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Abstract

This paper shows that firms’ objectives can extend beyond profit maximization. I
focus on a for-profit firm that offers charity auctions of celebrities’ belongings. The
firm’s donations affect both revenues and costs. Counterfactuals from a structural
model comparing the actual donations with the profit-maximizing benchmark indicate
that the firm donates beyond profit-maximization. Linking this result to a change
in the capital structure, I demonstrate that the firm’s objectives include both profits
and donations. I also estimate a modest increase in consumers’ willingness to pay
due to donations, suggesting that demand cannot explain firms’ investments in social
responsibility.
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1 Introduction

The economic literature has gradually changed its vision of the consumer, who is now
increasingly considered as having some type of social preferences such as altruism. In
contrast, the perception of the firm’s objective has seen very little evolution. The firm is
typically modeled as maximizing profits. This assumption drives most of the standard
results on the functioning of markets, and it also allows researchers to recover costs or
supply curves (e.g., Olley and Pakes, 1996, De Loecker et al., 2016).

There are many reasons to believe that firms do not maximize profits. On the one hand,
managerial costs (Ellison et al., 2016, DellaVigna and Gentzkow, 2019) and behavioral biases
(Ellison, 2006, Hortaçsu et al., 2019) can constrain a firm’s decisions. On the other hand,
firms may not limit themselves to pursue market value, as, more broadly, shareholders’
welfare often directs firms’ decisions as well (e.g., Hart and Zingales, 2017).

In this paper, I provide evidence that some firms are not simple profit maximizers. I
study the strategic decisions of a for-profit firm, Charitystars, which offers online charity
auctions of celebrities’ belongings.1 In each auction, the firm donates a fraction of the
transaction price to a charity. The fraction donated is decided by the firm and the provider
of the item – mainly the charity itself, a connected celebrity or individual. Both the fraction
donated and the charity are known to consumers.

This environment offers several advantages to empirically identify the firm’s objectives.
First, the fraction donated reflects how socially responsible the firm is in each auction. This
type of social responsibility is directly measurable and salient to consumers. Second, costs
are observed because the firm always sets its reserve price to cover the cost of procuring
the item, which depends on the donation. Therefore, this is an ideal setting to measure
how social responsibility impacts profits.

I find that Charitystars does not set its donation according to profit maximization.
After building and structurally estimating a tailored model of demand and supply, I show
that Charitystars’s average donation (70% of the transaction price) is much larger than
the profit-maximizing donation (25%). The firm could more than double its profits by
behaving optimally. After ruling out alternative potential explanations, I exploit a change
in Charitystars’s capital structure to argue that the firm’s objectives are not limited to
profits, but extend to donating to charities.

Methodologically, Charitystars faces a tradeoff between (i) increasing the fraction
donated to stimulate demand by altruistic bidders and get better acquisition costs from

1With offices in London, Milan, and Los Angeles, Charitystars is a for-profit start-up with almost $4m
in equity. Since its foundation in 2013, the company generated over $10 million for charities and nonprofit
organizations. For more information, see www.charitystars.com.
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donors, and (ii) decreasing the fraction donated to increase the profit from each auction.
Without a structural model, I show evidence that this tradeoff exists. However, since
the elasticities of demand and acquisition costs to donations are unobservable from data
alone, I build a structural model to evaluate the firm’s objectives quantitatively. The model
exploits variation in the fraction donated to estimate both how consumers’ willingness to
pay and procurement costs vary with social responsibility.

On the demand side, I model bidders’ utility as a function of their private values for
the item and their prosocial preferences (e.g., Goeree et al., 2005, Engers and McManus,
2007). I envision consumers as impure altruistic bidders who derive utility both from their
donations and from the donations of others (Andreoni, 1990). Theoretically, I show that
the presence of altruistic consumers does not necessarily grant greater revenues to the firm.
For instance, if bidders derive large utility from somebody else’s donations, transaction
prices can decrease when the auctioneer donates more because high-value bidders shade
their bids to let other bidders win the auction. To quantify how preferences impact prices,
I show that cross-auction variation in the fraction donated nonparametrically identifies the
model under the restriction that a bidder’s consumption value for the item is independent
of the fraction donated. I test and do no reject this restriction in the data.

The model fits the data well, with estimated expected revenues within 10% of the real-
ized ones. Prices on Charitystars command only a small premium as bidders’ willingness
to pay increases with the fraction donated. At the same time, donations carry a high direct
cost in terms of foregone revenues: a counterfactual scenario where the firm does not
donate quantifies the loss in net revenues to be as large as e 260 per listing, or about 70%
of the average transaction price. Thus, looking only at the demand side, the firm would be
better off by running regular non-charity auctions.

Turning to the supply side, the firm purchases the item from providers (mainly charities
and celebrities) previous a payment, and contracts on the fraction of the auction price
to be donated back to the charity. To estimate how the procurement cost varies with the
fraction donated, I exploit a piece of information provided directly by advisors of the
firm: the firm sets the reserve price to break-even. I find that procurement costs decrease
in the fraction donated, implying negative marginal costs, and explain this result with a
bargaining model. The estimation shows that the optimal donation is about 25% of the
transaction price, yet the average donation in the data is 70%, indicating that Charitystars
is far from a pure profit maximizer.

This finding points to donations as an additional objective of the firm. Using empirical
and anecdotal evidence, I rule out potential alternative explanations such as biased beliefs
on bidders’ willingness to pay, and reputation-building. Then, I exploit the entry of a

2



venture fund in Charitystars’s equity to corroborate my claim. Although the entry did not
imply a change in management, the average donation dropped from 70% to 50% after the
entry. Because the fund entered for a capital gain, it stirred the company towards better
profitability, inducing a shift in objectives. To rationalize the large pre-entry donation,
Charitystars’s objective function should weigh its profits 60% and its donations 40%.
This finding is in line with recent results in the finance literature showing that socially
responsible actors invest in social impact firms despite being less profitable (Riedl and
Smeets, 2017, Barber et al., 2019).

Relation to the Literature. Several related research papers support my conclusions on
both revenues and costs. On the revenue side, I estimate modest price elasticities of the
order seen in other papers studying bidder’s behavior in charity auctions (e.g., Elfenbein
et al., 2012). Given how salient are Charitystars’s donations for consumers, my findings
suggest that consumer demand cannot explain firms’ prosocial inclinations. In the same
vein, looking across more than 400 US companies, Gartenberg et al. (2019) finds that a
firm’s sales do not correlate with its social purpose. On the cost side, giving is profitable
because it changes Charitystars’s cost-structure as its money-making ability and ethical
concerns are not separable. Quoting Hart and Zingales (2017), if consumers and investors
value charitable donations, why “would they not want the companies they invest in to
do the same?” Socially responsible shareholders may see this company as an opportunity
to sustain their donations over time while even receiving dividends. Under this logic,
Charitystars cares not only about its profitability but also about its total giving.

The evidence that social responsibility is conducive to higher economic or financial
return is sparse. Although Eichholtz et al. (2010) find a substantial price premium for
energy-efficient buildings, a meta-analysis of over 160 papers finds only a small positive
correlation between investments in corporate social responsibility (CSR) and profits, and
suggest that causation may well flow from profits to CSR (Margolis et al., 2007). A reason
for these conflicting views lies in studying the relation between CSR and profits across
firms, rather than within a firm: not only the decision to adopt CSR may well depend
on unobserved firm-specific factors (Bénabou and Tirole, 2010), but also CSR activities
are considerably heterogeneous, complicating comparison across firms (Chatterji et al.,
2009, Kotsantonis and Serafeim, 2019). Moreover, this variation may interact in surprising
ways, sometimes reducing a firm’s perceived social impact by, for example, disseminating
misleading information of environmental friendliness (Lyon and Maxwell, 2011) and by
giving to charities to influence connected congress members (Bertrand et al., 2018).

My findings suggest that addressing whether CSR increases profits by comparing
firms’ outputs may lead to inconclusive results if firms choose suboptimal levels of social
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responsibility. Rather than comparing across firms, I avoid these issues by studying how
a firm’s social responsibility strategy departs from the profit-maximizing one. At the
same time, I test a causal link between profitability and social responsibility through the
lenses of a theoretical model of a firm that sells to socially-oriented consumers (e.g., Baron,
2001, Bagnoli and Watts, 2003, Besley and Ghatak, 2007). My findings strongly indicate
that consumers do not react substantially to socially responsible campaigns, even in an
environment where social responsibility is especially salient. Therefore, demand concerns
seem unlikely to stimulate firms to invest in CSR.

This paper is also related to a growing literature investigating firms’ conduct. For
example, Duarte et al. (2020) find that Italian cooperatives behave in the same manner
as their for-profit competitors. On the other hand, Macchiavello and Miquel-Florensa
(2019) also show that coffee intermediaries pay Colombian coffee farmers more than what
implied by profit maximization, but explain this finding through resale price maintenance
policies rather than fair trade or social responsibility. Principal-agency problems between
shareholders and management (e.g., Hart, 1995, Liljeblom et al., 2011) and managerial
quality (e.g., Bloom and Van Reenen, 2007, Goldfarb and Xiao, 2011, Adhvaryu et al., 2018)
are other classic reasons why firms fail to maximize profits.

Suboptimal choices are also observed in the National Football League as certain plays
called by coaches do not maximize the probability of victory (Romer, 2006), and teams
often waste their top picks at the annual draft (Massey and Thaler, 2013). These papers
speculate that influence from shareholders and fans could sway decisions away from
optimality. However, supporting empirical evidence using business data is lacking. This
paper fills this gap by demonstrating that firms can be influenced by concerns that are
external to profits.

2 Auctions on Charitystars

Charitystars is a for-profit internet company helping charities do fundraising, by offering
charity auctions of celebrities’ memorabilia. Charitystars auctions a very broad spectrum
of items, from VIP tickets to sport events to arts collectibles.2 Soccer is one of the most
popular item categories with over 4,000 auctions held in 3 years. Moreover, Charitystars is
a de facto monopolist in the market for actually worn soccer jerseys, on which I focus.3

2Charitystars is owned by its funding members, who also are managers in the company, and other
investors including funds.

3It is possible to find some worn soccer jerseys on eBay as well, but this marketplace is much thinner
compared to Charitystars. Moreover, as it will be shown in Section 6.3, bidders pay a charity premium on
Charitystars, meaning that Charitystars bidders would lose money in case of resale.
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Auction Format. On Charitystars, the auction winner wins the auctioned item and pays his
bid. The transaction price is then shared between Charitystars and a charity according to a
known sharing rule. The charity receiving the donation, as well as the fraction donated, are
known to all bidders before the auction. Donations are guaranteed by issuing certificates.

All Charitystars’s auctions involve a single item and employ an open, ascending-bid
format analogous to eBay. Bidders can also submit cutoff bids instead of a bid. Once a
cutoff is set, Charitystars will issue a bid equal to the smallest of the standing price and
the highest submitted cutoff price, plus the minimum increment. Importantly, the auction
countdown is automatically extended by 4 minutes anytime a bid is placed in the last 4
minutes of the auction. This effectively impedes sniping (Backus et al., 2017). After each
sold soccer jersey, if a fraction q of the transaction price is donated, the firm keeps 1− q of
the price paid as net revenues.

All items are posted online on the firm’s website and advertised on the social media of
the firm in a similar fashion. The listing webpage shows pictures of the item on the left of
the screen. Bidders find a short description on the bottom of the page, together with the
information on the recipient charity. A picture of a typical webpage at the time of the data
collection is in Appendix Figure D1.

Procurement. Charitystars procures the memorabilia mostly from footballers, teams, and
charities. The fraction donated is bargained between the firm and the provider of the item,
who also requires a payment for procuring the item. Therefore, charities procuring the item
receive both a fixed fee and a fraction donated. Charitystars’s minimum fee is 15% of the
transaction price, and increases if the provider requires a larger compensation to provide
the item (see Appendix Figure D2). Importantly, talks with advisors and shareholders of
the firm revealed that the firm sets the reserve price in soccer jersey auctions such that the
portion of the reserve price that is kept by the firm equates procurement costs. Due to the
complexity of setting the profit optimal reserve price, this simple scheme allows avoiding
losses.4

Data. I use publicly available data from Charitystars.com. The dataset is collected from
the website and contains auctions of authentic soccer jerseys sold between July 1, 2015 and
June 12, 2017 (1,583 auctions). I focus on this period because it represents two consecutive
football seasons. Figure 1 reports the number of auctions for each percentage donated. All
auctions where the fraction donated is higher than 85% are disregarded as they coincide
with special events. Throughout the paper, I let q denote the fraction donated.

For each auction, I observe all bids placed, the date and time of the bid, the bidder
4The reserve price is not disclosed on the website. However, it is displayed in the HTML code of the

webpage. Whether bidders know the reserve price does not affect the analyses in the paper.

5



nationality, and the charity. I do not observe the auction start date, and I proxy the auction
length as the days between the first bid posted and the closing day.5 I focus on listings of
sold items with at least two bidders, transaction prices in the range e 100 - e 1,000, and
with a minimum raise not larger than e 25 (1,109 auctions in total). The average minimum
increment is less than e 2.00, and the transaction price is greater than the reserve price in
more than 95% of the listings. On average (median) the winning bid is 2.9 (2) times larger
than the reserve price. All the variables are defined in detail in Appendix B and Appendix
Table B1 display summary statistics for the main variables.

3 The Impact of Giving on Bidding: Empirical Evidence

The reduced form evidence in this section provides the foundation for modeling demand
in later sections by illustrating how giving impacts prices and competition across bidders.

Intensive Margin. I first investigate whether greater transaction prices are associated with
more generous donations (q). To test this hypothesis, I run a set of regressions where the
transaction price is on the left-hand side and auction characteristics, including q, are on
the right-hand side. Table 1 displays results from the following OLS regressions

pricet = γ0 + xt γ + γqqt + εt, (3.1)

where t indexes the auctions. The vector of covariates, x, includes all variables other than
the fraction donated, q. The columns of the table vary based on the definition of x, which
appears displayed in the bottom panel of the table. The jerseys are quite comparable across
different fraction donated as the latter variable is not correlated with the quality of the
player wearing the auctioned jersey.6 The estimates indicate that a 0.1 increase in q, is
associated with a price increase between e 8.4 and e 9.4, or 2.9% of the average price. This
result points to a positive but small correlation between bids and donations.

Since the fraction donated is bargained between the provider of the item and Charitys-
tars, γ̂q could be inconsistent if unobserved characteristics of the item affect both bidders’
valuations and the bargaining outcome (q). In this case, Table 1 could erroneously suggest
that bidders care for giving, while they only care for the unaccounted characteristics.

To account for endogeneity, I instrument a listing’s reserve price and q with the average

5The average length of Charitystars’s auctions is usually between 1 and 2 weeks.
6To check whether jerseys worn by better players are associated with larger fraction donated, I down-

loaded player data from the FIFA videogames on the previous 5 years and checked the correlation between
q and the overall player quality. The correlation is only between -0.07 and 0, excluding this channel. The
correlation between q and the other covariates is also small (lower than |0.25|).
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q and the average reserve price across all concurrent auctions ending within ±5 days. The
instruments are valid if the concurrent auctions are not correlated after controlling for
covariates. Identification would fail, for instance, if a charity procures several items for an
advantageous deal. This occurrence is accounted for by exploiting the connection between
a charity and a specific footballer or team. In particular, I control for the number of listings
of jerseys from the same team in the previous three weeks and for the same player in the
previous two weeks, as well as a charity counter. Hence, potential correlations across
auctions are likely purged from the residual variation. Furthermore, I also control for the
importance of the match (e.g., a final), player quality, and charity characteristics.

Appendix Table C2 reports the OLS and the IV estimates. The instruments strongly
predict transaction prices, and the hypothesis of weak-instrument is rejected at 0.1% level
across all columns. I include the average number of bidders across concurrent auctions
(within 5 days) as an additional instrument for over-identification. The Sargan test does
not reject the null hypothesis. The IV estimates are statistically significant and slightly
larger than the OLS ones, but less precise.

I also investigate whether the relation between the logarithm of prices and the fraction
donated is linear with a series of quantile regressions in Appendix Table C1.7 The null
hypothesis that the coefficients computed at different quartiles are the same to the OLS
one is not rejected at common values (F test p-value 0.82), suggesting a small and linear
relationship between q and log prices.

In conclusion, bidders seem to react to donations. In particular, a 10% change in the
average fraction donated results in about a 9.2% change in transaction prices. Related
papers found qualitatively comparable results. For example, Elfenbein and McManus
(2010) estimated that prices in eBay charitable listings are, on average, 6% larger than
comparable non-charity ones, while within a controlled experiment Leszczyc and Rothkopf
(2010) determined that a 40% donation leads to a 40% price increase.

Extensive Margin. Bidders do not seem to prefer more generous auctions. In the data, a
total number of 2,247 bidders compete on average in 5.34 different auctions. This average
increases to 8.51 after excluding bidders who bid in only one auction. More than 80% of
the bidders that place at least two bids, bid at least in two auctions with different fractions
donated. The raw data show no correlation between the number of bidders joining an
auction and q (Spearman correlation: 0.086).

