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Quantifying Reduced-Form Evidence on Collateral
Constraints
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May 24, 2018

Abstract

While a mature literature shows that credit constraints causally affect firm-
level investment, this literature provides little guidance to quantify the economic
effects implied by these findings. Our paper attempts to fill this gap in two ways.
First, we use a structural model of firm dynamics with collateral constraints, and
estimate the model to match the firm-level sensitivity of investment to collateral
values. We estimate that firms can only pledge about 19% of their collateral value.
Second, we embed this model in a general equilibrium framework and estimate
that, relative to first-best, collateral constraints are responsible for 11% output
losses.
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There is an accumulating body of evidence showing the causal effect of financing
frictions on firm-level outcomes. For instance, Lamont (1997) shows that reduction
in oil prices lead non-oil subsidiaries of oil companies to reduce capital expenditures;
Rauh (2006) exploits nonlinear funding rules for defined benefit pension plans to iden-
tify the role of internal resources on corporate investment; Chaney et al. (2012) and
Gan (2007) use variations in local house prices as shocks to firms collateral value and
show that collateral values affect investment; Chodorow-Reich (2013) combines the
default of Lehman Brothers with the stickiness in banking relationships to show how
bank lending frictions distort labor demand.! While this literature safely rejects the
null hypothesis that firms are not financially constrained, it provides little guidance
to quantify the economic importance of financial constraints. The objective of this
paper is to fill this gap in the literature.

We focus on a pervasive source of financing friction — collateral constraints — and
build our quantitative analysis around reduced-form estimates showing the signifi-
cant effect of collateral values on firm-level investment. Gan (2007) and Chaney et
al. (2012) show corporate investment of firms owning real estate assets responds to
fluctuations in local real estate prices relative to firms renting properties. We start by
replicating these earlier findings using a slightly different specification and find that
a $1 increase in real estate value leads to a significant $0.04 increase in investment
and $0.04 increase in financial debt. These estimates comfortably reject the null hy-
pothesis that firms are not financially constraint, and are consistent with the broader
literature. However, per se, these estimates do not tell us whether these constraints
matter quantitatively. To answer this question, we offer two quantification exercises
that are centered around these reduced-form estimates.

We start from a structural model of heterogeneous firm dynamics. The model
builds on the standard neo-classical model of investment with adjustment costs (Jor-
genson, 1963; Lucas, 1967; Hayashi, 1982). To this standard model, we add one simple
ingredient. We assume that firms face a collateral constraint: the amount they can
borrow every period is limited by how much tangible assets —including real estate—

10ther contributions include, but are not limited to, Banerjee and Duflo (2014), Lemmon and
Roberts (2010), Faulkender and Petersen (2012), Zia (2008), Zwick and Mahon (2015), Benmelech
et al. (2011), Benmelech et al. (2017), ...



they own. Each period, the value of real estate assets fluctuates randomly, creating
variations in the collateral constraint, thus mimicking the design used to produce the
reduced-form estimates.? We estimate this model through a Simulated Method of Mo-
ments. In addition to the standard moments used in the structural corporate finance
literature, our estimation procedure explicitly targets the sensitivity of investment to
variations in local real estate prices as a key moment in the estimation. The model
fits precisely both targeted moments and some non-targeted ones, has well-behaved
comparative statics, and how the different moments selected in the estimation pro-
cedure affects the identification of the structural parameters. In particular, we show
how targeting the reduced-form regression estimate leads to a significantly different
inference on the parameter governing the credit friction than when targeting other-
wise standard financing moments such as the average leverage ratio. Quantitatively,
we estimate significant collateral frictions in that firms are estimated to be able to
pledge only 19% of their collateral value.

In a second step, the estimated model is nested in a simple general equilibrium
framework where firms compete for customers, workers and capital goods. To assess
the economic magnitudes implied by the reduced-form estimates, we simulate two
economies: one in which firms face the estimated collateral constraint, and a counter-
factual economy where firms are unconstrained financially. We compute output and
welfare losses from financing constraints by comparing these two economies.”? We
find aggregate welfare loss from financing constraints of 9.4% and output loss of 11%.
Such losses arise in part from the misallocation of inputs across heterogeneous pro-
ducers (Hsieh and Klenow, 2009; Moll, 2014; Midrigan and Xu, 2014) and in part from
a sub-optimal aggregate capital stock. While both channels matter, aggregate capital
matters twice as much as misallocation. It is important to note that, in line with the
macroeconomic literature, we formally quantify the cost of financing frictions, but not
their potential benefit. We model collateral constraints in a reduced-form way and
do not take a stance on whether the rationale behind these collateral constraints is
efficient or not.

2While we do not explicitly provide a micro-foundation for the collateral constraint, it emanates
naturally from limited enforcement models as in (Hart and Moore, 1994).

30f course, a counterfactual in which there are no financing constraints at all is certainly not policy
relevant, but it serves as a useful measure of how binding financing constraints are.



Related Literature. Our focus on collateral constraints is rooted in a large array of
empirical evidence on the importance of collateral constraints. It is well documented
that collateral plays a key role in financial contracting. More redeployable assets
receive larger loans and loans with lower interest rates (Benmelech et al., 2005).
The value of collateral affects the relative ex post bargaining power of borrowers and
lenders (Benmelech and Bergman, 2008). Beyond these effects on financial contract-
ing, collateral values also affect real outcomes at the micro-economic level: Firms
with more valuable collateral invest more (Gan, 2007; Chaney et al., 2012); individu-
als with more valuable collateral are more likely to start up new businesses (Schmalz
et al., Forthcoming; Adelino et al., 2015). In addition, many empirical evidence point
to the prevalence of real estate collateral in loan contracts (Davydenko and Franks,
2008; Calomiris et al., 2015). Our paper adds to the literature by bridging the gap be-
tween reduced form microeconomic evidence on the role of collateral constraints and
the macroeconomic effect of financial frictions.

Beyond collateral, our paper also contributes to the long-standing literature in cor-
porate finance investigating the real effects of financing frictions. This literature has
traditionally explored the effect of financing frictions on corporate investment, and,
more recently, on employment (Chodorow-Reich, 2013). A key challenge is to find
exogenous variations in financing capacity that are not correlated with investment
opportunities. For instance, Lamont (1997) overcomes this challenge by showing that
non-oil divisions of oil conglomerates increase their investment when oil prices in-
crease. Rauh (2006) shows that firms with underfunded defined benefit plans need to
make financial contributions to their pension fund, depriving them of available cash-
flows and leading to reduced investment.* Chodorow-Reich (2013) combines evidence
of switching cost for borrowers and shocks to banks following the 2008-09 crisis to
show financial frictions affect employment.®

Several important papers have developed a structural quantitative approach to es-

4See Bakke and Whited (2012) for a discussion of this identification strategy.

5As emphasized above, the literature on this topic is extensive. For some contributions, see Fazzari
et al. (1988), Erickson and Whited (2000), Kaplan and Zingales (1997), Almeida and Campello (2007),
Blanchard et al. (1994), Campello et al. (2010), Kaplan and Zingales (2000), Peek and Rosengren
(2000), Campello et al. (2011),Banerjee and Duflo (2014), Lemmon and Roberts (2010), Faulkender
and Petersen (2012), Zia (2008), Zwick and Mahon (2015), Benmelech et al. (2011), Benmelech et al.
(2017).



timate the effect of financing frictions. This literature is reviewed in Strebulaev and
Whited (2012). In a seminal contribution, Hennessy and Whited (2007) use SMM to
estimate a dynamic model of investment and infer the magnitude of financing costs.
They find that for small firms, the estimated marginal equity flotation costs is about
10.7% of capital and bankruptcy costs 15.1%. Nikolov and Whited (2014) estimate a
dynamic model of finance and investment with different sources of agency conflicts
between managers and shareholders to analyze the role of agency conflicts in corpo-
rate policies and investment. Our contribution to this literature is twofold. First,
we include coefficient estimates from a reduced-form regression identifying the effect
of collateral constraints on investment and debt as targeted moments. We show that
these moments are crucial in identifying the strength of financial frictions in our data.
Second, we nest our investment model into a general equilibrium model, which allows
us to account for general equilibrium effects in our counterfactuals. In contrast, the
literature typically only considers partial equilibrium counterfactuals. In that sense,
our model is close to Gourio and Miao (2010) who focus on taxation, while we focus on
model estimation and the effect of financing constraints.

Finally, because our quantification exercise relies upon an aggregation, our pa-
per also relates indirectly to the macroeconomic literature on the aggregate effects
of financial frictions. Restuccia and Rogerson (2008), Hsieh and Klenow (2009) and
Bartelsman et al. (2013) emphasize the effect of misallocation of resources across
heterogeneous firms on aggregate TFP and welfare. Midrigan and Xu (2014) fo-
cus on the impact of financing frictions on misallocation. They calibrate a model
of establishment dynamics with financing constraints and find that financing fric-
tions affect investment substantially more than misallocation, a finding reminiscent
of ours. Moll (2014) shows that for a TFP persistence parameter in the empirically rel-
evant range, financial frictions can matter in both the short and the long run. Buera
et al. (2011) develop a quantitative framework to explain the relationship between
aggregate/sector-level TFP and financial development across countries and show that
financial frictions account for a substantial part of the observed cross-country dif-
ferences in output per worker, aggregate TFP, sector-level relative productivity, and
capital-to-output ratios.® Gopinath et al. (2017) quantify the contribution of hetero-

6Asker et al. (2014) consider the effect of dynamic inputs and adjustment costs on static misallo-



geneous financing frictions across Spanish firms to sectoral misallocation. Beyond
misallocation, a large literature has investigated the effects of financing friction on
aggregate TFP growth and welfare. Jeong and Townsend (2007) develop a method of
growth accounting based on an integrated use of transitional growth models and mi-
cro data and find that in Thailand, between 1976 and 1996, 73 percent of TFP growth
is explained by occupational shifts and financial deepening. Amaral and Quintin
(2010) present calibrated simulations of a model of economic development with lim-
ited enforcement and find that the average scale of production rises with the quality of
enforcement. Riddick and Whited (2009) study the costly reallocation of capital across
heterogeneous firms. They infer the cost of reallocation from a calibrated model and
show that reallocation costs need to be strongly countercyclical to be consistent with
the observed dispersion of productivity. Jermann and Quadrini (2012) structurally
estimate a model with financing frictions to explain the joint evolution of aggregate
output and financial variables over the business cycle. Our contribution to this lit-
erature is that we base our quantification exercise on an estimation procedure that
targets moments from a reduced-form analysis exploiting exogenous shocks to financ-
ing capacity.

Section 1 shows reduced-form evidence of the effect of collateral values on invest-
ment. Section2 presents our formal model of firm dynamics with collateral con-
straints. Section 3 structurally estimates the model using US firm level data. Sec-
tion 4 describes and implements the general equilibrium analysis, and our counter-
factual measure of the aggregate effects of collateral constraints. Section 5 discusses
robustness and implements a policy experiment.

1 Reduced-form evidence

We estimate the investment and borrowing sensitivity to real estate value as in
Chaney et al. (2012). The construction of the data is detailed in that paper. The
dataset is a panel of publicly listed firms from 1993 to 2006 extracted from COMPUS-

cation measures, abstracting from financing friction. By contrast, we include both dynamic inputs
subject to adjustment costs and financial frictions in our model, and we are able to disentangle the
contribution of both.



