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• Least-squares estimation of the fixed-effect panel VAR is asymptotically biased.
• Least-squares estimation of the impulse–response function is asymptotically biased.
• Simple bias corrections are derived for the panel fixed-effect VAR and the IRF.
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a b s t r a c t

We derive a bias-corrected least-squares estimator for panel vector autoregressions with fixed effects.
The estimator is straightforward to implement and is asymptotically unbiased under asymptotics where
the number of time series observations and the number of cross-sectional observations grow at the same
rate. This makes the estimator particularly well suited for most macroeconomic data sets.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Vector autoregressions are a standard tool in macroeconomet-
rics since the work of Sims (1972, 1980). A growing literature ex-
ploits the availability of large longitudinal data sets to fit panel ver-
sions of vector autoregressive models; see, e.g., Canova and Cic-
carelli (2013). In addition, panel vector autoregressions also find
application in microeconomics; examples include the estimation
of wage equations in Holtz-Eakin et al. (1988) and Alonso-Borrego
and Arellano (1999).1

We consider the estimation of vector autoregressions from
panel data on N units and T (effective) time periods. While it is

∗ Corresponding author.
E-mail addresses: geert.dhaene@kuleuven.be (G. Dhaene),

koen.jochmans@sciencespo.fr (K. Jochmans).
1 Further examples of the use of panel vector autoregressions include studies of

fiscal policy and investment (Alesina et al., 2002), fiscal policy and consumption
(Tagkalakis, 2008), financial intermediation and growth (Rousseau and Wachtel,
2000), risk-sharing (Asdrubali andKim, 2004), savings (Loayza et al., 2000, Attanasio
et al., 2000), and crime (Fajnzylber et al., 2002).

http://dx.doi.org/10.1016/j.econlet.2016.06.010
0165-1765/© 2016 Elsevier B.V. All rights reserved.
well-known that least-squares estimators of vector autoregres-
sions that feature fixed effects are heavily biased in short panels,
the fact that they are also asymptotically biased as N, T → ∞ un-
less N/T → 0 (Phillips and Moon, 1999; Hahn and Kuersteiner,
2002) seems to be largely neglected in the empirical literature.
At the same time, the generalized method-of-moment estimator
of Holtz-Eakin et al. (1988), which performs well under fixed-T
asymptotics, is asymptotically biased under asymptotics where
N, T → ∞ unless N/T → ∞ (Alvarez and Arellano, 2003). In ad-
dition, such estimators are well known to have poor finite-sample
properties when the data are persistent, and their performance is
sensitive to the distribution of the fixed effects. Here we consider
estimation under asymptotics whereN/T converges to a (positive)
constant. Such an asymptotic approximation represents a middle
ground between the two sampling schemes discussed above. It is
well suited for most macroeconomic data sets, where T typically
cannot reasonably be considered small relative to N .

We extend the bias-correction approach of Hahn and Kuer-
steiner (2002) from first-order vector autoregressions to models
with higher-order dynamics. This is important, not in the least

http://dx.doi.org/10.1016/j.econlet.2016.06.010
http://www.elsevier.com/locate/ecolet
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because the lag length is generally unknown. Bias-corrected esti-
mation under lag-length misspecification can exacerbate the bias,
thus worsening inference; see Lee (2012) for theoretical and simu-
lation results. We also derive the corresponding bias correction for
impulse–response functions.

2. Vector autoregression for panel data

Consider panel data on N units observed for T + P consecutive
time periods. For each unit i we observe M outcome variables
yit1, . . . , yitM , where t ranges from 1 − P to T . The behavior of
yit = (yit1, yit2, . . . , yitM)′ is described by the Pth order vector
autoregression

yit = Γ 1yit−1 + Γ 2yit−2 + · · · + Γ Pyit−P + ϵit , (2.1)

where yit−p = Lp yit is the pth lag of yit , Γ p is the associated
M × M coefficient matrix, and ϵit is an M-dimensional error term.
We assume that

ϵit = αi + υit

for a fixed effect αi = (αi1, . . . , αiM)′ and an error vector υit =

(υit1, . . . , υitM)′. We normalize E[υit ] = 0 and let Ω = E[υitυ
′

it ].
Eq. (2.1) can be extended to include time dummies, one for

each period. Timedummies change the least-squares estimator but
they leave the bias adjustment and the asymptotic approximation
developed below unchanged (see Hahn and Moon, 2006 for a
discussion on this).