I further investigate the impact of q on the extensive margin of giving with the following

7Appendix Figure D3 plots the coefficients.
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Poisson regressions

log(E[number o f bidderst|xt,qt]) = γ0 + xt γ + γqqt + log(lengtht) + εt,

where t indexes the auctions. The variable length is the exposure variable and tells how
many days the auction lasted. Table 2 reports the estimated coefficients which should be
interpreted in terms of number of bidders per day. The results confirm the absence of a
correlation between q and the number of bidders. This conclusion is also reaffirmed when
instrumenting q as previously done (Appendix Table C3).

Asymmetric Bidding. Before moving to the auction model, I show that the data fail to
portray significant asymmetries in the way bidders bid within an auction. There are two
main asymmetries that can be inspected. First, as most jerseys belong to Italian teams (63%
of the auctions) and most charities are Italian (90% of the auctions), bidders from different
nationalities could employ different bidding strategies. However, Appendix Table C6
shows no effect of a winner’s nationality on prices. Second, some bidders can be collectors
of jerseys and may care less about donating. I define collectors as recurrent winners who
won more than the median number of auctions won (three). Table C7 in Appendix C
shows that recurrent winners do not pay more on average. Therefore, in the next section
I study the behavior of symmetric bidders by modeling Charitystars’s auctions and in
Sections 5 and 6 I show how to identify and estimate the primitives of such model.

4 Demand Model: Altruism in Charity Auctions

A charity auction entails the donation of a portion of the transaction price to a charity. If
bidders care for charitable giving, their utility should also include how much is earned by
the charity. In this section, I extend the seminal work on price-proportional auctions by
Engelbrecht-Wiggans (1994) and Engers and McManus (2007) to fit the main characteristic
of Charitystars’s online auctions, namely that only a fraction q < 1 of the final price
is donated. In this setting, I study both the optimal bidding strategy and the revenue-
maximizing choice of q.

I model the additional utility from donating to a charity by β · q · price, where β

transforms the fund raised, q · price, in utils. Hence, β indicates the satisfaction from
winning the auction and donating. Though losing bidders do not consume the item, and so
receive no consumption utility, they enjoy the fact that the charity gets funded. The reward
to the losing bidders is modeled by the term α · q · price. As charitable motives cannot
explain the full amount of one’s bid, the literature assumes that α, β ∈ [0,1). Therefore, the
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realized utility to a bidder who values the private good v can be summarized by

u(v;α, β,q) =

v− b + β · q · price, if i wins,

α · q · price, otherwise.
(4.1)

Despite its simplicity, the model implies different underlying rationale for giving depend-
ing on the relative size of α and β. Appendix Table C8 summarizes the most common
theories of altruism.

The null hypothesis is that bidders are not interested in giving. If α = β = 0, the classic
textbook equilibrium applies, and altruistic preferences in no way shape bidding. Bidders
are purely altruistic when their utility does not depend on the identity of the donor, or
when α = β > 0. In this case, they are solely moved by their compassionate concern for the
activities of the charity (Ottoni-Wilhelm et al., 2017).8

Selfish motives may also be present. For instance, bidders may take pride in donating
(e.g., Andreoni, 1990, Fisher et al., 2008). In this case, β− α > 0 implies that bidders receive
a “warm glow” when winning and donating. An extreme case is when bidders only
care for their donations and have no intrinsic motivations (β > 0 but α = 0). This model
captures the role of social status or prestige in donation (e.g., Harbaugh, 1998).9

Leszczyc and Rothkopf (2010) provide empirical evidence for α > β > 0 using a field
experiment with manipulated charity auctions to assess overbidding. In such a “volunteer
shill” model, bidders derive more utility from others’ contributions than their own.

4.1 How Donations Impact Bids and Revenues

To find the optimal fraction donated for the auctioneer, knowledge of how demand varies
with q is necessary. Thus, I start by examining a bidder’s optimal bidding strategy as a
function of q. The following standard regularity assumption is maintained throughout.

Assumption 1. Regularity:

1. All n > 1 bidders have private and independent values for the auctioned item. Values are
drawn from a continuous distribution F(·) with density f (·) on a compact support [v,v];

2. The hazard rate of F(·) is increasing.

8A theoretical treatment of these auctions first appeared in Engelbrecht-Wiggans (1994), who analyzed
auctions with price-proportional benefits to bidders (all bidders receive an equal share of the final price).

9β > 0, α = 0 is consistent with bidders receiving subsidies as is common in timber auctions (Athey et al.,
2013).
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The independent private value assumption is relaxed in the estimation by the inclusion
of auction heterogeneity, which effectively allows for affiliated values. An alternative
would have all bidders valuing the jersey equally, but enjoying only imperfect signals of
this value before bidding. Under such a common values scenario, the winner’s course
increases in the number of bidders. As a result, bidders will shade their bids the more
bidders join the auction. However, this prediction is refuted by the positive and significant
coefficients of the number of bidders in Table 1. Condition 2. of Assumption 1 ensures the
existence of a unique global optimum of the bidding function and it is important for the
identification of the primitives of the model {F(v),α, β}.

Optimal Bid. Due to the strategic equivalence between ascending and second-price charity
auctions (Engers and McManus, 2007), the expected utility to a bidder with value v in a
second-price charity auction is

E[u(v;α, β,q)] = E
[
v− (1− q · β) · price, i wins

]︸                                       ︷︷                                       ︸
i wins and pays price

+q · α · price · Pr
(
i’s bid is 2nd highest

)︸                                              ︷︷                                              ︸
i loses and bids bi = price

+ q · α ·E
[
price, i’s bid is < 2nd highest

]︸                                               ︷︷                                               ︸
i loses and price > bi

,

where, price denotes the second-highest bid as this is the price at which the second-highest
bidder drops out of the auction. The expected utility is taken over three mutually exclusive
events. In the first brackets the bidder wins the contest, pays the price, enjoys v and
additional utility from giving to the charity (β · q · price). In the second and third brackets,
the bidder either drops out as a second-highest bidder or earlier. In either case, the bidder
benefits in proportion to the expected donation (α · q· expected price).

Focusing on the symmetric Bayesian Nash equilibrium of the second-price auction
game, the equilibrium bid for a bidder with private valuation v and charitable parameters
α and β in a symmetric second-price charity auction where the auctioneer donates q is

b∗(v;α, β,q) =


1

1+q·(α−β)

{
v +

∫ v
v

(
1−F(x)
1−F(v)

) 1−q·β
q·α +1

dx

}
, if α > 0 and q > 0,

v
1−q·β , if α = 0 or q = 0.

(4.2)

This bid function is also optimal in ascending online auctions: in equilibrium a bidder
with value v drops out of the auction when price ≥ b(v;α, β,q). Although there is no
discontinuity as α goes to 0, the second line of equation 4.2 implies that truthful bidding
is optimal when q = 0 or α = 0 as in second-price auction with non-charitable bidders.
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Therefore, this model includes the classic textbook second-price auction model.

Comparative Statics on q. Does greater fraction donated necessarily increase bids? From
equation 4.2 this is true if α = 0. In this case, a marginal increase in q is equivalent to a
marginal increase in β, implying greater satisfaction from winning the auction, leading
to greater bids. More generally, whether bids increase or decrease with q depends on the
model of giving, as shown in the following lemma.

Lemma 1. Bids are
- increasing in q if β ≥ α;
- decreasing in q in the interval (ṽ,v], where ṽ ∈ [v,v], if α > β.

Proof. See Appendix A.2.
Under warm glow (β ≥ α) all bidders revise up their bids if q increases. The solid line

in Figure 2a depicts this case. The dotted and dashed lines instead refer to the derivative
of bids w.r.t. q for the voluntary shill model (β < α): bids increase for bidders with low
values, and increase for bidders with high values.

Due to the monotonic bidding strategies, bidders with high values are possible winners
of the auction. A marginal change in q has two effects if α is large enough. First, it intensifies
the degree of substitution between winning the auction and gaining from somebody else’s
contribution to the charity (Bénabou and Tirole, 2006). The substitution effect is more
significant for high-value bidders, and so they are the ones to revise their bids down.

Second, low-value bidders affect their payoff only when they rank as the second-highest
bidder. Thus, as their bid is complementary to that of a bidder with higher valuation, they
raise their bid in the hope of extracting more surplus from the winner. A comparison of the
dotted and dashed lines in Figure 2a supports this idea: more low-value bidders increase
their bids when they believe they are more likely to rank high in the auction. This belief
increases with the variance of the distribution of private values (dotted line).

Therefore, in a charity auction, optimal bids must balance not only the intensive margin
(a bidder’s surplus) with the extensive margin (the probability of winning) but also an
additional margin representing free-riding.

Net Revenues and q. If the cost of procuring the item is sunk, a profit-maximizer auction-
eer should set the fraction donated to maximize net revenues, or (1− q) times price.

The revenue-optimal fraction donated qR depends on the demand parameters
{F(v),α, β}. In particular, when α = 0, increasing q does not increase net revenues to
the auctioneer, because the term q · β · price act as a discount factor. Net revenues are lower
than non-charity auction revenues, and the auctioneer should not donate.

Charity auctions are more appealing to the auctioneer in case of cross-bidders external-
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ities (α > 0).10 However, α should be small enough to prevent high-value bidders from
excessively shading their bids. The next proposition determines the fraction donated, qR,
that maximizes net revenues.

Proposition 1. Define η(pe,q) = ∂pe

∂q
q
pe as the elasticity of the expected price, pe, to the donation,

q. When α = 0, the auctioneer should not donate. When α > 0, the revenue maximizing donation
solves η(pe(qR),qR) =

qR
1−qR

.

Proof. See Appendix A.3.
Intuitively, net revenues first increase as the auctioneer increases q, reach a maximum,

before decreasing to zero for q = 1, in which case the auctioneer donates all he or she
makes. Net revenues have an inverted-U shape, which is maximized at qR. The ratio
q/(1− q) is the ratio of what is donated to what is kept and is convex in q. The firm will
increase its donation rate until the marginal benefit from higher bids ((1− q)η) equates
the marginal cost from donating an extra euro (q). This is evident from Figure 2b, where
net revenues (right axis) are optimized at the q that sets η = q/(1− q).

The Role of Externalities. The previous theoretical exercises should be read in light of the
lack of agreement in the empirical literature assessing the effect of donations on prices
and revenues in charity auctions. For instance, Leszczyc and Rothkopf (2010) attributed
the widespread overbidding in their experimental charity over non-charity auctions to
significant externalities. However, their conclusion that α > β implies higher revenues
is only partially correct as it also requires enough incentives for low-value bidders to
place high bids, as shown in Figure 2a. This seems to be the case in their data as their
auctions averaged less than four bidders, and so low-value bidders havre high chances to
set the price. In contrast, another field experiment with more than 15 potential bidders
in each auction found charitable prices to sink below non-charity ones at a school charity
auction (Carpenter et al., 2008). Given Proposition 1, this can be explained in terms of high
externalities as parents (bidders) may care more for the fundraising of the school than their
donations.

Because of the central role played by the different models of giving in determining
auction outcomes, the next section shows how to identify both the consumption, F(v), and
altruistic preferences, α and β.

10The result on the auctioneer’s surplus mimics how donations impact bidders’ surplus. When α = 0, the
expected bidders’ surplus in a charity and non-charity auctions are the same. Thus the auctioneer cannot
extract additional rents from holding a charity auction. Instead, bidders’ surplus is greater in charity auctions
if α > 0.
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5 Nonparametric Identification of Demand

The identification of the primitives of the model, {F(v),α, β} is necessary to assess Char-
itystars’s objectives. Take the following example: two identical auctions with different
fractions donated are observed. A mere comparison of prices across auctions could lead to
incorrect conclusions on bidders’ preferences. For instance, if the prices in the two auctions
are close despite one auction is much more generous than the other, we may infer that
bidders are not altruistic. Instead, high-value bidders could be shading their bids in the
auction with the higher fraction donated due to significant externalities (Proposition 1). As
a result, wrongly concluding that consumers are not altruistic has obvious repercussions
on the optimal strategy of the auctioneer.

In this section, I first show identification in second-price charity auctions and then
extend the analysis to Charitystars’s auctions.

Second-Price Auctions. Identification relies on variation in the fraction donated (q) across
otherwise identical auctions to exploit the information in the first-order conditions of
optimal bidding and the monotonicity of the bid function. In what follows, denote
the observed distribution of bids by G(b(v;α, β,q);q), and the related inverse hazard
rate by λG(b(v;α, β,q);q).11 Since the bids are invertible functions of private values, the
distribution of bids is equal to the distribution of private values.12 I use the last equivalence
to write the FOC of a bidder with value v bidding b(v;α, β,q) as

v = (1− β · q) · b(v;α, β,q) + α · q ·
(

b(v;α, β,q)− λG(b(v;α, β,q);q)
)

. (5.1)

The equation shows that the private value must balance one’s bid plus the surplus that
can be extracted if somebody else wins with a larger bid.

The unknowns are v on the left-hand side and α and β on the right-hand side. Despite
F(v) is identified directly from the empirical distribution of bids (Ĝ(b)), one can plug
different combinations of {α, β} in equation 5.1 and obtain the same F(v). A similar non-
identification result holds in the estimation of risk aversion in first-price auctions. There,
identification relies on either parametric quantile restrictions or variation in the number
of bidders across auctions (e.g., Lu and Perrigne, 2008, Guerre et al., 2009, Campo et al.,
2011). However, these restrictions are of no use for nonparametric identification in English

11The inverse hazard rate of the bid distribution is λG(b(v;α, β,q);q) = 1−G(b(v;α,β,q);q)
g(b(v;α,β,q);q) , while the inverse

hazard rate of the distribution of private values is λF(v) =
1−F(v)

f (v) .
12Under Assumption 1 the following relations hold: G(B) = Pr(b(v) < B) ≡ Pr(v < b−1(B)) = F(b−1(B)).

Therefore, G(b(v;α, β,q);q) = F(v). It follows that g(b(v))b′(v) = f (v).
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charity auctions as, for instance, the number of bidders does not even appear in the FOCs.
Inspecting equation 5.1, the right-hand side is strictly increasing and differentiable in

b(v;α, β,q), implying that no two different combinations of α and β yield the same vector of
pseudo-private values v.13 This remark ensures that every distribution F(.|α̃, β̃,q) (one for
each α̃, β̃ combination given q) is unique by Theorem 1 in Guerre et al. (2000).14 Therefore,
if two sets of auctions, A and B, with different fraction donated, qA , qB, are observed,
the distribution of private values computed on each set of auctions using equation 5.1
must be the the same at the true parameters {α0, β0}. Thus, {α, β} are nonparametrically
identified by F(·;α0, β0,qA) = F(·;α0, β0,qB). Once α and β are identified, F(v) is identified
from equation 5.1.

However, this strategy fails if a bidder’s consumption value, v, depends on q – e.g., if
high valued bidders systematically join auctions with greater fractions donated. Thus, the
following assumption is necessary for identification:

Assumption 2. Identification: F(·) does not depend on q.

The theoretical model in Section 4 automatically satisfies this assumption because it
defines F(v) as the unconditional distribution of private values. Section 3 also finds that
Charitystars’s bidders join multiple auctions without regard for q. Also, the same section
shows no correlation between the number of bidders, other auction characteristics, and q.
Finally, I formally test (and do not reject) the validity of Assumption 2 in Section 6.2.

Charitystars’s Auctions. To extend the previous result to Charitystars’ auction, it is im-
portant to consider that not all bidders bid according to equation 4.2 in online auctions.
First, the equivalence between English auctions and button auctions does not hold for
those bidders who place a low bid once, and then forget to update their bids. Second, in
equilibrium, the winner pays a small increment over the price at which the second-highest
bidder quits bidding, suggesting that not even the winning bidder bids according to
equation 4.2.15 Therefore, G(b;q) , F(v) in online auctions, so that the unknown F(v) in
equation 5.1 cannot be replaced with the emprical Ĝ(b;q) to solve the problem as in the
second-price auction case.

However, the winning bid is the price at which the second-highest bidder drops out,
and thus, the second-highest bidder solves 5.1 at this price. As a result, the distribution
of the winning bid, Gw(b;q) , is equal to the distribution of the second-highest bid, which

13The term in parentheses of equation 5.1 is increasing in b if f ′(v) > − f (v)2

1−F(v) + g(b; ·)b′′(v; ·), which is
always true because of Assumption 1. This is also confirmed in the data.

14Theorem 1 in Guerre et al. (2000) relies on the same regularity conditions in Assumption 1.
15The minimum increment across Charitystars auctions is e 1 for most auctions.
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is a known function of the number of bidders and it is invertible in F(v). Therefore, the
counterfactual Ĝ(b;q) for a parallel second-price auction is directly identified from the
empirical distribution of the winning bids and the number of bidders, which, in turn,
allows the identification of α and β as in the second-price auction case above.

Proposition 2. Under Assumptions 1 and 2, {F(v),α, β} are nonparametrically identified by
observing two identical auctions with different fractions donated.

Proof. See Appendix A.4.
Proposition 2 can also be extended to include a finite number of auction types (e.g.,

q ∈ {q1,q2, ...,qK}), as shown in Corollary 1 in Appendix A.5. The proof uses the panel
structure of the data to create a projection matrix that cancels out the left-hand side of
equation 5.1 to identify α and β as in Proposition 2.