TAT. We require that these firms supply information about the accounting value and
cumulative depreciation of land and buildings (items ppenb, ppenli, dpacb, dpacli) in
1993. We combine this information with office prices in the city where headquarters
are located, in order to obtain a measure of the market value of firmsaAZ real estate
holdings normalized by the previous year property, plant and equipment. We call this
measure REValue;, for firm i at date r. We require that this variable is available
for all firms, so that we end up with a panel of 20,074 observations corresponding to
2,218 firms from 1993 until 2006 unless they drop out of the panel before (only 676
firms are still present in 2006).
We then run the following regression:

Y, a+p.REValue;,
ki1 ki1

where k;,_; is the lagged stock of productive capital (item ppent). Offprice;, is an index

+ Offprice;, + a; + v;,, (1)

for office prices in the city where firm iaAZs headquarters are located. This index is
available from Global Real Analytics for 64 MSAs. We include a firm fixed effect (a;)
and cluster error terms v;, at the firm level. We are interested in f, the sensitivity of
Y;, to real estate value. Table 1 reports descriptive statistics.

We look at two different left hand-side variables Y;,: capital expenditures (item
capx) and net debt increase (sum of changes in long term debt — item dltt — and short
term debt — item dlc). The estimated sensitivity of investment to real estate value,
B(Inv,RE), is equal to 0.04 with a t-stat of 6.1. This can be interpreted as a $0.04
investment response per $1 increase in real estate value. The sensitivity of net bor-
rowing to real estate value, /3 (Debt,RE)is also estimated at 0.04, with a t-stat of 4.5.
These numbers are close to the main estimate of Chaney et al. (2012), the difference
coming from the set of controls used. We opt here for a simpler specification with
fewer controls, in order to restrict ourselves to variables available in the simulations
of the model we present in the next section. This model will be estimated using the
first coefficient (the investment sensitivity) as a targeted moment, the second (the

borrowing sensitivity) serving as a non-targeted moment.



2 The model

In this section, we lay out our model of investment dynamics under collateral con-
straints. The economy is populated with heterogeneous, financially constrained firms,
which combine capital and labor to produce differentiated goods. Those differentiated
goods are then combined into a final good, consumed by a representative consumer
and used as capital good.

2.1 Production technology and demand

The firm-level model is close to Hennessy and Whited (2007) in the sense that it
includes a tax shield for debt and a large cost of equity issuance (in our case, infi-
nite’) and Liu et al. (2013) in the sense that firms face a collateral constraint. The
firm’s shareholder is assumed risk-neutral and has a time discount rate of r. Firm i
produces output g;; combining capital k;; and efficiency units of labor /;; into a Cobb-
Douglas production function with capital share «

qil’:F(ezn»kitrlit):ezn(k'al'l_a)y (2)

it

with z;, the firm’s log total factor productivity following an AR(1) process:

Zit =PZir1 T Nigr

where we denote o? the variance of the innovation 1;,. The firm faces a downward
sloping demand curve with constant elasticity ¢ > 1,

ai=Qp;’. (3)

Q is aggregate spending and will be determined in equilibrium (see Section 4).
Labor is fully flexible. w is the wage — also determined in equilibrium. As labor is
a static input, the total profits of the firm, net of labor input, and before taxes, is

"This infinite equity issuance cost simplifies the model and clarifies its exposition. We show in
section 5 how the quantitative features of the model are changed when we assume a finite issuance
cost within the range of the literature’s estimates.
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a((j)—l)

1+a(¢p—1) <l

with b a scaling constant and 6 =

2.2 Input dynamics

While labor is a static input, capital is not. Capital accumulation is subject to depre-
ciation, time to build, and adjustment costs. Gross investment i;, is given by

kit+1:kit+iit_5kn (5)

where 0 is the depreciation rate. In period ¢, investing i;, entails a convex cost of %,’C—Z‘t
Additionally, the firm pays in period ¢ for capital that will only be used in production
in period 7 + 1: This one period time to build for capital is conventional in the macro
literature (Hall, 2004; Bloom, 2009) and acts as an additional adjustment cost. In-
troducing adjustment costs to capital is important in our estimation exercise, since
they generate patterns similar to financing constraints and could thus be a natural
confounding factor in our estimation procedure. For instance, adjustment costs make
capital vary less than firm output, which generates a natural dispersion in capital
productivities, exactly like financing constraints would (Asker et al., 2014). As we
will show below, using the reduced-form moments presented in Section 1 allow us to
identify both frictions separately.

We do not, however, include fixed adjustment costs to our model, a choice also
made by Gourio and Kashyap (2007): Our estimation targets firm-level data at an
annual frequency, for which investment is not very lumpy. In our sample, only 4% of

the observations have an investment rate smaller than 2% of capital.®

2.3 Financing frictions and capital structure

The firm finances investment out of retained earnings and debt issuance to outside
investors. d;, is net debt, so that d;, < 0 means that the firm holds cash. As is standard

8To compute the investment rate, we divide item capx by lagged item ppent



in the structural corporate finance literature (Hennessy and Whited, 2005), we only
consider short-term debt contracts with a one period maturity. We set up the model
so that debt is risk-free and pays an interest rate r? — determined in equilibrium in
Section 4. For an amount d;, of debt issued at date ¢, the firm commits to repay
(1+r)d;,,, at date t + 1. Finally, the interest rate the firm receives on cash is lower
than the interest rate it has to pay on its debt: If the firm has negative net debt, it
receives a positive cash inflow of —(1+(1—m)r)d;,,; with 0<m < 1.

Consistently with the corporate finance literature, we also assume firms’ profits
net of interest payments and capital depreciation, 0k;;, are taxed at rate v. This
tax rate applies both to negative and positive income, so that firms receive a tax
credit when their accounting profits are negative.' Other papers make alternative
assumptions to make debt attractive to firms, either by assuming that debt holders
are intrinsically more patient than shareholders, or that shareholders with log utility
seek to smooth consumption as in Midrigan and Xu (2014). Finally, note that all tax
proceeds are rebated to the representative consumer — see Section 4.

The financing frictions come from the combination of two constraints. First, firms
cannot issue equity, an assumption we relax in Section 5 where we instead consider
a finite cost of equity issuance in line with parameter estimates from the literature.
Second, firms face a collateral constraint, which emanates from limited enforcement
(Hart and Moore, 1994). We follow Liu et al. (2013) and adopt the following specifica-
tion for the collateral constraint:

(1+7r)d;n SS((1—5)kit+1+E[pI+1|pt]X h) (6)

The total collateral available to the creditor at the end of period ¢ + 1 consists of de-
preciated productive capital (1—0)k;;;, and real estate assets with value p,.;h. We
assume log p, to be a discretized AR(1) process. s, the share of the collateral value
realized by creditors, captures the quality of debt enforcement, but also the extent to

9While this risk-free interest rate could be time-varying, i.e. r,, it will always be constant in our
model, pinned down by the consumer’s Euler equation with no aggregate risk, and we thus omit the ¢
subscript for simplicity.

10As a result, debt is tax free, which creates an incentive for firms to increase their leverage. This
assumption marginally simplifies exposition and is consistent with several features of the tax code
such as the presence of tax loss carry-fowards, but is not crucial for our results.

10



which collateral can be redeployed and sold.!!

In assuming that the quantity of real estate & is the same across firms and time,
we abstract from issues related to real estate ownership heterogeneity, which is an
important limitation of this paper. In reality, we recognize that firms decision to buy
or lease real estate assets can potentially depend on expected productivity, investment
opportunities, local factor prices, and financing constraints. We leave the analysis of
how the endogeneity of real estate ownership affects current investment decisions for
future research and focus this paper on measuring and aggregating financial frictions
given the observed levels of real estate ownership in the data.

2.4 'The optimization problem

The firm is subject to a death shock with probability d, but infinitely lived otherwise.
Every period, physical capital and debt are chosen optimally to maximize a discounted
sum of per period cash flows, subject to the financing constraint. The firm takes as
given its productivity, local real estate prices, and forms rational expectations for
future productivities and real estate prices.

Define as V (S;;; X;,) the value of the discounted sum of cash flows given the ex-
ogenous state variables X;, = {Zm p[} and the past endogenous state variables S;, =
{k;;,d;,;}. Shareholders are assumed to be perfectly diversified so their discount rate
is the same as risk-free debt r.

HUThe formulation of the collateral using the expected future value of collateral is standard in
macroeconomics. It can be justified as an optimal contract in a set-up where (1) the firm has the
entire bargaining power in its relationship with creditors (2) it cannot commit not to renegotiate the
debt contract at the end of period ¢ and (3) collateral can only be seized at the end of period ¢ +1.

11



This value function V is the solution to the following Bellman equation,

p
V(SisXi) = maX{e (SitySiv1s Xie) + ﬂE[V(S”H;X”H) | X0 ]+ = (kipn —(1+ Fit)dit+1)}

1+r 1+r

Sit+1
s.t. (I+7r)dig <s ((1 —0)kir1 +E[pralp] % h)
e (St Sir13 Xit) 20
| with: e(Sit»Sit-t-l;Xit):(n(zit;kit)_iit_%]%-i_dit-&-l_(l'i_Fit)dit)

—1(r(zi;; kiy)—Fd;, —0k;;)
liy = Kir1—(1—0) ki,
fip=rifd,>0and (1-m)rifd; <0

(7)

4 (k;;1—(1+7:,)d;;1,)) corresponds to the

l+_r
shareholder’s payoff in case of firm death. This term avoids a bias towards borrow-

where the second term in the maximand (

ing. If bankers could recover capital when a firm exit, shareholders would have an
incentive to borrow more to transfer value from states of nature where they cannot
consume to states where the firm survives. By assuming that shareholders receive
the remaining capital when the firm exit, we ensure that this risk-shifting behavior
does not drive the capital structure decisions of firms in our model.

Aggregate demand Q and the real wage w are equilibrium variables that the firms
takes as given when optimizing inputs. Given the absence of aggregate uncertainty
and the steady state assumption, they are fixed over time. Due to downward sloping
demand, firms have an optimal scale of production. A firm initially below this level
accumulates capital, but only gradually because of convex adjustment costs and time
to build. Finally, spending on adjusting capital is bound by the collateral constraint.
When the value of a firm’s real estate assets increases, the collateral constraint is
relaxed, and the firm finances more of the cost of adjusting towards its desired scale.
This generates the sensitivity of investment to real estate value documented in Sec-
tion 1.

12



3 Structural Estimation

3.1 Estimation procedure

We estimate the key parameters of the model via a Simulated Method of Moments.
The entire procedure is described in detail in Appendix A. We look for the set of pa-
rameters ) such that model-generated moments m(2) on simulated data fit a pre-
determined set of data moments m. If we could solve the model analytically, we
could just invert the system of equations given by model-based moments. Because
our model does not have an analytic solution, we need to use indirect inference to
perform the estimation. Such inference is done in two steps:

1. For a given set of parameters, we solve the Bellman problem (7) numerically and
obtain the policy function S;,,, = (d;;.1, k;;+1) as a function of S;, = (d;,;, k;;) and exoge-
nous variables X;, =(z;;, p;). We discretize the state space (S, X) into a grid that is as
fine as possible to minimize numerical errors in the presence of hard financing con-
straints. This is critical: a 1-2% numerically generated error would be too large to
quantify aggregate effects of this order of magnitude. Solving the model repeatedly
to estimate our structural parameters would not be feasible on a conventional CPU
(several hours per iteration), so we use a GPU instead (a few minutes per iteration),
as described in Appendix A.1.