We complete the model by imposing the following conditions.

Assumption 1 (Stationarity Condition). The roots of the determi-
nantal equation

det

IM − Γ 1z − · · · − Γ PzP


= 0

lie outside the unit circle.

Assumption 1 implies that the vector autoregressive process is
stable.

Throughout, we treat the αi as fixed, that is, we condition on
them.Wealso condition on the initial observations, yi(1−P), . . . , yi0.
This allows the initial observations not to be generated from the
corresponding stationary distribution, and so, does not require the
time series processes to have started in the distant past.

Assumption 2 (Regularity Conditions). υit has finite eight-order
moments and, as N → ∞,

1
N

N
i=1

∥αi∥
2

= O(1),
1
N

N
i=1

∥yi1−p∥
2

= O(1),

for p = 1, . . . , P .

Assumption 2 ensures regular asymptotic behavior of the least-
squares estimator.

For simplicity, we will assume that the errors υit are indepen-
dent and identically distributed.

Assumption 3 (Errors). υit is independent and identically dis-
tributed across i and t , and E[υit ] = 0.

Independence across time can be relaxed to allow for dependence
between υit and υit−p through their higher-order moments. This
would come at the cost of more complicated regularity conditions,
paralleling Hahn and Kuersteiner (2002, Conditions 1 and 2), but
would leave our bias calculations unchanged.

Under these conditions, as t → ∞, yit has the moving-average
representation

yit =

∞
k=0

Φk ϵit−k = µi +

∞
k=0

Φk υit−k,
where µi =


∞

k=0 Φk αi and the matrices Φk are defined by
IM − Γ 1L − · · · − Γ PLP

−1
=

∞
k=0

ΦkLk. (2.2)

This representation is important as it implies ∂yit+h/∂υ′

it = Φh,
which quantifies the impact on yit+h of a unit increase in the ele-
ments of υit . As a function of h, this defines the impulse–response
functions, which are key parameters of interest (see, e.g., Hamilton,
1994, Section 11.4).

3. Bias-corrected estimation

Define the M × MP matrix Γ ′
= (Γ 1, . . . , Γ P) and xit =

(y ′

it−1, y
′

it−2, . . . , y
′

it−P)
′ to write (2.1) as

yit = αi + Γ ′xit + υit .

Collect all time-series observations and error terms for unit i in the
matrices

Yi = (yi1, . . . , yiT ), Xi = (xi1, . . . , xiT ),
Υ i = (υi1, . . . ,υiT ),

and let ιT denote the T -dimensional vector of ones to define Ai =

ι′T ⊗ αi. We may then write

Yi = Ai + Γ ′Xi + Υ i.

The within-group least-squares (WG-OLS) estimator is

Γ =


N
i=1

XiMX ′

i

−1  N
i=1

XiMY ′

i


,

where M = IT − ιT ι
′

T . We consider asymptotically unbiased
estimation of Γ under asymptotics whereN, T → ∞withN/T →

ρ2 and 0 < ρ < ∞. Under this asymptotic scheme, WG-OLS is
asymptotically normal, but biased. Let

Σ = plim
1
NT

N
i=1

XiMX ′

i = lim
t→∞

Var(xit),

B = −(ιP ⊗ (IM − Γ 1 − · · · − Γ P)
−1) Ω, (3.1)

and b = vec B = −(IM ⊗ ιP ⊗ (IM − Γ 1 − · · · − Γ P)
−1) vecΩ.

Lemma 1 (Within-group Least-squares Estimator). Let Assump-
tions 1–3 hold. Then
√
NT vec (Γ − Γ )

d
−→ N


ρ (IM ⊗ Σ−1) b, Ω ⊗ Σ−1 (3.2)

as N, T → ∞ with N/T → ρ2.

(Proofs are given in the Appendix.)
Lemma 1 suggests the bias-corrected WG-OLS (BC-WG-OLS)

estimator

Γ = Γ −
Σ−1B
T

, (3.3)

where

Σ =
1
NT

N
i=1

XiMX ′

i ,

B = −(ιP ⊗ (IM −Γ 1 − · · · −Γ P)
−1)Ω,

(3.4)

with

Ω =
1
NT

N
i=1


Yi −Γ ′Xi


M

Yi −Γ ′Xi

′
. (3.5)

This estimator is asymptotically unbiased. Lemma 1 immediately
implies the following.
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Theorem 1 (Bias-corrected Least-squares Estimator). Let Assump-
tions 1–3 hold. Then
√
NT vec (Γ − Γ )

d
−→ N


0, Ω ⊗ Σ−1

as N, T → ∞ with N/T → ρ2.