6 Estimation of the Demand Model

In this section, I first lay out the estimation routine, which closely follows the identification
in Proposition 2. Section 6.2 reports the results and fit of the model, and Section 6.3
quantifies the charity premium.

6.1 Structural Estimation

Following the main identification result, the primitives of the model {F(v),α, β} are esti-
mated comparing two auctions with different fraction donated, q. Clearly, identification
fails if the two fractions donated are dangerously close to each other as the necessary rank
condition would not hold.16 According to Figure 1, the most frequent fraction donated in
Charitystars’s data are 10%, 78% and 85%. Thus, estimation is performed on a sample of
auctions with q ∈ {10%,85%}.

Estimation is performed in three steps. The first step accounts for auction heterogeneity.
In the second step, I determine the distribution of bids and construct the FOCs. The
primitives are estimated in the third step of the routine.

First Step. I account for auction heterogeneity through a flexible regression of the log of
transaction prices on auctions, item and charity characteristics according to the following

16Appendix Table F1 reports Monte Carlo simulations showing that the estimated {α̂, β̂} are not consistent
if qA is too close to qB.
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regression of the transaction price on covariates

log(pricet) = γ0 + xt γ + bw,t, (6.1)

where t indexes the auctions and x includes all the variables in column 1 in Table 1,
excluding q. The residual, b̂w,t, are interpreted as pseudo-winning bids from homogeneous
auctions (e.g., Haile et al., 2003), and are a function of α, β, q and winners’ private values.

Appendix Table C9 reports the estimates from equation 6.1. These estimates controls
for both observed and unobserved heterogeneity. In particular, the number of bids placed
(given the number of bidders and the length of the auction) tells the level of competition
across bidders within an auction that is not explained by x. If the auction is more appealing
for some unobservable characteristics, bidders are likely to control the auctions more
closely than predicted by x. The increased supervision will result in more bids by the same
bidders, and as a result, will account for unobserved quality.

Second Step. The distribution and density of bids are necessary to write equation 5.1.
Following the identification, I first group b̂w,t based on q (either 10% or 85%) and determine
the distribution of bids, Ĝq(b), from the empirical distribution of the winning bid, Ĝq

w(b),
for each group. The densities ĝq(b) are computed analogously.17 To compute the empirical
CDF and pdf of b̂w,t, I use a Gaussian kernel with bandwidths as in Li et al. (2002).18

Third Step. I build the two sets of FOCs as in equation 5.1 based on q. I match each
FOC for the auctions with q = 10% with a FOC of the auctions with q = 85% along the
quantiles of the distributions of bids, i.e. FOCs with bids b10% and b85% are matched if
Ĝ(b10%;q = 10%) = Ĝ(b85%;q = 85%). In this way the left-hand side, v̂q, for each FOC is
equal to its matched counterpart at the true {α0, β0}, implying that at each τ quantile of
the distribution of values v10%

τ (α0, β0)− v̂85%
τ (α0, β0) = 0. Thus, the criterion function is

min
{α,β}

1
T

T

∑
τ

(
v10%

τ (α, β) − v85%
τ (α, β)

)2, (6.2)

where T is the number of auctions with q = 10%, under the constraint that {α, β} are in
[0,1]. The distribution of private values F(v) is found as the empirical distribution of the

17The distribution of bids Ĝq(b) is the solution to Ĝq
w(b) = nĜq(b)n−1 − (n− 1)Ĝq(b)n, while its density

ĝq(b) solves ĝq
w(b) = n(n− 1)Ĝq(b)n−2[1− Ĝq(b)]ĝq(b), where ĝq

w(b) is the empirical pdf computed on b̂w,t.
18The bandwidth of the kernel estimators are hq

g = cq · T−1/5
q for pdfs and hq

G = ca · T−1/4
q for CDFs.

cq = 1.06 ·min{σa, IQRa/1.349}, Tq is the number of auctions, σq is the standard deviation and IQRq is the
interquantile range of b̂q

w,t for auctions with fraction donated q. I trim the data to deal with bias at the extreme
of b̂w,t supports.
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left-hand side of equation 5.1, after plugging in the estimated {α̂, β̂}.19

6.2 Estimation Results

Table 3 reports the results of the estimation. The identification requires a constant number
of potential bidders to perform the inversion in the second step. To avoid outliers, I set
the potential number of bidders at the 99th-quantile of the distribution of bidders (first
row of the table), and report estimates for various values of n. The 95% confidence interval
are also reported in square brackets and are obtained by bootstrap. The estimates hardly
vary with the number of potential bidders and are always significant. Consistent with
other studies (e.g., DellaVigna et al., 2012, Huck et al., 2015), the results provide evidence
for warm glow agents as β > α > 0 (see Section 4). Next, I provide evidence that the model
fits the data well.

Expected Revenues. I first examine simulated prices. To recover the expected price in an
auction with n bidders, I plug the estimated primitives {F(v),α, β} in the bid equation 4.2
and integrate it with respect to the density of the second-highest bid. In all the following
analyses, I compute values in euros by summing back the median values of the covariates
in equation 6.1 (xt γ) to the expected price and exponentiating it.20

The differences between the observed prices across auctions with q = 10% and q = 85%
are not statistically different from the expected average prices at the median number of
bidders. In particular, the model predicts the expected price to be e 388.73 when q = 85%
while the average observed price when q = 85% and n = 7 is e 375.50, a 3.5% deviation
(p-value: 0.613). Similarly, the model predicted expected price when q = 10% and n = 7
is e 353.87, whereas the average price in the data is e 327.44, a 8.1% deviation (p-value:
0.516). The model also adequately predicts prices for other numbers of bidders as shown
in Appendix Figure D5, where I vary the number of bidders between 5 and 10, which
corresponds to the interquartile range of the number of bidders.

Test to Identification. The estimation procedure relies on Assumption 2, which states
that F(v) does not depend on q. A direct test to this assumption is to apply the esti-
mated coefficients in the first step and the estimated α̂ and β̂ to a set of auctions with
q < {10%,85%}. The identification strategy fails if the implied distribution of values differs
from the estimated F̂(v).

19Appendix F performs a number of MonteCarlo simulations suggesting that the estimator is consistent
and asymptotically normal.

20I exclude the number of bidders from x because it is already accounted for in the computation of the
winning bid.

17



I apply this procedure to the auctions with q = 78%. Figure 3 compares this counterfac-
tual density of private values (dotted line) with the estimated densities from the auctions
at 10% (solid line). The two pdfs have similar shapes and the Kolmogorov-Smirnov test
does not reject the null hypothesis of equality at 0.187 level. This test is rather conservative
because the auction heterogeneity could impact prices when q = 78% differently compared
to the case when q ∈ {10%,85%}.

Over-Identification Test. To investigate whether bidders have different altruistic param-
eters, I perform a simple over-identification test in Appendix Figure D6a. I group the
moments in equation 6.2 based on whether they refer to quantiles above or below the
median, and estimate α and β for each sample. The plot compares the densities implied
by the two sets of altruistic parameters. The null hypothesis that the two pdfs are the
same cannot be rejected, meaning that the assumption of equal α and β in the poulation of
bidders is not rejected by the data.

Collectors. Appendix Figure D4 shows that the pseudo-winning bid of collectors (as
defined in Section 2) from equation 6.1 is not statistically different from that of non-
collectors, further corroborating the assumption of symmetric bidding with respect to the
distribution of private values.

Instrumental Variables. As in Section 3, I correct for potential endogeneity in the reserve
price using instrumental variables. In particular, following the discussion in Section
3, I instrument a listing’s reserve price with the average reserve price and the average
number of bids placed across all the other auctions ending within five days of the auction.
Appendix Table C10 shows little change both in the estimated α and β. The F-test is 33.269,
and the over-identification test statistics (Sargan test) has a p-value of 0.192.

Linearity of Bids. Section 2 shows a linear relation between log prices and fractions
donated. Appendix Figure D6b replicates this result by plotting the simulated log bids (y
axis) for different fraction donated (x axis) (cf. Appendix Table C1 and Figure D3). I do
not reject the linearity of the bid curves with respect to q via ANOVA, indicating that the
model adequately reproduces the descriptive results described in Section 3.

6.3 Is There a Charity Premium?

The existence of a charity premium is debated in the literature on charity-linked goods
as, for instance, some online sellers with low reputations donate to charities to look more
reputable (Elfenbein et al., 2012). I leverage on the structural model to cleanly estimate the
charity premium and extend the counterfactual analysis to address whether donations
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increase cashflows to Charitystars.

Charity Premium. Appendix Figure D7 shows that the distribution of bids (dotted line)
stochastically dominates that of private values (solid line). Therefore, the expected transac-
tion price is larger than the second-highest private value. The charity markup (dashed line,
right axis) appears in Figure 4a as the percentage difference between the second-highest
bid in charity auctions (solid line) over the second-highest private value (dotted line) for
different fraction donated. Although the markup increases with q it is capped at 15%. This
value is close to the estimates in Elfenbein and McManus (2010) of a 12% premium when
the auctioneer donates 100% from eBay’s Giving Works data. On the other hand, although
Elfenbein et al. (2012) find that eBay bidders leave a 6% markup for a 10% donation, I find
almost no charity premium when the auctioneer donates little. Therefore, Charitystars’s
demand is inelastic despite consumers’ willingness to pay increases in q.

Revenue Maximizing q. Figure 4b confirms that the estimated elasticity of demand to
the fraction donated (solid line) is extremely rigid. Proposition 1 states that the revenue-
maximizing fraction donated is found at the intersection of the elasticity curve and the
q/(1− q) curve (dotted line). The two curves intersect at q = 0: net revenues are beyond
e 300 when the firm does not donate, and constantly decrease as q grows (dashed line,
right axis). Charitystars can increase its net revenues by as much as e 250 on average by
holding standard auctions.

Discussion. Despite the charity premium, the price increase does not compensate for
the amount donated. Although I look exclusively at soccer jerseys, the results could be
relevant for charity-linked products more broadly because of the salience and ease of
measurement of Charitystars’s social responsibility. Consider the case of Product Red,
a charity fighting HIV in Africa whose fundraising comes from partnering with large
corporations – e.g., Apple – which donate a portion of their revenues for specific goods.
For instance, Montblanc Product Red trolleys currently sell for $865, of which $5 go to
Product Red. The fact that donations are generally smaller than 10% of the price on this
website shows that consumers’ willingness to pay does not react substantially to firms’
donations also in other markets.21

Consumers also face different incentives in an auction compared to the posted price en-
vironment from the example above, where anyone can buy and donate. Gneezy et al. (2010)
investigate the willingness to pay for a photograph right after riding a roller coaster–like

21Similarly, Tom Shoes, a shoe company which used to donate a pair of shoes for each pair sold, has recently
reverted to a much more flexible $1 donation for every $3 it makes as the old one-for-one donation scheme was
too expensive. Source: https://media01.toms.com/static/www/images/landingpages/TOMS_Impact/

TOMS_2019_Global_Impact_Report.pdf, page 69.
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attraction in a US amusement park. The authors compare two strategies: posted price and
pay-as-you-want plus a 50% donation. Their findings confirm my results: profits-per-ride
net of donations are non-statistically different between treatment and control groups.

In conclusion, the analysis suggests that demand is unlikely to drive firms’ prosocial
investments. To address why Charitystars donates, the next section explores how donations
impact marginal costs and profits.

7 Procurement Costs and the Profit Optimal Donation

Charitystars may find it profitable to donate if procurement costs are decreasing in the
fraction donated. In this section, I first report empirical evidence of bargaining between
Charitystars and the providers (mainly celebrities and charities). Conversations with
advisors of the firm also confirmed this. Leveraging on this knowledge, I then turn to the
cost of procuring the item and the profit-optimal donation.

Evidence of Bargainig. I first provide empirical evidence of bargaining. I exploit a period
of the year where the relevant bargaining power is tilted toward the providers. The leading
European soccer leagues are off in the inactive summer months of July and August, and,
as objects become scarce, item providers should be more powerful. The data indicate
that the average fraction donated in the summer months is significantly larger than in the
remaining months (Welch tests: q̄August = 0.775, q̄other = 0.698, with a one-sided p-value
= 0.030, and q̄July&August,= 0.770 q̄other = 0.693, with a one-sided p-value < 0.001). To
control for other variables, I run the following OLS regressions

qt = γ0 + xt γ + γm summer montht + εt, (7.1)

where summer month refers to either August or to both July and August. Table 4 reports
the results, confirming the presence of bargaining between parties, as Charitystars is more
generous when it has less bargaining power. The results are robust to the inclusion of more
covariates (even columns).

However, Charitystars could donate more to stimulate more bidders to join the auction
in these summer months, where the soccer leagues are inactive (though Table 2 suggests a
null effect of changes in q on the extensive margin). To solve this potential endogeneity
concern, I use a similar instrumental variable approach to that in Section 2. I instrument
the reserve price and the number of bidders with the mean of these variables for auctions
happening within five days of each auctions. Appendix Table C4 shows that the coefficients
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of the IV regressions are very similar to the OLS regressions. The F-statistic indicates a
sufficiently strong first-stage (though the F-statistic is slightly below 10 in column 4), and
the hypothesis of weak IV is rejected in all columns. I also perform the Sargan test of over-
identification by including the average number of displayed pictures across concurrent
auctions and do not reject the null.

Estimation of Procurement Costs. Let us turn to the optimal decision of a profit-
maximizing charitable auctioneers, who must select the fraction donated to maximize
profits, knowing that costs vary with how much is donated. Given knowledge of the
number of bidders, α, β and F(v), the problem of the auctioneer is

q∗ = arg max
q∈[0,1]

∫
v
(1− q)b(v,α, β,q)dF(2)

(n)(v)− c(q),

where F(2)
(n)(v) is the distribution of the second highest private value out of the n bidders.

Denoting the expected price by pe and its elasticity to the donation by η, it yields

c′(q) =
1− q

q
ηpe − pe. (7.2)

The optimal donation equates a change in costs due to a marginal increase in q with the
relative change in net revenues. In Appendix A.6, I extend the monopolist problem above
to allow for bargaining over the fraction donated between the firm and the provider of
the item within the framework of Nash bargaining. The model’s first-order conditions can
be rewritten to yields an equation similar to equation 7.2 showing that, under the mild
condition that the net expected price is larger than the costs to the auctioneer, costs are
strictly decreasing in q. Comparing the net revenue-maximizing donation from Proposition
1, qR, and the profit optimal donation, q∗, implies that q∗ > qR if c′(q) < 0. From Figure 4b,
qR = 0, and if also c′(·) < 0, Charitystars optimal choice is to set q∗ > 0. This derivation
shows the importance of the cost channel on the profitability of social responsibility
programs (Hart and Zingales, 2017).

To avoid losses, Charitystars ensures that the smallest net revenue from a sale covers
costs. Thus, the firm sets the reserve price such that (1− q) · reserve price = c(q). I exploit
this key information provided by the firm and estimate the average marginal costs across
auctions as follows. First, I homogenize the reserve prices by regressing them on the same
covariates previously used in the first step of the estimation procedure

log(reserve pricet) = xtγ + εt, (7.3)
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where t indexes each one of the 1,109 auctions in the dataset (including all auctions
such that q ≤ 0.85). Second, I exponentiate the sum of the median fitted reserve price
( ̂reserve pricet) and the error terms (ε̂t), so that the homogenized reserve price (rt) is ex-
pressed in terms of the median auction in euro (as in Section 6.3).22 Third, costs are equal
to the net homogenized reserve price, ct = (1− q)rt. Hence, I obtain marginal costs by
regressing ct on q using a polynomial expansion for q (i.e., ∑J

j=0 πjqj where j is the order of
each polynomial).

Including the number of total bids placed is helpful to account for unobservable hetero-
geneity in equation 7.3. In particular, if in some auctions the firm sets the reserve price
above costs to limit entry in the auction to high-value bidders because some unobservable
attributes of the item make it particularly appealing, the increased competition in the
auction (given the number of bidders and length of the auction) will be reflected in the
number of bids placed by the same bidders.

Table 5 displays the estimated coefficients using either a quadratic or a cubic functional
form for costs. Comparing the two columns, the estimated intercept (π0) and linear
coefficient (π1) are similar, while the introduction of the cubic term (π3) inflates the size of
the quadratic coefficient (π2) in the second column. Although the coefficients are similar
across columns, adding the cubic term inflates the standard errors in column 2. This effect
is due to the small number of auctions for q in the neighborhood of 50%.23 Nevertheless,
both specifications seem to fit the data reasonably well as they explain a large portion of
the variance of the net reserve price.

The Profit-Maximizing Fraction Donated. Figure 5a plots marginal costs and marginal
net revenues. The plots show two main results. First, there is an interior solution for q∗

and thus, donating maximizes profits. Despite negative marginal revenues, donations are
profitable because the estimated marginal costs are also negative across both specifications
for all q, implying that costs decrease in the fraction donated. The cost gains follow the
law of decreasing returns because a marginal increase in q lowers costs less when q is
large. Second, even accounting for costs, large donations cannot be justified: q∗ is only 25%
(95% C.I. [0.03,0.37]).24 By setting the donation optimally, Charitystars would substantially
increase its profits per unit sold. The median amount pocketed by Charitystars is only 15%
for each object sold, yielding an expectation of about e 40 of profit for each auction. Figure
5b shows that profits would jump to e 125 for the median auction under the optimal policy.

