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A constructive proof of identification of multilinear decompositions of
multiway arrays is presented. It can be applied to show identification in
a variety of multivariate latent structures. Examples are finite-mixture
models and hidden Markov models. The key step to show identification is
the joint diagonalization of a set of matrices in the same non-orthogonal
basis. An estimator of the latent-structure model may then be based
on a sample version of this joint-diagonalization problem. Algorithms
are available for computation and we derive distribution theory. We
further develop asymptotic theory for orthogonal-series estimators of
component densities in mixture models and emission densities in hidden
Markov models.

1. Introduction. Latent structures are a popular tool for modeling the

dependency structure in multivariate data. Two important examples are

finite-mixture models (see McLachlan and Peel 2000) and hidden Markov

models (see Cappé, Moulines and Rydén 2005). Although these models arise

frequently in applied work, the question of their nonparametric identifiability

has attracted substantial attention only quite recently. Allman, Matias and

Rhodes [2009] used algebraic results on the uniqueness of decompositions

of multiway arrays due to Kruskal [1976; 1977] to establish identification in

a variety of multivariate latent-structure models. Their setup covers both
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finite mixtures and hidden Markov models, among other models, and their

findings substantially generalize the earlier work of Green [1951], Anderson

[1954], Petrie [1969], Hettmansperger and Thomas [2000], Hall and Zhou

[2003], and Hall et al. [2005].

Despite these positive identification results, direct application of Kruskal’s

method does not provide an estimator. Taking identification as given, some

authors have developed EM-type approaches to nonparametrically estimate

both multivariate finite mixtures (Benaglia, Chauveau and Hunter 2009;

Levine, Hunter and Chauveau 2011) and hidden Markov models (Gassiat,

Cleynen and Robin 2013). Numerical studies suggest that these estimators

are well-behaved. However, their statistical properties—their consistency,

convergence rates, and asymptotic distribution—are difficult to establish

and are currently unknown.1

In this paper we show that the multilinear structure underlying the results

of Allman, Matias and Rhodes [2009] can be used to obtain a constructive

proof of identification in a broad class of latent-structure models. We show

that the problem of decomposing a multiway array can be reformulated as

the problem of simultaneously diagonalizing a collection of matrices. This

is a least-squares problem that has received considerable attention in the

literature on independent component analysis and blind source separation

(see Comon and Jutten 2010). Moreover, algorithms exist to recover the joint

diagonalizer in a computationally-efficient manner; see Fu and Gao [2006],

Iferroudjene, Abed-Meraim and Belouchrani [2009; 2010], and Luciani and

Albera [2010; 2014].

We propose estimating the parameters of the latent-structure model by

solving a sample version of the simultaneous-diagonalization problem. We

provide distribution theory for this estimator below. Under weak conditions,

it converges at the parametric rate and is asymptotically normal. Using this

result, we obtain estimators of finite-mixture models and hidden Markov

models that have standard asymptotic properties. Moreover, the fact that

1There are results on inference in semi- and nonparametric finite-mixture models and
hidden Markov models in several more restrictive settings. These include location models
(Bordes, Mottelet and Vandekerkhove 2006; Hunter, Wang and Hettmansperger 2007;
and Gassiat and Rousseau 2014), multivariate finite mixtures with identically distributed
outcome variables (Hettmansperger and Thomas 2000; Bonhomme, Jochmans and Robin
2014), and two-component mixtures (Hall and Zhou 2003; Jochmans, Henry and Salanié
2014).
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the dependency structure in the data is latent does not translate into a

decrease in the convergence rate of the estimators. As such, this paper is

the first to derive the asymptotic behavior of nonparametric estimators of

multivariate finite-mixture models of the form defined in Hall and Zhou

[2003] for more than two latent classes and of hidden Markov models of

the form in Gassiat, Cleynen and Robin [2013]. Furthermore, our approach

can be useful in the analysis of random graph models (Allman, Matias and

Rhodes 2011) and stochastic blockmodels (Snijders and Nowicki 1997; Rohe,

Chatterjee and Yu 2011), although we do not consider such models in detail

in this paper. In a simulation study, we find that our approach performs well

in small samples.

There is a large literature on parallel factor analysis and canonical polyadic

decompositions of tensors building on the work of Kruskal [1976; 1977]; see,

e.g., De Lathauwer, De Moor and Vandewalle [2004], De Lathauwer [2006],

Domanov and De Lathauwer [2013a;b; 2014b;a], Anandkumar et al. [2014],

and Chiantini, Ottaviani and Vannieuwenhoven [2014; 2015]. Although our

strategy has some similarity with this literature, both our conclusions and

our simultaneous-diagonalization problem are different. Most importantly,

our simultaneous-diagonalization formulation can deal with noise, making it

useful as a tool for statistical inference.

In the context of multivariate finite mixtures of identically distributed

variables, Kasahara and Shimotsu [2009] and Bonhomme, Jochmans and

Robin [2014] also used (different) joint-diagonalization arguments to obtain

nonparametric identification results. However, the approaches taken there

are different from the one developed in this paper and cannot be applied as

generally.

We start out by motivating our approach via a discussion on the algebraic

structure of multivariate finite-mixture models and hidden Markov models.

We then present our identification strategy in a generic setting. After this

we turn to estimation and inference, and to the development of asymptotic

theory. Next, the theory is used to set up orthogonal-series estimators of

component densities in a finite-mixture model, and to show that these have

the standard univariate convergence rates of series estimators. Finally, the

orthogonal-series density estimator is put to work in simulation experiments

involving finite mixtures and a hidden Markov model. The supplementary
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material (Bonhomme, Jochmans and Robin 2015) contains some additional

results and discussion, as well as all technical proofs.

2. Motivating examples. We start by introducing three examples to

motivate our subsequent developments.