2. Our parameter estimates minimize the distance from simulated to data moments,

-~

0= argmﬂin (m—m(N) Wm—m(Q)),

where the weighting matrix W is the inverse of the variance-covariance matrix of data
moments. Standard errors are calculated by bootstrapping. Appendix A.2 describes

how we escape the many local minima of our objective function.

3.2 Predefined and Estimated Parameters

The model has 14 parameters. We calibrate 9 of them using estimates from the liter-
ature or the data, and estimate the 5 remaining ones.

13



Predefined parameters. Our 9 calibrated parameters are as follows. We set the
capital share a =1/3 from Bartelsman et al. (2013) and the demand elasticity ¢ =6,
within the range of Broda and Weinstein (2006) (20% mark-ups in the absence of
adjustment costs). Real estate prices logp, follow a discretized AR(1) process. We
estimate this AR(1) process on de-trended logged real estate prices and find a per-
sistence 0.62 and innovation volatility 0.06. Both AR(1) processes for logz, and logp,
are discretized using Tauchen’s method. The rate of obsolescence of capital is set at
0 = 6% as in Midrigan and Xu (2014). The risk-free borrowing rate r is fixed at 3%,
while the lending rate is set to (1—m)r =2%. We fix the death rate d to 8% which cor-
responds to the turnover rate of firms in our data. We set the corporate tax rate 7 at
33%. Finally, we normalize w = 0.03 ($30,000) and Q =1 for the estimation. They will,
however, be endogenously determined in general equilibrium in our counterfactual
analyses —see Section 4.

Estimated parameters. We estimate 5 deep parameters but focus the discussion
on 4 of them: The persistence p and innovation volatility o of log productivity, the
collateral parameter s and the adjustment cost c. The fifth parameter, the amount of
real estate collateral h, allows us to match the average ratio of real estate to capital
h/k, perfectly. It is essentially a normalization.

3.3 Data Moments

We compute the moments on the COMPUSTAT sample described in Section 1. We
describe them here with a short heuristic discussion about their “identifying” power.
In the next section, we discuss identification more systematically and show how sim-
ulated moments vary with parameters.

First, in the spirit of Midrigan and Xu (2014), we use the short- and long-term
volatility of output to estimate the persistence and volatility of the productivity pro-
cess. In our sample, the volatility of change in log sale (logsales;, —logsales;,_,,
COMPUSTAT item: sale) equals 0.327. The volatility of 5-year change in log sales
(logsales;,—logsales;,_s) equals 0.911. The fact that 5-year growth is less than 5 times
more volatile than 1-year growth contributes to the identification of the persistence
parameter. Targeting these two moments instead of directly matching the persistence

14



coefficient of log sales makes our estimation less sensitive to model misspecification,
e.g. for a true process with a longer memory than an AR(1).

Second, we use the autocorrelation of investment to identify adjustment costs
(Bloom, 2009). For each firm in our panel we compute the ratio % of capital ex-
penditures (COMPUSTAT item: capx) to lagged capital stock (COMPUSTAT item:
ppent). The correlation between ﬁ and ﬁ in our data is 0.43. Adjustment costs
are needed to match this large correlation: They compel the firm to smooth its in-
vestment policy in response to a productivity shock (Asker et al., 2014). Financing
frictions add to this smoothing motive.

Third, we use a direct measure of financing constraints, the sensitivity of invest-
ment to real estate value, the coefficient (Inv, RE) estimated from equation (1) in
section 1, to identify the collateral constraint parameter s. This regression coefficient
is directly and causally related to financing frictions: Absent financing frictions, this
coefficient would be statistically insignificant. While one can reject the absence of fi-
nancing frictions if this coefficient is positive, its precise level does not map one for
one into any structural parameter of our model. It does however allow us to identify
the level of financing frictions through indirect inference. This is one of the main
contributions of our paper: We show how to bridge the gap between the reduced-form
corporate finance literature and the structural finance and macroeconomics litera-
ture.

For comparison with the existing literature, we also use an alternative moment to
identify the collateral constraint parameter s, net book leverage, a moment used for
instance by Hennessy and Whited (2007) and Midrigan and Xu (2014). Book leverage
is computed as financial debt (COMPUSTAT items: dlc + dltt) minus cash holdings
(COMPUSTAT item: che), normalized by total assets (COMPUSTAT item: at). This
definition reflects the notion that cash is equivalent to negative debt, as it is the case
in our model. We obtain an average of 0.313 in our data. In our model, leverage di-
rectly identifies the collateral parameter s as higher collateral values unambiguously
lead to more borrowing. We are however reluctant to use this moment as our main
specification: A firm may not be financially constrained yet choose to lever up for tax
purposes; moreover, leverage is a noisy measure of a firm’s indebtedness, as financial
debt typically includes unsecured debt, which is not part of our model (see Section 5.2

15



for such an extension).

Finally, we compute the quantity of real estate held by the average firm, by taking
the ratio of real estate holdings (COMPUSTAT item land + buildings) in 1993 nor-
malized by total assets (COMPUSTAT item: at), and obtain 0.14. By adjusting h, our
estimation procedure matches this moment perfectly; we view this part of the estima-
tion as a normalization more than anything else. As a result, we omit discussion of

this parameter from this point on.

3.4 Parameter Identification

This section discusses identification of the parameters of the model. In Appendix Fig-
ures C.1-C.4, we reproduce how moments vary as a function of model parameters. We
also show, in Table 2, the elasticities of each moments with respect to estimated pa-
rameters — a simple transformation of the Jacobian matrix. All this analysis is about
local identification, in the sense that we operate around our main SMM estimate for
(s,c,p,0) — which we discuss in detail in the next section.

We first discuss the graphical evidence. In Figures C.1-C.4, we offer visual evi-
dence of how the different moments we use in our estimation help identify the model’s
parameters. To construct these figures, we first set all parameters (s, c,p,o) at their
estimated value, and then vary one of these parameters in partial equilibrium, i.e.
holding fixed w and Q. Importantly, the comparative statics we report on these fig-
ures are direct simulation output: The relative smoothness of these plots gives us
confidence in the robustness of our numerical procedure, which we attribute to the
dense grid for capital (about 300 points), debt (29 points) and productivity (51 points)
we use, as well as to the large number of simulated observations (1,000,000 firms over
10 years). See Appendix A for details.

Figure C.1 shows that the collateral parameter s influences the sensitivity to real
estate of both investment (targeted) and debt (non-targeted). The sensitivity mo-
ments are non-monotonic with s. Intuitively, for low values of s, firms investment
decisions are constrained by collateral availability: In this range of values for s, an
increase in s allows firms to extract more debt and investment capacity out of a $1

increase in collateral values. For higher values of s, however, firms become less finan-
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cially constrained, so that their investment policies becomes less driven by collateral
values. At the limit, when s grows close to 1, the firm becomes unconstrained and in-
vestment is no longer sensitive to fluctuations in house prices. We also see in Figure
C.1 that around the SMM estimate (represented by a vertical line), both sensitivity
moments are smooth and increasing functions of s. The collateral parameter s also
influences leverage: A higher s unambiguously leads to higher leverage, as the firm
takes on more debt for tax purposes if allowed to. The second panel of Figure C.1 also
shows that an increase in s leads to an increase in the long-term volatility of produc-
tion: when the firm is less constrained, its capital stock responds more to productivity
shocks, which increases the volatility of output.

Figure C.2 shows that the adjustment cost parameter ¢ is mostly identified by
the autocorrelation of investment: Large adjustment costs lead the firm to smooth
investment across time, which lead to a large autocorrelation of investment. Larger
adjustment costs to capital also lead to lower short-term output volatility: Similar
to financing constraints, adjustment costs prevent firms from adjusting their capi-
tal stock to productivity shocks, making output less volatile. Figures C.3 and C.4
shows that (1) the volatility of log-productivity o has a nearly linear impact on the
short-term volatility of output (2) the persistence p of productivity shocks strongly in-
fluences the long-term volatility of output, but has no first-order effect on short-term
volatility. Combined together, these two observations are consistent with the idea
that the ratio of the 1-year to 5-year output volatility allows to identify the persis-
tence parameter p. Note also that the persistence of productivity shocks has a sizable
positive effect on the autocorrelation of investment: Firms can afford to delay their
response to productivity shocks, since these shocks are more persistent.

In Table 2, we quantify how the various simulated moments vary as a function of
the estimated parameters. More precisely, we compute for each moment m,,, and each
parameter w;, the following elasticity (Hennessy and Whited (2007)):

+_ — A
_my—m, @& Jdlog
€nk =

)
wZ—a); 1y, alog(d)k),

where @ is the parameter value at the SMM estimate and 7, the corresponding

value for moment n. @} (respectively @) is the parameter value located right above
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(resp. below) on the grid used to plot Figures C.1-C.4. m} (resp. m_) is the correspond-
ing moment obtained using parameter & (resp. ®;), keeping the other parameters
@ at their SMM estimate.

Table 2 confirms formally the results we discussed from Figure C.1-C.4.

3.5 Estimation results

We report the results of the SMM estimation in Table 3. One key contribution of
the paper is to target the sensitivity of investment to real estate value. To highlight
the contribution of this moment, we thus report two sets of results: One estimation
where the SMM targets the mean leverage to identify financing constraints — as the
existing literature does — and one where the SMM targets the sensitivity moment
instead. Each column corresponds to a model specification (with adjustment costs
in Columns (3) and (4), and without in Columns (1) and (2)) and a set of targeted
moments including leverage (Columns (1) and (3)) or the sensitivity of investment to
house prices (Columns (2) and (4)). Column (5) corresponds to the data.

We first study the version of the model without adjustment cost (¢ =0). There are
3 parameters to estimate: The persistence (p) and volatility (o) of log-productivity,
as well as the pledgeability parameter s. In Column (1) of Table 3, the SMM targets
“traditional moments”, i.e. the short- and long-term volatilities of log sales, and mean
leverage. At the estimated parameters, the model matches all the targeted moments
up to the second decimal, but does poorly on non targeted moments. The sensitivity
of investment and debt to real estate value is high (three times their empirical value:
0.12 instead of 0.04 in both cases). The autocorrelation of investment is negative,
instead of positive in the data, due to the absence of adjustment costs.

In Column (2), the estimation targets the sensitivity of investment to real estate
prices instead of leverage. As a result, the estimated pledgeability parameter, s, is
smaller than in Column (1) (0.133 instead of 0.495). As was explicit on Figure C.1,
the sensitivity of investment to real estate prices is an increasing function of s in
this range of parameters: To reduce the sensitivity of investment to real estate prices
relative to the one delivered by the estimation of Column (1), a smaller value for s is
needed. A lower s implies a lower debt capacity, so that mean leverage in this model
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is much smaller, and in particular, smaller than its empirical value (0.013 vs. 0.313 in
the data). Since this model does not include adjustment costs to capital, the average
autocorrelation of investment in the simulated model of Column (2) remains distant
from its empirical counterpart (0.064 vs. 0.436 in the data).