22To test the impact of auction heterogeneity on q∗, I replicate the analysis in Appendix E where I consider
the 1st and 3rd quartiles of auction heterogeneity (xtγ) instead of the median auction.

23The lack of observations in q’s middle range is due to a simple heuristic approach to bargaining:
providers either get a large fraction donated and a small upfront payment and vice-versa.

24Bootstrapped confidence intervals with 401 repetitions.
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Behaving optimally across all auctions would more than double the firms’ profits.

Discussion. The finding of decreasing costs in social responsibility could apply to other
firms too. For example, Shapira and Zingales (2017) show that DuPont’s management
in the 1980s could decrease the probability of a billion-dollar fine for polluting by taking
socially responsible actions.25 Lessons from the supply-side analysis can be applied
more generally, as they prove the importance of synergies between social responsibility
programs and a firm cost structure to get corporate social responsibility to create utility for
shareholders (Hart and Zingales, 2017).

8 Social Responsibility as an Objective of the Firm

The demand and supply analyses find that Charitystars correctly donates to charities, but
that it donates too much. The data suggests that the optimal fraction donated is 25% on
average, while the firm average donation is 70%. Next, I rule out several potential explana-
tions and exploit a change in the capital structure of the firm to argue that Charitystars
also has social motives beyond profitability.

Omitted Variables. The reserve price and the fraction donated are equilibrium outcomes:
unobserved variables influencing the choice of reserve prices and fractions donated could
lead to misleading conclusions. For instance, the cost estimates may not be reliable if the
firm were to systematically set higher reserve prices for items with specific characteristics
that I do not observe.

To account for unobservables, I instrument the reserve price in the demand model with
the average reserve price and the average number of bids placed in concurrent auctions
(±5 days) as done in Section 3. I instrument the fraction donated in the supply model
with the average fraction donated and the average number of bids placed. Appendix E
provides a complete discussion of the IV approach, including test results. Counterfactual
analysis from this model confirms that the optimal fraction donated is 0.33 and that the
firm could substantially increase profits (Appendix Figure E3).

I also present similar results in Appendix E by adding more covariates to both demand
and supply analyses (Appendix Figure E1) and by considering different levels of auction
heterogeneity other than the median auction (Appendix Figure E4).

Reputation and Item Providers. A strategy that could reconcile Charitystars behavior

25For instance, a parallel can be drawn with concrete production, which accounts for 5-7% of greenhouse
emissions globally. The diffusion of technologies capable of capturing CO2 emissions from concrete produc-
tion and infusing it back in the concrete as a substitute for a portion of cement help curbing both emissions
and production costs (e.g., Hasanbeigi et al., 2012).
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plans to use the high-fraction donated auctions to gain reputation and build a more
extensive bidder base while making profits on low-fraction donated auctions.26 According
to this hypothesis, a grater q improves reputation. Because a profit-maximizing firm cares
for reputation if it increases profits, large fraction donated make sense as long as the
number of bidders and the number of auctions grow in q.

Yet, Section 3 has already shown a limited role for the extensive margin. To provide
more evidence against this hypothesis, I gathered an additional dataset of the same
Charitystars’s auctions over a longer horizon (extending to the end of 2018), which allows
me to test whether the average fraction donated in a given week correlates with the number
of bidders or the number of auctions respectively. Using different lags, Appendix Table
C12 finds that the fraction donated in a week has no impact on either the average, the
median, or the 8th decile of the distribution of the number of bidders in coming weeks.
The same result holds for the number of auctions (Appendix Table C11).27

In addition, if this mechanism were in place, we would also expect to observe a sepa-
rating equilibrium based on the type of item provider, with certain providers bunching at
low q and others bunching at high q based on their different bargaining powers. However,
this is not true in the data. For instance, the standard deviation of the fraction donated in
the aggregate data is 0.27, and it is 0.26 for items provided directly by charities, showing
that the variation in q in the whole sample is similar to that for charities only.

I further study the optimal fraction donated for the auctions with known item provider
in Appendix E (672 auctions). Among these auctions, I observe whether the item is
provided by a charity directly (472 auctions) or by footballers and coaches. Appendix E2
confirms that even further subsetting the data, the firm optimal average donation is only
30% of the transaction price.28

Competition. Charitystars is a de facto monopolist in the e-commerce of footballers’
belongings because of the large number and variety of auctions it offers.29 There are
also considerable barriers to entry in Charitystars’s business due to the need for a sizable

26In principle, auctions with modest fractions donated are not necessarily more profitable because the firm
sustains more significant costs to acquire these items. Yet, even under the assumption that the auctions at
85% had a different status so that they would cost zero to Charitystars, profits would still be double if the
firm were to set the fraction donated at 25% compared to what it currently does.

27These results also hold with monthly, instead of weekly level data, as well as with different deciles of the
distribution of the number of bids.

28Although it would be interesting to perform this analysis for each charity, it is not feasible because I only
observe a few auctions per each charity. A potential explanation for the variation in q is that small charities
could be more risk adverse, making them favour low fraction donated and higher fixed fees.

29A potential competitor of Charitystars is Charitybuzz. However Charitybuzz mainly operates in US and
it is not present in Europe, which is Charitystars’s main market (see Appendix Table C5 for a breakdown of
top bidders by nationality). Besides Charitybuzz does not offer charity auctions of soccer jerseys.
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network of contacts with celebrities, and a large number of users.

Wrong Beliefs. Although the firm could fail to properly assess the elasticity of prices to
the fraction donated, this explanation is rather unlikely because the firm hosts thousands
of auctions yearly. The firm has sufficient data to realize that prices do not substantially
covary with the fraction donated and can also experiment with different auctions.

Multiple Purchases. Charitystars’s large donations could be optimal to stir users to other
areas of the business, such as selling a painting, or a dinner with a CEO. Yet, conversations
with advisors of the firm reveal that most users in the dataset have a particular interest in
soccer jerseys, and that bidders do not bid across multiple item categories. In addition,
since they are scattered around the world, there are large transaction costs in bidding for
certain items such as exclusive event, like a dinner with a celebrity.

Managerial Costs. Soccer jerseys are the most active area of Charitystars’s business,
and Charitystars’s managers should probably give them priority over other areas of the
business (DellaVigna and Gentzkow, 2019). The managerial team remained constant in
the period under study.

Evidence for Social Objectives. I argue that the firm’s objectives also include the social
impact achieved through hefty donations. To support this conclusion, I provide empirical
evidence that the firm adjusted its strategy after a change in its equity structure.

In April 2017, a set of additional investors invested in Charitystars by purchasing an
undisclosed equity share. The new investors included a venture capital fund. The entry
did not affect the management of the company, nor the CEO. The CEO is also the funder
as well as one of the principal shareholders. I study how the entry affected the donations.
In particular, the average fraction donated is 75.1% until May 2017, but it drops to 45.9%
(one-sided p-value < 0.1%) from June 2017 until November 2018, when my data end,
providing first evidence that the firm’s strategy has shifted after the entry.

Appendix Table C13 performs a similar analysis by regressing the fraction donated on
a dummy variable that is one after the entry. These regressions also account for several
covariates, including month and year fixed effects. To control for the item provider, I
also add charity fixed effects in columns 3 and 6. As in Section 3, I control for potential
unobservable heterogeneity in two ways. First, all columns include the number of bids
placed, which captures quality characteristics affecting bargaining over q that are observed
by bidders. Second, I implement an instrumental variable approach analogous to that
in Section 3 to account for endogeneity in the reserve price variable in columns 4-6. I
instrument a listing’s reserve price with the average reserve price in the other auctions
ending within a five days window. The instrument is not valid if, for instance, providers
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systematically strikes multiple deals with Charitystars at the same time. However, the
fixed effects control such (uncommon) event. Overall, the results are robust across columns
and indicate that the firm donated considerably less after the entry of the fund.30

Due to the drop in q, average net revenues increased substantially from e 128.13 to
e 244.68 (one-sided p-value < 0.1%) after the entry. Despite the drop in q, the lower
donations did not decrease the number of auctions. Instead, the average number of
auctions in a week increased from 14.1 to 17.5 after the entry (one-sided p-value = 2.07%),
while the number of bidders staid fairly constant (p-value: 0.6148).31

Discussion. The decrease in the fraction donated is connected to the entry of a fund in
Charitystars’s equity. The fund gains by steering the company towards higher profitability
to quickly reselling it. The generous donations in the pre-entry period did not depend
on the inflexibility of the provider of the item to agree on better terms with Charitystars.
The post-entry data shows that Charitystars can still find items even by donating less, and
therefore the large donations are to be seen as a choice of Charitystars. These arguments
point to Charitystars’s objectives also embodying social purpose.

The steady growth of corporate social responsibility programs across both large and
small businesses calls into question whether the sole purpose of these activities is to
foster profits. Understanding why firms engage in social responsibility is a necessary
intermediate step to address whether social responsibility creates values for shareholders.
If the returns to social responsibility are inverted U-shaped as for Charitystars, comparing
firms at the two extremes of some index of social responsibility as is customary in the
applied literature may not provide meaningful results. Failing to understand why firms
engage in socially responsible programs could be the root cause of some contradicting
results in the literature (e.g., Margolis et al., 2007, Eccles et al., 2014, Ferrell et al., 2016).

Today, several firms, including large multinationals like Danone, are turning their
subsidiaries into benefit corporations. These firms are a type of for-profit social impact
companies whose legal goal is the best interest of the corporation while respecting their
employees, community, and environment (e.g., Battilana and Lee, 2014). In particular, this
legal status keeps managers of socially responsible firms accountable not only for their

30Appendix Table C14 runs similar OLS regressions for different deciles of the weekly fraction donated on
a dummy variable that is one after the entry. These OLS regressions also account for the average number
of weekly bidders and the average fraction donated in the previous week, as well as month and year fixed
effects. The estimates indicate that after the entry, the distribution of the fraction donated shifted towards
left by sharply reducing the number of auctions where the firm donates considerably.

31Appendix Table C15 shows the estimates from poisson and IV regressions of the number of bidders
on covariates. The reserve price is instrumented with the average reserve price and the avera number of
pictures displayed on each listing across concurrent auctions as in previous analyses. The results show a
statistically significant, but economically negligeable drop in the number of bidderes after the entry.
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company’s financial performance but also for their social performance. 35 U.S. states and
the District of Columbia now legally recognize benefit corporations, and legislators across
Europe are in the process of approving laws promoting social impact firms. Understanding
the objective of these firms and their market conduct is, therefore, an important economic
question for economically informed policy-making.

9 Conclusions

What is the broader purpose of a firm? I provide evidence that a firm’s objective can extend
beyond profit maximization to include also social responsibility. The analysis focuses
on a socially-responsible for-profit firm that offers auctions of celebrities’ belongings.
To purchase memorabilia that will be consequently auctioned on the company’s online
platform, the firm bargains with item providers – mainly charities and celebrities. The two
parties also decide what fraction of the transaction price is donated back to the charity after
the auction. Consumers know beforehand the fraction that will be donated. I show that
social responsibility – i.e., the donations – impact both revenues and costs, and compare
actual donations with the profit-maximizing benchmark. The results from a structural
model of demand and supply indicate that the firm could increase its profits substantially
by behaving optimally. I exploit a change in the equity structure of the firm to connect
this result to the firm’s prosocial inclinations. The analysis also indicates that consumers’
willingness to pay minimally responds to giving, even though donations are especially
salient in this environment. Therefore, demand is not a likely driver of firms’ investments
in social responsibility.
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Tables and Figures

Table 1: Relation between the transaction price and fraction donated

Transaction price (I) (II) (III) (IV)

Fraction donated (q) 87.147∗∗∗ 84.083∗∗∗ 85.604∗∗∗ 94.227∗∗∗

(15.261) (15.555) (16.534) (17.226)
Reserve price 0.823∗∗∗ 0.825∗∗∗ 0.819∗∗∗ 0.812∗∗∗

(0.037) (0.037) (0.040) (0.041)
Number of bidders 4.966∗∗∗ 5.081∗∗∗ 4.476∗∗∗ 4.127∗∗

(1.705) (1.717) (1.710) (1.719)

Main variables Y Y Y Y
Add. charity dummies Y Y Y
League/match dummies Y Y
Time dummies Y

Adjusted R-squared 0.567 0.568 0.581 0.592
BIC 14,049 14,065 14,135 14,211
N 1,109 1,108 1,108 1,108

Note: OLS regression of log of the transaction price on covariates. Control variables are defined in Appendix
B. Robust standard errors in parenthesis.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table 2: Relation between the rate of daily bidders and percentage donated

Number of daily bidders (I) (II) (III) (IV)

Fraction donated (q) 0.032 0.050 –0.000 0.029
(0.055) (0.057) (0.059) (0.058)

Main variables Y Y Y Y
Add. charity dummies Y Y Y
League/match dummies Y Y
Time dummies Y

Pseudo R-squared 0.125 0.127 0.139 0.151
N 1,108 1,108 1,108 1,108

Note: Poisson regression of the number of bidders on covariates. The length of the auction is used as
exposure variable. Control variables are defined in Appendix B. Robust standard errors in parenthesis.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Table 3: Estimated altruistic demand parameters

Number of bidders α β
Quantile n [95% CI] [95% CI]

99% 16 17.4% 42.7%
[7.6%, 26.8%] [23.2% 57.7%]

95% 14 17.2% 42.7%
[7.5%, 25.2%] [18.7% 56.1%]

90% 12 16.9% 42.7%
[7.3%, 25.5%] [20.7% 57.6%]

75% 10 16.5% 42.6%
[6.8%, 25.7%] [21.4% 60.3%]

50% 7 15.5% 42.4%
[6.0%, 23.5%] [19.8% 57.5%]

Note: The table displays results from the structural estimation of α and β for selected quantiles of the
distribution of the number of bidders. The preference parameters α and β represent the additional utility
due to somebody else’s donations or due to the bidder’s own donation, respectively. Refer to equation 4.1 in
Section 4 for more information. The 95% confidence intervals are reported in square brackets. The CI are
found by bootstrap with replacement (401 times). Dataset restricted to all auctions such that q ∈ {10%,85%}.
730 observations in total.
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Table 4: Evidence of bargaining

Fraction donated (q) (I) (II) (III) (IV)

August 0.070∗∗ 0.074∗∗

(0.029) (0.030)
July & August 0.077∗∗∗ 0.068∗∗∗

(0.022) (0.024)

Main variables Y Y Y Y
Add. charity dummies Y Y
League/match dummies Y Y

Adjusted R-squared 0.311 0.354 0.316 0.357
N 1,109 1,109 1,109 1,109

Note: The table displays estimates from OLS regressions of the fraction donated on covariates. The top
panel shows the coefficients of the dummy variables August (1 if the month is August, 0 otherwise) and July
and August (1 if the month is either July or August, 0 otherwise) as in equation (7.1) Control variables are
defined in Appendix B. Control variables are defined in Appendix B. Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Table 5: Cost estimation

(I) (II)
Costs: Quadratic Cubic

π0 (constant term) 236.60∗∗∗ 250.26∗∗∗

(15.18) (94.31)
π1 (linear term) -428.99∗∗∗ -596.09

(82.58) (1101.82)
π2 (quadratic term) 211.92∗∗∗ 578.10

(81.22) (2326.45)
π3 (cubic term) -222.24

(1365.89)

Adjusted R-squared 0.591 0.582
BIC 11,926 11,973
N 1,108 1,108

Note: The table displays estimates from OLS regressions of the recovered procurement cost on a quadratic
(Column I) and a cubic (Column II) polynomial expansion of q. π0 is the intercept, while π1,π2 and π3 refers
to the linear (q), quadratic (q2) and cubic term (q3). Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Figure 1: Number of auctions by percentage donated
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Note: The barplot displays the number of auctions available in the dataset by percentage donated. The plot
includes only auctions of items for a price in (e 100, e 1,000) with reserve price was greater than 0, at least
two bidders and minimum increment not greater than e 25. There are 1,189 auctions in total. Charitystars
generally withholds at least 15% of the final price and therefore all auctions whose percentage donated is
above 85% are excluded from the analyses as these are special one-off charitable events (black columns).
However, non-standard auctions are also counted in when computing variables such as those accounting
for the number of auctions hold for the same player or for the same team in the past two and three weeks
respectively.
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Figure 2: The impact of a change in q on bids and revenues

(a) Derivative of the bid with respect to α

0 line

−30

−10

10

30

50

0 25 50 75 100
Private values

D
e
ri

va
ti
ve

 o
f 
b
id

 w
.r

.t
. 

 q

 α = 0.7, β = 0.9, σ = 20
 α = 0.7, β = 0.5, σ = 20
 α = 0.7, β = 0.5, σ = 80

(b) The revenue maximizing donation (qR)
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Note: Panel a. The figure reports the analytical derivative of the bid function equation 4.2 w.r.t. q. q = 85%
and F(·) is a truncated normal in [0,100] with mean 50 and standard deviation σ. Panel b. The figure shows
the optimal percentage donated (qR) obtained at the intersection of the elasticity of the expected winning bid
with respect to q and the curve q/(1− q). Values of the elasticity and q/(1− q) (solid and dotted curves) are
on the left vertical axis. The right axis shows the net revenues (dashed curve) (or second-highest bid times
(1− q)): (1− q)

∫
v b(v)dF(2)

(n)(v)). The distribution of values F(v) is uniform on [0,100], α = 0.5, β = 0.7 and
there are two bidders.