WhenM = 1 the model in (2.1) reduces to

yit = αi + γ1yit−1 + · · · + γPyit−P + υit , υit ∼ i.i.d. (0, ω2).

(3.6)

In this case a simpler, yet asymptotically equivalent, bias correction
may be performed. Write (3.6) as

yit = αi + γ ′xit + υit ,

where γ = (γ1, . . . , γP)
′ and xit = (yit−1, . . . , yit−P)

′. TheWG-OLS
estimator of γ is

γ =


N
i=1

T
t=1

(xit − xi·)(xit − xi·)′
−1

×


N
i=1

T
t=1

(xit − xi·)(yit − yi·)


.

Write Σ = ω2 V , where V is the variance matrix of ω−1xit in the
limit t → ∞. By combining Lemma 1 with the expression for V−1

in Galbraith and Galbraith (1974), we show in the Appendix that
√
NT (γ − γ)

d
−→ N (ρc,V−1), (3.7)

where c = (c1, c2, . . . , cP)′ and cp = cP−p+1 = −(1 − γ1 −

γ2 − · · · − γp−1 + γP−p+1 + · · · + γp) for p = 1, . . . , ⌈P/2⌉. (This
expression is also implicit in the result of Lee, 2012.) Thus, a bias-
corrected estimator is

γ =γ −
c
T

, (3.8)

which does not require estimating ω2.

Corollary 1 (Single-equation Bias Correction). Let Assumptions 1–
3 hold. Then
√
NT (γ − γ)

d
−→ N


0,V−1

as N, T → ∞ with N/T → ρ2.

When P = 1, (3.8) reduces to the well-known correction (Nickell,
1981, p. 1422)

γ = γ +
1 +γ

T
,

and Corollary 1 yields
√
NT

γ +
1 +γ

T
− γ


d

−→ N

0, 1 − γ 2 ,

which agrees with Hahn and Kuersteiner (2002, p. 1645).
Finally, besides Γ , estimation of the impulse–response func-

tions is of interest. Recall that

Φh = Γ 1Φh−1 + Γ 2Φh−2 + · · · + Γ PΦh−P ,

with Φh = 0 if h < 0 and Φ0 = IM (see, e.g., Hamilton, 1994, Eq.
10.1.19). Clearly, a plug-in estimator of Φh based on the WG-OLS
estimator will suffer from asymptotic bias. However, Theorem 1
directly implies that the bias-corrected estimator based on the
recursionΦh = Γ 1Φh−1 +Γ 2Φh−2 + · · · +Γ PΦh−P
will be asymptotically unbiased if N, T → ∞ with N/T → ρ2.
Asymptotically valid inference on the impulse–responses can then
be performed. To state the result, let

Gh =

h
s=1

Φs−1 ⊗ (Φ′

h−s, Φ′

h−s−1, · · · , Φ′

h−s−P+1).

Theorem 2 (Bias-corrected Impulse–response Functions). Let As-
sumptions 1–3 hold. Then
√
NT vec (Φ′

h − Φ′

h)
d

−→ N

0,Gh(Ω ⊗ Σ−1)G ′

h


as N, T → ∞ with N/T → ρ2.

4. Simulations

We present simulation results for a two-equation two-lag
autoregressive model with

Γ 1 =


0.75 −0.20
0.20 0.25


,

Γ 2 =


0.20 −0.10
0.10 0.05


, Ω =


1 0.2
0.2 1


,

errors generated as υit ∼ N (0, Ω), and various panel sizes. We
start the time series processes in the distant past, so the initial
observations are drawn from their steady-state distribution. The
results are invariant to the choice of αi.

We computed point estimates and confidence intervals for
the elements of the coefficient matrices, Γ 1 and Γ 2, and for the
impulse–response functions

φmn(h) =
∂yi(t+h)m

∂υitn
,

using WG-OLS and BC-WG-OLS estimates. For brevity we do not
consider generalized method-of-moment estimators. They are not
designed for problems where T/N is not very close to zero, and
so are not well suited for most macroeconomic data sets; see also
(Juessen and Linnemann, 2010, 2012).