2.1. Finite-mixture models for discrete measurements. Let Y1, Y2, . . . , Yq

be observable random variables that are assumed independent conditional

on realizations of a latent random variable Z. Suppose that Z has a finite

state space of known cardinality r, which we set to {1, 2, . . . , r} without loss

of generality. Let π = (π1, π2, . . . , πr)
′ be the probability distribution of Z, so

πj > 0 and
∑r

j=1 πj = 1. Then the probability distribution of Y1, Y2, . . . , Yq

is a multivariate finite mixture with mixing proportions π1, π2, . . . , πr. The

parameters of interest are the mixing proportions and the distributions of

Y1, Y2, . . . , Yq given Z. The Yi need not be identically distributed, so the

model involves qr such conditional distributions.

Suppose that the scalar random variable Yi can take on a finite number κi

of values. Let pij = (pij1, pij2, . . . , pijκi)
′ denote the probability distribution

of Yi given Z = j. Let ⊗ denote the outer (tensor) product. The joint

probability distribution of Y1, Y2, . . . , Yq given Z = j then is the q-way table

q⊗
i=1

pij = p1j ⊗ p2j ⊗ · · · ⊗ pqj ,

which is of dimension κ1 × κ2 × · · · × κq. The outer-product representation

follows from the conditional-independence restriction. Hence, the marginal

probability distribution of Y1, Y2, . . . , Yq equals

(2.1) P =

r∑
j=1

πj

q⊗
i=1

pij ,

which is an r-linear decomposition of a q-way array. The parameters of

the mixture model are all the vectors making up the outer-product arrays,

{pij} and the coefficients of the linear combination, {πj}, transforming the

conditional distributions into the marginal distribution P.

The r-linear decomposition is not restricted to the contingency table.

Indeed, any linear functional of P admits a decomposition in terms of the
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same functional of the pij . Moreover, for any collection of vector-valued

transformations y 7→ χi(y) we have

(2.2) E

[
q⊗
i=1

χi(Yi)

]
=

r∑
j=1

πj

q⊗
i=1

E[χi(Yi)|Z = j],

provided the expectation exists. Of course, identification of linear functionals

follows from identification of the component distributions, but (2.2) can be

useful for the construction of estimators. To illustrate this we turn to a

model with continuous outcomes.

2.2. Finite-mixture models for continuous measurements. Suppose now

that the Yi are continuously-distributed random variables. Let fij be the

density of Yi given Z = j. In this case, the q-variate finite-mixture model

with r latent classes states that the joint density function of the outcomes

Y1, Y2, . . . , Yq factors as

(2.3)
r∑
j=1

πj

q∏
i=1

fij ,

again for mixing proportions π1, π2, . . . , πr. This is an infinite-dimensional

version of (2.1). Setting χi in (2.2) to a set of indicators that partition the

state space of Yi yields a decomposition as in (2.1) for a discretized version

of the mixture model. This approach has been used by Allman, Matias and

Rhodes [2009] and Kasahara and Shimotsu [2014] in proving identification.

An alternative approach, which will prove convenient for the construction

of density estimators, is as follows. Suppose that (Y1, Y2, . . . , Yq) lives in the

q-dimensional space Y q ⊆ Rq. Let L2
ρ[Y ] be the space of functions that are

square-integrable with respect to the weight function ρ on Y , endowed with

the inner product

〈h1, h2〉 =

∫
Y
h1(y)h2(y) ρ(y) dy,

and the L2
ρ-norm ‖h‖2 =

√
〈h, h〉. Let {ϕk, k > 0} be a class of functions

that form a complete orthonormal basis for L2
ρ[Y ]. When Y is compact,

polynomials such as those belonging to the Jacobi class—e.g., Chebychev

or Legendre polynomials—can serve this purpose. When Y = (−∞,+∞),

Hermite polynomials are a natural choice.
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Assume that fij ∈ L2
ρ[Y ]. The projection of fij onto the subspace spanned

by ϕ1, ϕ2, . . . , ϕκ for any integer κ is

Projκ fij =
κ∑
k=1

bijk ϕk,

where the

bijk = 〈ϕk, fij〉 = E[ϕk(Yi)ρ(Yi)|Z = j]

are the (generalized) Fourier coefficients of fij . The projection converges to

fij in L2
ρ-norm, that is, ‖Projκ fij − fij‖2 → 0 as κ →∞. Such projections

are commonly-used tools in the approximation of functions and underlie

orthogonal-series estimators of densities.

The Fourier coefficients are not directly observable. For chosen integers

κ1, κ2, . . . , κq, define

bij = E[ϕκi(Yi)ρ(Yi)|Z = j],

where ϕκi = (ϕ1, ϕ2, . . . , ϕκi)
′, which are linear functionals of the fij . Then

(2.2) yields

(2.4) B =
r∑
j=1

πj

q⊗
i=1

bij

for B = E[
⊗q

i=1ϕκi(Yi)ρ(Yi)]. The latter expectation is a q-way array that

can be computed directly from the data. It contains the leading Fourier

coefficients of the q-variate density function of the data. Again, the array

B factors into a linear combination of multiway arrays. In Section 5 we will

use this representation to derive orthogonal-series density estimators that

have standard large-sample properties.

2.3. Hidden Markov models. Let {Yi, Zi}qi=1 be a stationary sequence.

Zi is a latent variable with finite state space {1, 2, . . . , r}, for known r,

and has first-order Markov dependence. Let π = (π1, π2, . . . , πr)
′ be the

stationary distribution of Zi. Write K for the r × r matrix of transition

probabilities; so K(j1, j2) is the probability of moving from state j1 to state

j2. The observable scalar random variables Y1, Y2, . . . , Yq are independent

conditional on realizations of Z1, Z2, . . . , Zq, and the distribution of Yi only
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depends on the realization of Zi. This is a hidden Markov model with r

latent states and q observable outcomes.

