likelihood. Bester and Hansen (2009) provide a function that satisfies these dif-
ferential equations in a general class of fixed-effect models and show that it
leads to �π whose first-order condition has bias o(T −1). In the present model,
the equations can be solved exactly, i.e., for finite T . With �i t = − 1

2

[
logσ 2 +(

yit − z�
i t θ −αi

)2
/σ 2
]+ c, the relevant differential equations are

∇αi πi = 0, ∇θπi = (T −1)b(ρ), ∇σ 2πi = − 1

2σ 2
,

which yields πi = − 1
2 logσ 2 + (T −1)a(ρ)+ c. Therefore,

�π = �+ N

2
logσ 2 − N (T −1)a(ρ)+ c (3.6)
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AUTOREGRESSIONS WITH FIXED EFFECTS 1187

and lπ (θ) = maxα1,...,αN ,σ 2 �π = N (T − 1)la(θ) + c. Thus, the profile penalized
log-likelihood and the adjusted log-likelihood are equivalent. Note that Bester and
Hansen’s approach is to adjust the likelihood before profiling out the incidental
parameters, while we adjust it after doing so. In the present model, the two ap-
proaches coincide.

Finally, the adjusted profile score is also related to the approach of Bun
and Carree (2005). Note that s(θ) =∑N

i=1 Z�
i M(yi − Ziθ)/Q2(θ) and Myi =

M Zi θ̂ + M ε̂i where θ̂ is the maximum likelihood estimator, with residuals ε̂i sat-
isfying

∑N
i=1 Z�

i M ε̂i = 0. Therefore, solving sa(θ) = 0 is equivalent to solving

θ̂ − θ =
(

N∑
i=1

Z�
i M Zi

)−1

b(ρ)Q2(θ). (3.7)

When p = 1, solving (3.7) corresponds to the proposal by Bun and Carree (2005)
for bias-correcting the maximum likelihood estimate.

4. GLOBAL PROPERTIES OF THE ADJUSTED PROFILE LIKELIHOOD

At this point it is tempting to anticipate that θ0 maximizes plimN→∞la(θ). How-
ever, as shown below, −a(ρ) dominates plimN→∞l(θ) as ‖ρ‖ → ∞ in almost all
directions and plimN→∞la(θ) is unbounded from above.

Let h(θ) = ∇θ�s(θ), c(ρ) = ∇θ�b(ρ), and

La(θ) = L(θ)−a(ρ), L(θ) = plimN→∞l(θ),

Sa(θ) = S(θ)−b(ρ), S(θ) = plimN→∞s(θ),

Ha(θ) = H(θ)− c(ρ), H(θ) = plimN→∞h(θ).

Using M(yi − Ziθ) = −M Zi (θ − θ0)+ Mεi , we have

L(θ) = −1

2
log

(
plimN→∞

1

N

N∑
i=1

Ui (θ)

)
+ c

for Ui (θ) = ε�
i Mεi − 2(θ − θ0)

�Z�
i Mεi + (θ − θ0)

�Z�
i M Zi (θ − θ0). Let b0 =

b(ρ0) = S(θ0) and note that

plimN→∞
1

N

N∑
i=1

Z�
i Mεi =

(
plimN→∞

1

N

N∑
i=1

ε�
i Mεi

)
b0 = σ 2

0 (T −1)b0.

Hence, defining V0 by

plimN→∞
1

N

N∑
i=1

Z�
i M Zi =

(
plimN→∞

1

N

N∑
i=1

ε�
i Mεi

)
V0 = σ 2

0 (T −1)V0,
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1188 GEERT DHAENE AND KOEN JOCHMANS

we can write

L(θ) = −1

2
log
(

1−2(θ − θ0)
�b0 + (θ − θ0)

�V0(θ − θ0)
)

+ c

by absorbing the term − 1
2 log

(
σ 2

0 (T −1)
)

into c. As N → ∞, the maximum
likelihood estimator of θ converges in probability to θml = argmaxθ L(θ) =
θ0 + V −1

0 b0 and has asymptotic bias V −1
0 b0. This expression generalizes the

fixed T bias calculations in Nickell (1981) and Bun and Carree (2005). Note that
(θ0 − θml)

�V0(θ0 − θml) = b�
0 V −1

0 b0. Furthermore,

L(θ) = −1

2
log
(

1−b�
0 V −1

0 b0 + (θ − θml)
�V0(θ − θml)

)
+ c,

S(θ) = − V0(θ − θml)

1−b�
0 V −1

0 b0 + (θ − θml)�V0(θ − θml)
,

H(θ) = − V0

1−b�
0 V −1

0 b0 + (θ − θml)�V0(θ − θml)
+2S(θ)S(θ)�.

Note that L(·) and H(·) are even and S(·) is odd about θml and that H(θ0) =
2b0b�

0 − V0 and Ha(θ0) = 2b0b�
0 − V0 − c0, where c0 = c(ρ0). Since L(θ) is log-

quadratic in θ and a(ρ) is a multivariate polynomial with negative coefficients,
La(θ) = L(θ)− a(ρ) is unbounded from above. For example, if we put ρ = κr
with r in the positive orthant of Rp and let κ → ∞, the term −a(ρ) dominates
and La(θ) → ∞.

It follows that θ0 �= argmaxθ La(θ), and so θ0 has to be identified as a functional
of La(θ) other than its global maximizer (as in standard maximum likelihood
theory). Because Sa(θ0) = 0, we need to select θ0 from the set of stationary points
of La(θ), that is, from the set of zeros of Sa(θ). In general, this set is not a sin-
gleton. Indeed, whenever θ0 is a local maximizer of La(θ) (which will often be
the case, as shown below), La(θ), being smooth and unbounded, must also have
at least one local minimum. Because l(θ) is log-quadratic for any N ≥ 1 and a(ρ)
does not depend on the data, la(θ), too, is re-increasing, regardless of the sample
size. Therefore, an estimation strategy based on solving sa(θ) = 0 will generally
lead to multiple solutions, from which the appropriate one has to be chosen.

4.1. First-order autoregression without covariates

Our focus in this and the following subsections is on how the parameter of in-
terest, θ0, is identified from the function La(θ). We first examine the first-order
autoregression without covariates, i.e., p = 1 and q = 0.

Letting ζ 2
0 = (V0 −b2

0

)
/V 2

0 , we have

L(ρ) = −1

2
log
(
ζ 2

0 + (ρ −ρml)
2
)

+ c,

S(ρ) = − ρ −ρml

ζ 2
0 + (ρ −ρml)2

, H(ρ) = − ζ 2
0 − (ρ −ρml)

2(
ζ 2

0 + (ρ −ρml)2
)2 ,
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AUTOREGRESSIONS WITH FIXED EFFECTS 1189

by absorbing − 1
2 log V0 into c. Note that ζ 2

0 = −1/H(ρml), hence, ζ 2
0 is identified.

Recall that S(ρ) is odd about ρml = ρ0 + b0/V0. The zeros of H(ρ) are ρ =
ρml − ζ0 and ρ = ρml + ζ0, so S(ρ) decreases on

[
ρ,ρ

]
and increases elsewhere.

All of ρ, ρ, ρml, and ζ0 are identified by S(·), and ρml and ζ0 act as location and
scale parameters of S(·). For any given ρ0, ρml and ζ0 are determined by V0. As
V0 increases, |b0/V0| and ζ0 decrease, that is, the bias of ρml decreases in absolute
value, the length of

[
ρ,ρ

]
shrinks, and S(ρ) becomes steeper on

[
ρ,ρ

]
.

There is a sharp lower bound on V0. With ξ0i and F0 denoting ξi and F eval-
uated at ρ0, we have yi,−1 = S1(ξ0i + F0εi ). From the independence between ξ0i

and εi , we obtain

V0 = plimN→∞ 1
N

∑N
i=1 y�

i,−1 Myi,−1

σ 2
0 (T −1)

= V L B
0 + Vξξ ,

where

V L B
0 = trF�

0 S�
1 M S1 F0

T −1
, Vξξ = plimN→∞ 1

N

∑N
i=1 ξ�

0i S�
1 M S1ξ0i

σ 2
0 (T −1)

. (4.1)

So V0 ≥ V L B
0 and this lower bound implies an upper bound on |b0/V0| and on the

length of
[
ρ,ρ

]
, and a lower bound on the steepness of S(ρ) on

[
ρ,ρ

]
.

LEMMA 4.1. Suppose Assumption 2.1 holds with p = 1,q = 0. Then, V L B
0 , as

defined in (4.1), is given by

V L B
0 = 1

T −1

⎛⎜⎝T −2∑
j=0

(T − j −1)ρ
2 j
0 − 1

T

T −2∑
j=0

⎛⎝ j∑
k=0

ρk
0

⎞⎠2
⎞⎟⎠

and satisfies V L B
0 ≥ 2b2

0 and V L B
0 ≥ 2b2

0 − c0, each with equality if and only if
T = 2 or ρ0 = 1.

By Lemma 4.1, H(ρ0) = 2b2
0 − V0 ≤ 0 and, hence,

(ρ −ρml)
2 = V0 −b2

0

V 2
0

≥ b2
0

V 2
0

= (ρ0 −ρml)
2.

Therefore, ρ0 ∈ [ρ,ρ]. Since S(ρ) is a rational function that vanishes at ±∞
and b(ρ) is a polynomial, Sa(ρ) has finitely many zeros. Thus, because Sa(ρ0) =
0 and, by Lemma 4.1, Ha(ρ0) = 2b2

0 − V0 − c0 ≤ 0, it follows that La(ρ) has
a local maximum or a flat inflection point at ρ0. Our main result for the first-
order autoregression without covariates is the uniqueness of such a point in

[
ρ,ρ

]
,

thereby identifying ρ0 as a functional of La(ρ). Equivalently, ρ0 is the unique
point in

[
ρ,ρ

]
where b(ρ) approaches S(ρ) from below.
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1190 GEERT DHAENE AND KOEN JOCHMANS

THEOREM 4.1. Suppose Assumption 2.1 holds with p = 1,q = 0. Then, ρ0 is
the unique point in

[
ρ,ρ

]
where La(ρ) has a local maximum or a flat inflection

point.

La(ρ) has a flat inflection point at ρ0 if and only if V0 = V L B
0 = 2b2

0 − c0.
The latter equality holds if and only if T = 2 or ρ0 = 1. The former holds if and
only if Vξξ = 0, which requires M S1ξ0i to be negligibly small for almost all i .