Table 1 reports the biases, standard deviations, and coverage
rates of 95% confidence intervals centered at point estimates (WG-
OLS in the top half of the table, BC-WG-OLS in the bottom half),
computed from 10,000 Monte Carlo replications. The (m, n)th
element of Γ p is denoted as γpmn. Clearly, the bias of the within-
group estimator varies substantially across the coefficients and is
non-negligible relative to the standard deviation. Consequently,
the confidence intervals centered at the within-group estimator
suffer from substantial undercoverage and the distortion persists
as the sample size grows. The bottom half of the table shows that
much of the bias of the within-group estimator is successfully
removed by the bias correction. Furthermore, the correction has
very little effect on the variance of the estimator: the standard
deviation of the corrected estimator is almost identical to that of
the uncorrected estimator. The bias correction leads to confidence
intervals with substantially improved coverage rates. Therefore,
the conclusions from Table 1 support our theoretical findings
summarized in Lemma 1 and Theorem 1.

Fig. 1 summarizes the simulation results for the impulse–
response function estimates for N = T = 25 (the plots in the
upper half of the figure) and N = T = 100 (bottom half), based
on the within-group estimator (left half) and on the bias-corrected
estimator (right half). Each plot corresponds to a particular
impulse–response function, φmn, as indicated, and displays the
true φmn (solid gray line), the average (across the Monte Carlo
replications) of the estimated φmn (solid black line), and pointwise
95%-confidence bands constructed from the Monte Carlo standard
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Table 1
Coefficient matrices.

N T γ111 γ121 γ112 γ122 γ211 γ221 γ212 γ222

WG-OLS: BIAS
25 25 −0.0557 0.0006 −0.0230 −0.0256 0.0089 −0.0459 0.0376 −0.0367
50 50 −0.0237 −0.0012 −0.0101 −0.0137 0.0040 −0.0211 0.0186 −0.0171

100 100 −0.0109 −0.0008 −0.0046 −0.0070 0.0019 −0.0102 0.0093 −0.0083
200 200 −0.0052 −0.0004 −0.0023 −0.0034 0.0009 −0.0051 0.0045 −0.0040

WG-OLS: STD
25 25 0.0432 0.0416 0.0443 0.0405 0.0420 0.0426 0.0446 0.0408
50 50 0.0210 0.0205 0.0220 0.0203 0.0204 0.0208 0.0220 0.0201

100 100 0.0102 0.0101 0.0111 0.0100 0.0100 0.0102 0.0109 0.0100
200 200 0.0051 0.0051 0.0054 0.0050 0.0050 0.0051 0.0054 0.0050

WG-OLS: COVERAGE
25 25 0.6991 0.9391 0.9131 0.8968 0.9338 0.7825 0.8578 0.8429
50 50 0.7734 0.9434 0.9222 0.8905 0.9428 0.8143 0.8606 0.8588

100 100 0.8084 0.9490 0.9252 0.8939 0.9433 0.8234 0.8635 0.8683
200 200 0.8183 0.9466 0.9331 0.8919 0.9474 0.8281 0.8678 0.8740

BC-WG-OLS: BIAS
25 25 −0.0175 0.0048 −0.0047 0.0008 0.0024 −0.0078 0.0034 −0.0054
50 50 −0.0043 0.0010 −0.0012 0.0001 0.0006 −0.0017 0.0009 −0.0013

100 100 −0.0011 0.0004 −0.0002 0.0000 0.0002 −0.0004 0.0003 −0.0004
200 200 −0.0003 0.0001 −0.0001 0.0001 0.0000 −0.0002 0.0000 0.0000

BC-WG-OLS: STD
25 25 0.0430 0.0417 0.0445 0.0413 0.0421 0.0426 0.0458 0.0417
50 50 0.0209 0.0206 0.0220 0.0205 0.0204 0.0208 0.0223 0.0203

100 100 0.0102 0.0101 0.0111 0.0101 0.0100 0.0102 0.0110 0.0101
200 200 0.0051 0.0051 0.0054 0.0050 0.0050 0.0051 0.0055 0.0050