Figure 3: Out-of-sample validation
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Note: The plot compares the density of the private values estimated from the structural model employing
data from auctions with q = {10%,85%} and the density of the private values obtained projecting the
three-step estimation procedure on the q = 78% auctions. The null hypothesis (equality) cannot be rejected
at standard level (p-value: 0.1874). The estimations assume n = 16, a Gaussian kernel and Silverman’s
rule-of-thumb bandwidth (Silverman, 1986). The density f (v) is approximated using a cubic spline.
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Figure 4: Charity premium

(a) Gross revenues and charity markup
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(b) Net revenues and elasticity of demand
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Note: Panel a. The plot displays the expected gross revenues to Charitystars at the estimated primitives
(solid line), the revenues from a similar second-price non-charity auction (dotted line), and the charity
markup (dashed line, right axis). Panel b. The plot displays the expected net revenues (dashed line, right
axis), the elasticity of the winning bid (solid line, left axis) and the ratio q/(1− q) (dotted line, left axis)
for varying levels of q. The density f (v) and the distribution F(v) are approximated using a cubic spline.
Revenues assume that the number of potential bidders is 7 in both plots.
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Figure 5: Optimal donation

(a) Optimal fraction donated
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(b) Optimal profits
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Note: Panel a. The plot displays the optimal fraction donated as the intersection of marginal costs (dotted
and dashed lines) and net benefits (solid line). The marginal costs are estimated using quadratic polynomials
(dotted line) and cubic polynomials (dashed line). Panel b. The plot displays how profits change with the
fraction donated (q). The vertical line at 85% indicate the median donation by Charitystars. The density f (v)
and the distribution F(v) are approximated using a cubic spline. Profits are computed as net revenues minus
costs as in the quadratic polynomials case. Marginal revenues assume that the number of potential bidders
is 7 in both plots.
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Online Appendix
A Theoretical Appendix

A.1 Lemma A1
This lemma show conditions for b(v) = v when α ≥ β and b(v) = v/(1− qβ) when α < β. These
results are necessary to prove Lemma 1.

Lemma A1. Assume that α ≥ β. The bid function b(v) crosses the 45◦ line only once if b(v) ≥ v, and
either never or two times if b(v) < v.

Proof: Case 1: b(v) ≥ v. The bid function evaluated at the upper bound, b(v) = v
1+qα−qβ implies

that b(v) < v.1 Thus, given this, one need to show that there exists only one v̂ such that b(v̂) ≤ v̂
∀v ∈ [v, v̂] and b(v̂) < v̂, then b(v) < v ∀v ∈ (v̂,v] .

The following condition holds at b(v) = v

(α− β)q =
1
v

∫ v

v

(1− F(x)
1− F(v)

) 1−qβ
qα +1

dx,

which is obtained substituting b(v) = v in the left-hand side of equation 4.2. Multiplying both sides
of the equation by (1/qα) · f (v)/[1− F(v)] gives

1
qα

f (v)
1− F(v)

(α− β)q =
1
v

∂b(v)
∂v

, (A.1)

where the right-hand side includes the derivative of the bidding function w.r.t. v, which is positive
because

∂b∗(v;α, β,q)
∂v

=

 1
qα

∫ v
v

(
1−F(x)
1−F(v)

) 1−q·β
q·α +1

dx f (v)
1−F(v) > 0, if α > 0∧ q > 0

1
1−qβ > 0, if α = 0∨ q = 0.

(A.2)

Assume that there are three values v1 < v2 < v3 such that the bid computed at each value is
equal to the value itself. Given that b(v) is differentiable and b(v) , v for v < {v1,v2,v3}, it must
be that b(v) < v for v ∈ (v1,v2) and v ∈ (v3,v] and b(v) > v for v ∈ (v,v1) and v ∈ (v2,v3). The
increasing hazard rate property gives

1
qα

f (v2)

1− F(v2)
(α− β)q >

1
qα

f (v1)

1− F(v1)
(α− β)q,

1
qα

f (v3)

1− F(v3)
(α− β)q >

1
qα

f (v2)

1− F(v2)
(α− β)q.

1This result is obtained by applying L’Hospital’s rule to
∫ v

V

(
1−F(x)
1−F(V)

) 1−qβ
qα +1

dx and because of the increas-
ing hazard rate assumption.
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Because equation A.1 must hold at v1,v2 and v3, it implies that

∂b(v2)
∂v2

∂b(v1)
∂v1

>
v2

v1
> 1 and

∂b(v3)
∂v3

∂b(v2)
∂v2

>
v3

v2
> 1,

a contradiction. While the ratio of the derivative at v2 and v1 must be larger than 1, as the curve
intersects the 45◦ line from below the line, this cannot happen at v3 and v2, because the intersection
happens from above the line. The bid function crosses the 45◦ line at v2 from below, while it crosses
the same line from above at v3, implying

∂b(v3)

∂v3
<

∂b(v2)

∂v2
.

Figure A1b provides a graphical representation. Because v1,v2 and v3 are arbitrary values, the proof
holds for all v. Given that b(v) ≥ v, b(v) < v and because b(v) cannot cross the 45◦ line more than
twice without violating the increasing hazard rate property, it must be that b(v) = v at most once.

Case 2: b(v) < v. This case follows immediately from the previous derivation, given that b(v)
cannot cross the 45◦ line more than twice without violating the increasing hazard rate assumption.
This implies that b(v) = v for either two values v1 and v2 or no value at all. In this case, in order to
respect the increasing hazard rate property, the bid function meets the diagonal line from below at
the first cutoff and from above at the second cutoff, making a cutoff like v3 infeasible. �

A.2 Proof of Lemma 1
Bids are
- increasing in q if β ≥ α;
- decreasing in q in the interval (ṽ,v], where ṽ ∈ [v,v], if α > β.

Proof: Assume q > 0 and let α̃ = q · α and β̃ = q · β. First we analyze the derivative of b(v) w.r.t. q
when α = 0, which is:

∂b∗(v;α = 0, β,q)
∂q

=
βv

(1− β̃)2
> 0.

The derivative in this case is always positive as β < 1 and q < 1, meaning that bids increase in q.
Turn now to the derivative with respect to q when α is positive. This proof has multiple steps.

(step 1) I establish that for β ≥ α > 0 the bid is increasing in q ∀v. (step 2) I focus on the remaining
case (β < α) and show that the derivative of the bid w.r.t. q can have both positive and negative
values. (step 2.a) I show that, at the value such that the derivative is zero (called ṽ), if the bid is
larger than the value the derivative of b(v) w.r.t. q is decreasing. (step 2.b) In the final step, I show
conditions for the uniqueness of ṽ.

Step 1: β ≥ α > 0 . The derivative of equation 4.2 w.r.t. q for α > 0 is

∂b∗(v;α > 0, β,q)
∂q

=

∫ v
v

(
1−F(x)
1−F(v)

) 1+α̃−β̃
α̃
(
− α(1+α̃−β̃)

α̃2 log 1−F(x)
1−F(v) − (α− β)

)
dx− (α− β)v

(1 + α̃− β̃)2
. (A.3)

An application of the L’Hospital’s Rule shows that the integral is continuous and finite everywhere
with respect to x. Inspection of this equation reveals that is positive if β ≥ α. Therefore, bids are
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increasing in q if β > α for all v.

Step 2: 0 < α < β . Under this configuration, equation A.3 crosses the x-axis at ṽ s.t. ∂b(v)
∂q |v=ṽ = 0.

Rewriting equation A.3 and evaluating it at ṽ yields

−
∫ v

v

(
1− F(x)
1− F(v)

) 1+α̃−β̃
α̃ α(1 + α̃− β̃)

α̃2 log
1− F(x)
1− F(v)

dx = (α− β)

v +
∫ v

v

(
1− F(x)
1− F(v)

) 1−β̃
α̃ +1

dx

∣∣∣∣∣
v=ṽ

= (α− β)(1 + α̃− β̃)b(ṽ).
(A.4)

where the second line replaces the expression to the right-hand side with the optimal bid function
in equation 4.2. Thus, equation A.3 can be either positive or negative.

Step 2.a. This step shows that equation A.3 is decreasing at ṽ if b(ṽ) ≥ ṽ. Given that the right-hand
side of equation A.4 is increasing in v everywhere, it will also be increasing in v at ṽ. To show that
there is at most one ṽ, it suffices to show that the left-hand side is a decreasing function of v, at ṽ.
The derivative of the left-hand side w.r.t. v is

−
∫ v

ṽ

(
1− F(x)
1− F(ṽ)

) 1−β̃
α̃ +1

α
1 + α̃− β̃

α̃2

(
1 +

1 + α̃− β̃

α̃
log

1− F(x)
1− F(ṽ)

)
dx

f (ṽ)
1− F(ṽ)

, (A.5)

while the derivative of the right-hand side can be rewritten as

(α− β)(1 + α̃− β̃)

α̃

(
b(ṽ)(1 + α̃− β̃)− ṽ

)
f (ṽ)

1− F(ṽ)
. (A.6)

Putting together equation A.5 and equation A.6 and using equation A.4 to rewrite equation A.5 in
terms of bids and values, equation A.3 is decreasing at ṽ if

−
(
b(ṽ)(1 + α̃− β̃)− ṽ

)
α

1 + α̃− β̃

α̃2 + (α− β)
(1 + α̃− β̃)2

α̃
b(ṽ)

≤ (α− β)(1 + α̃− β̃)

α̃

(
b(ṽ)(1 + α̃− β̃)− ṽ

)
⇒ b(ṽ) ≥ ṽ.

This means that equation A.3 is positive at the left of ṽ and negative to the right of ṽ. Therefore,
as long as the equilibrium bid at the cut-off value ṽ is greater than the cut-off itself, bids will be
decreasing in q for all v > ṽ, if α > β.

Step 2.b. When α > β, the limit of equation A.3 for v→ v is negative. In fact, under the increasing
hazard rate condition (Assumption 1) applying L’Hospital’s rule to the first term (in the numerator)
of equation A.3 yields

lim
v→v

∫ v
v (1− F(x))

1+α̃−β̃
α̃

(
− α(1+α̃−β̃)

α̃2 log 1−F(x)
1−F(v) − (α− β)

)
dx

(1 + α̃− β̃)2 (1− F(v))
1+α̃−β̃

α̃

= 0,

while the limit of the remaining part is limv→v−(α− β)v = −(α− β)v < 0. There are two cases: in
Case 1 ṽ is unique and in Case 2 either ṽ does not exist or there are two ṽ.

Step 2.b: Case 1. The first case assumes b(v) ≥ v. To show that ṽ is unique I merge two results: (i)

3



the limit of equation A.3 is negative at the upper bound of the support of v, and (ii) there is no
region on the support of v such that b(v) < v inside the region and b(v) > v outside the region.
Therefore, equation A.3 cannot switch sign from negative to positive and back to negative again,
implying that if ṽ exists, it is unique.

Recall from Lemma A1 that when b(v) ≥ v, b(v) intersects the 45◦ line only once at, say, ˜̃v such
that b(v) > v for v < ˜̃v and b(v) < v for v > ˜̃v. The result in step 2.a coupled with the requirements
(i) that equation A.3 is negative when evaluated at the upper bound, (ii) that equation A.3 is
continuous on the support of v, and (iii) Lemma A1, necessarily means that equation A.3 cannot
switch sign more than once. Therefore, ṽ < ˜̃v as otherwise ∂b(v)/∂q|v=v > 0. In fact, equation A.3
is increasing at ṽ for ṽ ≥ ˜̃v, which implies that equation A.3 is positive for v > ṽ. Then, equation
A.3 must switch sign again to negative in order to satisfy the ∂b(v)/∂q|v=v < 0 condition, but this
is not possible in this region because of ˜̃v is unique and b(v) < v for v > ṽ ≥ ˜̃v. (see Figure A1a).

In addition, the uniqueness of ˜̃v implies that ṽ does not exists if equation A.3 is negative at
v. In this case, the derivative of the bid w.r.t q will always be negative. Therefore, if ṽ exists, it is
unique and separates those who increase their bid (low value bidders) from those who decrease it
(high-value bidders).

Step 2.b: Case 2. The second case assumes b(v) < v. Lemma A1 proves that there are either no ˜̃v or
that there are exactly two ˜̃v so that the bid function cuts the 45◦ line twice. It follows that there exist
either no cutoff or exactly two ṽ = {ṽ1, ṽ2} such that equation A.3 is increasing at ṽ1 and decreasing
at ṽ2, with ṽ1 < ṽ2 because the limit of equation A.3 is negative at the upper bound. In fact, it must
be that b(ṽ1) < ṽ1 and b(ṽ2) > ṽ2.

Hence, when α > β there exists a value ṽ such that (at least some) bidders with values below ṽ
increase their bids, while all bidders with values above ṽ decrease it after a marginal increase in q.
When instead α ≤ β all bidders increase their bids after a marginal increase in q. �

Figure A1: Illustration of the proofs of Lemma 1 and Lemma A1
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Note: Panel (a) shows the effect of a marginal increase in q when α > β assuming that b(v) > v. The
complementary case would show two ṽ, such that the derivative (dotted line) is negative for the lowest value
bidders, positive for the bidders with values between ṽ1 and ṽ2 and negative for the highest value bidders.
Panel (b) shows that the bid is steeper at v2 than at v3. Lemma A1 states that if b(v) oscillates around the 45◦

line it violates the increasing hazard rate assumption.
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A.3 Proof of Proposition 1

Define η(pe,q) = ∂pe

∂q
q
pe as the elasticity of the expected price, pe, to the donation, q. When α = 0, the

auctioneer should not donate. When α > 0, the revenue maximizing donation solves η(pe(qR),qR) =
qR

1−qR
.

Proof: The auctioneer’s expected revenues can be written as:

E[R(α, β, F(v);q)] =


∫ v

v (1− q) · 1
1+q·(α−β)

{
v +

∫ v
v

(
1−F(x)
1−F(v)

) 1−q·β
q·α +1

dx
}

dF(2)
(n)(v), if α > 0 and q > 0∫ v

v (1− q) · v
1−q·β dF(2)

(n)(v), if α = 0 or q = 0.

Assuming q > 0, there are two cases depending on whether α = 0 or α > 0.

Case 1: α = 0. The derivative of the expected revrenues w.r.t. q is negative as β ∈ (0,1). Therefore,
the auctioneer is always better off by setting q = 0.

Case 2: α > 0. To simplify the notation, given α and β, denote the bid of a bidder with valuation
v in an auction where q̃ is donated by b(v, q̃). The expected net revenue in a second-price charity
auction is ∫ v

v
(1− q)b(v,q)dF(2)

(n)(v).

Denote the expected price by pe =
∫ v

v b(v,q)dF(2)
(n)(v) and let η be the elasticity of the expected

price to a marginal change in q: η = ∂ ln pe

∂ lnq = ∂pe

∂q
q
pe . By the dominated convergence theorem, the

derivative of the expected price with respect to q can be rewritten as ∂pe

∂q =
∫ v

v
∂b(v,q)

∂q dF(2)
(n)(v). Using

the elasticity formula,
∫ v

v
∂b(v,q)

∂q dF(2)
(n)(v) = η

pe

q .
The optimal franction donated is the q that solves the FOCs of the auctioneer’s problem (the

second-order conditions are satisfied):∫ v

v
−b(v,q) + (1− q)

∂b(v,q)
∂q

dF(2)
(n)(v) = 0.

Substituting ηpe for the derivative of the bid, the optimal q is given by η = q
1−q . �

A.4 Proof of Proposition 2
Under Assumptions 1 and 2, {F(v),α, β} are nonparametrically identified by observing two identical
auctions with different fractions donated.

Proof: Assume first that all bids are observed as in a second-price auction. To simplify the notation
I denote a bid only by b(v) and the bid distribution, density and hazard by G(b), g(b) and λG(b),
respectively. The researcher observes two types of auction, A and B, and the only difference among
them is the fraction of the transaction price that will be donated, i.e. qA , qB.