The elements of S1ξ0i are ρ
j−1
0 y0

i +αi
∑ j−1

k=1 ρk−1
0 , j = 1, . . . ,T , so M S1ξ0i = 0

if and only if y0
i (1 − ρ0) = αi . The following corollary has been independently

obtained by Ahn and Thomas (2006).

COROLLARY 4.1. Suppose Assumption 2.1 holds with p = 1,q = 0. Then,
when ρ0 = 1 and αi = 0, La(ρ) has a flat inflection point at ρ0 for any T .

This result is in line with the rank deficiency of the expected Jacobian associated
with the moment conditions of Ahn and Schmidt (1995); see Alvarez and Arel-
lano (2004). It implies that inference based on the adjusted likelihood becomes
nonstandard in the unit root case because Ha(ρ0) vanishes.

When ρ0 �= 1, V0 = V L B
0 = 2b2

0 − c0 only when T = 2 and a very strong con-
dition holds on the initial observations and the fixed effects, which is unlikely
to hold in situations where a fixed effect modeling approach is called for. Thus,
when ρ0 �= 1, except in quite special circumstances, ρ0 is the unique point in

[
ρ,ρ

]
where La(ρ) attains a strict local maximum. Note that, when ρ0 is a local maxi-
mizer of La(ρ), it need not be the global maximizer on

[
ρ,ρ

]
, which may instead

be ρ. To see why this may happen, interpret the situation where La(ρ) has a flat
inflection point at ρ0 as a limiting case of the property that La(ρ) is re-increasing.

Figure 1 illustrates how ρ0 is identified by La(ρ) for two cases, each with
T = 4. The plots on the left correspond to the case ρ0 = .5 with V0 = V L B

0 + Vξξ

and Vξξ corresponding to stationary initial observations. Those on the right
correspond to the unit root case without deterministic trends, i.e., ρ0 = 1 and
V0 = V L B

0 . In each case, the bottom figures show S(ρ) (solid line) and b(ρ)
(dashed line); the top plots show L(ρ) (solid line), −a(ρ) (dashed line), and
La(ρ) = L(ρ) − a(ρ) (thick line). In all the plots, vertical lines indicate ρ, ρ0,
and ρ, from left to right. In the case of ρ0 = .5, ρ0 is the unique local maximizer
of La(ρ) on

[
ρ,ρ

]
. Note that there is a second solution of Sa(ρ) = 0 on

[
ρ,ρ

]
,

which corresponds to a local minimum of La(ρ). In the unit root case, ρ0 is the
unique flat inflection point of La(ρ) on

[
ρ,ρ

]
.

The asymptotic bias of the maximum likelihood estimator has the same sign as
b0 because ρml = ρ0 +b0/V0. The proof of Theorem 4.1, as a by-product, shows
that if T is even, then b0 < 0; and, if T is odd, then b(ρ) decreases and has a
unique zero at some point ρu ∈ [−2,−1), so b0 has the same sign as ρu −ρ0.

We note, finally, that La(ρ) may have more than one local maximum on R.
When ρ0 = −5, V0 = V L B

0 , and T = 4, La(ρ) has local maxima at −5 and
−2.97, local minima at −3.78 and −0.27, and

[
ρ,ρ

] = [−5.08,−4.94]. When
ρ0 ∈ [−1,1], however, we have not found a case where La(ρ) has multiple local
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AUTOREGRESSIONS WITH FIXED EFFECTS 1191

FIGURE 1. Identification in the first-order autoregression. Left: T = 4, ρ0 = .5, V0 =
V L B

0 + Vξξ , Vξξ corresponding to stationary initial observations. Right: T = 4, ρ0 = 1,

V0 = V L B
0 . Top: L(ρ) (solid), −a(ρ) (dashed-dotted), La(ρ) (dashed). Bottom: S(ρ)

(solid), b(ρ) (dashed-dotted). Vertical lines at ρ, ρ0, and ρ.

maxima on R. This is in line with the result obtained by Kruiniger (2014, Lem-
mas 1 and 2) that, when ρ0 ≥ −1, La(ρ) and la(ρ) each have at most one local
maximum on [−1,∞).

4.2. First-order autoregression with covariates

In the first-order autoregressive model with covariates (p = 1,q ≥ 1), profiling
out β yields a profile likelihood of ρ with essentially the same properties as in the
model without covariates. Let β(ρ) = argmaxβ La(ρ,β) = argmaxβ L(ρ,β) =
argminβ(θ − θml)

�V0(θ − θml). Partition V0, V −1
0 , and b0 as

V0 =
(

V0ρρ V0ρβ

V0βρ V0ββ

)
, V −1

0 =
(

V ρρ
0 V ρβ

0
V βρ

0 V ββ
0

)
, b0 =

(
b0ρ

0

)
.

With

V ρρ
0 =

(
V0ρρ − V0ρβ V −1

0ββ V0βρ

)−1
, (4.2)
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1192 GEERT DHAENE AND KOEN JOCHMANS

we have

V0ββ (β(ρ)−βml) = −V0βρ(ρ −ρml),

min
β

(θ − θml)
�V0(θ − θml) = (ρ −ρml)

2/V ρρ
0 ,

1−b�
0 V −1

0 b0 = 1−b2
0ρV ρρ

0 .

The first of these equations, together with V0(θ0 −θml) = −b0, yields β(ρ0) = β0,
so β0 is identified whenever ρ0 is. Profiling out β from L(ρ,β) gives the limiting
profile log-likelihood of ρ as

L(ρ) = L(ρ,β(ρ)) = −1

2
log
(
ζ 2

0 + (ρ −ρml)
2)+ c

(slightly abusing notation), where ζ 2
0 is redefined as ζ 2

0 = (1 − b2
0ρV ρρ

0

)
V ρρ

0 and
1
2 log V ρρ

0 is absorbed into c.

LEMMA 4.2. Suppose Assumption 2.1 holds with p = 1,q ≥ 1. Let V ρρ
0 be

as defined in (4.2) and V L B
0 as defined in (4.1) and given in Lemma 4.1. Then,

(V ρρ
0 )−1 ≥ V L B

0 .

We can now invoke the result for the model without covariates. Let ρ = ρml −ζ0
and ρ = ρml + ζ0, with ζ0 redefined as indicated.

THEOREM 4.2. Suppose Assumption 2.1 holds with p = 1,q ≥ 1. Then, ρ0 is
the unique point in [ρ,ρ] where La(ρ) = L(ρ)−a(ρ) has a local maximum or a
flat inflection point.

By the proof of Lemma 4.2, the conditions under which ρ0 is a flat inflection
point of La(ρ) are the same as before. The presence of covariates does not affect
the sign of the asymptotic bias of the maximum likelihood estimator of ρ. It also
follows from the proof of Lemma 4.2 that the inclusion of covariates in the model
cannot increase V ρρ

0 , so the magnitude of ρml −ρ0 = V ρρ
0 b0ρ can only decrease

relative to the model without covariates.

4.3. pth-order autoregression

Consider first an autoregression with p > 1 and without covariates, i.e., q = 0.
Then

L(ρ) = −1

2
log
(

1+ (ρ −ρml)
�W0(ρ −ρml)

)
+ c, W0 = V0

1−b�
0 V −1

0 b0
,

S(ρ) = − W0(ρ −ρml)

1+ (ρ −ρml)�W0(ρ −ρml)
,

H(ρ) = − W0

1+ (ρ −ρml)�W0(ρ −ρml)
+2S(ρ)S(ρ)�,

Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466615000146
Downloaded from https:/www.cambridge.org/core. Fondation nationale des sciences politiques, on 28 Mar 2017 at 16:00:15, subject to the

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466615000146
https:/www.cambridge.org/core


AUTOREGRESSIONS WITH FIXED EFFECTS 1193

where − 1
2 log(1 − b�

0 V −1
0 b0) is absorbed into c. Because W0 = −H(ρml), W0 is

identified by L(·).
As in the p = 1 case, there is a lower bound on V0. Because Yi− =

(yi,−1, . . . , yi,−p) and yi,− j = Sj (ξ0i + F0εi ), where ξ0i and εi are independent,
we have

V0 = plimN→∞ 1
N

∑N
i=1 Y �

i−MYi−
σ 2

0 (T −1)
= V L B

0 + Vξξ

where V L B
0 and Vξξ have elements

(
V L B

0

)
jk = trF�

0 S�
j M Sk F0

T −1
,

(
Vξξ

)
jk = plimN→∞ 1

N

∑N
i=1 ξ�

0i S�
j M Skξ0i

σ 2
0 (T −1)

,

for 1 ≤ j,k ≤ p. Hence, V0 − V L B
0 is positive semi-definite, which we write as

V0 ≥ V L B
0 . When p ≥ T , while V0 is nonsingular, rank(V L B

0 ) ≤ T − 1 because
Sj F0 = 0 for j ≥ T , which implies that

(
V L B

0

)
jk = 0 whenever j ≥ T or k ≥ T .

Thus, when p ≥ T , although V0 can be arbitrarily close to V L B
0 , V0 �= V L B

0 .
Further, when p ≥ T , bj (ρ) = 0 for j ≥ T because the sum defining bj (ρ) is
empty, and ci j (ρ) = 0 for i + j ≥ T . Hence, when p ≥ T , V L B

0 − 2b0b�
0 and

V L B
0 −2b0b�

0 +c0 have only zeros beyond their leading (T −1)×(T −1) blocks.
A proof of generalizations of Lemma 4.1 and Theorem 4.1 to the case p > 1

would be desirable but is more difficult. A major difficulty is the rapidly increas-
ing complexity of ϕt as p increases. For example, ϕt =∑�t/2�

k=0
(t−k)!