BC-WG-OLS: COVERAGE
25 25 0.8719 0.9059 0.9071 0.9072 0.9380 0.9331 0.9369 0.9374
50 50 0.9125 0.9265 0.9245 0.9247 0.9483 0.9428 0.9454 0.9483

100 100 0.9322 0.9408 0.9357 0.9380 0.9476 0.9469 0.9459 0.9478
200 200 0.9416 0.9437 0.9443 0.9450 0.9521 0.9516 0.9498 0.9530
deviation (dotted black lines) and from the estimated standard
error based on Theorem 2 (dashed black lines). The four plots in
the upper left part of the figure, corresponding to N = T =

25, show that least-squares may introduce substantial bias in the
impulse–response function estimates, of the same order as the
width of the confidence bands. As evidenced by the four plots in the
upper right part of the figure, the bias-corrected impulse–response
function estimates suffer frommuch less bias. The remaining bias is
small relative to the standard error. These findings are in line with
Theorem 2. Moving to the bottom half of the figure, where N =

T = 100, we see that the ratio of bias to standard error of the least-
squares estimator of φmn persists, with confidence bounds settling
around the wrong curve. In contrast, as shown by the four plots in
the bottom right part of the figure, the corrected impulse–response
function estimates are asymptotically unbiased.

5. Conclusion

We derived an approximate bias correction for panel vector
autoregressions with fixed effects. It extends the correction
of Hahn and Kuersteiner (2002) to higher-order panel vector
autoregressions and should be useful for macro-panel data sets,
where the number of time periods is often of the same order as
the number of cross-sectional units (e.g., countries or states). The
correction is given in closed form and, therefore, straightforward
to implement.

Appendix

Proof of Lemma 1. A standard argument (Phillips and Moon,
1999; Hahn and Kuersteiner, 2000) yields the asymptotic-
normality result of the within-group least-squares estimator
centered around its probability limit. It therefore suffices to
calculate the bias term in the limit distribution. Given the
sampling-error representation

√
NT vec

Γ − Γ


=


IM ⊗

1
NT

N
i=1

XiMX ′

i

−1

×


1

√
NT

N
i=1

vec(XiMΥ ′

i)


,

the bias follows as ρ (IM ⊗ Σ−1) vecB where B = limT→∞ E
XiMΥ ′

i


is the large-T approximation to the bias in the normal

equations, as in Hahn and Kuersteiner (2002). B consists of the
M × M matrices B1, . . . , BP , where

Bj = lim
T→∞

E


T

t=1


yit−j −

1
T

T
t ′=1

yit ′−j


υ′

it



= − lim
T→∞

E


1
T

T
t=1

T
t ′=1

yit ′−jυ
′

it



= − lim
T→∞

E


1
T

T
t=1

T
t ′=1

∞
k=0

Φkυit ′−j−kυ
′

it


= −

∞
k=0

Φk Ω

= −(IM − Γ 1 − · · · − Γ P)
−1 Ω,

which does not depend on j. Hence, B = −(ιP ⊗ (IM − Γ 1 − · · · −

Γ P)
−1) Ω, as defined in the main text. �

Proof of (3.7). In the single-equation case, Lemma 1 and Theo-
rem 1 hold with

Σ−1b = −
V−1 ιP

1 − γ1 − · · · − γP
.
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Fig. 1. Impulse–response functions.
Galbraith and Galbraith (1974, p. 70) showed that V−1
= AA′

−

H ′H where

A = −


γ0 0 · · · 0

γ1
. . .

. . .
...

...
. . .

. . . 0
γP−1 · · · γ1 γ0

 ,

H = −


γP γP−1 · · · γ1

0
. . .

. . .
...

...
. . .

. . . γP−1
0 · · · 0 γP

 ,

and γ0 = −1. Now, A′ιP = a + (1 − γ1 − · · · − γP)ιP and
HιP = h + (1 − γ1 − · · · − γP)ιP , where

a =


γP

γP−1 + γP
...

γ1 + · · · + γP

 , h =


γ0

γ0 + γ1
...

γ0 + · · · + γP−1

 .

Noting that Aa−H ′h = 0,we find Σ−1b = −(A−H ′) ιP = c . �
Proof of Theorem 2. The result follows along the same lines as
in, e.g., Hamilton (1994, Section 11.7) from Theorem 1 by an
application of the delta method. �
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