Suppose that Yi is discrete and that its state space contains κ points of

support. Write pj for the probability vector of Yi given Zi = j, that is,

the emission distributions. Let P = (p1,p2, . . . ,pr) be the κ × r matrix of

emission distributions and write Π = diag(π1, π2, . . . , πr). The Markovian

assumption implies that Yi and Zi−1 are independent given Zi. Hence, the

columns of the matrix

B = PK ′ = (b1, b2, . . . , br)

contain the probability distributions of Yi for given values of Zi−1. Likewise,

Yi and Zi+1 are independent given Zi, and so the matrix

A = PΠKΠ−1 = (a1,a2, . . . ,ar)

gives the distributions of Yi for given values of Zi+1. Finally, Yi−1, Yi, and

Yi+1 are independent given Zi. Thus, with q = 3 measurements, the hidden

Markov model implies that the contingency table of (Y1, Y2, Y3) factors as

(2.5) P =
r∑
j=1

πj (aj ⊗ pj ⊗ bj).

A detailed derivation is provided in the supplementary material; also see

Gassiat, Cleynen and Robin [2013, Theorem 2.1] and Allman, Matias and

Rhodes [2009, Section 6.1] for alternative derivations. When q > 3 we may

bin several outcomes together and proceed as before, by using the unfolding

argument in Subsection 3.1.

Equation (2.5) shows that appropriate conditioning allows viewing the

hidden Markov model as a finite-mixture model, thus casting it into the

framework of finite mixtures with conditionally-independent (although not

identically-distributed) outcomes as in (2.1). Here, the parameters of interest

are the emission distributions {pj}rj=1 and the stationary distribution of the

Markov chain π, and also the matrix of transition probabilities K.

When the Yi are continuously distributed, (2.5) becomes a mixture as

in (2.3), and we may again work with projections of the densities onto an

orthogonal basis.
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3. Algebraic structure and identification. Our approach can be

applied to q-variate structures that decompose as q-ads, which are defined

as follows.

Definition 1. A q-dimensional array X ∈ Rκ1×κ2×···×κq is a q-ad if it

can be decomposed as

(3.1) X =
r∑
j=1

πj

q⊗
i=1

xij

for some integer r, non-zero weights π1, π2, . . . , πr, and vectors xij ∈ Rκi×1.

Our interest lies in nonparametrically recovering {xij} and {πj} from

knowledge of X and r. Clearly, these parameters are not unique, in general.

For example, a permutation of the xij and πj leaves X unaffected, and a

common scaling of the xij combined with an inverse scaling of the πj , too,

does not change the q-way array. However, the work of Kruskal [1976; 1977],

Sidiropoulos and Bro [2000], Jiang and Sidiropoulos [2004] and Domanov

and De Lathauwer [2013a;b], among others, gives simple sufficient conditions

for uniqueness of the decomposition up to these two indeterminacies. These

conditions cannot be satisfied when q < 3.

While permutational equivalence of possible decompositions of X is an

inherently unresolvable ambiguity, indeterminacy of the scale of the vectors

xij is undesirable in many situations. Indeed, in arrays of the general form

in (2.2), recovering the scale of the xij and the constants πj is fundamental.

In some cases natural scale restrictions may be present. Indeed, in (2.1) the

xij are known to be probability distributions, and so they have non-negative

entries that sum to one. Suitably combining these restrictions with Kruskal’s

theorem, Allman, Matias and Rhodes [2009] derived conditions under which

the parameters in finite mixtures and hidden Markov models are uniquely

determined up to relabelling of the latent classes.

We follow a different route to determine q-adic decompositions up to

permutational equivalence that does not require knowledge of the scale of

the xij . We require that, apart from the q-way array X, lower-dimensional

submodels are also observable. By lower-dimensional submodels we mean
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arrays that factor as

(3.2)
r∑
j=1

πj
⊗
i∈Q

xij

for sets Q that are subsets of the index set {1, 2, . . . , q}. This is not a strong

requirement in the models we have in mind. For example, in the mixture

model in (2.1), lower-dimensional submodels are just the contingency tables

of a subset of the outcome variables. There, going from a q-way table down

to a (q − 1)-table featuring all but the ith outcome boils down to summing

the array in the ith direction. In more general situations, such as (2.2) and

in the multilinear equation involving Fourier coefficients in particular, the

advantage of working with submodels over marginalizations of the model is

apparent. Indeed, in contrast to when the array is a contingency table, here,

there is no natural scale constraint on the xij . So, summing the array in one

direction does not yield an array that decomposes as in (3.2). Nonetheless,

expectations concerning any subset of the random variables can still be

computed in (2.2) and so submodels as defined in (3.2) are observable. In the

supplementary material we adapt our main identification result (Theorem 1

below) to settings where submodels are not available and marginalizations

are used instead.

Note that, throughout, we take r in (3.1) to be known. This ensures {xij}
and {πj} to be unambiguously defined. For a different r, there may exist a

different set of weights and vectors so that X factors as a q-ad. The rank of X
is the smallest integer r needed to arrive at a decomposition as in Definition

1. For example, in the multivariate mixture model in Section 2.1, r is the

number of fitted mixture components and the rank is the smallest number

of components that would allow us to write the joint distribution of the

variables as a mixture that satisfies the required conditional-independence

restriction as in (2.1). The rank need not be equal to r. Moreover, besides

the factorization of P in terms of π1, π2, . . . , πr and {pi1,pi2, . . . ,pir} in

(2.1), there may exist a different set of, say, r′ weights π′1, π
′
2, . . . , π

′
r′ and

distributions {p′i1,p′i2, . . . ,p′ir′} that also yield a representation of P as a

mixture. Identifying the number of components is a difficult issue. Recent

work by Kasahara and Shimotsu [2014] shows that a simple lower bound on

the number of components is nonparametrically identified (and estimable).
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3.1. Unfolding. We can state our main identification result for three-way

arrays without loss of generality. This is so because any q-way array can be

unfolded into a (q− 1)-way array, much like any matrix can be transformed

into a vector using the vec operator. Indeed, in any direction i ∈ {1, 2, . . . , q},
a q-way array of dimension κ1×κ2×· · ·×κq is a collection of κi (q−1)-way

arrays, each of dimension κ1 × κ2 × · · ·κi−1 × κi+1 × · · ·κq . This collection

can be stacked in any of i′ ∈ {1, 2, . . . , i− 1, i+ 1, . . . . . . , q} directions—i.e.,

(q − 1) different ways—to yield a (q − 1)-way array whose dimension will

be κ1 × κ2 × κiκi′ × · · ·κq. This unfolding process can be iterated until it

yields a three-way array. To write this compactly, let � be the Khatri-Rao

product. Then, for vectors a1,a2, . . . ,aq,

q⊙
i=1

ai = a1 � a2 � · · · � aq

is the vector containing all interactions between the elements of the ai. The

end result of iterated unfolding towards direction i, say, is a three-way array

of the form
r∑
j=1

πj

⊙
i1∈Q1

xi1j ⊗ xij ⊗
⊙
i2∈Q2

xi2j

 ,

where Q1 and Q2 are two index sets that partition {1, 2, . . . , q}\{i}. We will

illustrate this in the context of density estimation in Section 5.