(t−2k)!k!ρ
t−2k
1 ρk

2

when p = 2. In comparison, ϕt = ρt
1 when p = 1. We resorted to numerical com-

putations, which suggest that

V L B
0 ≥ 2b0b�

0 , V L B
0 ≥ 2b0b�

0 − c0, (4.3)

rank
(
V L B

0 −2b0b�
0 + c0

)
=
{

min(p,T −2) if
∑p

j=1 ρ0 j �= 1 or T < p +2,

p −1 else.
(4.4)

Specifically, we computed the eigenvalues of V L B
0 −2b0b�

0 and V L B
0 −2b0b�

0 +
c0 for p = 2,3,4; T = 2, . . . ,7; and all ρ0 in a subset of Rp chosen as follows. For
p = 4, we put a square grid on the Cartesian product of the two triangles defined
by

−1 ≤ γ2 ≤ 1, γ2 −1 ≤ γ1 ≤ 1−γ2,
−1 ≤ γ4 ≤ 1, γ4 −1 ≤ γ3 ≤ 1−γ4,

(4.5)

the stationary region of the lag polynomial γ (L) = (1−γ1L −γ2L2
)(

1−γ3L −
γ4L2

)
. For each point on this grid and for each of the values m = 1,2,4, ρ0
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1194 GEERT DHAENE AND KOEN JOCHMANS

was calculated by equating the coefficients on both sides of m −ρ01L −ρ02L2 −
ρ03L3 −ρ04L4 = mγ (L). For m = 1, the stationary region is covered, while for
larger m a larger region is covered, though less densely. In addition to (4.5) we
set γ4 = 0 for p = 3, and γ3 = γ4 = 0 for p = 2. The grid points on the region
defined by (4.5) were spaced at intervals of .002 when p = 2, .02 when p = 3,
and .1 when p = 4. We found that, uniformly over this numerical design, the
eigenvalues of V L B

0 −2b0b�
0 and V L B

0 −2b0b�
0 +c0 are nonnegative and the rank

of V L B
0 − 2b0b�

0 + c0 is as given by (4.4). These findings, while obviously not
a proof, support (4.3) and (4.4), and we shall proceed under the assumption that
(4.3) and (4.4) hold.

Because V0 ≥ V L B
0 , (4.3) implies that V0 ≥ 2b0b�

0 and that Ha(ρ0) = 2b0b�
0 −

V0 − c0 ≤ 0. Pre- and postmultiplication of V0 ≥ 2b0b�
0 by b�

0 V −1
0 and V −1

0 b0

gives b�
0 V −1

0 b0 ≤ 1
2 ≤ 1 − b�

0 V −1
0 b0. Recalling that (ρ0 −ρml)

�V0(ρ0 −ρml) =
b�

0 V −1
0 b0, we have

(ρ0 −ρml)
�W0(ρ0 −ρml) ≤ 1.

Therefore, if (4.3) and (4.4) hold, ρ0 is a point in the ellipsoidal disk E = {ρ :
(ρ−ρml)

�W0(ρ−ρml) ≤ 1} where La(ρ) has a local maximum or a flat inflection
point. We approached the question of uniqueness of such a point numerically. For
the same numerical design as above and with V0 = V L B

0 , we applied the Newton–
Raphson algorithm to find a stationary point of La(ρ), starting at ρml and using
the Moore–Penrose inverse of Ha(ρ) whenever Ha(ρ) is singular. Uniformly over
this design, the algorithm was found to converge to ρ0, thus supporting the con-
jecture that ρ0 is the unique point in E where La(ρ) has a local maximum or a flat
inflection point.

In the model with covariates, just as before, β can be profiled out of La(θ).
Here, again, β0 = β(ρ0). Lemma 4.2 continues to hold for p > 1. Hence, if
ρ0 is identified in the model without covariates in the way we suggested, then
it is identified in the model with covariates in exactly the same way, now with
E defined through W0 = (1−b�

0ρV ρρ
0 b0ρ)−1V0ρρ , in obvious notation.

Figure 2 illustrates the identification for two cases with p = 2, T = 4, and with-
out covariates. The plots on the left are for ρ0 = (.25, .25)′ with V0 = V L B

0 + Vξξ

and Vξξ corresponding to stationary initial observations. Those on the right
are for ρ0 = (.5, .5)′ with V0 = V L B

0 . In each figure, the ellipse E , containing
ρ0, is drawn. The top figures, in addition, show contour plots of the adjusted
log-likelihood, La(ρ). (The unadjusted log-likelihood contours are not shown;
they are elliptical and, like E , centered at ρml.) The figures at the bottom also
plot the loci of the solution set of each of the adjusted profile score equations,
∇ρ1 La(ρ) = 0 and ∇ρ2 La(ρ) = 0, which intersect at ρ0. In the case ρ0 =
(.25, .25)′, ρ0 is the unique local maximizer of La(ρ) in E . There is also a second
point in E where Sa(ρ) = 0, corresponding to a saddlepoint of La(ρ). In the case
ρ0 = (.5, .5)′, ρ0 is the unique point in E where Sa(ρ) = 0 and Ha(ρ) is negative
semidefinite. Here, ρ0 is an isolated point of singularity of Ha(ρ).
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AUTOREGRESSIONS WITH FIXED EFFECTS 1195

FIGURE 2. Identification in the second-order autoregression. Left: T = 4, ρ0 = (.25, .25)′,
V0 = V L B

0 + Vξξ , Vξξ corresponding to stationary initial observations . Right: T = 4,

ρ0 = (.5, .5)′, V0 = V L B
0 . Top: contour plots of La(ρ). Bottom: loci where ∇ρ1 La(ρ) = 0

(upper curve) and ∇ρ2 La(ρ) = 0 (lower curve). In all subplots: E (ellipse), dashed lines
at ρ0.

5. ESTIMATION AND INFERENCE

Let β̂(ρ) = argmaxβ la(ρ,β) for a given ρ. Note that

β̂(ρ) =
(

N∑
i=1

X�
i M Xi

)−1 N∑
i=1

X�
i M (yi −Yi−ρ) = argmax

β
l(ρ,β).

The unadjusted and adjusted profile log-likelihoods for ρ are l(ρ) = l
(
ρ, β̂(ρ)

)
and la(ρ) = l(ρ)− a(ρ). Let s(ρ), sa(ρ), h(ρ), and ha(ρ) be the corresponding
profile scores and Hessians. Let Ŵ = −h

(
ρ̂ml
)
, where ρ̂ml is the maximum like-

lihood estimator of ρ0, and let Ê = {ρ :
(
ρ − ρ̂ml

)�
Ŵ
(
ρ − ρ̂ml

) ≤ 1
}
. We define
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1196 GEERT DHAENE AND KOEN JOCHMANS

the adjusted likelihood estimator of ρ0 as

ρ̂al = argmin
ρ∈Ê

s�
a (ρ)sa(ρ) s.t. ha(ρ) ≤ 0

and those of β0 and θ0 as β̂al = β̂(ρ̂al) and θ̂al = (ρ̂�
al , β̂

�
al

)�
. Some remarks and

motivation are in order. In the most regular case, where la(ρ) has a unique strict
local maximizer on the interior of Ê , ρ̂al coincides with the local maximizer of
la(ρ). However, due to sampling variation with finite N , la(ρ) may have no local
maximizer on Ê , an event that occurs with positive probability. When this hap-
pens, ρ̂al is defined as the point where la(ρ) varies the least, as measured by the
norm of its gradient, sa(ρ); in a sense this comes close to locally maximizing
la(ρ). We also cannot exclude the possibility that la(ρ) has more than one local
maximizer on the interior of Ê or that, when no local maximizer exists, the norm
of sa(ρ) has more than one minimizer. In this event, ρ̂al becomes set-valued (if a
single point estimate is required, one might choose the solution closest to ρ̂ml).
However, in all cases where ρ0 is identified as a unique local maximizer of La(ρ)
on E , the probability of nonexistence or nonuniqueness of a local maximizer of
la(ρ) on Ê vanishes as N → ∞.

The adjusted likelihood estimator is consistent and, when ρ0 is identified as a
local maximizer, asymptotically normal.

THEOREM 5.1. Suppose Assumption 2.1 holds. Suppose also that ρ0 is the
unique point in E where La(ρ) has a local maximum or a flat inflection point.

Then θ̂al
p→ θ0 as N → ∞.

THEOREM 5.2. Suppose Assumption 2.1 holds. Suppose also that ρ0 is the
unique point in E where La(ρ) has a local maximum and that Ha(θ0) is nonsin-
gular. Then, as N → ∞,

√
N
(
θ̂al − θ0

) d→N (0,�), (5.1)

where � = Ha(θ0)
−1�Ha(θ0)

−1, � = plimN→∞N−1∑N
i=1 ei e�

i , and ei =
1

σ 2
0 (T −1)

(
Zi − εi b�

0

)�
Mεi .

We note that the information equality (i.e., the second Bartlett identity) does
not hold for the adjusted likelihood, i.e., −Ha(θ0) differs from �, the asymptotic
variance of sa(θ0). One consequence is that the asymptotic variance of θ̂al is of
the sandwich form. As N → ∞, a consistent estimate of � is obtained by re-
placing Ha(θ0), b0, εi , and σ 2

0 with h
(
θ̂al
)− c

(
ρ̂al
)
, b
(
ρ̂al
)
, ε̂i = yi − Zi θ̂al, and

(T − 1)−1 N−1∑N
i=1 ε̂�

i M ε̂i , respectively. Wald tests and confidence ellipsoids
then follow in the usual way, with correct asymptotic size and coverage probabil-
ities, respectively. By contrast, Wald tests and confidence ellipsoids based on the
unadjusted likelihood have asymptotic size equal to one and asymptotic coverage
probabilities equal to zero. A further consequence of the failure of the second
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AUTOREGRESSIONS WITH FIXED EFFECTS 1197

Bartlett identity is that the adjusted likelihood ratio statistic (i.e., the LR statistic
applied to the adjusted likelihood) is, under the null, asymptotically distributed as
a weighted sum of χ2

1 variates with the eigenvalues of −�Ha(θ0)
−1 as weights

(instead of being χ2
p+q asymptotically); see, e.g., Kent (1982), White (1982), and

Vuong (1989). Although these weights can be estimated, the adjusted likelihood
ratio statistic is unsuited for testing because it is ill-signed for large enough values
of ρ. This is another consequence of the adjusted likelihood being re-increasing.

6. SIMULATIONS

In this section, we report simulation results for first- and second-order autore-
gressions without covariates, and a first-order autoregression with one stationary
covariate. In all instances we chose ρ0 in the interior of the stationary parameter
region. We compare θ̂al with two other estimators: the one-step GMM estimator of
Arellano and Bond (1991), θ̂ab, and the estimator of Hahn and Kuersteiner
(2002), θ̂hk. The latter estimator is a large-T correction of the maximum like-
lihood estimator. In the first-order autoregression without covariates, ρ̂hk =
ρ̂ml + (1 + ρ̂ml

)
/T (Hahn and Kuersteiner, 2002), where one may view the

bias correction term as resulting from ρml = ρ0 − (1 + ρ0)/T + o(1/T ). In the
second-order autoregression, the approach of Hahn and Kuersteiner (2002) gives
ρ̂hk = ρ̂ml + ι2

(
1+ ρ̂ml2

)
/T , following from

ρml = ρ0 − ι2(1+ρ02)/T +o(1/T ), (6.1)

as we show in the Appendix (with ρ̂ml2 and ρ02 denoting the second element
of ρ̂ml and ρ0, respectively) (see Li, Lindsay, and Waterman, 2003, and
Sartori, 2003). In the first-order autoregression with a covariate, β̂hk =(∑N

i=1 X�
i M Xi

)−1∑N
i=1 X�

i M
(
yi − yi,−1ρ̂hk

)
and ρ̂hk = ρ̂ml + (1 + ρ̂ml

)
/T .