Because the distribution of values F(·) is the same across auctions A and B by Assumption 2,
then for each value corresponding to the τ-quantile of the value distribution, vx, the distribution of
bids computed at that τ-quantile must be equal, i.e. G(bx|qA) = G(bx|qB). Therefore, after rewriting
the first order condition for each set of auctions as in equation 5.1 I can match the FOCs from the
two auctions based on the quantiles of the bid distribution. This gives the following equation for
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each quantile of vx:

vA
x − vB

x = bA
x − bB

x + (α− β) · (qA · bA
x − qB · bB

x )− α · (qA · λG(bA
x )− qB · λG(bB

x )), (A.7)

where G(bx) = G(bA
x ) = G(bB

x ). Since vA
x − vB

x = 0, eq. A.7 can be rewritten in matrix notation as

∆(bx) = Bx ×
[

α− β
−α

]
, (A.8)

where ∆(bx) = −(bA
x − bB

x ) and Bx is the matrix [qAbA
x − qBbB

x ; qA · λG(bA
x )− qB · λG(bB

x )].
The matrix Bx has full rank because the two columns are linearly independent. To prove

this assume to the converse that Bx is not invertible and therefore that its columns are linearly
dependent (i.e. bx = k · λG(bx) for both auctions A and B). It follows that G(bx) = 1− bx · g(bx)/k
for a constant k > 0. Note that k must be positive because otherwise G(bx) > 1 as g(bx) ≥ 0,∀bx.
The previous differential equation admits a solution g(bx) = c · (bx)−(k+1), where c is an integration
constant. Thus, G(bx) = 1− c · (bx)−k/k. Evaluating the CDF at bx = 0 yields G(0) = −∞, ∀k > 0.
Moreover, the inverse hazard rate

λG(bx) =
1− 1 + c · (bx)−k/k

c · (bx)−(k+1)
=

bx

k
for k > 0,

is increasing in bx. This implies that

1− F(vx)

f (vx)
=

1− G(b(vx))

g(b(vx)) · b′(vx)
=

1
k

b(vx)

b′(vx)
,

which is an increasing function because (i) the optimal bidding function b(v) is increasing in the
private value vx and (ii) the bidding function b(vx) maximizes a bidder’s utility (b′′(vx) ≤ 0). This
means that the inverse hazard rate is not decreasing and that therefore b(vx) is not a best response
for vx. This is a contradiction, which proves that the columns in Bx are not linearly dependent and
that Bx is invertible.2 Given that Bx has full rank, α, β and F(v) are nonparametrically identified.

To extend this result to Charitystars’s auctions, note that the distribution of the winning bid
(Gw(b)) is identified from the data. In equilibrium, the distribution of the winning bid is equal
to the distribution of the second-highest bid (Gw(b) = G2

(n)(b)). Therefore, G(b) is found as the
root (in [0,1]) of Gw(b)− nG(b)n−1 + (n− 1)G(b)n. The FOCs equation 5.1 can then be written for
each {α, β}. Therefore, one can apply the same logic shown above, and identify α, β. Finally, with
knowledge of the couple {α, β}, the distribution of private values, F(v), is identified from the FOCs
equation 5.1 of the winning bids. �

A.5 Proof of Corollary 1
Corollary 1. α, β and F(v) are also nonparametrically identified when the dataset includes more than 2
types of auctions.

Proof: To simplify the notation I denote a bid only by b(v) and the bid distribution, density and

2If k = 1, then g(bx) = 0 for bx < 0 and g(bx) > 0 for bx ≥ 0. Therefore g(·) is the Dirac delta function,
which is not differentiable and does not admit a decreasing inverse hazard rate. In turn, given that F(v) =
G(b(v)), the non-differentiability of G(·) implies that also the distribution of values F(·) is not differentiable,
a contradiction.
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hazard by G(b), g(b) and λG(b), respectively. Assume that q has dimension KC and that Kx quantiles
of the distribution of values are observed. The FOC equation 5.1 in matrix notation becomes

V
Kx × KC

= (α− β)× B
Kx × KC

× QC

KC × KC

+ B
Kx × KC

−α× Λ
Kx × KC

× QC

KC × KC

, (A.9)

where V is a matrix of dimension Kx × KC displaying the value vx for the x−quantile (row) in
auction of type C (column), and 0 otherwise. Similarly, QC is a diagonal matrix with entries equal
to the percentage donated qC and 0. The other matrices are defined as:

B =

b1
0 b2

0 . . . bKC
0

...
...

. . .
...

b1
1 b2

1 . . . bKC
1

 , Λ =

λ1
G(b

1
0) λ2

G(b
2
0) . . . λKC

G (bKC
0 )

...
...

. . .
...

λ1
G(b

1
1) λC2

G (b2
1) . . . λKC

G (bKC
1 )

 ,

where superscripts indicate that the franction donated is equal to qj for j ∈ [1,KC] and subscripts
indicate the x− quantiles of the distribution of values or bids.

There exists a projection M (with rank KC − 1) such that V ×M = 0. Postmultiplying equation
A.9 by M and moving terms, the following equation represents the FOC where the dependent
variable is a known object

−B×M = (α− β)× B×QC ×M− α×Λ×QC ×M.

After stacking the matrices in vectors, the last equation can be represented by the system of
equations

y =
[
b l

]
×
[

α− β
−α

]
,

where y = vec(−B× M),b = vec(B× QC × M), l = vec(Λ× QC × M), and vec(·) indicates the
vectorization of the matrices in parentheses.

Nonparametric identification requires showing that b and l are linearly independent, which
follows directly from the argument in the proof of Proposition 2 in Appendix A.4. Hence, b and l
are not linearly dependent, establishing identification of α, β and F(v). �

A.6 The Bargaining Problem
This section provides a micro foundation to the condition for the optimal q∗ in equation 7.2 in
Section 7. The surplus to the firm is the difference of the net revenues (1− q)p and the procurement
cost κ. For simplicity, κ does not vary with q. Item providers (i.e., charities and celebrities) care for
the amount that is ultimately donated. For simplicity they incur no cost in giving the item. The
bargaining weights are ω for the firm and 1−ω for the provider. In this bargaining framework, q
maximizes (

(1− q)pe − κ
)ω · (qpe + κ)1−ω,

where pe denotes the expected highest price, and is a function of the distribution of values, the
charity parameters (i.e., α and β), the number of bidders and q. The first-order condition with
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respect to q can be rearranged to obtain

− pe

(
(1−ω) ((1− q) pe − κ)

ωκ + q ((1− q) pe − κ)

)
=

1− q
q

ηpe − pe, (A.10)

where η is the elasticity of the expected price to a change in q. The right-hand side is the same as in
equation 7.2, while the left-hand side is a function of the primitives.

The left-hand side can be interpreted as the marginal cost of the monopolist problem as in
Section 7 (c′(q)). When ω = 1, all bargaining power is in the hand of Charitystars, the left-hand side
becomes 0, and the optimal q∗ solves η = q

1−q , as in the revenue maximization case (see Proposition
1). Because there is no bargaining, setting a greater q does not yield any cost savings (i.e., c′(q) = 0).
Since Charitystars sets the reserve price to break even, the fraction in parenthesis on the left-hand
side is always positive (i.e., (1− q)pe > κ). Therefore when 0≤ ω < 1, the left-hand side is negative,
implying negative marginal costs in the model in Section 7.

Finally, the left-hand side in equation A.10 can be rearranged by adding and subtracting 1/q in
the term in parentheses

−pe

(
− ω

q
κ + q ((1− q) pe − κ)

ωκ + q ((1− q) pe − κ)
+

1
q

)
≈ − pe

q
(1−ω),

which gives a clean interpretation of the marginal cost in terms of the bargaining weight and
primitives of the model.
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B Data Description
The data was collected using a Python script that searched a list of keywords across the pages
dedicated to soccer items on the company website, available at http://www.charitystars.com.
The script would gather all the available information regarding the auction, the charity, the listing
and the bid history. This information was augmented with data from other sources. For example, a
similar python script was used to recover footballers’ quality scores from a renowned videogame
(FIFA). Information on each charity’s mission was obtained from both Charitystars as well as each
charity’s website.

The analysis considers only a subset of the available auctions (see Section 2), according to the
following conditions: (i) transaction prices higher than the reserve price, (ii) reserve prices greater
than zero, (iii) two or more bidders, (iv) minimum increment is within e 25 and (v) maximum
donation of 85% of the final price.

B.1 Description of the Variables
The regressions in Section 2 and in the Appendix display only some of the actual variables used in
the analyses due to space limitations. These variables were distinguished in four groups based on
their relevance.

1. Main Variables: these are the variables used in all regression tables and in the structural model.
They are listed in Table B1 and their meaning is described by their label. Some variables
whose meaning is not immediately clear are described in the following list:

• The variable Length counts the number of days between the first bid and the closing
date (the listing date of the auction is unknown).

• The dummy Extended time is 1 if two or more bidders placed a bid in the last minutes of
the auction. In this case the time is extended until all but 1 bidders drop out

• Auctions within 3 weeks (same team) counts the number of auctions listing jerseys of the
same team as the one of the auctioned item. It only includes auctions within a 3 week
window from the end of the auction. It considers all auctions not only those with final
price larger than e 100 and smaller than e 1000.

• Auctions up to 2 weeks ago (same player/team) counts the number of auctions for a jersey
worn by the same player playing with the same team in the same year as the match of
the jersey that is auctioned. It considers all the listings up to 2 weeks from the end of the
auction (Charitystars’s auctions last between 1 and 2 weeks). It considers all auctions
not only those with final price larger than e 100 and smaller than e 1000.

• Count auctions same charity is a progressive count of the number of listings for each
charity.

• The dummy Player belongs to FIFA 100 list is 1 if the player is in the FIFA 100 list (the list
of the best soccer players ever).

• The variable Number of goals scored is equal to the number of goals scored by the player
with the auctioned jersey in a particular match if this number is mentioned in the
content of the listing. It is zero otherwise.

• The dummy Player belongs to an important team is 1 if the player plays for one of the fol-
lowing teams (alphabetic order): AC Milan, Argentina, Arsenal FC, AS Roma, Atletico
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de Madrid, Barcelona FC, Bayern Munich, Belgium, Borussia Dortmund, Brazil, Chelsea
FC, Colombia, England, FC Internazionale, France, Germany, Italia, Juventus FC, Liver-
pool FC, Manchester City, Manchester United, Netherlands, PSG, Real Madrid, Sevilla
FC, Spain, SS Lazio, SSC Napoli, Uruguay. 3

2. Add. Charity Dummies: this group includes dummies for heterogeneity across charities based
on the mission of each charity. These dummies are not exclusive bins as most charities do
more than only one activity. There are 101 different charities in total. The dummy variables
used

• Helping disables individuals for charities involved in assistance to disable subjects.

• Infrustructures in developing countries for charities building infrastructures in developing
countries.

• Healthcare for charities dealing with healthcare and health research.

• Humanitarian scopes in developing countries for charities helping people in situation of
poverty and undernourishment.

• Children’s wellbeing for charities providing activities (e.g., education and sport) to the
youth.

• Neurodegenerative disorders for charities helping those suffering from neurodegenerative
disorders.

• Charity belongs to the soccer team are charities linked to a football team.

• Improving access to sport charities give opportunity of integration through sport activities.

• Italian charity.

• English charity.

3. League/Match Dummies: these are dummies for soccer league and match heterogeneity. They
include:

• Dummies for each major competition (Champions League, Europa League, Serie A, Italian
Cup, Premier League, La Liga, Copa del Rey, European Supercup, Italian Supercup, Spanish
Supercup, UEFA European Championship, Qualifications to UEFA European Championship,
World Cup, Qualification to the World Cup4).

• Dummies weather the listings mentions that the match was won (Won) and for unoffi-
cial/replica jerseys which are not worn but only signed (Unofficial). There are only 79
jerseys in the dataset that are replica, and they are all signed by the player.

4. Time Dummies: this group include Month dummies (12 variables) and Year dummies (2
variables).

3In unreported analysis player quality was accounted also using the players’ evaluation from the
videogame FIFA. These variables do not affect prices significantly and are dropped.

4All remaining competitions are treated as friendly matches.
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Table B1: Summary statistics

Variable Mean St.Dev. Q(25%) Q(50%) Q(75%)

Auction characteristics
Percentage donated (q) 0.70 0.27 0.78 0.85 0.85
Transaction price in e 364.25 187.50 222.00 315.00 452.50
Reserve price in e 179.03 132.02 100.00 145.00 210.00
Minimum increment in e 1.71 3.15 1.00 1.00 1.00
Number of bidders 7.83 3.27 5.00 7.00 10.00
Number of bids placed 24.97 18.36 11.00 20.00 34.00
Sold at reserve price (b) 0.04 0.20 0.00 0.00 0.00
Length (in # days) 8.08 3.07 7.00 7.00 7.00
Extended time (b) 0.43 0.50 0.00 0.00 1.00

Web-listing details
Length of description (in # words) 141.89 42.11 123.00 140.00 161.25
Content in English (b) 0.30 0.47 0.00 0.00 1.00
Content in Spanish (b) 0.00 0.07 0.00 0.00 0.00
Length of charity description (in # words) 123.47 56.62 107.00 107.00 120.00
Number of pictures 5.67 1.98 5.00 6.00 7.00
# of auctions within 3 weeks (same team) 1.46 4.08 0.00 0.00 1.00
# of auctions up to 2 weeks ago (same player/team) 5.06 7.92 0.00 1.00 7.00
Count auctions same charity 128.35 151.94 14.00 54.00 216.50

Player and match characteristics
Player belongs to FIFA 100 list (b) 0.11 0.31 0.00 0.00 0.00
Unwashed jersey (b) 0.09 0.29 0.00 0.00 0.00
Jersey is signed (b) 0.52 0.50 0.00 1.00 1.00
Jersey is signed by the team players/coach (b) 0.06 0.24 0.00 0.00 0.00
Jersey worn during a final (b) 0.03 0.17 0.00 0.00 0.00
Number of goals scored 0.03 0.20 0.00 0.00 0.00
Player belongs to an important team (b) 0.88 0.32 1.00 1.00 1.00

Charity provenience
Charity is Italian (b) 0.90 0.29 1.00 1.00 1.00
Charity is English (b) 0.08 0.28 0.00 0.00 0.00

Charity’s activity
Helping disables individuals (b) 0.35 0.48 0.00 0.00 1.00
Infrustructures in developing countries (b) 0.09 0.29 0.00 0.00 0.00
Healthcare (b) 0.23 0.42 0.00 0.00 0.00
Humanitarian scopes in developing countries (b) 0.14 0.34 0.00 0.00 0.00
Children’s wellbeing (b) 0.84 0.36 1.00 1.00 1.00
Neurodegenerative disorders (b) 0.06 0.23 0.00 0.00 0.00
Charity belongs to the soccer team (b) 0.10 0.29 0.00 0.00 0.00
Improving access to sport (b) 0.63 0.48 0.00 1.00 1.00

Note: Overview of the main covariates used in all specifications in the reduced form analysis and in the structural model.
Binary variables are denoted by (b). Prices are in Euro. If the listing is in GBP the final price is converted in euro using the
exchange rate of the last day of auction
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C Additional Tables

Table C1: Linearity of the relation between the logarithm of the transaction price and
percentage donated

(I) (II) (III) (IV)
log(Transaction price) OLS Q(0.25) Q(0.50) Q(0.75)

Fraction donated (q) 0.212∗∗∗ 0.228∗∗∗ 0.305∗∗∗ 0.334∗∗∗

(0.046) (0.054) (0.089) (0.079)

F-test of equality with OLS (p-value) 0.762 0.299 0.124

Main variables Y Y Y Y

Adjusted/pseudo R-squared 0.502 0.353 0.326 0.315
N 1,108 1,108 1,108 1,108

Note: The table displays estimates from OLS and quantile regressions of the logarithm of the transaction
price on covariates. The null hypothesis that the coefficient of the fraction donated (q) is the same in column
(II), (III) and (IV) is not rejected at 0.429 levels (F-test = 0.85). The last three columns report Pseudo R-squared
in place of Adjusted R-squared. The coefficients of the quantile regressions are plotted in Appendix Figure
D3. Control variables are defined in Appendix B. Robust standard errors in parenthesis.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C2: OLS and IV regressions for the transaction price.

(I) (II) (III) (IV)
Transaction price OLS IV IV IV

Fraction donated (q) 90.687∗∗∗ 141.796∗ 146.408∗ 182.071∗

(17.068) (84.163) (88.907) (96.339)
Reserve price 0.770∗∗∗ 0.807∗∗∗ 0.834∗∗∗ 0.803∗∗∗

(0.042) (0.181) (0.184) (0.193)
Number of bidders 12.793∗∗∗ 13.319∗∗∗ 13.341∗∗∗ 12.256∗∗∗

(1.480) (1.540) (1.597) (1.617)

First-stage F-stat 11.725 11.003 10.521
Weak-instrument p-value 0.001 0.001 0.001

Main variables Y Y Y Y
Add. charity dummies Y Y Y
League/match dummies Y Y

Adjusted R-squared 0.537 0.516 0.516 0.456
N 1,109 1,107 1,106 1,106

Note: The table displays estimates from OLS and IV regressions of the transaction price on covariates.
The reserve price and the fraction donated are instrumented using the average reserve price and average
fraction donated across all concurrent auctions (for each auction I take the average across all other auctions
ending in the previous and successive five days to the end of the auction). The middle panel reports the
Kleibergen-Paap Wald F statistic for the first-stage test and the Anderson-Rubin Wald test for the weak-
instrument test. For over-identification, the Sargan test is conducted including also the mean number of
bidders across concurrent auctions as an additional instrument. The test p-values for specifications analogous
to columns 2, 3 and 4 are 0.847, 0.817 and 0.145 respectively. The Hausman test (not reported) does not reject
the null hypothesis of exogeneity of the reserve price and q at common values. League/Match Dummies
are partialled out in Column 4. Control variables are defined in Appendix B. Robust standard errors in
parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C3: OLS and IV regressions for the number of daily bidders.