3.2. Identification via simultaneous diagonalization. We thus focus on a

three-way array X of dimension κ1×κ2×κ3 that factors as a tri-ad, that is,

X =

r∑
j=1

πj (x1j ⊗ x2j ⊗ x3j).

Let Xi = (xi1,xi2, . . . ,xir) and Π = diag(π1, π2, . . . , πr). Also, for each

pair (i1, i2) with i1 < i2 in {1, 2, 3}2, let

X{i1,i2} =

r∑
j=1

πj (xi1j ⊗ xi2j).

Note that, from (3.2), X{i1,i2} is the lower-dimension submodel obtained

from X by omitting the index i3.
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Our first theorem concerns identification of the Xi as the eigenvalues of

a set of matrices and is the cornerstone of our argument. The proof of this

result is constructive and will be the basis for our estimator in Section 4

below.

Theorem 1 (Columns of Xi). If Xi1 and Xi2 both have full column

rank and X{i1,i2} is observable, then Xi3 is identified up to a permutation

matrix if all its columns are different.

Proof. Without loss of generality, fix (i1, i2, i3) = (1, 2, 3) throughout

the proof. In each direction i, the three-way array X consists of a collection

of κi matrices. Let A1,A2, . . . ,Aκ3 denote these matrices for i = 3. So, the

matrix Ak is obtained from X by fixing its third index to the value k, that

is, Ak = X(:, :, k), using obvious array-indexing notation. Also, let A0 =

X{1,2}. Note that all of A0 and A1,A2, . . . ,Aκ3 are observable matrices of

dimension κ1 × κ2.
The lower-dimensional submodel A0 has the structure

(3.3) A0 = X1ΠX
′
2.

Because the matrices X1 and X2 both have rank r and because all πj are

non-zero by definition, the matrix A0, too, has rank r. Therefore, it has a

singular-value decomposition

A0 = USV ′

for unitary matrices U and V of dimension κ1 × r and κ2 × r, respectively,

and a non-singular r × r diagonal matrix S. Now construct W1 = S−1/2U ′

and W2 = S−1/2V ′. Then,

W1A0W
′
2 = (W1X1Π

1/2)(W2X2Π
1/2)′ = QQ−1 = Ir,

where Ir denotes the r × r identity matrix and Q = W1X1Π
1/2.

Moving on, each of A1,A2, . . . ,Aκ3 has the form

Ak = X1ΠDkX
′
2, Dk = diagkX3,

where diagkX denotes the diagonal matrix whose diagonal equals the kth

row of matrix X. Applying the same transformation to A1,A2, . . . ,Aκ3
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yields the collection of r × r matrices

(3.4) W1AkW
′
2 = QDkQ

−1.

So, the matrices {W1AkW
′
2} are diagonalizable in the same basis, namely,

the columns of matrixQ. The associated eigenvalues {Dk} equal the columns

of the matrix X3. These eigenvalues are unique up to a joint permutation

of the eigenvectors and eigenvalues provided there exist no k1 6= k2 so that

the vectors of eigenvalues of W1Ak1W
′
2 and W1Ak2W

′
2 are equal (see, e.g.,

De Lathauwer, De Moor and Vandewalle 2004, Theorem 6.1). Now, this is

equivalent to demanding that the columns of X3 are all distinct. As this is

true by assumption, the proof is complete.

The proof of Theorem 1 shows that access to lower-dimensional submodels

allows to disentangle the scale of the columns of the Xi and the weights on

the diagonal of Π. This is so because the matrix Π equally shows up in the

lower-dimensional submodels, and so transforming Ak to W1AkW
′
2 absorbs

the weights into the joint diagonalizer Q in (3.4).

Also note that the dimension of the matrices in (3.4) is r×r, independent

of the size of the original matrices Xi. On the other hand, larger matrices

Xi could be beneficial for identification, as it becomes easier for them to

satisfy the requirement of full column rank.

The full-rank condition that underlies Theorem 1 has a simple testable

implication. Indeed, by (3.3), it implies that the matrix A0 has rank r.

As this matrix is observable, so is its rank and, hence, our key identifying

assumption is refutable. In applications this can be done using any of a

number of available rank tests. We refer to Kasahara and Shimotsu [2014]

and Bonhomme, Jochmans and Robin [2014] for practical details on the

implementation of such procedures.

Theorem 1 can be applied to recover the tri-adic decomposition of X up

to an arbitrary joint permutation matrix. We present the result in the form

of two theorems.

Theorem 2 (Vectors). If X1, X2, and X3 have full column rank and

for each pair (i1, i2) ∈ {i1, i2 ∈ {1, 2, 3} : i1 < i2} X{i1,i2} is observable, then

X1, X2, and X3 are all identified up to a common permutation of their

columns.
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Theorem 3 (Weights). If Xi is identified up to a permutation of its

columns and has full column rank, and if X{i} is observable, then π is

identified up to the same permutation.

Proof. The one-dimensional submodel X{i} is the vector

X{i} = Xiπ.

Given Xi, the one-dimensional submodel yields linear restrictions on the

weight vector π. Moreover, if Xi is known and has maximal column rank,

these equations can be solved for π, giving

(3.5) π = (X ′iXi)
−1X ′i X{i},

which is the least-squares coefficient of a regression of X{i} on the columns

of Xi.