While θ̂ab is fixed-T consistent, θ̂hk is consistent only as T → ∞. On the
other hand, under rectangular-array asymptotics (see (Li, Lindsay, and Waterman,
2003) and (Sartori, 2003)), θ̂ab is incorrectly centered, whereas θ̂hk is correctly
centered. In line with the large-N , fixed-T approach in this paper, in the simula-
tions presented here we set N relatively large compared to T (N = 100,500 and
T = 2,4,8,16). We focus on small T because this setting is particularly relevant
to micro-economic panel data applications, and it is also the more challenging
setting. It should be noted that our setup is relatively unfavorable for θ̂hk in that
its higher-order bias may show up and dominate in the distribution.

In all simulations, we generated εi t and αi as standard normal variates. We
varied the informational content of the data by controlling the initial observa-
tions. Let μi = limt→∞E(yit−|αi ) and �i = limt→∞ Var(yit−|αi ), so, if y0

i was
drawn from the stationary distribution, we would just have μi = E

(
y0

i |αi
)

and
�i = Var

(
y0

i |αi
)
. Let Gi G�

i = �i be the Cholesky factorization of �i . We set
y0

i = μi +ψGi ι for a chosen scalar ψ ≥ 0. This is a p-variate version of setting
the initial observations ψ standard deviations away from their respective station-
ary means. So ψ controls the outlyingness of the initial observations relative to the
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stationary distributions. All else being equal, V0 increases in ψ and V0 → V L B
0 as

ψ → 0, so the data carry less information as ψ gets smaller. The effect of strong
inlying observations (small ψ) on the informativeness of the data is stronger
when T is small because it takes time to revert to the stationary distribution. The
effect of ψ is vanishingly small as ρ0 moves to the boundary of the stationary
region. When p = 1 and q = 0, for example, S1ξ0i = g0 (yi0 −μi ) + ιμi with

g0 = (1,ρ0, . . . ,ρ
T −1
0

)�, hence Vξξ = g�
0 Mg0(

1−ρ2
0

)
(T −1)

ψ2. As ρ0 ↑ 1, Vξξ → 0 for

any fixed ψ . We set ψ = 0,1,2 when p = 1 and ψ = .3,1,2 when p = 2. We do
not consider ψ = 0 for p = 2 because the weight matrix of the Arellano and Bond
(1991) estimator is singular for all T in this case.

Tables 1 to 3 present Monte Carlo estimates, based on 10,000 replications,
of the bias and the standard deviation (std) of the estimators considered, as well
as the coverage rates of the corresponding asymptotic 95% confidence intervals
(ci.95).

In the first-order autoregression with ρ0 = .5 (first part of Table 1), both ρ̂al
and ρ̂ab perform well. The adjusted likelihood estimator has smaller standard

TABLE 1. Simulation results for the first-order autoregression

bias std ci.95

N T ψ ρ0 ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk

100 2 0 .5 −.142 — −.747 .267 — .153 .819 .921 .000
100 2 1 .5 .027 — −.373 .266 — .141 .903 .934 .090
100 2 2 .5 .019 — .111 .166 — .113 .946 .945 .880
100 4 0 .5 .008 −.039 −.295 .141 .148 .066 .924 .926 .004
100 4 1 .5 .016 −.053 −.139 .124 .164 .067 .945 .928 .327
100 4 2 .5 .001 −.016 .071 .064 .082 .056 .946 .936 .684
100 8 0 .5 .001 −.026 −.085 .056 .057 .042 .953 .918 .400
100 8 1 .5 −.001 −.040 −.045 .048 .070 .040 .943 .907 .730
100 8 2 .5 −.001 −.023 .028 .036 .051 .034 .946 .930 .812
100 16 0 .5 .000 −.019 −.021 .028 .030 .026 .944 .902 .841
100 16 1 .5 −.001 −.027 −.013 .027 .035 .025 .947 .879 .899
100 16 2 .5 −.001 −.023 .009 .023 .032 .023 .944 .893 .902
500 2 0 .5 −.106 — −.750 .162 — .067 .833 .927 .000
500 2 1 .5 .033 — −.375 .168 — .063 .931 .953 .000
500 2 2 .5 .004 — .108 .067 — .051 .952 .950 .400
500 4 0 .5 .012 −.008 −.295 .088 .069 .030 .946 .942 .000
500 4 1 .5 .003 −.010 −.139 .053 .076 .030 .958 .943 .002
500 4 2 .5 .000 −.003 .072 .028 .038 .025 .949 .946 .125
500 8 0 .5 .000 −.006 −.085 .025 .026 .019 .946 .941 .002
500 8 1 .5 .000 −.008 −.043 .021 .032 .018 .948 .939 .246
500 8 2 .5 .000 −.005 .029 .016 .023 .015 .951 .949 .431
500 16 0 .5 .000 −.004 −.021 .012 .014 .012 .951 .939 .509

Table continues on overleaf
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TABLE 1. continued

bias std ci.95

N T ψ ρ0 ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk

500 16 1 .5 .000 −.006 −.011 .012 .016 .011 .949 .936 .781
500 16 2 .5 .000 −.004 .009 .010 .015 .010 .948 .940 .807
100 2 0 .99 −.144 — −.506 .265 — .151 .821 .925 .034
100 2 1 .99 −.135 — −.495 .267 — .153 .821 .918 .043
100 2 2 .99 −.125 — −.475 .266 — .150 .827 .929 .053
100 4 0 .99 −.087 −.773 −.258 .123 .474 .073 .835 .651 .023
100 4 1 .99 −.082 −.771 −.249 .123 .475 .072 .839 .656 .027
100 4 2 .99 −.068 −.737 −.229 .123 .472 .072 .849 .675 .049
100 8 0 .99 −.046 −.472 −.132 .062 .198 .038 .847 .280 .022
100 8 1 .99 −.043 −.469 −.125 .061 .193 .038 .850 .281 .033
100 8 2 .99 −.028 −.434 −.104 .060 .198 .037 .881 .337 .098
100 16 0 .99 −.025 −.255 −.068 .031 .081 .020 .843 .034 .020
100 16 1 .99 −.020 −.254 −.061 .031 .080 .020 .867 .033 .045
100 16 2 .99 −.009 −.227 −.043 .030 .080 .019 .910 .057 .213
500 2 0 .99 −.107 — −.505 .164 — .067 .826 .931 .000
500 2 1 .99 −.102 — −.497 .163 — .067 .831 .928 .000
500 2 2 .99 −.090 — −.476 .164 — .067 .842 .932 .000
500 4 0 .99 −.056 −.748 −.256 .076 .474 .033 .839 .671 .000
500 4 1 .99 −.054 −.756 −.248 .076 .474 .032 .844 .681 .000
500 4 2 .99 −.039 −.640 −.226 .076 .489 .032 .864 .727 .000
500 8 0 .99 −.030 −.442 −.130 .038 .192 .017 .845 .310 .000
500 8 1 .99 −.025 −.459 −.123 .038 .194 .017 .860 .296 .000
500 8 2 .99 −.014 −.367 −.103 .038 .190 .016 .884 .425 .000
500 16 0 .99 −.015 −.218 −.067 .019 .077 .009 .852 .055 .000
500 16 1 .99 −.010 −.240 −.060 .019 .080 .009 .878 .040 .000
500 16 2 .99 −.002 −.180 −.042 .019 .074 .008 .924 .125 .000

Notes: Data generated as yit = ρ0 yit−1 +αi + εi t (i = 1, . . . , N ; t = 1, . . .T ) with αi ∼N (0,1), εi t ∼N (0,1), and
ψ the degree of outlyingness of the initial observations yi0. Entries: bias, standard deviation (std), and coverage rate
of 95% confidence interval (ci.95) of adjusted likelihood (ρ̂al), Arellano-Bond (ρ̂ab), and Hahn-Kuersteiner (ρ̂hk)
estimators; ‘—’ indicates nonexistence of the moment; 10,000 Monte Carlo replications.

deviation and is virtually unbiased, except when ψ = 0 and T = 2. Both
estimators also deliver 95% confidence intervals with broadly correct cover-
age and their biases decrease in N , as the theory predicts. The estimator of
Hahn and Kuersteiner (2002) has substantial bias for small T and its performance
is sensitive to ψ . In line with the theory, its bias decreases in T and is nearly
constant in N .

When ρ0 is increased to .99 (second part of Table 1), the performance
of all estimators tends to worsen. ρ̂ab deteriorates the most, showing a sub-
stantial bias, large dispersion, and confidence intervals with lower coverage.
ρ̂al continues to have little bias and provides confidence intervals with roughly
correct coverage. When ρ0 is large, the probability that the adjusted likelihood has
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1200 GEERT DHAENE AND KOEN JOCHMANS

no interior local maximum in the relevant region is fairly large (up to the large-N
theoretical maximum of 50%), in which case we set the confidence interval equal
to R. This probability decreases in N , T , and ψ . In most designs, ρ̂hk outperforms
ρ̂ab in terms of bias and standard deviation. The associated confidence intervals,
however, are not reliable.

In the second-order autoregression with ρ0 = (.6, .2)� (Table 2), both ρ̂al and
ρ̂ab perform well in terms of bias. ρ̂al has the least bias, even though the bias is
nonnegligible when T = 2 and also when T = 4 and the initial observations are
strong inlyers. The comparison between ρ̂al and ρ̂ab in terms of dispersion shows
no clear ordering; their standard errors tend to equalize as T or ψ grows. As
before, ρ̂hk shows a substantial bias when T is very small. Together with its small
standard deviation for most values of T , this again leads to confidence intervals
being too narrow.