We introduce these adjustment costs to capital in Columns (3) and (4). With
these costs, the estimated model matches the autocorrelation of investment exactly,
whether we target mean leverage (Column (3)) or the investment sensitivity coeffi-
cient (Column (4)). However, when the estimation targets the sensitivity of invest-
ment to real estate prices instead of mean leverage, we estimate a much smaller
pledgeability parameter s (0.189 vs 0.422), for the same reason as mentioned in the
discussion of the estimated models of Column (1) and (2). The introduction of adjust-
ment costs to the model leads to a higher estimated pledgeability parameter (0.189 in
Column (4) vs. 0.133 in Column (2)): In the presence of collateral constraints, adjust-
ment costs to capital make investment less responsive to collateral values; as a result,
to match the sensitivity of investment to real estate prices, the estimated s has to in-
crease. With adjustment costs to capital and this sensitivity as a targeted moment
(Column (4)), we are able to match perfectly not only the sensitivity of investment
to real estate prices, but also the sensitivity of debt, not targeted in the estimation.
The leverage ratio in Column (4) is larger than in the model with no adjustment costs
(0.095 in Column (4) vs. 0.013 in Column (2)) — the firm now has to pay for these
adjustment costs — but it remains below its empirical value (0.095 in Column (4) vs.
0.313 in the data). We do not view this discrepancy as a major source of concern. The
corporate finance literature has put forth a number of determinants of leverage not
included in our model (working capital management, moral hazard etc), that would
not necessarily interact with the real outcomes from the model. We thus take Column
(4) as our preferred specification. We propose an extension to our model in Section
5.2, which allows us to simultaneously match the sensitivity of investment to real
estate prices and mean leverage.
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3.6 Determinants of financing constraints

We briefly here discuss how firm characteristics covary with financing constraints.
We use our preferred specification of Column (4), Table 3. We define a firm to be
financially constrained when its capital stock is lower than 80% of its frictionless cap-
ital stock. To compute the frictionless capital stock, we solve the model using the
same parameters but remove the no equity issuance constraint. For firm character-
istics x, we sort the simulated firms into 20 equal-sized bins of x and compute the
fraction of constrained firms in each bin.'? This methodology allows to see how, in the
cross-section of firms, financing constraint covary with firm characteristics.

We report the results of this investigation in Figure 1. Panel A shows that more
productive firms are more constrained: They are typically firms that experienced a
positive productivity shock, but inherited a small capital stock, preventing them from
growing as much as they would in the absence of collateral constraints. Panels B-E
investigate the relationship between constraints and characteristics that are typi-
cally observable in firm-level data. Panel B shows a weak link between firm size
and financing constraints: Larger firms are typically more productive (and therefore
more constrained), but they also have more collateral (and are thus less constrained).
Panel C shows that growing firms are typically more constrained, which is not sur-
prising since they are likely to have experienced recent positive productivity shocks.
Panels D shows that firms with high leverage are more likely to be constrained: With
no heterogeneity in s in our model, a firm with a high leverage ratio is typically a
firm that experiences a large positive productivity shock and exhausts its debt ca-
pacity without being able to reach its first-best level of investment. Panel E shows
a sharply increasing relation between the ratio of sales to capital and the fraction of
constrained firms: This ratio captures the marginal revenue product of capital, the
effective capital wedge firms face when optimizing investment (Hsieh and Klenow,
2009). Even though in this model with dynamic inputs, the fact that the sales to cap-
ital ratio varies between firms is not per se a sign that inputs are misallocated (Asker
et al., 2014), we show that this ratio is nonetheless a good proxy to identify finan-
cially constrained firms. Panel F illustrates the non-monotonic relation between the

12As in our estimation procedure, we simulate firms over 100 years, but only use the last 10 years to
compute the fraction of constrained firms, to ensure firms have reached their steady-state.
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market-to-book ratio and the fraction of firms constrained: A low market-to-book ratio
implies that firms have few investment opportunities and are thus less constrained,;
firms with a large stock of capital are close to unconstrained and as a result, have a
large market-to-book ratio.

4 General Equilibrium Analysis

To quantify the aggregate effects of financing frictions, we embed our estimated firm
dynamics model in general equilibrium, and simulate counterfactual economies.

4.1 General equilibrium model

By clearing the goods and labor markets, the model endogenizes aggregate demand
Q and the real wage w introduced in the model of Section 2, equations (2)-(7).

Firms. A large number N of firms indexed by i produce intermediates, in quantity
qgi:, at price p;;. Intermediates are combined into a CES-composite final good

¢
N  ,\o1

Qt:(zqitq}) . (8)
i=1

The final good is produced competitively. The demand for input i is thus given by

-9

qir = Qt(%)_d), with P, = (Z p; ¢) . We normalize P, =1 and derive the demand
function in equation (3).

Consumption and consumer behavior. The final good is used for (i) consumption,
(i1) investment, and (iii) to pay for adjustment costs. The final good market equilib-
rium thus writes:

Q,=C,+Adj. Cost, +1,, 9

with C, being aggregate consumption, Adj. Cost, = > 5i* /k;; the sum of all adjust-

C :2
2Ly

l
ment costs, I, = Z i;, aggregate investment, and our normalization P, = 1.
i
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A representative consumer maximizes utility over consumption and labor:
1+
L, e

S (10)

U, =Z/3t_sut with u,=C,—L¢
t=s
with L, aggregate hours worked, L a scaling constant, and ¢ the Frisch elasticity of
labor supply. With quasi-linear preferences, the Hicksian, Marshallian and Frisch
labor supply elasticities are all equal to €. Labor supply is a static decision given by

Li=Lw. (11)

The consumption Euler equation ties the equilibrium interest rate r, to the dis-
count rate f3, so the interest rate r, =1/ —1 is fixed throughout all counterfactuals.

Steady state assumption and equilibrium definition. We assume that the econ-
omy is in steady state. Intermediate good producers produce according to the technol-
ogy (2). The log productivity shocks z;, that they face have no aggregate component.
Given our assumption that the number of firms is large, aggregate output Q and the
wage w are constant over time. We are thus exactly in the case described in Section
2 and estimated in Section 3.

Given the normalization P, =1, the equilibrium (Q, w) of this economy is defined
by two equations: The labor market equilibrium and the final good aggregator,

Ewe: ld((Q’w);Zit’kit(Q’w)) (12)

=

i=1

PQ= pi:q(Q,w); z;, ki (Q, w)). (13)

M=

1

Il
—

1(:) is the numerically obtained labor demand function which is a function of each
firm state variable and aggregate equilibrium (Q,w). Similarly pq(-) is the supply
function, which, for each firm, associates state variables and macroeconomic condi-
tions to its dollar sales. The equilibrium (Q, w) is the solution of these two conditions.
We solve this problem by iteration, using a variant of the Newton-Raphson algorithm
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(see the details in Appendix B).

In our quantitative exercise, we focus on the following aggregate quantities. Ag-
gregate output Q and real wage w are direct outcomes of the algorithm. Aggregate
employment is given by the supply curve: L = Lw¢. The aggregate capital stock in the
steady state, K, is computed as the sum of capital stocks over all firms. Aggregate log
TFP is classically given by logQ —alog K —(1—a)log L. Finally, welfare is a function of
(Q,w), capital K, and aggregate adjustment costs

1 . Lw1+6
U—m((Q—aK—Ad_] COSt)— 1+1 )

€

4.2 The aggregate effect of financing constraints

We are now in a position to evaluate the aggregate effect of financing constraints.
Compared to the firm-level model, the macroeconomic model has a few additional
free parameters. Following Chetty (2012), we set the labor elasticity € = 0.50. We
adjust L and the number of firms N so that the equilibrium parameter chosen for the
estimation process (Q =1 and w =0.03) are actual equilibrium parameters when firm
parameters are at the SMM estimate.

To measure the aggregate impact of financing constraints, we present all aggre-
gates (TFP, output Q, wage w, labor L, capital K, and welfare) in log deviations from
the “unconstrained” benchmark. The appropriate way to define the unconstrained
benchmark in our model is to lift the no equity issuance constraint, rather than
the collateral constraint. With no equity issuance constraint, investment is uncon-
strained since equity is freely available to all firms and fairly priced at r. With no col-
lateral constraint, firms would raise infinite debt for tax purposes. So strictly speak-
ing, our unconstrained benchmark corresponds to a model with free equity issuance,
a collateral constraint, and all structural parameters otherwise unchanged.'®

We first ask how the estimation method affects the aggregate effect of financing
constraints. We implement this exercise in Table 4. First, we see that estimations

targeting the sensitivity of investment to real estate prices (Columns (2) and (4)) gen-

13We show below that lifting the collateral constraint (increasing s to a large yet finite level) gives
results similar to removing the no equity constraint.
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erate a TFP loss twice as large as estimations targeting the leverage ratio (Columns
(1) and (3)). In our preferred specification (Column (4)), we find a TFP loss of 2.7%,
compared to 1.5% in Column (3). This discrepancy is at the core of our analysis: When
the estimation targets the mean leverage ratio, it maps all the leverage in the data to
collateralized debt in the model. This implies a large level of pledgeability s to match
the high level of mean leverage in the data (0.42). This estimate is larger than actual
net leverage (0.31 in the data), since in the model firms maintain some debt capacity
and therefore issue less debt than they actually can. By contrast, when matching the
rather low sensitivity of investment to collateral value, a moment that characterizes
how real outcomes are affected by the collateral constraint, the estimated pledgeabil-
ity parameter is smaller (s =0.189 in Column (4)). In the specification of Column (4),
the collateral constraint is thus tighter than in that of Column (2), and losses from
financing constraints larger. In our context, the estimated TFP loss from financing
constraints depends strongly on the choice of moment selected to reflect the impor-
tance of these constraints.

Second, Column (4) shows that output loss from financing constraints are as large
as 11%. More than half of this output loss is accounted for by a smaller aggregate
stock of capital in the constrained economy (0.192 x 0.3 = 6.5%). About a quarter of
this output loss comes from misallocation, since, as we discussed above, TFP in the
constrained economy is lower by 3% relative to the unconstrained benchmark. These
two effects combined reduce the productivity of labor, which in turn depresses labor
supply. The labor supply response accounts for the remaining quarter of the overall
output loss. Hence, even though misallocation is non-negligible, the total output loss
from financing constraints mostly arises from aggregate under-investment: Firms are
constrained, so that the representative consumer under-saves and supplies too little
labor relative to the unconstrained economy. Overall, removing financing constraints
has a large effect on welfare, 9.4% higher in the unconstrained relative to the actual
economy. We also see in Table 4 that adjustment costs tend to attenuate the welfare
losses from financing constraints. In the presence of adjustment costs, firms smooth
out investment by responding partially to productivity shocks. As a result, financing
constraints bind less often. Note, however, that this effect of adjustment cost on the
estimated welfare loss from financing constraints is quantitatively small.
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In Figure 2, we show how these general equilibrium quantities are affected by the
pledgeability parameter s. We start from the estimated model of Column (4), Table 3,
which includes adjustment costs and target the sensitivity of investment to real estate
prices. We then change s relative to its estimated value, solve the model and compute
the general equilibrium quantities reported in Table 4. As in Table 4, we report these
quantities as deviations from the corresponding unconstrained benchmark. Finally,
Figure 2 also reports the estimated pledgeability parameter s (vertical dark line), as
well as the 95% confidence band for this parameter (light blue bar). The precision of
our estimate — a standard error of 0.008 for a point estimate of 0.189 — implies that
for values of s in the 95% confidence interval, aggregate effects remain close to their
value reported in Table 4. We are thus confident the aggregate effects of collateral
constraints are precisely estimated.