(I) (II) (III) (IV)
Number of daily bidders OLS IV IV IV

Fraction donated (q) 0.077 0.030 0.099 0.045
(0.054) (0.253) (0.268) (0.278)

First-stage F-stat 21.287 18.316 15.971
Montiel-Pflueger robust p-value 0.05 0.05 0.05
Over-id p-value 0.473 0.499 0.431

Main variables Y Y Y Y
Add. charity dummies Y Y Y
League/match dummies Y Y

Adjusted R-squared 0.296 0.269 0.270 0.160
N 1,109 1,107 1,106 1,106

Note: The table displays estimates from OLS and IV regressions of the number of daily bidders (ratio of
the Number of Bidders and Number of Days) on covariates. The fraction donated is instrumented using
the average fraction donated and the average reserve price across all concurrent auctions (within ±5 days).
The table reports the Kleibergen-Paap Wald F statistic for the first-stage test and the Montiel-Pflueger robust
weak instrument test. The Hausman test (not reported) does not reject the null hypothesis of exogeneity of
the reserve price and q at common values. League/Match Dummies are partialled out in column 4. Control
variables are defined in Appendix B. The reserve price and auction length are not included as covariates.
Control variables are defined in Appendix B. Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C4: Evidence of bargaining: IV regressions

(I) (II) (III) (IV)
Fraction donated (q) (OLS) (IV) (OLS) (IV)

August 0.074∗∗ 0.107∗∗∗

(0.030) (0.039)
July & August 0.068∗∗∗ 0.112∗∗∗

(0.024) (0.034)

First-stage F-stat 10.480 9.613
Weak-instrument p-value 0.022 0.004

Main variables Y Y Y Y
Add. charity dummies Y Y Y Y
League/match dummies Y Y Y Y

Adjusted R-squared 0.354 0.270 0.357 0.187
N 1,109 1,107 1,109 1,107

Note: The table displays estimates from OLS and IV regressions of the fraction donated on covariates. The
top panel shows the coefficients of the dummy variables August (1 if the month is August, 0 otherwise) and
July and August (1 if the month is either July or August, 0 otherwise) as in equation (7.1). The reserve price
and the number of bidders are instrumented using the average reserve price and the number of bidders
across all concurrent auctions (for each auction I take all the auctions ending in the previous and successive
five days to the end of the auction). The table reports the Kleibergen-Paap Wald F statistic for the first-stage
test and the Anderson-Rubin Wald test for the weak-instrument test. For over-identification (Sargan test)
the average number of pictures across concurrent auctions (±5 days ) is also included as an additional
instrument. The test p-value for specifications analogous to columns 2 and 4 are 0.166 and 0.221 respectively.
League/Match Dummies are partialled out in columns 2 and 4. Control variables are defined in Appendix B.
Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Table C5: Nationalities of the top bidders

Italian UK France Other
EU

North
Am China Asia East

Asia
Rest

World Tot

Winner 561 74 41 119 62 130 35 28 59 1,109
50.67% 6.67% 3.70% 9.92% 5.59% 11.72% 3.16% 2.52% 5.32% –

Second 604 79 28 113 51 117 33 26 58 1,109
54.46% 7.12% 2.52% 10.20% 4.60% 10.55% 2.98% 2.34% 5.23% –

Total 1,165 153 69 232 113 247 68 54 117 –

Note: Nationalities of the top bidders by geographic area. “Rest of the World” includes also Unknown
nationalities (12 winners and highest losers in total).
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Table C6: Regression of the transaction price on a winning bidder’s nationality

Transaction price (I) (II) (III) (IV) (V) (VI) (VII)

Fraction Donated (q) 84.854∗∗∗ 85.274∗∗∗ 85.731∗∗∗ 85.533∗∗∗ 85.554∗∗∗ 84.798∗∗∗ 85.516∗∗∗

(16.535) (16.542) (16.502) (16.549) (16.609) (16.468) (16.532)
Win: Italy –6.489

(7.856)
Win: UK 12.719

(15.581)
Win: France –18.343

(17.575)
Win: European Union 1.092

(12.276)
Win: North America 24.844

(16.210)
Win: China 16.098

(13.007)
Win: Asia –19.164

(21.529)

Main variables Y Y Y Y Y Y Y
Add. charity dummies Y Y Y Y Y Y Y
League/match dummies Y Y Y Y Y Y Y

Adjusted R-squared 0.581 0.581 0.581 0.580 0.581 0.581 0.581
BIC 14,153 14,153 14,153 14,153 14,151 14,152 14,153
N 1,109 1,109 1,109 1,109 1,109 1109 1,109

Note: The table displays estimates from OLS and IV regressions of the transaction price on covariates
including dummies for the most common nationalities of the winning bidder. Control variables are defined
in Appendix B. Robust standard errors in parenthesis.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C7: Regression of the transaction price on recurrent winners

Transaction price (I) (II) (III) (IV)

Recurrent winner 10.814 18.163 10.814 18.163
(7.681) (17.872) (7.681) (17.872)

Fraction donated (q) 85.575∗∗∗ 89.904∗∗∗ 85.575∗∗∗ 89.904∗∗∗

(15.234) (17.690) (15.234) (17.690)
Recurrent winner · fraction donated (q) –10.406 –10.406

(24.858) (24.858)

Main variables Y Y Y Y

Marginal effect 7.757 10.829
(11.504) (11.533)

Adjusted R-squared 0.567 0.567 0.567 0.567
N 1,109 1,109 1,109 1,109

Note: The table displays estimates from OLS regressions of the transaction price on covariates including the
dummy variable Recurrent Winner, which is 1 if the winner of the auction won more than 3 auctions (the
median in the data). Recurrent Winner is interacted with the fraction donated in even columns. The table
shows that the marginal effect of Recurrent Winner is not significantly different from zero (odd columns).
Control variables are defined in Appendix B. Robust standard errors in parenthesis.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Table C8: Overview of the most common models of giving

Model Overview

Noncharity
(α = β = 0) Bidders do not pay a premium in charity auctions.

Pure altruism
(α = β > 0)

Bidders obtain extra utility from donating, and are
willing to pay a premium. They do not distinguish
across sources of donation.

Warm glow
(β > α > 0)

Bidders derive greater satisfaction from their own
donation (impure altruism).

See-and-be-seen
(β > α = 0)

Bidders derive utility only from their own donation.
Limiting case of warm glow (α = 0).

Volunteer shill
(α > β > 0) Bidders obtain greater utility from giving by others.

Note: The preference parameters α and β represent the additional utility due to somebody
else’s donations or due to the bidder’s own donation, respectively. Refer to equation 4.1 in
Section 4 for more information. Source: Leszczyc and Rothkopf (2010).
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Table C9: First step of the structural estimation

(I) (II)
log(Transaction price) Coefficient S.E.

log(Reserve price) 0.371∗∗∗ (0.024)
Minimum increment 0.019 (0.014)
Minimum increment2 0.0001 (0.0004)
log(Number of bidders) 0.036 (0.044)
Sold at reserve price (0/1) −0.121∗∗ (0.049)
log(Total number of bids placed) 0.261∗∗∗ (0.028)
Length 0.052∗∗∗ (0.018)
Length2 −0.002∗∗∗ (0.001)
Extended time (0/1) −0.029 (0.030)
Length of description 0.001∗∗ (0.0004)
Content in English −0.057 (0.037)
Content in Spanish −0.010 (0.138)
Length of charity description −0.0003 (0.0003)
Number of pictures −0.029 (0.022)
Number of pictures2 0.003 (0.002)
Number of same team auctions within 3 weeks 0.010∗∗ (0.004)
Number of same player auctions within 2 weeks 0.009∗∗∗ (0.002)
Number auctions from the same charity −0.001∗∗∗ (0.0002)
Player belongs to FIFA 100 list (0/1) 0.110∗∗ (0.047)
Unwashed jersey (0/1) 0.207∗∗∗ (0.048)
Jersey is signed (0/1) 0.086∗∗ (0.037)
Jersey is signed by the team players/coach (0/1) 0.061 (0.074)
Jersey worn during a final (0/1) 0.338∗∗∗ (0.098)
Number of goals scored wearing the jersey 0.186∗∗∗ (0.061)
Player belongs to an important team (0/1) 0.242∗∗∗ (0.046)
Charity is English (0/1) 0.168 (0.132)
Charity is Italian (0/1) 0.208 (0.134)
Charity deals with disabilities (0/1) 0.088∗∗ (0.039)
Charity builds infrastructures in developing countries (0/1) 0.153∗∗ (0.069)
Charity deals in healthcare (0/1) −0.146∗∗ (0.057)
Charity has a humanitarian scopes in developing countries (0/1) 0.094 (0.065)
Charity deals with children’s wellbeing (0/1) 0.068 (0.064)
Charity deals with neurodgenerative disorders (0/1) 0.041 (0.084)
Charity belongs to a soccer team (0/1) −0.185∗∗ (0.081)
Charity aims to improve access to sport (0/1) 0.010 (0.066)
Constant 2.225∗∗∗ (0.249)

Adjusted R-squared 0.522
F Statistic 23.708∗∗∗ (df = 35; 694)
N 730

Note:The table displays estimates from OLS regressions of the logarithm of the transaction price as in the
first step of the structural model. (0/1) indicates dummies. Control variables are defined in Appendix B.
Robust standard errors in parenthesis in column 2.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C10: Estimated altruistic demand parameters with instruments

Number of bidders α β
Quantile n [95% CI] [95% CI]

99% 16 17.3% 43.1%
[6.12%, 29.6%] [18.5% 63.4%]

95% 14 17.1% 43.0%
[8.1%, 30.6%] [21.9% 63.9%]

90% 12 16.8% 43.0%
[7.4%, 28.9%] [23.6% 60.7%]

75% 10 16.4% 42.9%
[7.3%, 28.5%] [22.2% 60.9%]

50% 7 15.4% 42.8%
[7.3%, 25.4%] [24.3% 60.3%]

Note: The table displays results from the structural estimation of α and β for selected quantiles of the
distribution of the number of bidders. The first step regression is replaced with a 2SLS regression, where
the reserve price is instrumented with the average reserve price and the average number of bids placed in
concurrent auctions (±5 days). The F-test is 33.269, and the over-identification test statistics (Sargan test) has
a p-value of 0.192. The preference parameters α and β represent the additional utility due to somebody else’s
donations or due to the bidder’s own donation, respectively. Refer to equation 4.1 in Section 4 for more
information. The 95% confidence intervals are reported in square brackets. The CI are found by bootstrap
with replacement (401 times). Dataset restricted to all auctions such that q ∈ {10%,85%}. 727 observations in
total.

Table C11: The impact of the fraction donated on the number of auctions over time

Number of auctions (weekly) (I) (II) (III)

Lagged number of auctions (weekly) 0.003 0.002 0.003
(0.068) (0.068) (0.068)

Average q (weekly) –5.282 –5.183 –5.544
(5.609) (5.713) (5.854)

Average q (weekly) , lag 1 week –0.526 –0.816
(4.980) (5.181)

Average q (weekly) , lag 2 week 1.965
(4.960)

Adjusted R-squared 0.302 0.299 0.293
N 266 266 265

Note: The table displays estimates from OLS regressions of the weekly number of auctions. The data includes
all auctions of actually worn soccer jerseys between June 19th, 2013, and November 6th, 2018 (3,968 auctions,
267 weeks in total). All regressions include a constant and month and year fixed effects. The qualitative
results would not change using monthly data. Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C12: The impact of the fraction donated on the number of bidders over time

Independent Variables

Lagged Avg. q Avg. q Avg. q Adj. N
Dep. Var. (week) (lag 1) (lag 2) R-sq.

Dependent variable: Average number of bidders (weekly)
Average num. bidders 0.289∗∗ 1.380 0.559 266

(0.866) (0.850)
Average num. bidders 0.282∗∗∗ 1.198 1.048 0.560 266

(0.055) (0.864) (0.759)
Average num. bidders 0.288∗∗∗ 1.306 1.136 –0.683 0.554 265

(0.055) (0.863) (0.771) (0.769)

Dependent variable: Median number of bidders (weekly)
Q(50%) num. bidders 0.346∗∗∗ 1.438 0.492 266

(0.062) (0.940)
Q(50%) num. bidders 0.342∗∗∗ 1.334 0.596 0.491 266

(0.061) (0.970) (0.861)
Q(50%) num. bidders 0.350∗∗∗ 1.497 0.729 –1.005 0.486 265

(0.062) (0.955) (0.865) (0.850)

Dependent variable: 8th decile of the number of bidders (weekly)
Q(80%) num. bidders 0.228∗∗∗ 1.045 0.520 266

(0.059) (1.154)
Q(80%) num. bidders 0.224∗∗∗ 0.721 1.761∗ 0.522 266

(0.059) (1.150) (1.045)
Q(80%) num. bidders 0.228∗∗∗ 0.652 1.712 0.268 0.514 265

(0.059) (1.172) (1.059) (1.111)

Note: The table displays estimates from OLS regressions of the weekly number of bidders. The dependent
variable varies across rows, while the independent variables vary across columns. The lagged dependent
variable is in column 1. Weekly observations. The data includes all auctions of actually worn soccer jerseys
between June 19th, 2013, and November 6th, 2018 (3,968 auctions, 267 weeks in total). All regressions include
a constant and month and year fixed effects. The qualitative results would not change using monthly data.
Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C13: Charitystars’s donations before and after the recapitalization

Fraction donated (q) OLS IV for Reserve price

(I) (II) (III) (IV) (V) (VI)

Post entry (0/1) –0.098∗∗∗ –0.082∗∗∗ –0.064∗∗∗ –0.095∗∗∗ –0.080∗∗∗ –0.063∗∗∗

(0.018) (0.019) (0.018) (0.018) (0.019) (0.018)
Reserve price –0.001∗∗∗ –0.001∗∗∗ –0.000∗∗∗ –0.001∗∗∗ –0.000∗∗∗ –0.000∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

First-stage F-stat 208.761 176.850 101.566
Montiel-Pflueger robust test p-value ≤ 0.05 ≤ 0.05 ≤ 0.05
Over-id p-value 0.333 0.274 0.331

Additional controls Y Y Y Y
Charity FEs Y Y

Adjusted R-squared 0.456 0.464 0.730 0.450 0.456 0.379
N 3,261 3,261 3,261 3,252 3,252 3,252

Note: The table displays estimates from OLS and IV regressions of the fraction donated on covariates. The
variable “post entry” is 1 for the period from June 1st, 2017 onwards, and 0 otherwise. The data includes all
auctions of actually worn soccer jerseys between June 19th, 2013, and November 6th, 2018 whose transaction
price is larger than e 100 and smaller than e 1,000 (3,261 auctions). “Additional controls” include dummies
for Champions League matches, Europa League matches, Serie A matches, Premier League matches, Liga
matches, World Cup matches, finals, and the number of pictures displayed on the website. The reserve
price is instrumented with the average reserve price across the other concurrent auctions (± 5 days) and,
in columns 4-5 the average number of bidders across concurrent auctions, and in column 4 the average
total number of bids placed in concurrent auctions. The First-stage F-stat is the Kleibergen-Paap rk Wald
F statistic, whereas the weak-identification test is the Montiel-Pflueger robust test. All regressions include
controls for the number of bidders, the number of bids placed as well as month and year fixed effects. In
column 4 the Charity fixed effects are partialled out. Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Table C14: Charitystars’s donations before and after the recapitalization. Weekly data

(I) (II) (III) (IV) (V) (VI)
Quantile of weekly fraction donated (q) Q(20%) Q(20%) Q(50%) Q(50%) Q(80%) Q(80%)

Post entry (0/1) 0.037 0.064 –0.199∗∗∗ –0.183∗∗∗ –0.090∗∗ –0.082∗

(0.070) (0.069) (0.062) (0.062) (0.044) (0.044)

Average number of bidders, lag 1 week Y Y Y
Average fraction donated, lag 1 week Y Y Y

Adjusted R-squared 0.537 0.547 0.535 0.539 0.378 0.379
N 267 266 267 266 267 266

Note: The table displays estimates from OLS regressions of different quantiles of the weekly fraction donated.
The variable “post entry” is 1 for the period from June 1st, 2017 onwards, and 0 otherwise. The data includes
all auctions of actually worn soccer jerseys between June 19th, 2013, and November 6th, 2018 (3,968 auctions,
267 weeks in total). All regressions include a constant and month and year fixed effects. The qualitative
results would not change using monthly data. Robust standard errors in parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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Table C15: Number of bidders before and after the recapitalization

IV for
Number of bidders Poisson Reserve

regressions price

(I) (II) (III)

Post entry (0/1) –0.206∗∗∗ –0.177∗∗∗ –0.901∗∗∗

(0.043) (0.043) (0.243)
Reserve price 0.000 –0.000∗∗ –0.008∗∗∗

(0.000) (0.000) (0.001)

First-stage F-stat 191.747
Montiel-Pflueger robust test p-value ≤ 0.05
Over-id p-value 0.920

Additional Control Y

Pseudo / Adjusted R-squared 0.065 0.076 0.129
N 3,261 3,261 3,252

Note: The table displays estimates from Poisson and IV regressions of the number of bidders on covariates.
The variable “post entry” is 1 for the period from June 1st, 2017 onwards, and 0 otherwise. The data
includes all auctions of actually worn soccer jerseys between June 19th, 2013, and November 6th, 2018
whose transaction price is larger than e 100 and smaller than e 1,000 (3,261 auctions). “Additional controls”
include dummies for Champions League matches, Europa League matches, Serie A matches, Premier League
matches, Liga matches, World Cup matches, finals and the number of pictures displayed on the website. The
reserve price is instrumented with average reserve price and the average number of pictures displayed on the
listing website across the other concurrent auctions (± 5 days). The First-stage F-stat is the Kleibergen-Paap
rk Wald F statistic. All regressions include month and year fixed effects. In column VI the Charity fixed
effects are partialled out. Pseudo R-squared is reported for columns 1 and 2. Robust standard errors in
parentheses.
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.
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D Additional Figures

Figure D1: The webpage of a listing at the time of data collection

Title

Charity

Pictures %	donated

Countdown

Current	price	

Info	reserve	price	

Auction	leader

Description

Note: Screenshot of a webpage of a running auction on Charitystars.com for an AC Milan jersey worn and
signed by the player Giacomo Bonaventura. The standing price is GBP 110: this bid was placed by an Italian
bidder with username “Supermanfra”. A total of five bids are placed at this point. Although at the current
highest bid the reserve price is not met, this can change by the end of the auction. The auction will be active
for other 3 days and 18 hours and will expire on June 7th at 7AM. 85% of the proceeds will be donated to
“Play for Change”.
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Figure D2: How the firm allocates the funds at the time of data collection

Note: Screenshot describing how the firm allocates the fraction donated at the time of scraping.