TABLE 2. Simulation results for the second-order autoregression

bias std ci.95

N T ψ ρ0 ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk

100 2 .3 .6 −.143 — −.848 .262 — .304 .822 .927 .029
.2 −.349 — −.742 .665 — .807 .956 .945 .479

100 2 1 .6 −.146 — −.844 .267 — .167 .811 .914 .000
.2 −.173 — −.730 .285 — .273 .879 .918 .047

100 2 2 .6 −.143 — −.846 .265 — .152 .819 .923 .000
.2 −.139 — −.733 .244 — .180 .838 .923 .001

100 4 .3 .6 −.069 −.282 −.327 .122 .283 .065 .860 .781 .000
.2 −.030 −.123 −.121 .098 .135 .093 .930 .810 .528

100 4 1 .6 −.001 −.044 −.204 .122 .121 .061 .920 .919 .050
.2 −.001 −.022 −.051 .095 .091 .083 .949 .927 .786

100 4 2 .6 .009 −.011 −.005 .082 .064 .048 .954 .941 .953
.2 .005 −.005 .073 .073 .065 .066 .955 .941 .731

100 8 .3 .6 −.015 −.101 −.144 .064 .088 .043 .923 .778 .056
.2 −.008 −.052 −.066 .055 .056 .046 .946 .843 .608

100 8 1 .6 .006 −.033 −.071 .063 .055 .039 .956 .895 .501
.2 .003 −.015 −.003 .052 .045 .044 .962 .931 .915

100 8 2 .6 .000 −.012 .027 .038 .038 .031 .940 .930 .883
.2 .001 −.002 .075 .036 .036 .038 .944 .947 .432

100 16 .3 .6 .003 −.041 −.050 .037 .036 .028 .963 .793 .512
.2 .002 −.025 −.030 .035 .031 .028 .963 .868 .780

100 16 1 .6 .000 −.024 −.024 .031 .030 .027 .950 .871 .826
.2 .000 −.011 .001 .029 .028 .027 .949 .926 .933

100 16 2 .6 .000 −.011 .015 .025 .026 .023 .945 .922 .905
.2 .000 −.003 .041 .024 .024 .025 .946 .945 .576

500 2 .3 .6 −.104 — −.845 .163 — .134 .827 .928 .000
.2 −.253 — −.733 .331 — .356 .952 .926 .142

Table continues on overleaf
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TABLE 2. continued

bias std ci.95

N T ψ ρ0 ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk

500 2 1 .6 −.105 — −.843 .163 — .075 .830 .925 .000
.2 −.114 — −.730 .160 — .122 .864 .924 .000

500 2 2 .6 −.104 — −.843 .162 — .067 .834 .927 .000
.2 −.098 — −.729 .147 — .080 .843 .927 .000

500 4 .3 .6 −.040 −.067 −.325 .076 .144 .030 .867 .900 .000
.2 −.017 −.030 −.116 .051 .071 .042 .922 .909 .079

500 4 1 .6 .012 −.009 −.202 .077 .056 .027 .942 .938 .000
.2 .007 −.003 −.049 .051 .041 .037 .962 .950 .566

500 4 2 .6 .001 −.002 −.006 .033 .029 .021 .956 .947 .951
.2 .001 −.001 .074 .032 .029 .030 .946 .946 .206

500 8 .3 .6 −.003 −.023 −.143 .039 .041 .019 .927 .912 .000
.2 −.002 −.012 −.065 .030 .028 .020 .948 .920 .076

500 8 1 .6 .003 −.007 −.070 .030 .025 .017 .964 .940 .014
.2 .001 −.003 −.002 .024 .020 .020 .960 .946 .911

500 8 2 .6 .000 −.002 .026 .017 .017 .014 .949 .949 .568
.2 .000 .000 .077 .016 .016 .017 .952 .952 .004

500 16 .3 .6 .001 −.010 −.050 .017 .017 .013 .962 .909 .016
.2 .001 −.006 −.029 .016 .014 .012 .961 .932 .316

500 16 1 .6 .000 −.005 −.023 .013 .014 .012 .953 .933 .459
.2 .000 −.002 .002 .013 .012 .012 .948 .943 .932

500 16 2 .6 .000 −.002 .015 .011 .011 .010 .948 .946 .701
.2 .000 .000 .042 .011 .011 .011 .951 .949 .028

Notes: Data generated as yit = ρ01 yit−1 + ρ02 yit−2 + αi + εi t (i = 1, . . . , N ; t = 1, . . .T ) with αi ∼ N (0,1),
εi t ∼N (0,1), and ψ the degree of outlyingness of the initial observations (yi0, yi,−1). Entries: bias, standard devi-
ation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood (ρ̂al), Arellano-Bond (ρ̂ab),
and Hahn-Kuersteiner (ρ̂hk) estimators; ‘—’ indicates nonexistence of the moment; 10,000 Monte Carlo replications.

Table 3 presents results for the first-order autoregression with a covariate, gen-
erated as xit = δαi + γ xit−1 + uit with uit ∼ N (0,σ 2

u ) and xi0 drawn from the
stationary distribution. The mean and variance of the stationary distribution of yit

are

μi = αi

1−ρ0

(
1+ δβ0

1−γ

)
, �i = 1

1−ρ2
0

(
1+ β2

0

1−γ 2

(
1+γρ0

1−γρ0

)
σ 2

u

)
.

We set δ = σu = .5 and β0 = 1−ρ0, inducing dependence between the covariate
and the fixed effect, and keeping the long-run multiplier of x on y constant at
unity across designs, as in Kiviet (1995).

The first part of Table 3 corresponds to moderate persistence in y and x , with
γ = ρ0 = .5. In this case, θ̂al and θ̂ab perform very reasonably, both for ρ0 and
β0. θ̂hk performs well for β0, except when T = 2 and ψ is 0 or 1, but not for ρ0,
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TABLE 3. Simulation results for the first-order autoregression with a covariate

bias std ci.95

N T ψ γ θ0 ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk

500 2 0 .5 .5 −.052 — −.662 .166 — .067 .867 .934 .000
.5 −.012 — −.165 .115 — .085 .965 .954 .284

500 2 1 .5 .5 .031 — −.417 .170 — .064 .929 .947 .000
.5 .000 — .008 .112 — .091 .967 .954 .831

500 2 2 .5 .5 .005 — .075 .070 — .052 .955 .947 .648
.5 −.001 — −.020 .112 — .114 .952 .951 .837

500 4 0 .5 .5 .011 −.019 −.245 .080 .058 .030 .950 .928 .000
.5 .002 −.002 −.029 .057 .056 .054 .955 .949 .847

500 4 1 .5 .5 .003 −.014 −.124 .050 .049 .030 .958 .936 .006
.5 .000 .002 .016 .056 .056 .054 .950 .949 .896

500 4 2 .5 .5 .000 −.005 .078 .028 .028 .025 .945 .945 .085
.5 .000 .002 −.030 .057 .057 .057 .949 .949 .872

500 8 0 .5 .5 .000 −.011 −.061 .022 .024 .018 .951 .926 .054
.5 .000 .001 .003 .033 .033 .033 .947 .947 .929

500 8 1 .5 .5 .000 −.010 −.025 .020 .022 .017 .950 .927 .619
.5 .000 .002 .005 .033 .033 .033 .948 .947 .932

500 8 2 .5 .5 .000 −.005 .042 .015 .016 .015 .949 .936 .138
.5 .000 .002 −.016 .033 .033 .033 .947 .947 .908

500 16 0 .5 .5 .000 −.008 −.010 .012 .013 .011 .949 .905 .818
.5 .000 .002 .002 .021 .021 .021 .950 .950 .943

500 16 1 .5 .5 .000 −.008 −.002 .011 .012 .011 .951 .909 .928
.5 .000 .002 .001 .021 .022 .021 .950 .949 .944

500 16 2 .5 .5 .000 −.006 .017 .010 .011 .010 .950 .920 .503
.5 .000 .002 −.006 .022 .022 .021 .950 .949 .935

500 2 0 .99 .99 −.104 — −.503 .164 — .067 .829 .827 .000
.01 .001 — −.002 .121 — .100 .978 .983 .833

500 2 1 .99 .99 −.103 — −.503 .164 — .067 .830 .827 .000
.01 .002 — .004 .121 — .100 .978 .981 .835

500 2 2 .99 .99 −.091 — −.485 .164 — .067 .840 .888 .000
.01 .003 — .009 .122 — .101 .979 .971 .833

500 4 0 .99 .99 −.057 −.566 −.254 .077 .259 .032 .840 .331 .000
.01 .000 −.003 −.002 .055 .055 .052 .976 .957 .906

500 4 1 .99 .99 −.056 −.575 −.253 .077 .259 .032 .837 .325 .000
.01 .001 .008 .004 .055 .055 .052 .975 .957 .905

500 4 2 .99 .99 −.045 −.199 −.236 .077 .152 .032 .853 .706 .000
.01 .001 .007 .008 .056 .054 .052 .974 .951 .904

500 8 0 .99 .99 −.029 −.315 −.129 .038 .101 .017 .852 .042 .000
.01 .000 −.001 −.001 .028 .030 .027 .975 .952 .924

500 8 1 .99 .99 −.028 −.317 −.128 .038 .101 .017 .854 .040 .000
.01 .001 .011 .004 .028 .030 .027 .975 .937 .922

500 8 2 .99 .99 −.018 −.119 −.112 .038 .056 .017 .883 .394 .000
.01 .001 .009 .008 .028 .028 .027 .975 .938 .913

Table continues on overleaf
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TABLE 3. continued

bias std ci.95

N T ψ γ θ0 ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk ρ̂al ρ̂ab ρ̂hk

500 16 0 .99 .99 −.014 −.163 −.066 .019 .038 .009 .854 .000 .000
.01 .000 .000 .000 .014 .016 .014 .972 .950 .931

500 16 1 .99 .99 −.014 −.162 −.065 .019 .038 .009 .857 .000 .000
.01 .001 .012 .005 .014 .016 .014 .971 .893 .914

500 16 2 .99 .99 −.005 −.065 −.050 .019 .021 .008 .900 .082 .000
.01 .001 .010 .008 .014 .015 .014 .970 .897 .898

Notes: Data generated as yit = θ01 yit−1 + θ02xit +αi + εi t , xit = .5αi + γ xit−1 + uit (i = 1, . . . , N ; t = 1, . . .T )
with αi ∼N (0,1), εi t ∼N (0,1), uit ∼N (0, .25), ψ the degree of outlyingness of the initial observations yi0,
and xi0 drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95%
confidence interval (ci.95) of adjusted likelihood (θ̂al), Arellano-Bond (θ̂ab), and Hahn-Kuersteiner (θ̂hk) estimators;
‘—’ indicates nonexistence of the moment; 10,000 Monte Carlo replications.

except when T is sufficiently large. The second part of Table 3 shows a case
where y and x are highly persistent, with γ = ρ0 = .99. All estimators of β0 tend
to improve, while those of ρ0 deteriorate. The latter results are in line with those
for the first-order autoregression without covariates: ρ̂ab deteriorates the most,
while ρ̂al is only moderately biased and the corresponding confidence intervals
have reasonable coverage.