Overall, Figure 2 shows clearly how aggregate outcomes are affected by the pledge-
ability parameter s. In an economy with no pledgeability (s =0) — and therefore where
financing is done entirely through cash-flows — and relative to the unconstrained econ-
omy, output is smaller by about 15%, welfare by about 15% as well, employment by
about 5%, capital by about 25%, and aggregate TFP by about 4%. The effect of pledge-
ability on these aggregate quantities in general equilibrium is approximately linear.
The limited response of aggregate employment to variations in s stems from the rel-
atively small elasticity of labor supply we use. Finally, the last panel of Figure 2
reports the cross-sectional dispersion of log MRPK (logp;q;/k;), the measure of dis-
torsions used in Hsieh and Klenow (2009). Note that in the presence of adjustment
costs and time-to-build in investment, this dispersion is not 0 (Asker et al., 2014).
However, Figure 2 reports deviations from an unconstrained economy with the same
adjustment costs, and thus already accounts for the effect of adjustment costs on the
dispersion of log MRPK. When collateral cannot be pledged (s =0), the dispersion in
log MRPK is about 14% higher than in the unconstrained economy.

4.3 Productivity persistence and misallocation

Recent papers emphasize that the persistence of productivity shocks should reduce
the aggregate effect of financing frictions (Moll, 2014; Buera et al., 2011), as firms
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“grow out” of their financing constraints if productivity shocks are persistent: Pro-
ductive firms are likely to remain productive and can accumulate cash holdings nec-
essary to fund future investment. To measure this effect in our quantitative model,
we start from the estimated model of Column (4), Table 3, pick alternative values for
the parameter p, and compute the equilibrium dispersion of log MRPK (logp;,q,/k;)
(Hsieh and Klenow, 2009; Midrigan and Xu, 2014). When varying p, we keep Var(z)=
o?/(1—p?) constant, varying o accordingly, as in Moll (2014).

Figure 3 shows that misallocation is significantly reduced when productivity shocks
become very persistent. When p is set to 0.35 — about one third of its estimated value
— the dispersion of log MRPK is more than 50% larger (0.43 vs. 0.66). At the esti-
mated persistence (0.895 in Table 4, Column (4)), misallocation is quite sensitive to

variations in the persistence parameter.

5 Discussion

5.1 Model Identification

A contribution of this paper is to base the estimation collateral constraints on a well-
identified, reduced-form moment that evaluates how real outcomes respond to shocks
to real estate collateral value. We provide suggestive evidence in table 5 that this ap-
proach may be more robust than a conventional estimation targeting financial lever-
age. To obtain this table, we simulate synthetic data from a model where firms are
unconstrained. We then show that an estimation targeting the empirical mean lever-
age would not to reject that firms are constrained, while an estimation targeting the
sensitivity of investment to house prices would.

More precisely, we start from the estimated model of Column (4), Table 3. We
then simulate a sample of firms from these estimated parameters, but remove the no
equity issuance constraint. These simulated firms are unconstrained, by definition.
We then compute the following moments on this synthetic dataset: the long- and
short-run volatility of log sales, the autocorrelation of investment, mean leverage,
and the sensitivity of investment to real estate prices. Table 5, Column (3) show

these moments. Unsurprisingly, the sensitivity of investment to real estate prices is
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-0.001: Firms are unconstrained, investment is efficient and unaffected by real estate
shocks, which, by construction, are uncorrelated with productivity shocks.

Using this simulated sample — where the data generating process is such that
firms are unconstrained — we estimate our model from Section 2 using either mean
leverage (Column (1) of Table 5) or the sensitivity of investment to real estate prices
(Column (2) of Table 5) as a targeted moment. When the estimation targets leverage
(Column (1)), the pledgeability parameter is in part determined to match leverage,
0.168 in the simulated data. As a result, the estimated pledgeability parameter is low,
s = 0.436. This estimated s leads to inaccurately conclude that the economy suffers
from substantial losses due to financing constraints: The estimated model implies,
relative to the unconstrained economy, a 3.1% TFP loss, a 13.0% output loss and a
10.9% welfare loss) when the true model features no such losses.

When we instead target the sensitivity of investment to real estate prices (Column
(2)), the pledgeability parameter is estimated close to 1 (s =0.953): The data used to
compute the moments is such that firms are unconstrained so that their investment
does not covary with real estate prices; to match this moment, the estimation has to
find that the pledgeability of collateral is very high, so that firms’ investment is close
to its first best. As a result, the estimation based on this moment rightly concludes
that there are no aggregate losses from financing constraints.

In other words, in this exercise, both models are misspecified, as they wrongly
assume no equity issuance, while the firms in our synthetic dataset are free to is-
sue equity. However, the estimated model targeting the sensitivity of investment to
real estate prices correctly infers negligible financing constraints, while the estimated
model targeting the leverage moment does not.

The point we make in this paper goes beyond this particular example: A valid
reduced-form moment identifying the effect of financing constraints on investment
— valid in the sense that it estimates the causal effect of financing frictions under a
reasonable identifying assumption, as argued in Chaney et al. (2012) for the sensitiv-
ity of investment to real estate — will provide a better source of identification in the

structural estimation than generic financial moments such as leverage.
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5.2 Robustness: Residual leverage and costly equity issuance

In this section and Table 6, we discuss the robustness of our findings to either a
setting where firms have spare debt capacity in addition to the collateralized debt
that is the focus of our study, or to assuming firms are allowed to issue equity at a
finite cost.

Residual leverage. A potential concern with our baseline specification is that it fails
to match the mean leverage ratio (see Table 3, Panel A, column 4). Leverage however
may be determined by a host of firm characteristics (unsecured debt capacity, trade
credit, inventories etc) that we omit in our model. It is possible that once these other
sources of external funding are accounted for, firms have enough debt capacity to
escape financing constraints. We show here this is not the case. To do so, we add a

debt capacity d to the borrowing constraint in our baseline model,

(A+r)di <d+s ((1 —0)kii +E[pt+1|pt]h)- (14)

This coefficient d captures un-collateralized debt capacity left out of the model.

We estimate this new model and report the results in Table 6, Column (2). The es-
timation targets both leverage and the sensitivity of investment to real estate prices,
as well as the short- and long-term volatilities and autocorrelation of investment. To
match the high level of leverage in the data, d is estimated to be high (0.45), while s
remains close to our previous estimate (0.254 instead of 0.189). The productivity shock
process remains similar. Interestingly, however, the aggregate impact of financing
constraints (-10% welfare) is not smaller than in the model that does not fit leverage,
i.e. where d =0 (-9.4% welfare). This extra debt capacity is similar to free cash, i.e.
cash that is not penalized in terms of returns. As a result, firms lever up more in
order to minimize taxes, which is why the estimation now matches the leverage ratio
almost perfectly. However, the overall borrowing constraint does not bind less because
the extra debt capacity is used for tax optimization and not investment in physical
capital. Overall, this simple addition to the model — an unsecured debt capacity d —
allows us to match firms leverage, without changing our inference on the aggregate

effects of financing constraints.

Costly equity issuance. We conclude this section by allowing for costly equity is-
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suance. We assume a variable equity issuance cost of 15%, within the range estimated
by Hennessy and Whited (2007). The results are presented in Table 6, column 3. Nei-
ther the parameter estimates nor the fit between simulated and actual moments vary
much compared to our baseline specification. As firms now have the ability to issue
equity, the aggregate effects of financing frictions are naturally reduced (5.8% aggre-
gate output loss compared to 11% in our baseline specification).

5.3 Policy Experiments

To conclude this section, we use our model to investigate the effect of an investment
tax credit (ITC). We consider two types of policies. The first is a non targeted invest-
ment subsidy. Each firm in our sample receives a subsidy equal to x x i;,, where i;,
is the firm’s investment and x is a fraction equal to 5, 10 and 15%. The second is a
targeted investment subsidy, aimed only at capital poor firms, i.e. firm with a high
MRPK (log(pi q;/ k,-) > 0.4). This second policy is motivated by the evidence in Figure 1:
M firms with a sales to capital ratio below 0.4 are unconstrained.

In both cases, the subsidy is a linear function of investment, i.e. it becomes a
tax when investment is negative. This feature avoids the emergence of short capital
cycles where firms buy capital to enjoy the subsidy, and sell it the following year.
In order to focus on the effect of the ITC, we assume this subsidy is financed via a
lump-sum tax raised on household income.

We report the results of these policy experiments in Table 7. With a non-targeted
tax credit of 5% the capital stock increases by 11% and aggregate employment by
about 1.4%. As a result, output rises by 4.3% and welfare by 2.9%. This large effect of
the ITC occurs in our model because corporate profits are taxed at a high rate (33%),
which depresses investment significantly: The ITC partially undoes the depressing
effect of the corporate income tax.

Interestingly and perhaps surprisingly, the non-targeted investment subsidy in-
creases welfare by about as much as a subsidy specifically targeted to capital poor
firms, but at a much lower cost in terms of the aggregate amount spent to finance this
subsidy. With a 15% subsidy, welfare increases by 9% for both the targeted and the
non-targeted program. This increase in welfare corresponds to almost all the welfare
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loss from financing constraints estimated in our model (+9.4% in Table 4 column 4).
However, the non-targeted subsidy requires a tax from household of about 2.4% of
total output, while for the targeted subsidy, the cost of the program almost doubles
(about 4.4% of total output). The reason for this differential cost of the two subsidies
is that a targeted program induces an opportunistic investment strategy: To benefit
from the subsidy, firms invest little (disinvest) as long as their sales to capital ra-
tio is below the policy threshold, and their investment rate jumps discontinuously as
soon as they cross the policy threshold. Figure 4 makes clear this unintended effect
of the targeted subsidy, by showing how the investment rate varies as a function of
the sales to capital ratio, in both experiments. With the un-targeted subsidy, invest-
ment increases smoothly with the variable used to assign the subsidy (the sales to
capital ratio); with the targeted one, investment increases sharply right at the policy
threshold.

Conclusion

This paper provides a quantification of the aggregate effects of a specific source of
financing frictions, collateral constraints. We build a simple dynamic general equi-
librium model with heterogeneous firms and collateral constraints. To estimate this
model structurally, we match not only key features of firm-level dynamics, but also a
well identified reduced-form evidence that an increase in the value of a firm’s collat-
eral leads to an increase in investment. The estimated model is then used to simulate
a counterfactual economy where financing frictions are lifted. Welfare increases by
9.4% and aggregate output by 11%. Quantitatively, only one quarter of these gains
can be attributed to a more efficient allocation of inputs across heterogeneous firms
— more productive firms are able to obtain more financing and expand — while half of
these gains are due to a higher aggregate stock of capital, and the remaining quarter
to a higher aggregate labor supply.