Figure D3: Plot of the coefficient for the fraction donated from a quantile regression
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Note: The plot displays coefficients from quantile regressions of the logarithm of the transaction price on
q and covariates as in the first column of Table C1 in the main text. The shaded regions is the confidence
interval. The dashed (dotted) line reports the coefficient of the OLS regression (5% confidence interval).
Appendix Table C1 shows the coefficients for each quartile. Only auctions with price between e 100 and
e 1000. Boostrapped standard errors with 400 repetitions.
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Figure D4: Density of the homogenized transaction prices by returning winners vs non-
returning winners
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Note: The plot display the density of the pseudo-winning bids from the first-step of the structural model
distinguishing by returning winners. Returning winners (or collectors) are bidders who won at least 4
auctions (the median is 3). The Kolmogorov-Smirnov test does not reject the null hypothesis that the two
densities are equal at 0.4097 level. The plot is obtained using only auctions with q ∈ {10%,85%}. The plotted
densities are computed using a Gaussian kernel and Silverman’s rule-of-thumb bandwidths (Silverman,
1986).

Figure D5: Comparison between the model implied prices and observed average prices
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(b) Number of auctions per number of bidders
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Note: Panel a. The barplot displays the percentage difference between the observed price in the data and
the expected price implied by the model for different number of bidders. A positive number indicates that
the model overstates prices. Panel b. The barplot displays the number of auctions such that the number of
bidders joining the auction is equal to that indicated in the x axis.
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Figure D6: Additional robustness checks

(a) over-identification Test
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Note: Panel a. The plot compares the estimated densities in the main text (Main, solid line) with the density
computed on two subsets of the moment conditions. The subset “Above Median” (“Below Median”) includes
only the moment related to observations computed above (below or equal to) the median. The different
sets of moments seem to produce the same densities. The KS-test does not reject the null hypothesis that
the densities are equal at p < 0.01. Panel b. The plots displays the simulated natural logarithm of the
bids computed at different deciles of the estimated F(v) assuming heterogeneity at the the median value
of the covariates in the estimation. The Y axis shows values in e . I test linearity by fitting a linear and a
nonlinear model (second order polynomyal) via ANOVA to address whether the nonlinear model explains a
significantly larger amount of variance. The F-test does not reject the null (p-value = 0.428).

Figure D7: Overbidding with respect to private values
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Note: The plot compares the distribution of bids with the distribution of private values at the estimated
primitives. Distributions are simulated by drawing 200 private values from the estimated distribution of
values, and using the estimated α and β, with q = 1.
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E Robustness Checks for the Optimal Fraction Donated
I propose several robustness checks to the main text analysis. All estimates report robust standard
errors. Confidence intervals for the optimal q are obtained through 401 bootstrap replications of
the estimation algorithm with replacement.

Optimal Fraction Donated with More Covariates. I include all the variables in the dataset as in
the fourth column of Table 1 by adding to the first-step regressions of both the demand and supply
model the variables belonging to the groups “Additional Charity Dummies”, “League/Match
Dummies” and “Time Dummies.” Figure E1 shows the optimal fraction donated by intersecting
marginal revenues and marginal costs as in Section 7. On the supply side the marginal cost
parameters are π1 = 229.275,SE : 11.822;π2 = −400.940;SE : 55.084;π3 = 187.354,SE : 53.151, while
on the demand side α is estimated to be 0.172 and β is 0.431 when the number of bidders is 16. The
optimal fraction donated is q∗ = 0.20 (95% C.I. [0.025,0.475]).

Optimal q∗ by Type of Provider. I further investigate whether the optimal fraction donated varies
consistently based on the type of provider. When available, I observe whether the object is provided
by either a footballer, a coach or a charity (672 auctions). Because footballers and coaches are closely
tied to certain charities, I separate the auctions in the sample in two based on whether the provider
of the auctioned item is a private individual or not, and estimate marginal costs on each subsample
in the same way as in Section 7.

The marginal cost for the whole group including footballers and charities are negative and
upward sloping (π1 = 248.388,SE : 28.495;π2 = −557.406;SE : 54.894;π3 = 349.055,SE : 56.898).
Figure E2 plots the optimal q obtained for this group. I find that q∗ = 0.32 (95% C.I. [0.045,0.420]),
which is very close to that estimated in the full sample (see Figure 5a). The qualitative result does
not change if I replicate the analysis to account for the auctions provided by charities (469 auctions,
π1 = 259.095,SE : 42.792;π2 = −677.876;SE : 321.572;π3 = 478.420,SE : 323.874). In this case, q∗ is
0.36 (95% C.I. [0.045,0.435]).

Optimal q∗ Using IVs. As the reserve price and the fraction donated are the result of bargaining
between the provider of the item and Charitystars, in this section, I instrument the reserve price in
the demand model and the fraction donated in the supply model. On the demand side, I perform
a two-stage least square regression in place of equation 6.1; I instrument the reserve price with
the average reserve price (in logs) and the average number of bids placed in concurrent auctions
(within 5 days). The estimated α and β are 0.173 and 0.431. The F-test is large 33.269, and the
over-identification test statistic has a p-value of 0.192 (Sargan test).

On the supply side, I follow the same steps in Section 7. In the last step, instead of performing
an OLS regression of the net reserve price on a polynomial expansion of q, I instrument q and q2

with the average fraction donated (and its squared value) and the average number of bids placed
(and its squared value) across concurrent auctions (within 5 days). The estimated marginal cost
parameters are π1 = 273.389,SE : 44.128;π2 = −650.978;SE : 298.535;π3 = 422.534,SE : 296.863.
The F-test for the first endogenous regressor (q) is 30.637 and for the second endogenous regressor
(q2) is 33.063. The over-identification test has a p-value of 0.907. Despite the strong first stages, the
instruments would fail if the choice of the fraction donated and of the reserve price systematically
responded to common shocks across concurrent auctions. I include the number of listings of jerseys
from the same team in the previous 3 weeks and for the same player in the previous 2 weeks among
the covariates to control for this issue.

Figure E3 plots both the marginal revenue and marginal cost curves (Panel a) and the expected
profits attainable at different fraction donated (Panel b). Both plots indicate that the optimal fraction
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donated is 0.30 (95% C.I. [0.025,0.455]).

Optimal q∗ with a Different Level of Heterogeneity. In the main paper, I homogeneize all bids
and reserve prices, and sum back the value of the heterogeneity from the median auction to
determine both marginal revenues and marginal costs. In this section, I replicate the same analysis
but considering the heterogeneity at the 1st and 3rd quartiles. The results are in Figure E4a (the
parameters estimated in the quadratic-cost case are π1 = 176.845,SE : 11.346;π2 = −320.638;SE :
61.724;π3 = 158.392,SE : 60.704, and the parameters in the cubic-cost case are π1 = 187.055,SE :
70.489;π2 = −445.534;SE : 823.537;π3 = 432.089,SE : 1738.863,π4 = −166.111;SE : 1020.906) and
Figure E4c (the parameters estimated in the quadratic-cost case are π1 = 309.186,SE : 19.836;π2 =
−560.587;SE : 107.916;π3 = 276.925,SE : 106.131, and the parameters in the cubic-cost case are π1 =
327.037,SE : 123.24;π2 = −778.947;SE : 1439.83;π3 = 755.442,SE : 3040.149,π4 = −290.42;SE :
1784.90) respectively. The optimal donation for the 1st quartile case is 0.18 (95% C.I. [0.025,0.330])
while for the 3rd it is 0.27 (95% C.I. [0.030,0.420]).

Figure E1: Optimal q∗ with more covariates
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Note: The plot displays the optimal fraction donated as the intersection of marginal costs (dotted and dashed
lines) and net benefits (solid line). The marginal costs are estimated using quadratic polynomials (dotted
line) and cubic polynomials (dashed line). Panel b. The plot displays how profits change with the fraction
doanted (q). The vertical line at 85% indicate the median donation by Charitystars. Unlike the main text
analysis, all covariates in the fourth column of Table 1 are added to the first steps of both the demand and
supply analyses. The density f (v) and the distribution F(v) are approximated using a cubic spline. Profits
are computed as net revenues minus costs as in the quadratic polynomials case. Marginal revenues and
revenues assume that the number of potential bidders is 7 in both plots.
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Figure E2: Optimal q∗ by type of provider

(a) Optimal fraction donated

−600

−500

−400

−300

−200

−100

0

0.00 0.25 0.50 0.75 1.00
Fraction donated (q)

M
R

, 
M

C
 (

E
U

R
)

M Net Revenue
MC − Players, Charities

MC − Charities only

(b) By providers

median donation

−25

0

25

50

75

100

125

150

0.00 0.25 0.50 0.75 1.00
Fraction donated (q)

P
ro

fi
ts

 (
E

U
R

)

Note: The plot displays the optimal fraction donated as the intersection of marginal costs (dotted and dashed
lines) and net benefits (solid line). The marginal costs are estimated using quadratic polynomials. Unlike
the main text analysis, I limit the dataset to auctions of item provided by either charities (dashed line) or
footballers and charities (dotted line). Panel b. The plot displays how profits change with the fraction
doanted (q). The vertical line at 85% indicate the median donation by Charitystars. The density f (v) and the
distribution F(v) are approximated using a cubic spline. Profits are computed as net revenues minus costs
as in the quadratic polynomials case. Marginal revenues and revenues assume that the number of potential
bidders is 7 in both plots.
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Figure E3: Optimal q∗ using instrumental variables

(a) Optimal fraction donated
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(b) Optimal profits
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Note: The plot displays the optimal fraction donated as the intersection of marginal costs (dotted line) and
net benefits (solid line). The marginal costs are estimated using quadratic polynomials (dotted line). Panel
b. The plot displays how profits change with the fraction doanted (q). The vertical line at 85% indicate the
median donation by Charitystars. Unlike the main text analysis, I instrument the reserve price in the demand
analysis with the average reserve price and the average number of bids placed in concurrent auctions. I
similarly instrument the fraction donated in the supply analysis with the average fraction donated and the
average number of bids. The density f (v) and the distribution F(v) are approximated using a cubic spline.
Profits are computed as net revenues minus costs as in the quadratic polynomials case. Marginal revenues
and revenues assume that the number of potential bidders is 7 in both plots.
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Figure E4: Optimal q∗ with a different level of heterogeneity

(a) Optimal fraction donated (25-percentile)
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(b) Optimal profits (25-percentile)
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(c) Optimal fraction donated (75-percentile)
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(d) Optimal profits (75-percentile)
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The plot displays the optimal fraction donated as the intersection of marginal costs (dotted and dashed lines)
and net benefits (solid line). The marginal costs are estimated using quadratic polynomials. Panel b. The
plot displays how profits change with the fraction doanted (q). The vertical line at 85% indicate the median
donation by Charitystars. Unlike the main text analysis, I fit revenues and costs to represents either the 25th-
or 75th- percentile of auction heterogeneity. The density f (v) and the distribution F(v) are approximated
using a cubic spline. Profits are computed as net revenues minus costs as in the quadratic polynomials case.
Marginal revenues and revenues assume that the number of potential bidders is 7 in all plots.
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F Monte Carlo simulations
Objectives. The Monte Carlo simulations in this section fulfil two goals: (i) to show that the
estimation routine described in Section 6 return consistent estimates of the parameters, and (ii) to
support with some empirical evidence the claim that the estimates are not consistent when the
franction donated in the two auction types is very close.

Design of the experiments. There are two auction types (A and B) such that qA = .10 and qB = .85.
Private values are generated for all bidders drawing from a uniform distribution in [0,1] in Tables
F1 and F2 and in [−1,1] in Tables F3. There are 10 bidders in each auctions. They bid according to
the bid function in equation 4.2. The true charitable parameters are α0 = .25 and β0 = .75.

The steps of the estimation procedure are outlined below:

1. Draw values from the distribution F(v) for each bidder in the two auctions. In total 20 values.

2. Compute the bids for each bidder in the two auctions. Save the winning bid in each auction.

3. Nonparametrically estimate the density of the winning bids (either by Triweight, or Gaussian
Kernel). The bandwidth is chosen using the rule-of-thumb. Trimming follows Guerre et al.
(2000) who suggested trimming observations close to 0.5× bandwidth to the boundary.5

4. Given the number of bidders (n = 10) invert the distribution of the winning bids to determine
the distribution and density of the bids as in the second stage of the estimation procedure.

5. Compute the distribution and density of auctions of type A for each losing bids in the interval
between the smallest winning bid and the largest winning bid of type A.

6. Compute the distribution and density of type B (q = .85) over 100,000 points.

7. Match the quantile of the distribution of type B with those of the distribution of type A
through equation 5.1.

8. Find the couple (α, β) that minimizes the objective function equation 6.2 starting from a
random seed. The search algorithm constraints the parameters in the unit interval.

9. Save the estimates and restart from 1.

These steps are repeated 401 times. The tables below report the mean, median, quantiles and root
mean squared errors for α and β for each combination of parameters.

Results. First, let’s asses the consistency of the estimates. Different experiments are reported in
Tables F2 and F3, showing that the estimates are close to the true parameters. In particular, even
with a small number of observations (the first line in each panel), the mean and medians are always
within 3% of the true parameters.

These tables are composed by different panels: each panel refers to a different kernel used to
estimate the distributions (and densities) of the winning bids. The Gaussian and Triweigth kernels
give similar results. Within each panel, the rows differ on the number of auctions used to estimate
the primitives. The number of bidders in each auction is always constant and equal to 10. Since

5For the Gaussian case the hpd f = 1.06σn−1/5 and hCDF = 1.06σn−1/3 where σ =

min{s.d.(bk
w), IQR/1.349}, where bk

w is the vector of winning bid for auction of type k, and
hCDF = 1.587σn−1/3. For the triweight case hpd f = hCDF = 2.978σn−1/5 (Härdle, 1991, Li et al.,
2002, Li and Racine, 2007, Lu and Perrigne, 2008).
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for each auction only the winning bid is used, I empirically consider the asymptotic properties of
the estimator by looking at the rate at which the root mean squared error (RMSE) decreases as the
number of auctions grows (i.e., comparing RMSE across columns).6 Comfortingly, this rate is close
to
√

n for all experiments.
To study the consistency of the estimates when there is only limited variation over q across

auctions I run similar experiments varying q instead of the nonparametric kernel. From Table F1 it
is clear that α and β cannot be estimated consistently when qA ' qB as the mean and median of the
estimated parameters are about 0 and .50 instead of .25 and .75 for α and β respectively.

Table F1: Distance between qA and qB – Monte Carlo simulations

TA TB µα µβ Medα Medβ 25%α 75%α 25%β 25%β

qA = 80%, qB = 85%
500 0.0069 0.5333 0.0000 0.5328 0.0000 0.0000 0.5053 0.5589
1000 0.0094 0.5355 0.0000 0.5302 0.0000 0.0078 0.5114 0.5560

qA = 78%, qB = 85%
500 0.0158 0.5414 0.0000 0.5350 0.0000 0.0151 0.5137 0.5606
1000 0.0227 0.5477 0.0028 0.5376 0.0000 0.0348 0.5181 0.5667

qA = 50%, qB = 85%
500 0.2027 0.7086 0.1914 0.6991 0.1360 0.2520 0.6455 0.7579
1000 0.2154 0.7196 0.2071 0.7132 0.1696 0.2636 0.6763 0.7620

qA = 20%, qB = 85%
500 0.2468 0.7467 0.2383 0.7398 0.1984 0.2891 0.7033 0.7852
1000 0.2462 0.7463 0.2445 0.7444 0.2166 0.2764 0.7186 0.7730

Note: Monte Carlo simulations of the second and third step of the estimation process. Auction types are
denoted by A and B. Each panel shows the estimated parameters for different percentage donated. The
bandwidths in step 2 are computed with a Gaussian Kernel. The data is generated according to α = 25%,
β = 75% and F(v) is assumed uniform in [0,1]. Each auction has 10 bidders. 401 repetitions.

6I am analyzing the asymptotic properties of this class of estimators theoretically in another project, which
is still a work in progress.
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