The results presented here are a subset of a larger set of simulations that we
ran with T ranging from 2 tot 24 and N from 100 to 10,000. The complete set
of results is available as supplementary material. The results are in line with the
tendencies discussed here.

7. CONCLUDING REMARKS

We studied how the incidental parameter problem in a fixed-effect autoregression
can be solved by adjusting the (quasi-)likelihood. Our approach, based on
removing the bias of the profile score, turned out to be equivalent to several
other recent likelihood-based proposals, offering a unifying perspective on these
methods. Perhaps our main finding is that, even in regular cases, the parameters
locally maximize the expected adjusted profile log-likelihood, not globally. Given
that this difficulty arises here in a linear model, one may speculate that it will
arise in other models as well.

The adjusted likelihood estimator, accordingly defined as a local maximizer of
the adjusted likelihood (or the local minimizer of the norm of its score), is asymp-
totically normal in regular cases. We have not investigated its limit distribution
in the case where the adjusted Hessian, Ha(θ0), is singular (which includes all
cases where ρ0 is a flat inflection point of the adjusted profile likelihood limit).
In this case, while the estimator is still consistent, its convergence rate is likely
to be slower than N−1/2. Presumably the limit distribution and convergence rate
could be derived using arguments along the lines of Rotnitzky, Cox, Bottai, and
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Robins (2000), extending the results of Kruiniger (2014) to the higher-order
autoregressive case.

The construction of an adjusted profile score can be extended in several di-
rections, for example to models featuring cross-sectional and time-series het-
eroskedasticity (see also Alvarez and Arellano, 2004), although we have not
studied the global properties in this case. It may be noted that the adjustment
term, −b(ρ), is robust to cross-sectional heteroskedasticity (σ 2

i instead of in-
stead of σ 2). We investigated this in an earlier version of this paper (Dhaene and
Jochmans, 2007), where we also derived the adjustment for the first-order autore-
gressive model with fixed effects and individual time trends. Juodis (2012) derived
the adjustment in the first-order vector autoregressive model with fixed effects.
In the latter two cases, the adjustment term is still a polynomial that depends on
the autoregressive parameters only.

A limitation of our approach is the exogeneity assumption with regard to the
covariates. It would be of interest to investigate if the approach could be extended
to deal with feedback of lagged y on covariates.

NOTE

1. Several other authors also make use of the Laplace approximation in connection with panel mod-
els featuring incidental parameters. For example, Arellano and Bonhomme (2009) use it to approxi-
mate the bias of the integrated likelihood in general nonlinear models, and Gagliardini and Gouriéroux
(2014) apply it to approximate the integrated likelihood of a default-risk factor model, where the inte-
gration is over the time path of the unobserved factors.
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APPENDIX: Proofs

Proof of Lemma 2.1. Using (2.2),

plimN→∞sρj (θ0) = plimN→∞N−1∑N
i=1 ε�

i M Sj (ξ0i + F0εi )

plimN→∞N−1∑N
i=1 ε�

i Mεi

=
E

(
ε�

i M Sj F0εi

)
E

(
ε�

i Mεi

) = trM Sj F0

T −1
,

plimN→∞sβj (θ0) = 0,

where ξ0i and F0 are ξi and F , evaluated at θ0. We now write trM Sj F0 in terms of the ϕt .
Note that

Sj F =
(

0 0
D−1

j 0

)
,

where D−1
j is the leading (T − j)× (T − j) block of D−1. For arbitrary ρ1, . . . ,ρT −1, D

and its inverse are

D =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

−ρ1
. . .

. . .
...

...
. . .

. . . 0
−ρT −1 · · · −ρ1 1

⎞⎟⎟⎟⎟⎠ , D−1 =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

φ1
. . .

. . .
...

...
. . .

. . . 0
φT −1 · · · φ1 1

⎞⎟⎟⎟⎟⎠ ,

where φ1, . . . ,φT −1 are recursively obtained as φ1 = ρ1 and φj = ρj +∑ j−1
k=1 φkρj−k ,

j = 2, . . . ,T −1. Recursive substitution gives

φj =
∑

k1+2k2+···+ jkj = j

(
k1 + . . .+ kp

)
!

k1! · · ·kp!
ρ

k1
1 ρ

k2
2 · · ·ρkj

j .

Putting ρp+1 = ·· · = ρT −1 = 0 gives φj = ϕj . Therefore,

trM Sj F0

T −1
= −

ι�D−1
j ι

T (T −1)
= −

T − j−1∑
t=0

T − j − t

T (T −1)
ϕt , j = 1, . . . , p,

which equals bj (ρ). n

Proof of Lemma 2.2. For j = 1, . . . , p, let Sj = {S ∈ S| j ∈ S}. Group terms by S ∈ Sj
to write∫

bj (ρ)dρj =
∑

S∈Sj

Bj,S(ρ)+ c,
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where

Bj,S(ρ) = −
T − j−1∑

t=0

T − j − t

T (T −1)

∑
k∈Kj,S :τ�k=t

(
ι�k
)

!

k1! · · ·(kj +1
)
! · · ·kp!

ρj ρ
kS
S

and Kj,S = {k ∈ Np| for all j ′ �= j , kj ′ > 0 if ond only if j ′ ∈ S} ⊃ KS . A change of
variable from kj +1 to kj gives

Bj,S(ρ) = −
T − j−1∑
t=|S|− j

T − j − t

T (T −1)

∑
k∈KS :τ�k=t+ j

(
ι�k −1

)
!

k1! · · ·kp!
ρ

kS
S ,

where the lower limit in the first sum changed from 0 to |S|− j because, when t < |S|− j ,
no k ∈ KS satisfies τ�k = t + j . A further change of variable from t + j to t gives
Bj,S(ρ) = aS(ρ), with aS(ρ) as defined in (2.4). Therefore,

bj (ρ) = ∇ρj

∑
S∈Sj

aS(ρ) = ∇ρj

∑
S∈S

aS(ρ) = ∇ρj a(ρ),

which completes the proof. n

Proof of Equation (3.3). In the parameterization ηi = αi e−(T −1)a(ρ), we have

�i (ϑ,ηi ) = −1

2
logσ 2 − 1

2T σ 2

T∑
t=1

(
yit − z�

i t θ −ηi e(T −1)a(ρ)
)2 + c,

∇ηi �i (ϑ,ηi ) = e(T −1)a(ρ)

T σ 2

(
yi − Zi θ −ηi e(T −1)a(ρ)ι

)�
ι,

and

Eϑ,ηi ∇ηi ηi �i (ϑ,ηi ) = −σ−2e2(T −1)a(ρ),

Eϑ,ηi ∇σ 2ηi
�i (ϑ,ηi ) = 0,

Eϑ,ηi ∇θηi �i (ϑ,ηi ) = −σ−2e(T −1)a(ρ)

(
ηi (T −1)b(ρ)e(T −1)a(ρ) + Eϑ,ηi Z�

i ι

T

)
.

The j th column of Yi− is yi,− j = Sj (ξi + Fεi ) , so the j th element of Eϑ,ηi Y �
i−ι is

Eϑ,ηi y�
i,− j ι = ι�Sj ξi = ι�D−1

j ιηi e(T −1)a(ρ) + T mj ,

where

mj = ι�Sj

(
y0

i

D−1
(

Cy0
i + Xi β

))/T .

Hence,

Eϑ,ηi Z�
i−ι/T = −ηi (T −1)b(ρ)e(T −1)a(ρ) +m,
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1208 GEERT DHAENE AND KOEN JOCHMANS

where m = (m1, . . . ,mp, ι�Xi /T
)� is free of ηi . Consequently,

A−1
i Bi = −e−(T −1)a(ρ)

(
m
0

)
and ∇ηi

(
A−1

i Bi
)= 0. n

Proof that no orthogonalization exists when p > 1. In the original parameterization,
if li (ϑ,αi ) is i’s log-likelihood contribution, we have

Eϑ,αi ∇αi αi li (ϑ,αi ) = −σ−2, Eϑ,αi ∇σ 2αi
li (ϑ,αi ) = 0,

Eϑ,αi ∇θαi li (ϑ,αi ) = −σ−2
Eϑ,αi Z�

i ι/T,

and so, by the preceding proof,

A−1
i Bi = −

(
Eϑ,αi Z�

i ι/T
0

)
= −

(−(T −1)b(ρ)αi +m
0

)
.

Suppose some reparameterized fixed effect, say ζi , is orthogonal to ϑ . Then αi = αi (ϑ,ζi )

must satisfy the differential equation ∇ϑαi = A−1
i Bi , that is,

∇ρj αi = (T −1)bj (ρ)αi −mj , j = 1, . . . , p, (A.1)

∇βj αi = −mp+ j , j = 1, . . . ,q, (A.2)

and ∇σ 2αi = 0. We show that these equations are inconsistent. Suppose q > 0. Then
(A.1) implies ∇ρj βj ′ αi = −∇βj ′ mj , which is generally nonzero, while (A.2) implies
∇ρj βj ′ αi = 0, so the equations are inconsistent. Suppose q = 0. Then

T mj = ι�Sj

(
Ip

D−1C

)
y0

i , j = 1, . . . , p,

and, because ∇ρj ′ bj (ρ) = ∇ρj ′ρj a(ρ) = ∇ρj bj ′(ρ), (A.1) will be inconsistent if ∇ρj ′ mj �=
∇ρj m j ′ for some j, j ′. Take j = p and j ′ = p − 1. The first element of y0

i appears in

T mp and T mp−1 with coefficients γp = 1 + ρp
∑T −p−1

t=0 ϕt and γp−1 = ρp
∑T −p

t=0 ϕt ,
respectively. Differentiating gives

∇ρp−1γp = ρp

T −p−1∑
t=0

∇ρp−1ϕt = ρp

T −p∑
t=1

∇ρp ϕt ,

∇ρp γp−1 = ρp

T −p∑
t=1

∇ρp ϕt +
T −p∑
k=0

ϕt ,

using ϕ0 = 1 and ∇ρp−1ϕt = ∇ρp ϕt+1. The latter follows from differentiating ϕt and a
change of variable from kp−1 −1 to kp−1, giving

∇ρp−1ϕt =
∑

τ�k=t−p+1

(
ι�k +1

)
!

k1! · · ·kp!
ρk ,
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AUTOREGRESSIONS WITH FIXED EFFECTS 1209

which is invariant under a unit shift of p and t . Therefore, ∇ρp−1γp �= ∇ρp γp−1, and (A.1)
is inconsistent. n

Proof of Equation (3.5). By the preceding proof,

Eϑ,αi ∇αi ϑ�i

Eϑ,αi ∇αi αi �i
=
(
Eϑ,αi Z�

i ι/T
0

)
and so

gi =
(

σ−2
(

Z�
i −Eϑ,αi Z�

i ιι�/T
)
(yi − Zi θ − ιαi )

σ−4 (yi − Zi θ − ιαi )
� (yi − Zi θ − ιαi )/2−σ−2T/2

)
.