In the supplement we apply Theorems 1–3 to the finite-mixture model

and the hidden Markov model of Section 2 to obtain constructive proofs of

identification.

4. Estimation by joint approximate diagonalization. The proof

of Theorem 1 shows that the key restrictions underlying our results take the

form of a set of matrices being simultaneously diagonalizable in the same

basis. The problem of joint matrix diagonalization has recently received

considerable attention in the field of independent component analysis, and

computationally-efficient algorithms for it have been developed; see Fu and

Gao [2006], Iferroudjene, Abed-Meraim and Belouchrani [2009; 2010], and

Luciani and Albera [2010; 2014]. Such algorithms can be exploited here

to construct easy-to-implement nonparametric estimators of multivariate

latent-structure models.

Thus, we propose estimating the latent-structure model in (3.1) as follows.

Given an estimate of the array X and of its lower-dimensional submodels,

first estimate all xij by solving a sample version of the joint diagonalization

problem in (3.4), possibly after unfolding if q > 3. Next, back out the weights

π1, π2, . . . , πr by solving the sample analog of the minimum-distance problem

in (3.5). Asymptotic theory for this second step follows readily by the delta

method. If desired, a consistent labelling can be recovered based on the proof

of Theorem 2 (see the supplementary material).
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4.1. Estimator. Consider a generic situation in which a set of κ r × r
matrices C1,C2, . . . ,Cκ can be jointly diagonalized by an r × r invertible

matrix Q0, that is,

(4.1) Ck = Q0DkQ
−1
0 ,

for diagonal matrices D1,D2, . . . ,Dκ. Knowledge of the joint eigenvectors

implies knowledge of the eigenvalues, as

(4.2) Dk = Q−10 CkQ0.

The matrix Q0 is not unique. Moreover, let offQ = Q − diagQ and let

‖Q‖F =
√

trace(Q′Q) denote the Frobenius norm. Then any solution to

the least-squares problem

(4.3) min
Q

κ∑
k=1

‖off(Q−1CkQ)‖2F

is a joint diagonalizer in the sense of (4.1). Each of these delivers the same

set of eigenvalues in (4.2) (up to a joint permutation).

The statistical problem of interest in this section is to perform inference

on the D1,D2, . . . ,Dκ when we only observe noisy versions of the input

matrices C1,C2, . . . ,Cκ, say Ĉ1, Ĉ2, . . . , Ĉκ. The sampling noise in the Ĉk

prevents them from sharing the same set of eigenvectors. Indeed, in general,

there does not exist a Q such that Q−1ĈkQ will be exactly diagonal for

all k. For this, the least-squares formulation in (4.2)–(4.3) is important as it

readily suggests using, say Q̂, any solution to

(4.4) min
Q∈Q

κ∑
k=1

‖off(Q−1ĈkQ)‖2F ,

where Q is an appropriately-specified space of matrices to search over; see

below. The estimator Q̂ is that matrix that makes all these matrices as

diagonal as possible, in the sense of minimizing the sum of their squared

off-diagonal entries. It is thus appropriate to call the estimator Q̂ the joint

approximate-diagonalizer of Ĉ1, Ĉ2, . . . , Ĉκ. An estimator of the Dk (up to

a joint permutation of their eigenvalues) then is

(4.5) D̂k = diag(Q̂−1ĈkQ̂).
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Distribution theory for this estimator is not available, however, and so we

provide it here. Throughout, we work under the convention that estimates

are computed from a sample of size n.

4.2. Asymptotic theory. For our problem to be well-defined we assume

that the matrix of joint eigenvectors is bounded. In (4.4), we may therefore

restrict attention to the set of r× r matrices Q = (q1, q2, . . . , qr) defined as

Q = {Q : detQ = 1, ‖qj‖F = c for j = 1, 2, . . . , r and c ≤ m}

for some m ∈ (0,∞). The restrictions on the determinant and the column

norms are without loss of generality and only reduce the space of matrices

to be searched over when solving (4.4). Let Q∗ be any solution to (4.3) on Q

and let Q0 ⊂ Q be the set of all matrices Q∗∆Θ for permutation matrices

∆ and diagonal matrices Θ whose diagonal entries are equal to 1 and −1

and have detΘ = 1. Then Q0 is the set of solutions to (4.3) on Q.

Construct the r× rκ matrix C = (C1,C2, . . . ,Cκ) by concatenation and

define Ĉ similarly.

Theorem 4 (Consistency). If the set Q0 belongs to the interior of Q,

Ĉ = C + op(1), and Q̂ ∈ Q satisfies

κ∑
k=1

‖off(Q̂−1ĈkQ̂)‖2F = min
Q∈Q

{
κ∑
k=1

‖off(Q−1ĈkQ)‖2F

}
+ op(1),

then limn→∞ Pr(Q̂ ∈ O) = 1 for any open subset O of Q containing Q0.

Each Q ∈ Q0 has associated with it a permutation matrix ∆ and a

diagonal matrix Θ as just defined so that Q = Q∗∆Θ. Theorem 4 states

that (up to a subsequence) we have that Q̂
p→ Q∗∆0Θ0 for well-defined ∆0

and Θ0. We may then set Q0 = Q∗∆0Θ0 in (4.1). It then equally follows

that

D̂k
p→Dk = ∆′0D

∗
k∆0,

where Dk is as in (4.2) and D∗k = Q−1∗ CkQ∗, both of which are equal up

to a permutation. Thus, the consistency of the eigenvalues (up to a joint

permutation) follows from the consistency of the estimator of the input

matrices C.
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To provide distribution theory, let

Dk1 	Dk2 = (Dk1 ⊗ IdimDk2
)− (IdimDk1

⊗Dk2)

denote the Kronecker difference between the square matrices Dk1 and Dk2 .

Construct the r2 × r2κ matrix

T = ((D1 	D1), (D2 	D2), . . . , (Dκ 	Dκ))

by concatenation and let

G = (Ir ⊗Q0)

(
κ∑
k=1

(Dk 	Dk)
2

)+

T (Iκ⊗Q′0 ⊗Q−10 ),

where Q+ is the Moore-Penrose pseudo inverse of Q. Theorem 5 contains

distribution theory for our estimator of the matrix of joint eigenvectors Q̂

in (4.4).