One limitation of this analysis is that the shocks to collateral value that we use
to identify the effect of collateral constraints at the firm-level are exogenous in the
model. Yet in equilibrium, increased investment and hiring at the local level will
clearly feed back into local real estate prices. In addition, since households are not
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fully mobile across regions, variations in real estate prices will induce variations in
wages faced by firms, which will affect their local input choices. Endogenizing the
housing market and its feedback effect on local labor markets, and incorporating it
into our quantitative analysis is an important step that we plan to tackle in future

research.
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Tables

Table 1: Summary statistics: COMPUSTAT Extract

Mean s.d. Obs
Investment;; / k;;_; .37 42 20,074
Net borrowing / k;;—; .05 48 19,998

Real estate value;, 7 1.27 20,074
ki” 42 .65 20,074
Office price .67 21 20,074

Source: COMPUSTAT for accounting items and Global RealAnalytics for office prices. The construction
of this data is described in detail in Chaney et al. (2012). The dataset is an extract of COMPUSTAT.
It contains all firms present in 1993 who report accounting value and cumulative depreciation of land
and buildings. These firms are then followed until they exit the sample or until 2006. We also require
that office price data are available in the city where these firms have their headquarter in 1993. The
variables shown are used in the two regressions presented in Section 1.
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Table 2: Elasticity of Moments with respect to Parameters

s.d. Alogg s.d. Aslogg ’,f—; B(Inv,RE) corr(%,l;c—*[l) B(Debt,RE)

Pledgeability s .077 .16 1.3 -1.3 -.044 -.99
Adjustment cost ¢ -.041 -.063 .34 .014 42 .011
Volatility o 97 .92 -14 -.48 -.15 -.76
Persistence p .081 1 -2.2 -.99 2 -2

Note: This table reports the elasticity of various moments with respect to the structural parameters
that we estimate. First, we start with the SMM estimate @ of the parameters . For each k=1,--,4,
we set w; = @, for all ] # k, and vary the parameter w; around the estimated & in order to compute
the elasticity of moments to parameters in the vicinity of the SMM estimate. For each moment m,,, we
compute

my—my; & _ 2log(ri,)

€Enk=

X R
wi—w, M, Jlogw)

where 1, is the n'" data moment. m, is the moment based on data simulated with parameter &;.
Likewise, m, is the average of moments based on data simulated with parameters w;. w; and w} are
parameter values right above and right below the SMM estimate &, when the interval of definition of
w is graded on a scale going from 0 to 10 as in Figures C.1-C.4. Reading: Around the SMM estimate, a

1% increase in s is associated with a 1.3% decrease in the sensitivity of investment to real estate and
a 1.3% increase in leverage.
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Table 3: Parameter estimates (SMM)

(1) (2) 3 4 ()
No adj cost, No adj cost, Adjcost, Adj cost, Data
Lev. target Inv. target Lev. target Inv. target
Panel A: Estimated Parameters

Joj 0.917 0.919 0.865 0.895
(0.011) (0.008) (0.008) (0.008)

o 0.109 0.127 0.143 0.144
(002) (0.003) (0.002) (0.002)

s 0.495 0.133 0.422 0.189
(0.024) (0.030) (0.020) (0.014)

c 0.050 0.045

(0.003) (0.003)

Panel B: Moments (targeted in bold)

Std of 1-year sales growth 0.327 0.327 0.327 0.327 0.327
Std of 5-year sales growth 0.909 0.910 0.910 0.911 0.911
Real-Estate to assets 0.140 0.140 0.140 0.140 0.140
Net debt to assets 0.300 0.013 0.315 0.095 0.313
B(Inv,RE) 0.126 0.038 0.082 0.040 0.040
Autocorrelation of investment -0.057 0.064 0.436 0.436 0.436
B(Debt,RE) 0.124 0.037 0.084 0.038 0.039

Note: This table reports the results of our SMM estimations. The estimation procedure is described
in the text and in Appendix A. Columns (1)-(4) correspond to SMMs using different sets of parameters
and targeting different sets of moments. Columns (1) and (2) assume not adjustment cost (¢ =0), while
Columns (3) and (4) introduce adjustment costs to the model. Estimations reported in Columns (1)
and (3) target the short- and long-term volatilities of log sales, mean leverage, and the autocorrelation
of investment. Columns (2) and (4) target the sensitivity of investment to real estate prices instead
of mean leverage. For each of these estimations, Panel A shows the estimated parameters, along
with standard errors (obtained via bootstrapping) in parenthesis. Panel B shows the value of a set of
moments, measured on simulated data (with 1,000,000 observations). Moments in bold are the ones
that are targeted by the estimation. The other moments are not targeted. The last column (labeled
“data”) features the empirical moments.

37



Table 4: Aggregate effects of collateral constraints

(1 (2) 3) (4)
No adj cost, No adj cost, Adj cost, Adj cost,
Lev. target Inv. target Lev. target Inv. target

Panel A: Targeted moments

Std of 1-year sales growth
Std of 5-year sales growth
Real-Estate to assets

Net debt to assets

pInv,RE)

Autocorrelation of investment

2z
ZHKZK
KZ<HH
KK ZHH

Panel B: Loss from financial constraint in general equilibrium

log(TFP) 0.015 0.034 0.015 0.027
log(output) 0.081 0.160 0.061 0.110
log(wage) 0.054 0.106 0.040 0.073
log(L) 0.027 0.053 0.020 0.036
log(K) 0.157 0.296 0.107 0.192
log(welfare) 0.063 0.131 0.051 0.094

Note: This table reports the results of the general equilibrium counterfactual analysis for different
SMM parameter estimates. The general equilibrium analysis is described in Section 4 and the proce-
dure detailed in Appendix B. Columns (1)-(4) correspond to parameters from SMMs assuming different
parameter restrictions and targeting different sets of moments. Columns (1) and (2) assume not ad-
justment cost (¢ = 0), while Columns (3) and (4) allow for them. Parameters in Columns (1) and (3)
correspond to SMMs which target “classic” moments, including mean leverage, while Columns (2) and
(4) target the sensitivity of investment to real estate value instead of mean leverage. For each one
of these estimations, panel A simply recalls the targeted moments. Panel B reports the result of the
GE counterfactual analysis. All results are shown as log deviations with respect to the unconstrained
benchmark. The unconstrained benchmark correspond to an equilibrium where firms face the same
set of parameters as in the SMM estimate — as reported in the same column, Table 3, panel A — but
no constraint on equity issuance. In this unconstrained benchmark, investment reaches first best.
Reading: In column 1 (targeted leverage, no adjustment cost), the aggregate TFP loss compared to a
benchmark without financing constraints is e%°'% ~ 1.5%.
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Table 5: Estimating a constrained model on unconstrained data

1 (2) (3

Leverage Investment Unconstrained

target target simulated model
Panel A: Parameters
yel 0.943 0.900 0.895
o 0.155 0.142 0.144
s 0.436 0.953 0.189
c 0.042 0.042 0.045
Cost of equity +00 +00 0

Panel B: Moments (matched in bold fonts)

Std of 1-year sales growth 0.377 0.366 0.367
Std of 5-year sales growth 1.164 1.178 1.171
Real-Estate to assets 0.133 0.156 0.152
Net debt to assets 0.167 0.885 0.168
B(Inv,RE) 0.037 0.003 -0.001
Autocorrelation of investment 0.420 0.431 0.426
B(Debt,RE) 0.034 0.361 0.069

Panel C: Loss from financial constraint in general equilibrium

log(TFP) 0.031 0.000 0
log(output) 0.130 0.002 0
log(wage) 0.086 0.001 0
log(welfare) 0.109 0.002 0

Note: This table reports the result of our SMM estimation on a synthetic dataset simulated by a model
without financing friction. We start with our baseline parameters (Table 3 Panel A Column (4)). We
remove the no equity constraint, and simulate a synthetic panel dataset of unconstrained firms. We
compute various moments and report them in column 3. We then perform two SMM estimations
of a model with no equity issuance constraint. The estimation procedure and general equilibrium
analysis are described in the text and in Appendices A and B. In Column (1), we match short- and
long-term log sales volatility, the autocorrelation of investment, and mean leverage. In Column (2), we
match short- and long-term log sales volatility, the autocorrelation of investment, and the sensitivity
of investment to real estate value. Panel A reports the estimated parameters (to be compared with the
true parameters used for the simulation in Column (3)), Panel B the moments (targeted in bold, and
non-targeted, to be compared with the synthetic data moments in Column (3)), and Panel C computes
the implied GE losses from financial constraints by comparing output, TFP, labor and welfare with a
model with the same parameters but no no equity issuance constraints (to be compared to the true
losses in Column (3)).
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Table 6: Robustness: unsecured debt and costly equity issuance

1 (2) 3 4
Baseline Unsecured Costly Equity Data
Debt Capacity Issuance

Panel A: Estimated Parameters

yel 0.895 0.877 0.868

o 0.143 0.144 0.141

s 0.189 0.254 0.235

d - 0.450 -

c 0.045 0.052 0.048

Panel B: Targeted moments

Std of 1-year sales growth 0.327 0.327 0.324 0.327
Std of 5-year sales growth 0.911 0.906 0.920 0.911
Real-Estate to assets 0.140 0.140 0.145 0.140
Net debt to assets 0.095 0.300 0.181 0.313
B(Inv,RE) 0.040 0.040 0.039 0.040
Autocorrelation of investment 0.436 0.439 0.458 0.436
B(Debt,RE) 0.038 0.039 0.054 0.039

Panel C: Loss from financial constraint in general equilibrium

log(TFP) 0.027 0.027 0.013
log(output) 0.110 0.122 0.058
log(wage) 0.073 0.081 0.038
log(welfare) 0.094 0.100 0.048

Note: This table reports the SMM estimation result and GE counterfactual experiments of two alter-
native versions of our baseline model. In Column (2), we assume that in addition to collateralized debt,
the firm has access to an extra fixed debt capacity (d) as in equation (14). In column 3, we relax the
zero equity constraint, and allow for costly equity issuance, with a 15% variable cost. The estimation
procedure and general equilibrium analysis are described in the text and in Appendices A and B. We
target the following moments: short- and long-term volatilities of log sales, the autocorrelation of in-
vestment, investment sensitivity to real estate value, and mean leverage in Column (2) only. Panel A
shows the estimated parameters. Panel B shows the value of simulated moments. Moments in bold
are the ones that are targeted by the estimation. Panel C reports the result of a GE counterfactual
experiment. All results are shown as % losses with respect to the unconstrained benchmark. The un-
constrained benchmark correspond to an equilibrium where firms face the same set of parameters as in
the SMM estimate — as reported in Panel A — but no constraint on equity issuance. Column (1) recalls
the results of our baseline preferred estimation for comparison. Column (2) reports the estimate of the
model with fixed unsecured debt capacity targeting the 6 moments. Column (3) reports the estimate
of the model with costly equity issuance (15% variable cost instead of an infinite cost), targeting the
same 5 moments as in our baseline model. Column (4) reports the data moments.
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Table 7: Macro effect of an investment subsidy

(1 (2) 3 4) (5) (6)

Untargeted Targeted
Subsidy (share of investment) 5% 10% 15% 5% 10% 15%
Aggregate subsidy (% of output) .007 .015 .024 .027 .035 .044