Recalling Eϑ,αi Z�
i ι/T = −(T −1)b(ρ)αi +m, we have

∇αi αi gi =
(−2σ−2T (T −1)b(ρ)

σ−4T

)
, ∇αi αi �i = −σ−2T,

and therefore gi − 1
2

∇αi αi gi
∇αi αi �i

equals

(
σ−2

(
Z�

i −Eϑ,αi Z�
i ιι�/T

)
(yi − Zi θ − ιαi )− (T −1)b(ρ)

σ−4(yi − Zi θ − ιαi )
�(yi − Zi θ − ιαi )/2−σ−2(T −1)/2

)
.

Evaluating at αi = α̂i (ϑ) = ι�(yi − Zi θ)/T and noting that ∇αi αi αi �i = 0 gives (3.5). n

Proof of Lemma 4.1. Let A = S1 F0 and B = ∇ρ0 A. Then

b0 = − ι� Aι

T (T −1)
, c0 = − ι�Bι

T (T −1)
,

and

V L B
0 = trA�M A

T −1
= T trAA� − ι� AA�ι

T (T −1)
.

Hence, V L B
0 ≥ 2b2

0 and V L B
0 ≥ 2b2

0 − c0 if and only if

T trAA� − ι� AA�ι−
2
(
ι� Aι

)2

T (T −1)
≥ 0, (A.3)

T trAA� − ι� AA�ι−
2
(
ι� Aι

)2

T (T −1)
− ι�Bι ≥ 0. (A.4)

The matrix A = AT is

A =
(

0 0
1 0

)
, T = 2,

A =
(

AT −1 0
a�

T 0

)
, aT =

(
ρT −2,ρT −3, . . . ,1

)�
, T > 2,
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1210 GEERT DHAENE AND KOEN JOCHMANS

where the subscript on ρ is omitted. By recursion, it can be deduced that

ι� Aι =
T −2∑
j=0

(T − j −1)ρ j , ι�Bι =
T −2∑
j=1

j (T − j −1)ρ j−1,

trAA� =
T −2∑
j=0

(T − j −1)ρ2 j , ι� AA�ι =
T −2∑
j=0

⎛⎝ j∑
k=0

ρk

⎞⎠2

,

yielding V L B
0 as stated in the lemma. Now let r > 0 and use the equalities just obtained to

see that if (A.4) holds for ρ = r , then (A.3) holds for ρ = r and (A.3) and (A.4) hold for
ρ = −r , with strict inequalities for T ≥ 3. Hence, we only need to show that (A.4) holds
for ρ ≥ 0, with equality if and only if T = 2 or ρ = 1. Write (A.4) as QT ≥ 0. Because
Q2 = 0, to show that (A.4) holds, it suffices to show that �QT ≥ 0 for T ≥ 2, where
�(·)T = (·)T +1 − (·)T . Write �QT as

�QT = �

⎛⎜⎝T trAA� − ι� AA�ι−2

(
ι� Aι

)2

T (T −1)
− ι�Bι

⎞⎟⎠
T

=

⎧⎪⎨⎪⎩
(

trAA�)
T +1

−2

(
ι� Aι

)2

T +1

T (T +1)

⎫⎪⎬⎪⎭+

⎧⎪⎨⎪⎩2

(
ι� Aι

)2

T
T (T −1)

−�
(
ι�Bι

)
T

⎫⎪⎬⎪⎭
+
{

T �
(

trAA�)
T

−�
(
ι� AA�ι

)
T

}
and denote the quantities in braces as τ1, τ2, and τ3. Using T (T +1)/2 =∑T −1

i=0 (T − i),
we have

τ1 =
T −1∑
j=0

(T − j)ρ2 j − 2

T (T +1)

⎛⎝T −1∑
j=0

(T − j)ρ j

⎞⎠2

= 2

T (T +1)

⎛⎝T −1∑
i=0

T −1∑
j=0

(T − i)(T − j)(ρ2 j −ρi+ j )

⎞⎠= 2

T (T +1)
u� Ru,

where u = (T,T −1, . . . ,1)� and

R =

⎛⎜⎜⎜⎝
1 1 · · · 1
ρ2 ρ2 · · · ρ2

...
...

. . .
...

ρ2T −2 ρ2T −2 · · · ρ2T −2

⎞⎟⎟⎟⎠−

⎛⎜⎜⎜⎝
1 ρ · · · ρT −1

ρ ρ2 · · · ρT

...
...

. . .
...

ρT −1 ρT · · · ρ2T −2

⎞⎟⎟⎟⎠ .

Consider the principal minors of R. Those of order 1 are 0; those of order 2 are

det

(
0 ρ2i −ρi+ j

ρ2 j −ρi+ j 0

)
= ρi+ j

(
ρ j −ρi

)2 ≥ 0, 0 < i < j < T,
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AUTOREGRESSIONS WITH FIXED EFFECTS 1211

given ρ ≥ 0; and those of order greater than 2 are 0 because R is the sum of two matrices
of rank 1 and, hence, rank(R) ≤ 2. Therefore, R is positive semi-definite and τ1 ≥ 0.
Furthermore,

τ3 = T
T −1∑
j=0

ρ2 j −
⎛⎝T −1∑

j=0

ρ j

⎞⎠2

=
T −1∑
i=0

T −1∑
j=0

ρ2 j −
T −1∑
i=0

T −1∑
j=0

ρi+ j = ι� Rι ≥ 0.

Use

(
ι� Aι

)2

T
=
⎛⎝T −2∑

j=0

(T − j −1)ρ j

⎞⎠2

=
2T −4∑
j=0

gj ρ
j ,

�
(
ι�Bι

)
T

=
T −1∑
j=1

j (T − j)ρ j−1 −
T −2∑
j=1

j (T − j −1)ρ j−1 =
T −2∑
j=0

hj ρ
j ,

where

gj =
∑

0≤k,l≤T −2
k+l= j

(T − k −1)(T − l −1)

=
{

(T −1)(T − j −1)( j +1)+ j ( j −1)( j +1)/6 if 0 ≤ j ≤ T −2,

(2T − j −1)(2T − j −2)(2T − j −3)/6 if T −2 < j ≤ 2T −4,

hj = j +1, 0 ≤ j ≤ T −2,

to write τ2 as a polynomial

τ2 =
2T −4∑
j=0

qj ρ
j , qj =

{
dgj −hj if 0 ≤ j ≤ T −2,
dgj if T −2 < j ≤ 2T −4,

where d = 2
T (T −1) . When T = 2 or ρ = 1, τ2 = 0. For T > 2,

lim
ρ→1

τ2 (1−ρ)−2 = 1

72
T (T −1)(T −2)(T +1) > 0

and, therefore, τ2 = (1−ρ)2 P (T,ρ), where P (T,ρ) =∑2T −6
j=0 pj ρ

j is a polynomial of

degree 2T −6, with coefficients pj =∑ j
i=0 ( j +1− i)qi given by

pj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

(
j +3
j −2

)
+d

(
j +3

j

)
(T −1)(T − j −2)/2 if 0 ≤ j ≤ T −2,

d

(
2T − j −1
2T − j −6

)
if T −2 < j ≤ 2T −6.

Hence τ2 ≥ 0 because pj > 0. (An earlier version of this proof stated that pj increases in j
for j ≥ T −2. This was incorrect, as noted by Kruiniger, 2014.) This establishes QT ≥ 0,
that is, (A.4). Recall that Q2 = 0 and note that ρ = 1 implies τ1 = τ2 = τ3 = 0 and, hence,
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1212 GEERT DHAENE AND KOEN JOCHMANS

QT = 0. Therefore, QT = 0 if T = 2 or ρ = 1. If T ≥ 2 and ρ �= 1, then �QT > 0 because
τ3 > 0 when T = 2 and τ2 > 0 when T > 2. Therefore, QT = 0 only if T = 2 or ρ = 1. n

Proof of Theorem 4.1. La(ρ) having a local maximum or a flat inflection point at ρ0 is
equivalent to b(ρ) approaching S(ρ) from below as ρ approaches ρ0 from the left. We will
write this as b(ρ) ↑ S(ρ) at ρ0, and show that b(ρ) ↑ S(ρ) on

[
ρ,ρ

]
at most once. From

∇ρ H(ρ) =
2(ρ −ρml)

(
3ζ 2

0 − (ρ −ρml)
2
)

(
ζ 2

0 + (ρ −ρml)
2
)3

it follows that S(ρ) is strictly concave on [ρ,ρml] and strictly convex on [ρml,ρ]. Because
ϕt = ρt , b(ρ) and its first two derivatives are

b(ρ) = −
T −2∑
t=0

T −1− t

T (T −1)
ρt ,

c(ρ) = −
T −2∑
t=1

t (T −1− t)

T (T −1)
ρt−1, d(ρ) = −

T −2∑
t=2

t (t −1)(T −1− t)

T (T −1)
ρt−2.

For ρ �= 1,

b(ρ) = − T −1− Tρ +ρT

T (T −1)(1−ρ)2
,

c(ρ) = − T −2− Tρ + TρT −1 − (T −2)ρT

T (T −1)(1−ρ)3
,

d(ρ) = −2T −6−2Tρ + T (T −1)ρT −2 −2T (T −3)ρT −1 + (T −2)(T −3)ρT

T (T −1)(1−ρ)4
.