Theorem 5 (Asymptotic distribution). If ‖Ĉ−C‖F = Op(n
−1/2), then

√
n vec(Q̂−Q0) = G

√
n vec(Ĉ −C) + op(1)

as n→∞.

If, further,
√
n vec(Ĉ − C)

d→ N (0,V ) for some covariance matrix V ,

Theorem 5 implies that

√
n vec(Q̂−Q0)

d→ N (0,GV G′)

as n→∞. In our context,
√
n-consistency and asymptotic normality of the

input matrices is not a strong requirement. Indeed, the proof of Theorem 1

showed that the input matrices are of the form Ck = W1AkW
′
2, where W1

and W2 follow from a singular-value decomposition of A0. An estimator of

Ck can thus be constructed using a sample analog of A0 to estimate W1

and W2, together with a sample analog of Ak. If the estimators of A0 and

Ak are
√
n-consistent and asymptotically normal and all non-zero singular

values of A0 are simple, then
√
n vec(Ĉ −C)

d→ N (0,V ) holds. A detailed

derivation of V is readily obtained from the argument on the estimation of

eigendecompositions of normal matrices in the supplementary material to

Bonhomme, Jochmans and Robin [2014, Lemma S.2].
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We next present the asymptotic behavior of D̂ = (D̂1, D̂2, . . . , D̂κ), our

estimator of the eigenvalues D = (D1,D2, . . . ,Dκ). To state it, let Sr =

diag(vec Ir) be an r2×r2 selection matrix; note that Sr vecQ = vec(diagQ).

Let

H = (Iκ⊗Sr) (Iκ⊗Q′0 ⊗Q−10 ).

Theorem 6 follows.

Theorem 6 (Asymptotic distribution). If ‖Ĉ−C‖F = Op(n
−1/2), then

√
n vec(D̂ −D) = H

√
n vec(Ĉ −C) + op(1)

as n→∞.

Again, if
√
n vec(Ĉ −C)

d→ N (0,V ), then

√
n vec(D̂ −D)

d→ N (0,HVH ′)

as n→∞.

5. Application to density estimation. With discrete outcomes, both

the finite-mixture model in (2.1) and the hidden Markov model in (2.5) are

finite dimensional. Further, the matrices to be simultaneously diagonalized

are contingency tables. These tables can be estimated by simple empirical

cell probabilities and are
√
n-consistent and asymptotically normal. Hence,

the theory on the asymptotic behavior of the eigenvalues from the previous

section (i.e., Theorem 6) can directly be applied to deduce the large-sample

behavior of the parameter estimates.

With continuous outcomes, as in (2.3), the main parameters of the model

are density functions. Such an infinite-dimensional problem is not directly

covered by the arguments from the previous section. Nonetheless, we will

show that Theorem 5 can be used to obtain density estimators with standard

asymptotic properties.

5.1. Estimator. We provide convergence rates and distribution theory

for series estimators based on (2.4). By the results of Subsection 2.3, this

also covers the estimation of emission densities in a hidden Markov model

with continuous outcome variables. Recall from above that the projections

Projκi fij = ϕ′κibij
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yield the multilinear restrictions

B = E[

q⊗
i=1

ϕκi(Yi)ρ(Yi)] =

r∑
j=1

πj

q⊗
i=1

E[ϕκi(Yi)ρ(Yi)|Z = j] =

r∑
j=1

πj

q⊗
i=1

bij ,

where ϕκi is the vector containing the κi leading polynomials from the

orthogonal system {ϕk, k > 0}. As we will show, for fixed κ1, κ2, . . . , κq, the

array B provides sufficient information for nonparametric identification of

Fourier coefficients through the associated joint diagonalizer. Moreover, in

the asymptotic analysis, κ1, κ2, . . . , κq are all held fixed.

For the purpose of this section we may fix attention to a given index i. By

unfolding B towards direction i we obtain the (equivalent) three-way array

Bi = E
[
φQ1 ⊗ φQ2 ⊗ϕκi(Yi)ρ(Yi)

]
,

where Q1 and Q2 partition the index set {1, 2, . . . , q}\{i} (see Section 3)

and we have introduced the notational shorthand

φQ =
⊙
i′∈Q

ϕκi′ (Yi′)ρ(Yi′).

The array Bi can be analyzed using our diagonalization approach. Following

the notation from the proof of Theorem 1, the two-dimensional submodel

associated with Bi is the matrix

A0 = E
[
φQ1 ⊗ φQ2

]
,

while the array Bi itself consists of the first κi matrices of the set {Ak, k > 0},
where

Ak = E
[(
φQ1 ⊗ φQ2

)
ϕk(Yi)ρ(Yi)

]
.

All these matrices are of dimension
∏
i1∈Q1

κi1×
∏
i2∈Q2

κi2 . A singular-value

decomposition of A0 provides matrices W1 and W2 so that the κi matrices

W1AkW
′
2 are jointly diagonalizable by, say, Q. From the proof of Theorem

1, the matrix Q is unique (up to the usual normalizations on the sign and

norm of its columns and a joint permutation of the columns, as discussed

before) as soon as the conditions in Theorem 1 are satisfied.

Given Q, we can compute

Q−1(W1AkW
′
2)Q = diag (bi1k, bi2k, . . . , birk),
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where, recall, bijk = E[ϕk(Yi)ρ(Yi)|Z = j] for any integer k (including those

k that exceed κi). Equivalently, the kth Fourier coefficient of fij can be

written as

(5.1) bijk = e′j
(
Q−1(W1AkW

′
2)Q

)
ej ,

where ej is the r × 1 selection vector whose jth entry is equal to one and

its other entries are all equal to zero.