Alog Output .043 089 .14 .069 .093 .12
Alog Capital A1 .23 .36 13 .18 24
Alog Labor .014 .03 .046 .023 .031 .039
Alog TFP 0 0 -.001 .014 .016 .017
Alog Welfare .029 .059 .089 .068 .074 .091

Note: This Table reports the aggregate equilibrium impact of tax subsidies. We start with the model
and parameter estimates of Table 3, Column (4). To cash flows of firm i at date ¢, we add a tax
free subsidy equal to xI;, where I;, is the investment of firm i at date r and x is a fraction equal to
5,10 and 15%. Note that this subsidy becomes a tax when the firm’s investment becomes negative.
This subsidy is financed by a non distortionary tax on households. In columns (1)-(3), the tax is not
targeted. In Columns (4)-(6), the tax is targeted only towards capital-poor firms, i.e. firms with a high
MRPK (log(p;q;/k;) > 0.4). For each one of these six policies, we compute the equilibrium and report
the change in log aggregates compared to the case without subsidy. For instance, we find that giving
firms a non-targeted subsidy equal to 5% of their investment leads to an increase in aggregate output
of 4.3%.
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Figure 1: Financing constraints as a function of firm characteristics

Note: This Figure shows how the extent of financing constraints covaries with firm character-
istics, in the cross-section of simulated firms. We simulate a dataset of 1,000,000 firms over
10 years using parameters from our preferred specification (Table 3, Panel A, column 4). We
remove the first 90 years to make sure firms are in steady state. For each characteristic x, we
then sort firms into 20 quantiles of x, and for each quantile compute the average fraction of
constrained firms in our simulated data. We label a firm constrained if its capital stock is less
than 80% of its unconstrained capital stock. Unconstrained capital stock is computed after
solving the same model, with the same parameters but without the no equity issuance con-
straint. The conditioning variable x is given by z (Panel A), logk (Panel B), logpgq,; —logpq,_:
(Panel C), ¢ (Panel D), p—kq (Panel E), and % (Panel F).
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Figure 2: General equilibrium effect of pledgeability s

Note: This figure reports the general equilibrium effects of changing the collateral parameter
s from O (full financial constraints) to 1 (100% of the capital stock can be pledged to lenders).
We use the model with adjustment costs and estimated targeting the investment sensitivity
moment (thus using the parameters reported in Table 3, Panel A, column 4). All aggregates
are represented in deviation with respect to the unconstrained benchmark: For each value
of s, we compute the general equilibrium of the economy populated with constrained firms,
and also the GE of the economy populated by firms with the same parameters, but without
the no equity issuance constraint. We then compute the log difference of output, welfare,
employment, capital stock, TFP and the difference in the s.d. of log sales to capital ratio
(MRPK). We then try all values of s from 0 to 1, spaced by .1. The vertical red line correspond
to the SMM estimate of s (.189). Reading: When s increases from .1 to .6, the loss of log capital
stock w.r.t. the unconstrained benchmark goes from -.2 to .-1.
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Figure 3: Productivity persistence p and the dispersion of capital productiv-
ity

Note: This figure reports the effect on capital misallocation of changing the log productivity
persistence p from 0.35 (low persistence) to .95 (high persistence). We use the model with
adjustment costs and estimated targeting the investment sensitivity moment (Table 3, Panel
A, column 4). Following Hsieh and Klenow (2009), we measure misallocation as the s.d. of log
sales to capital ratio (MRPK).
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Figure 4: Non targeted versus targeted investment subsidy

Note: This figure shows the relation between the sales to capital ratio and investment for two
types of subsidies on investment — a non targeted 10% subsidy for all firms, and a targeted
10% subsidy aimed only at capital poor firms, i.e. firms with a high MRPK (p; g;/k; > 0.4). The
data is simulated using our SMM parameter estimates from Table 3 panel A column 4.
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APPENDIX (FOR ONLINE PUBLICATION)

This Appendix contains: the method used to to solve and estimate the model (Sec-
tion A), the method we use to compute the general equilibrium of our model (Section
B) and the additional comparative static results in partial equilibrium designed to
show that the model is well behaved around the estimate (Section C).
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A Solving the model and Estimation

This Appendix details the algorithms used to solve the model and estimate it. To
estimate the model, one needs to find the set of parameters such that model-generated
moments fit a pre-determined set of data moments. Because our model does not have
an analytic solution, we need to use indirect inference to perform the estimation.
Such inference is done in two steps:

¢ For a given set of parameters, we need to solve the model numerically, which
means solving the Bellman problem (7) and obtain the policy function S,,; =
(d;+1, k1) as a function of S, =(d,, k,) and exogenous variables X; =(z,, p;).

¢ We then use this resolution technique to estimate the parameters that match
best a set of moments chosen from the data. We explain the methodology (Sim-
ulated Method of Moments) and the numerical algorithm that we use to imple-
ment it.

A.1 Solving the model numerically

In this section, we describe how we numerically solve the firm’s problem with given
parameters.

A.1.1 Grid definition

In order to solve the model numerically, we need to discretize the state space (S;X).
Let us start with the two exogenous variables. The log productivity process z is dis-
cretized using the standard Tauchen method on 51 grid points. Log real estate prices
are also an AR(1), discretized using the Tauchen method on 11 grid points. For both
variables, we set the bounds of the grid at -2.5 and 2.5 standard deviations.

Capital choice is discretized over a range going from k,,,;,, to k4. ki, is the small-
est level of capital chosen by a firm without adjustment costs and financing constraint.
For this particular case, we can solve the capital decision analytically. In most cases,
this number should serve as a lower bound because adjustment costs would prevent
firms from adjusting all the way down to this level; and financial constraints would
push them to keep more capital as precautionary savings. Since we did not, how-
ever, establish this result analytically, we check that k,,;, is always “far enough” from
the lowest simulated value of capital. Similarly, k,,,, is the capital stock chosen by
unconstrained firms, without adjustment cost, facing the highest productivity level
on the grid. Again, we expect this level to be above the upper bound of capital for a
constrained firm with adjustment costs. We check that this is the case in our sim-
ulations. We then form an equally spaced grid for log capital between logk,,;, and
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log k,,,4, With increment of log(1 + 6/2). Thus, the capital grid is geometrically spaced
using (1+6/2) as the multiplying coefficient, i.e. the n’" point is equal to k,,;, x(1+6/2)"
until k,,,.. Given that k,,;, and k,,,, are functions of productivity, the grid thus de-
pends on the persistence p and volatility o of log productivity. Larger persistence or
volatility leads to wider grid. In our preferred specification, capital evolves on a grid
containing 270 points. We will take this number as a reference when we later discuss
grid size, bearing in mind that, in fact, the capital grid is a function of parameter
values.

Finally, the debt grid d, is defined as a function of the amount of capital k,. This
adaptive feature of the debt grid comes from the fact that the amount of debt is
bounded above by a function of capital: larger firms can borrow more. We restrict
future period debt d’ to the [—4d;d] interval, where d = s((1—6)k + pyach) and pyax
is the maximum house price level. The grid interval is thus a function of the model
parameters s but also p and o via the grid of k. The upper bound is a natural con-
sequence of the collateral constraint: the model imposes that it cannot be exceeded.
The lower bound is somewhat arbitrary as there is in theory no upper bound as to
how much cash the firm may decide to hold. We check that there is no accumula-
tion of cash at this bound during the estimation process. Within this interval, the
grid is geometrically spaced so that it is more dense when debt becomes closer to the
constraint, i.e. right below d. We implement this by setting the n‘” grid point at
d (1 —0.001 x e'3”) until it reaches —4d. Thus, the grid size for debt does not depend on
parameters (in contrast to the capital grid size) and always has 29 points.

A.1.2 Bellman resolution algorithm

We solve the firm’s problem using policy iteration. This algorithm is based on the
fact that the value function is the solution of a fixed point problem generated by a
contraction mapping.

Before starting to iterate, we compute profit flows e(S,S’; X) using the production
and cost functions, for all possible values of S and X on the grid. We set e to “missing”
when (S,S’;X) are such that e < 0 — the no equity issuance constraint is violated,
or when the borrowing constraint is violated. Profits are only defined when both
financing constraints are satisfied.

To initiate the process, we start with the value function V;(S; X)=1. We then look
for the policy function (k;, d;) = P,(S; X) which solves:

1
Py(S; X)=argmaxg{e(S,S; X)+ ——1}
1+r

for each state of (S; X). Then, we iterate the following loop (where n > 1 denotes the
step in the loop):
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1. Start from (k;_,,d/ ,)=P,_(S; X), the policy function obtained from the previous
round; and V,_, (S; X), the value function obtained from the previous round. For

every point (S; X) on the grid, we compute the value function V, that satisfies:

1-d
1+7r

/ / d / ~ /
V,(S; X)=e(S, P,_1(S; X); X )+ Ex [Voa(Pooa(S; X)X )|X]+1+—r (K _,—(1+7)d._)

2. We then use the new value function V, and compute the optimal policy given
this value function (P,(S; X)):

d
P,(S; X)=argmaxg{e(S,S; X)+ 1 Ex [Vi(S5 X)X ]+ T (K'—(1+7)d')}

+r
3. We stop when P,=P,_,.

Thanks to the contraction mapping theorem, we are guaranteed to find a good
approximation of the value function V(S;X) and the policy function S’ = P(S; X) de-
fined over the grid. The computationally costly step is the determination of the policy
function in step 2 with respect to S’. This consists of 29 x 270 x 51 x 11 = 4,392,630
optimizations of vectors with 29 x 270 = 7,830 points. This is where parallelization
achieved through a GPU accelerates the process. For the range of parameters we
explore, we typically solve the model in about 2 minutes with a GPU (Nvidia K80),
compared to several hours with a CPU. What prevents us from having a finer grid is
the RAM of the GPU, since the computer needs to create the maximand in step 2, a
29 x 270 x 29 x 270 x 51 x 11 ~ 34 billion numbers array.

The above algorithm is the standard policy function iteration algorithm. We make
two adjustments to adapt it to our setting. First, in order to reduce computing time,
we first solve the model with a coarser grid, and then solve it again on the grid de-
scribe above. To define this coarser grid, we divide the resolution of the control (k
and d) grids by two. This divides computing time by four in the first step but only
gives us the value and policy functions on the coarser grid. We then re-run the algo-
rithm on the finer grid with the “coarser” policy and value functions as starting point.
Convergence occurs much more quickly.

The other adjustment is related to the treatment of missing values, which in our
set-up occur when one of the two financing constraints are violated (i.e. the no-equity
constraint or the collateral constraint). Without modification, the policy iteration al-
gorithm does not behave well in the presence of missing values. This is because, for
some given value functions V,_,, there may exist some (S, X) for which there is no
acceptable policy S’. In this case, the optimal policy function P,(S, X) is not defined
everywhere on the grid (note (S, X;) such states for which the policy is not defined).
When this happens, the next iteration value V,(S; X) is non-defined for all (S, X), which
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leads with non-zero probability to states (S,, X,). As we iterate, missing value progres-
sively spread to the entire grid and the algorithm is blocked. To solve this problem,
we modify step 1. of the algorithm by requiring that V,(S; X) replaces V,_,(S; X) if and
only if V,(S; X) is non missing. This prevents missing values from spreading to the
entire grid of states (S; X).