When T ≤ 3, b(ρ) is linear and so, given that S(ρ) is concave-convex on
[
ρ,ρ

]
, b(ρ) ↑

S(ρ) on
[
ρ,ρ

]
at most once. Suppose T ≥ 4. Then, b(ρ) is a polynomial of degree 2 or

higher with negative coefficients, so b(ρ) is negative, decreasing, and strictly concave, on
R+. Further, by Descartes’ rule of signs, c(ρ) has one zero on R− when T is even and
none when T is odd, and d(ρ) has no zeros on R− when T is even and one when T is
odd. Suppose T is even. Then c(−1) = 0 and b(−1) = − 1

2(T −1) < 0, so b(ρ) is negative

and strictly concave on R, and, hence, its intersection with S(ρ) on
[
ρ,ρ

]
can only be

on
(
ρml,ρ

]
, where S(ρ) is strictly convex and is approached from below by b(ρ) at most

once. Now suppose T is odd and T ≥ 5. Then,

d(−1) = T −3

4T
> 0, d

(− 1
2

)= −
24−T (T −2)

(
2T −3T +1

)
27T (T −1)

< 0,

so b(ρ) is strictly convex on (−∞,ρv ] and strictly concave on [ρv ,∞) for some ρv ∈(− 1,− 1
2

)
and decreases on R. Define ρu by b(ρu) = 0, that is, by T (1−ρu) = 1 −ρT

u ,
ρu ∈R−. Since T ≥ 5, we have −2 < ρu < −1. Thus, b(ρ) is negative and strictly convex
on
(
ρu ,ρv

]
, with −2 < ρu < −1 < ρv < − 1

2 . Let R = [ρu ,ρv
]∩ [ρml,ρ

]
. If R is empty,

then ρv < ρml or ρ < ρu ; in either case, by the concavity-convexity of S(ρ), b(ρ) ↑ S(ρ)
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AUTOREGRESSIONS WITH FIXED EFFECTS 1213

on
[
ρ,ρ

]
at most once. If R is nonempty, to show that b(ρ) ↑ S(ρ) on

[
ρ,ρ

]
at most

once, it suffices to show that S(ρ) decreases faster than b(ρ) on R, i.e., H(ρ) < c(ρ) for
ρ ∈ R. We will show below that (i) V L B

0 ≥ T −1
T if ρ0 ≤ 0; (ii) V L B

0 ≥ 1
2 if ρ0 > 0. By (ii),

ρml = ρ0 + b0/V0 ≥ ρ0 + 2b0 > − 1
2 if 0 < ρ0 ≤ 1 because b(0) = − 1

T , b(1) = − 1
2 , and

b(ρ) is concave on [0,1]. Further, ρml > 0 if ρ0 > 1 because, then, b0
V0

> 1
2b0

> −1. Hence,
R is empty if ρ0 > 0. Now suppose ρ0 ≤ 0. Define ρw by S(ρw) = b(ρv ),ρw ∈ [ρml,ρ];

and ρ′
w by S(ρ′

w) = b(0) = − 1
T ,ρ′

w ∈ [ρml,ρ]. Then ρw − ρml < ρ′
w − ρml = 1

2

(
T −√

T 2 −4ζ 2
0

)
. By (i), ζ 2

0 = V0−b2
0

V 2
0

≤ 1
V0

≤ T
T −1 ≤ 5

4 . Since H(ρ) increases on [ρml,ρ] and

H(ρ′
w) decreases in T and increases in ζ 2

0 ,

H(ρw) = − ζ 2
0(

ζ 2
0 + (ρw −ρml)

2
)2

+2S2(ρw) < − ζ 2
0(

ζ 2
0 + (ρ′

w −ρml
)2)2

+ 2

T 2

≤ − 5/4(
5
4 + 1

4

(
5−√

20
)2
)2

+ 2

25
< −1

2

and so, H(ρ) < − 1
2 for ρ ∈ [ρml,ρw]. On the other hand, T (1−ρu) = 1 − ρT

u implies
1−ρu
ρu

= 1−ρT −1
u

T −1 and, therefore,

c(ρu) = − −T + TρT −1
u

T (T −1)(1−ρu)2
= 1

ρu (1−ρu)
> −1

2
.

So, c(ρ) > − 1
2 for ρ ∈ [ρu ,ρv ] and H(ρ) < c(ρ) for ρ ∈ R. We conclude that b(ρ) ↑ S(ρ)

on
[
ρ,ρ

]
at most once, provided (i) and (ii) hold, which we now show. Write V L B

0 =
1

T (T −1)

∑2T −4
j=0 v j ρ

j
0 , where

v2 j = T (T − j −1)−{(2 j +1)(T − j −1)− j ( j +1)}
− (2 j − T +1)(2 j − T +2)1{2 j≥T },

v2 j+1 = −{(2 j +2)(T − j −2)− j ( j +1)}− (2 j − T +2)(2 j − T +3)1{2 j+1≥T },

using
(∑ j

k=0 ρk)2 = ∑ j
k=0 (k +1)ρk +∑ j

k=1 ( j − k +1)ρ j+k . Clearly, v2 j+1 < 0.
Further, v2 j > 0 because

v2 j =
{

(T −2 j −1)(T − j −1)+ j ( j +1) if 0 ≤ 2 j < T,

(T − j −1)( j +1) if T ≤ 2 j ≤ 2T −4.

Hence, V L B
0 decreases in ρ0 on R− and (i) follows because V L B

0 = T −1
T when ρ0 = 0.

When 0 < ρ0 < 1, a sufficient condition for V L B
0 ≥ 1

2 is that dk ≥ 0 for 0 ≤ k ≤ T − 2,

where dk =∑k
j=0
(
v2 j + v2 j+1

)− T (T −1)
2 . We have

v2 j + v2 j+1 =
{

(T −2 j −1)(T − j −1)− (T −2 j −2)(2 j +2) if 2 j +1 < T,

(2 j − T +3)(T − j −1) if 2 j +1 ≥ T .
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1214 GEERT DHAENE AND KOEN JOCHMANS

Only when 2 j +1 < T is it possible that v2 j +v2 j+1 < 0, so it suffices to show that dk ≥ 0
for 2k +1 < T . We obtain, for 2k +1 < T ,

dk = 1

2
(k +1)

(
2T 2 −5T k +4k2 −8T +13k +10

)
− T (T −1)

2
.

Define fk by dk = 1
2 (k +1) fk . Then, f0 = (T −2)(T −5) ≥ 0, f1 =

1
2

(
3T 2 −25T +54

)
> 0, and, for k ≥ 2,

fk >
5

3
T 2 −5T k +4k2 −8T +13k +10

= 1

3
((T −2k −2)(5T −6k −16)+ k (T −5)+2(T −1)) > 0.

Hence, V L B
0 ≥ 1

2 when 0 < ρ0 < 1. When ρ0 ≥ 1, it also holds that V L B
0 ≥ 1

2 because

then b0 < b(1) = − 1
2 and V L B

0 ≥ 2b2
0. Therefore, (ii) holds. n

Proof of Lemma 4.2. Use yi,−1 = S1(ξ0i + F0εi ) to write Zi = (yi,−1, Xi ) =
(S1 F0εi ,0)+�i , where �i = (S1ξ0i , Xi ) is independent of εi . Proceeding as above, we
have

V0 = plimN→∞ 1
N
∑N

i=1 Z�
i M Zi

σ 2
0 (T −1)

=
(

V L B
0 0
0 0

)
+ V�,

where

V� =
(

Vξξ Vξ X
VXξ VX X

)
= plimN→∞ 1

N
∑N

i=1 ��
i M�i

σ 2
0 (T −1)

is positive semi-definite and VX X is positive definite by assumption. Therefore, Vξξ −
Vξ X V −1

X X VXξ ≥ 0 and (V ρρ
0 )−1 = V L B

0 + Vξξ − Vξ X V −1
X X VXξ ≥ V L B

0 . n

Proof of Theorem 5.1. As N → ∞, la(ρ) converges to La(ρ) uniformly in ρ since

−a(ρ) is nonstochastic and supρ |l(ρ) − L(ρ)| = op(1). Further, ρ̂ml
p→ ρml, Ŵ

p→
−H(ρml) = W0, and Ê p→ E in the sense that Pr

[
ρ ∈ Ê]→ 1{ρ∈E} for any ρ not on the

boundary of E . Therefore,

ρ̂al
p→
{

arg min
ρ∈E S�

a (ρ)Sa(ρ) s.t. Ha(ρ) ≤ 0

}
= ρ0 (A.5)

and β̂al = β̂(ρ̂al)
p→ β0. n

Proof of Theorem 5.2. The adjusted likelihood estimator satisfies sa
(
θ̂al
) = 0 with

probability approaching 1 as N → ∞. By a Taylor series expansion of sa(θ) around θ0,

0 = sa(θ0)+∇θ ′sa(θ0)
(
θ̂al − θ0

)+ Op
(||θ̂al − θ0||2).

Rearringing and using ∇θ ′sa(θ0) = Ha(θ0)+op(1) gives

√
N
(
θ̂al − θ0

)= −Ha(θ0)−1
√

Nsa(θ0)+op(1).
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Write sa(θ0) as

sa(θ0) = N−1∑N
i=1 Z�

i Mεi

N−1∑N
i=1 ε�

i Mεi
−b0 = σ 2

0 (T −1)

N−1∑N
i=1 ε�

i Mεi
N−1

N∑
i=1

ei .

Since Eei = 0 and plimN→∞N−1∑N
i=1 ε�

i Mεi = σ 2
0 (T − 1), we have

√
Nsa(θ0)

d→
N (0,�) and the result follows. n

Proof of Equation (6.1). Since ρml = ρ0 + V −1
0 b0 for every T , the result follows

on calculating limT →∞ T V −1
0 b0. With ρ0 = (ρ01,ρ02)� in the stationary region, yit is

eventually stationary as t → ∞ and hence

lim
T →∞ V0 = lim

T →∞
E

(
Y �

i−MYi−
)

σ 2
0 (T −1)

= σ−2
0 lim

t→∞Var

(
yit

yi t−1

)
= a−1

(
1−ρ02 ρ01

ρ01 1−ρ02

)
, (A.6)

where a = (1+ρ02)(1−ρ01 −ρ02)(1+ρ01 −ρ02). In the steady state, we have, by the
proof of Lemma 2.1,

yit = αi +ρ01 yit−1 +ρ02 yit−2 + εi t =
∞∑

j=0

ϕj
(
αi + εi t− j

)
.

Therefore, with b0 = (b01,b02)�,

lim
T →∞ T b0 j = lim

T →∞
TE
(
ε�

i Myi,− j

)
E(ε�

i Mεi )

= −σ−2
0 lim

T →∞E

⎛⎝T −1

⎛⎝ T∑
t=1

εi t

⎞⎠⎛⎝ T∑
t=1

yit− j

⎞⎠⎞⎠
= −σ−2

0 lim
t→∞E

⎛⎝εi t

⎛⎝ ∞∑
j=0

yit+ j

⎞⎠⎞⎠= −
∞∑

j=0

ϕj = − 1

1−ρ01 −ρ02
(A.7)

for j = 1,2. From (A.6)–(A.7), it follows that limT →∞ T V −1
0 b0 = −ι2(1 +ρ02), which

implies (6.1). n
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