Our orthogonal-series estimator of fij is based on sample analogs of the

bijk in (5.1). We estimate the array B as

B̂ = n−1
n∑

m=1

q⊗
i=1

ϕκi(Yim)ρ(Yim),

where {Y1m, Y2m, . . . , Yqm}nm=1 is a size-n sample drawn at random from the

mixture model. From this we estimate bijk for any k as

b̂ijk = e′j

(
Q̂−1(Ŵ1ÂkŴ

′
2) Q̂

)
ej = n−1

n∑
m=1

e′jΩ̂mej ϕk(Yim)ρ(Yim),

using obvious notation to denote sample counterparts in the first expression

and introducing the matrix

Ω̂m = Q̂−1(Ŵ1

(
φQ1
m ⊗ φQ2

m

)
Ŵ ′

2) Q̂

in the second expression; here, we let φQm =
⊙

i′∈Qϕκi′ (Yi′m)ρ(Yi′m). The

associated orthogonal-series estimator of fij(y) for some chosen integer κ is

f̂ij(y) =
κ∑
k=1

b̂ijk ϕk(y)

= n−1
n∑

m=1

e′jΩ̂mej

κ∑
k=1

ϕk(Yim)ϕk(y)ρ(Yim).

(5.2)

Note that, in the absence of e′jΩ̂mej , this expression collapses to a standard

series estimator of the marginal density of Yi. Hence, the term e′jΩ̂mej can

be understood as a weight that transforms this estimator into one of the

conditional density of Yi given Z = j. Equation (5.2) generalizes the kernel

estimator of Bonhomme, Jochmans and Robin [2014]. The term e′jΩ̂mej
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plays the same role as the posterior classification probability (normalized

to sum up to one across observations) in the EM algorithm as well as in

its nonparametric version (Levine, Hunter and Chauveau 2011, Equations

(15)–(17)). A computational advantage here is that the series estimator is

available in closed form once e′jΩ̂mej has been computed while EM requires

iterative computation of density estimates and classification probabilities

until convergence.

A natural way of choosing the number of series terms in (5.2) would be

by minimizing the squared L2
ρ-loss,

‖f̂ij − fij‖22,

as a function of κ. In the supplement we show that an empirical counterpart

of this criterion (up to terms that do not involve κ) is

κ∑
k=1

b̂2ijk −
2n−1

n− 1

n∑
m=1

∑
o 6=m

e′jΩ̂mej e
′
jΩ̂oej

κ∑
k=1

ϕk(Yio)ϕk(Yim)ρ(Yio)ρ(Yim).

Apart from the weight functions, this is the usual cross-validation objective

for orthogonal-series estimators (Hall 1987).

Before turning to the statistical properties of f̂ij we note that, although we

maintain a hard thresholding procedure in (5.2), our approach can equally

be combined with other popular smoothing policies that shrink the impact

of higher-order Fourier coefficients; see Efromovich [1999, Chapter 3] for a

discussion on such policies.

5.2. Asymptotic theory. Under mild conditions, the series estimator in

(5.2) exhibits standard large-sample behavior. The precise conditions depend

on the choice of orthogonal system, i.e., {ϕk, k > 0}. We give two sets of

conditions that cover the most popular choices.

When the component densities are supported on compact intervals we can

restrict attention to [−1, 1] without loss of generality; translation to generic

compact sets is straightforward. In this case we will allow for polynomial

systems that satisfy the following general requirements. Here and later we

let ‖·‖∞ denote the supremum norm.

A.1 The sequence {ϕk, k > 0} is dominated by a function ψ, which is

continuous on (−1, 1) and positive almost everywhere on [−1, 1]. ρ,
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ψρ, and ψ2ρ are integrable, and there exists a sequence of constants

{ζκ,κ > 0} so that ‖
√
ϕ′κϕκ‖∞ ≤ ζκ.

These conditions are rather weak. They are satisfied for the popular class

of Jacobi polynomials, for example, which includes Chebychev polynomials

of the first kind, Chebychev polynomials of the second kind, and Legendre

polynomials.

In this case we will need the following regularity from the component

densities.

A.2 The (ψρ)4fij are integrable.

The weaker requirement that the (ψρ)2fij are integrable will suffice to obtain

the convergence rates in Theorem 7 below, but A.2 will be needed to obtain

the pointwise asymptotic-normality result in Theorem 8.

When the component densities are supported on the whole real line, we

will take {ϕk, k > 0} to be the orthonormalized system of Hermite functions.

B.1 The sequence {ϕk, k > 0} has members

ϕk(y) = 2−(k−1)/2 ((k − 1)!)−1/2π−1/4 e−y
2/2 hk−1(y),

where {hk, k ≥ 0} is the system of the Hermite polynomials, in which

case ‖
√
ϕ′κϕκ‖∞ ≤ ζκ for ζκ ∝

√
κ.

We will also impose the following regularity and smoothness conditions.

C.1 The fij are continuous.

C.2 ‖Projκ fij − fij‖∞ = O(κ−β) for some constant β ≥ 1.

C.3 The singular values of A0 are all simple.

Convergence in L2
ρ-norm implies that limκ→∞

∑κ
k=1 b

2
ijk is finite, and so that

the Fourier coefficient associated with ϕk shrinks to zero as k → ∞. The

constant β is a measure of how fast the Fourier coefficients shrink. In general,

β is larger the smoother the underlying function that is being approximated.

Simplicity of the singular values of A0 holds generically and is used here to

ensure that the matrices W1,W2 are continuous transformations of A0.

This is a technical requirement used to derive the convergence rates of their

plug-in estimators.
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Under these assumptions we obtain standard integrated squared-error and

uniform convergence rates.

Theorem 7 (Convergence rates). Let either A.1–A.2 and C.1–C.3 or

B.1 and C.1–C.3 hold. Then∥∥f̂ij − fij∥∥22 = Op(κ/n+ κ−2β),
∥∥f̂ij − fij∥∥∞ = Op(ζκ

√
κ/n+ κ−β),

for all i, j.

The rates in Theorem 7 equal the conventional univariate rates of series

estimators; see, e.g., Newey [1997]. Thus, the fact that Z is latent does not

affect the convergence speed of the density estimates.

To present distribution theory for the orthogonal-series estimator at a

fixed point y let

σ̂ij(y) =

√√√√n−1
n∑

m=1

(
e′jΩ̂mej

κ∑
k=1

ϕk(Yim)ϕk(y)ρ(Yim)− f̂ij(y)

)2

,

which is a sample standard deviation, and denote fi =
∑r

j=1 πj fij in the

following theorem.

Theorem 8 (Asymptotic distribution). Suppose that n,κ →∞ so that

κ2/n→ 0 and nκ−2β → 0. Then

f̂ij(y)− fij(y)

σ̂ij(y)/
√
n

d→ N (0, 1),

for each y ∈ Y that lies in an interval on which fi is of bounded variation.

Under A.1–A.2 σ̂ij(y) grows like ‖ϕκ(y)‖F , and this depends on the

polynomial system used. Because A.1 states that ‖
√
ϕ′κϕκ‖∞ = O(ζκ),

a weak bound on the convergence rate that holds for all y is Op(ζκ/
√
n).

With Legendre polynomials, for example, the orthogonal-series estimator

has a variance of order κ/n, which is the same as that of an estimator based

on a random sample from fij (Hall 1987). Likewise, under B.1 we have that

σ̂ij(y) grows like κ1/4 and so the variance of the estimator is of the order
√
κ/n. This is again the standard convergence rate for conventional Hermite

series estimators (Liebsher 1990).
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6. Monte Carlo illustrations. We evaluated the performance of the

orthogonal-series estimator via simulation. We report root mean integrated

squared error (RMISE) calculations for designs taken from Levine, Hunter

and Chauveau [2011]. This allows us to compare our estimator to the EM-like

approaches proposed in the literature. We also investigate the accuracy of the

pointwise asymptotic approximation of the density estimator in Theorem 8

in a Monte Carlo experiment based on a hidden Markov model. Throughout

this section we use Hermite polynomials as basis functions, set κi = 10

for all i, and use the cross-validation technique introduced above to select

the number of series terms. Joint approximate diagonalization was done

using the algorithm of Luciani and Albera [2010; 2014]. We also computed

the estimator using the algorithms of Fu and Gao [2006] and Iferroudjene,

Abed-Meraim and Belouchrani [2009; 2010] and found very similar results

to the ones reported below

6.1. RMISE comparisons. We evaluate the RMISE of the estimator f̂ij ,√
E‖f̂ij − fij‖22,

as approximated by 500 Monte Carlo replications. The first set of designs

involves mixtures of normals, where

fij(y) = φ (y − µij) .

The second set of designs deals with mixtures of central and non-central

t-distributions, that is,

fij(y) = t10(y;µij),

where we let td(y;µ) denote a t-distribution with d degrees of freedom and

non-centrality parameter µ. We set q = 3, r = 2, so the data is drawn from

a three-variate two-component mixture. The parameters of the component

densities are set to (µ11, µ21, µ31) = (0, 0, 0) for the first component and

(µ12, µ22, µ32) = (3, 4, 5) for the second component. We consider various

choices for the mixing proportions π = (π1, π2)
′.

Figure 1 plots the RMISE as a function of the mixing proportion π1 for

samples of size n = 500. The results for the first and second component for

each outcome variable are labelled consecutively as ◦,�,4 and as �,N,

respectively.
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Fig 1. RMISE of the orthogonal-series density estimator
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The patterns of the RMISE are comparable to those for the EM-like

estimators in Levine, Hunter and Chauveau [2011, Figure 1], although the

magnitudes are larger here. The latter observation agrees with the intuition

that joint estimation of classification probabilities and component densities

(as in EM) should be more efficient than sequential estimation (as here).

However, a precise comparison between the methods is complicated by the

fact that the EM approaches are kernel based while we work with orthogonal

series, and because the tuning parameters (the bandwidths for EM and the

number of series terms here) were selected in a different manner.

Our least-squares estimator of the mixing proportions was also evaluated

in these designs and was found to perform well. The Monte Carlo results are

provided in the supplementary material.

6.2. Inference in a hidden Markov model. We next consider inference in a

hidden Markov model with r = 2 latent states and q = 3 outcome variables.

The latent Markov chain has transition matrix and stationary distribution

equal to

K =

(
.8 .2
.2 .8

)
, π =

(
.5
.5

)
,

respectively. The emission densities f1 and f2 are skew-normal densities

(Azzalini 1985),

fj(y) = 2φ(y − µj)Φ(αj(y − µj)),
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with µ1 = −2, α1 = 5 and µ2 = −µ1, α2 = −α1. The sign of the skewness

parameters α1, α2 implies that f1 is skewed to the right while f2 is skewed

to the left.

In each of 500 Monte Carlo replications, we estimated the two emission

densities f1 and f2 using our orthogonal-series estimator and constructed

95% confidence intervals at the percentiles of f1 and f2. We present results

for n = 500 (left plot) and n = 5, 000 (right plot) graphically in Figure

2. Results for additional sample sizes are available in the supplementary

material.

Fig 2. Emission densities in the hidden Markov model
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Each plot in Figure 2 contains the true functions f1 and f2 (solid lines),

and the mean (across the Monte Carlo replications) of our orthogonal-series

estimator (dashed lines) as well as of an infeasible kernel-density estimator

(dashed-dotted lines) computed from the subsample of observations that

are in the respective latent state (see the supplementary material for more

detail.) The plots show that, even in small samples, our estimator essentially

co-incides with the infeasible estimator, on average.

Figure 2 also contains average 95% confidence intervals (−◦), based on

the pointwise distributional result in Theorem 8, for the emission densities

at their respective percentiles. To assess the adequacy of our asymptotic

approximation, the plots in the figure also provide 95% confidence intervals

at the percentiles constructed using the empirical standard deviation of the
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point estimates across the Monte Carlo replications (−∗). Figure 2 shows

that our estimated standard error captures well the small-sample variability

of the orthogonal-series estimator.

Supplement. The supplement to this paper (Bonhomme, Jochmans

and Robin 2015) contains additional details and discussion, omitted proofs,

and additional simulation results.
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