A.2 Estimation

We now proceed to estimate the parameters (s, ¢, p, o) for which the model best matches
a predefined set of moment (we experiment with different set of moments and models
in the main text).

A.2.1 Estimation method: SMM

We estimate the key parameters of the model by simulated method of moments (SMM),
which minimizes the distance between moments from real data and simulated data.
Let us call m the vector of moments computed from the actual data, and let us call Q
the moments generated by the model with parameters Q2. The SMM procdure searches
the set of parameters that minimizes the weighted deviations between the actual and
simulated moments,

(m—m (£2)) W (m —m () (15)

We detail the various components of our implementation in the following sections.

A.2.2 Empirical moments m and Weight matrix W

The empirical moments are computed in a simple way, and the definitions are given
in the main text, in Section 3.3.

The weight matrix W adjusts for the fact that some moments are more precisely es-
timated than others. It is computed as the inverse of the variance-covariance matrix
of actual moments estimated by bootstrap with replacement on the actual data. To
compute the elements of this matrix, we repeat 100 times the following procedure. Us-
ing our dataset, we draw, with replacement, N firms with their entire history where
N is the number of firms in the sample (we use the bsample command in Stata, clus-
tered at the firm level). We then compute the moments, and store them. Once we have
performed this procedure 100 times, we compute the empirical variance-covariance
matrix of the moments, and invert it.
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A.2.3 Model-generated moments m

Once we have solved the model for a given set of parameter @ (Appendix A.1), we need
to simulate data in order to compute the simulated moments. We simulate a balanced
panel of 1,000,000 firms over 100 years, and only keep the last 10 years to ensure each
firm has reached steady state. For each firm, we simulate a path of log productivities
z;; and a path of log real estate prices p;;. This makes the variability of real estate
prices larger than in the data, where prices only vary at the city (MSA) level. Recall
however that our objective in this simulation is not to replicate the variability of the
data, but ideally to estimate model-generated moments. If we had closed forms for
the model, we could measure these moments without infinite precision. The problem
here comes from the fact that we cannot directly compute these moments but have
to “estimate” them. Ideally, we would want to generate an infinitely large simulated
dataset in order to compute the model-generated moments exactly, but computational
constraints make it infeasible. 100,000 firms over 100 years already generate arrays
with 10m entries. Allowing real estate prices to vary at the firm-level is a way to
make sure the sensitivity to prices model-generated moments are estimated as well
as possible.

A.2.4 Optimization algorithm

We now have all the ingredients necessary to compute the objective function (15). In
this Section, we explain how to minimize it. Since in our most preferred specification
we have 5 parameters, we need to make sure that we are indeed reaching a global
minimum. We do this by implementing the following two-step procedure, which fol-
lows Guvenen et al. (2014):

¢ We generate 1,000 quasi-random vectors of parameters 2 taken from a Halton
sequence. The Halton sequence is a deterministic sequence of numbers that
has the property of covering the parameter space evenly. For each of these pa-
rameters, we solve the model to obtain the policy function, simulate a dataset,
compute the moments and therefore the distance to data moments (15).

* We then use the lowest points (in terms of objective function) as starting points
for minimization. We iterate on the following loop. We begin with parameter es-
timate ), for which the objective function is the lowest. We then use the Nelder-
Mead method (command fminsearch in Matlab) to perform a local optimization
starting from this point. We then compute the objective function O,. We then
move to the second lowest parameter estimate (f),) and compute the objective
function O,. We iterate on this, and stop as soon as O, =0. Among the lowest
parameters, a large fraction typically leads to the same parameters for which
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the objective function is equal to 0. This gives an indication that our objective
function is well-behaved.

There is no general theoretical results arguing that this technique dominates other
popular algorithms adapted for large dimension optimization. In our setting how-
ever, we found that the genetic algorithm and simulated annealing were much slower
at converging. Also, this approach allows to “control” the smoothness of the objec-
tive function. For instance, within the lowest 20 parameters isolated after step 1.,
it would be worrisome if minimizations starting from each of these parameters gave
inconsistent parameters. On the contrary, they tend to be very consistent. The only
cases where convergence goes to alternative choice of parameters than the one we
present are cases where the objective function is much bigger than zero (i.e. other
local optima). Finally, the best argument in favor of our selected estimates is the
well-behaved comparative statics we present in Appendix C.

A.2.5 Standard errors

We estimate our standard errors using a block-bootstrap procedure. As for the com-
putation of the variance-covariance matrix, we start by generating B = 100 datasets
of N firms drawn without replacement from the data, and then compute the vector
of targeted moments for each dataset. To preserve the panel structure we make sure
to draw firms and not observations (hence the “block” in block-bootstrapping). The
result is a set of 100 vectors m,,, for each of whom we seek the vector of model param-
eters N, that minimizes

[ () = (my, — M () W (my, — M (€2,)). (16)

To reduce computing time we estimate the 100 parameters , in parallel. We use
the following algorithm. We define a new objective function as the sum of all 100
objective functions, that is

M=

F(Ql!--’QB): fb (ﬂb) (17)

b=1

1. M is initialized using our SMM estimate . As a result, each parameter €, is
equal to Q2 (so they are all identical). Let b* be the sample for which f,(f}) is that
highest. This corresponds to the bootstrapped sample for which the main SMM
estimate fits the moments the worst.

2. We use the Nelder-Mead simplex algorithm to improve the estimate €. of the
least well matched sample b*. Specifically, we use Matlab fminsearch function
with the following options:
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¢ The initial simplex A,. is computed using the current estimate of ;. as an
“initial guess”

* The local optimization is stopped as the soon as b* is no longer the sample
with the worst fit.

¢ If fminsearch reaches a maximum of 50 iterations, A,. is reinitialized using
the best available estimate of . as an “initial guess”.

We then use the outcome of this procedure to update the parameter estimate of
sample b* in the list M

3. For each vector m,,, we find in M the vector @, that minimizes f, (). We then
find the new sample b* for which the objective function f,. has the highest value.

4. If the standard deviations of 9, have moved by less than 1% over the last 500
evaluations, and if the value of F is less than one tenth of its initial value, then
the procedure stops. Otherwise, it goes back to step 2.

Standard errors of 2 are estimated using the standard deviation of the ,. The fact
the value of F is divided by at least ten indicates that the dispersion of €, is sufficient
to explain 90% of the (weighted) dispersion of Q. To reach that point, our procedure
typically takes the equivalent of 2-3 SMMs to converge, and is thus about 30 times
faster than running all 100 SMMs sequentially.
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B General Equilibrium Computation

In this Section, we describe how we compute the general equilibrium of an economy
populated by firms whose behavior is described by the model estimated and solved in
Appendix A. First, recall that this model is estimated assuming aggregate demand
Q =1 and aggregate wage w =0.03.

The economy is described in detail in Section 4 in the main text. There is a large
number of firms (a continuum in the model), each of them facing an idiosyncratic
path of productivity and of real estate prices. The behavior of each of these firms
is described by the dynamic model with adjustment costs, time-to-build capital, the
collateral constraint and the no-equity constraint. All firms are monopolists that pro-
duce intermediate inputs combined in a CES-aggregate with elasticity of substitution
¢. As a result ¢ measures the intensity of competition between intermediate pro-
ducers (¢ = +0o means perfect competition). The final good is then consumed by
a representative producer with linear utility, Frisch elasticity of labor supply € and
subjective discount rate r. Consumption equals production minus adjustment costs
and investment. The price of the final good is normalized to 1 without loss of gen-
erality. This economy has no aggregate uncertainty and the equilibrium is uniquely
described by aggregate production Q and real wage w, which are fixed over time.

Start from a set of SMM estimates Q. Our goal is to investigate the GE conse-
quences of a change in parameter 0 from its estimated value  to another . This
change affects firm’s behavior, hence aggregate labor demand and aggregate produc-
tion. This, in turn, affects the wage and aggregate demand which, in turn, changes
firm behavior. The following algorithm finds the fixed point of this problem such that:
(1) aggregate production of all firms equal aggregate demand Q in firms’ problems and
(2) the labor market clears such that aggregate labor demand equals labor supply at
prevailing wage. Our approach broadly consists of postulating a given equilibrium
(Q,, w,), then check if aggregate labor and product supply given these values is above
or below (Q,, w,). We then adjust (Q,,,;, w,,) accordingly. This approach assumes that
there is a unique fixed point and that the contraction mapping theorem applies in our
setting.

Formally, we proceed in three main steps:

1. Find the number of firms N and the labor supply L, at wage w, = .03, so that the
estimated model is at equilibrium with wage w, =0.03 and aggregate production
Q =1. This will become part of the structure of the economy.

(a) Simulate the data with 100,000 firms, w =.03, Q =1 and parameters .

(b) Compute mean labor demand / and mean revenue pq.
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(c) Set N = ﬁ and L, = ﬁ. With such parameters, the economy with N firms
and labor supply parameter L, is at equilibrium with w,=0.03 and Q =1.

2. Change one of the parameters to its new value 2. Given this, we loop to find the
new equilibrium w and Q.

(a) Set w,=0.03 and Q,=1.
(b) Initiate round number n =1. Then,

i. Solve the model with w,_, and Q,,_; and simulate 100,000 firms.

ii. Compute average revenue pgq, and average labor demand [, and mul-
tiply both by N to obtain aggregate production Q* and aggregate labor
demand L,.

iii. Compute labor market clearing wage w* = wy(L,,/Lo)"*
iv. Take w, =(w,)"(w;) " and Q, =(Q.)*(Q})"™

v. go back to step (iii), r{mtil convergence in Qnand w.
(c) compute aggregates:

* Q,w,K=>,k;, L=>,1;,Adj. Cost, =, i%/k;,.

* logTFP=logQ—alogK —(1—a)logL.

* Welfare=(Q —6 K —Adj. Cost)— %

56



C Additional figures
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Figure C.1: Sensitivity of moments to pledgeability s
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Note: In this figure, we set all estimated parameters (s, c,p,0 and H) at their SMM estimate
in our preferred specification — as per Column (4), Table 3. We fix w and Q at their reference
levels: w =0.03 and Q =1. We then vary s from 0 to 1. For each value of s that we choose,
we solve the model, simulate the data, and compute four target moments, plus the average
leverage ratio and the sensitivity of debt issuance to real estate value. Each panel corresponds
to one moment. The red vertical line corresponds to the SMM estimate of s.
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Figure C.2: Sensitivity of moments to adjustment costs ¢
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Note: In this figure, we set all estimated parameters (s, c, 0,0 and H) at their SMM estimate
in our preferred specification — as per Column (4), Table 3. We fix w and Q at their reference
levels: w =0.03 and Q =1. We then vary ¢ from 0 to .1. For each value of ¢ that we choose,
we solve the model, simulate the data, and compute four target moments, plus the average
leverage ratio and the sensitivity of debt issuance to real estate value. Each panel corresponds
to one moment. The red vertical line corresponds to the SMM estimate of c.
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Figure C.3: Sensitivity of moments to productivity volatility o

4
1
1.2
1
6
1

3
1
[ ]
1
1
[ ]

2
1

[ ]
.8
1

.6
1

A
1

s.d. of 1-year output growth
°
s.d. of 5-year output growth
°
°
Investment autocorrelation
3
1

0

|

4

I
[ ]
[ ]

0
1

T T T T T T T T T T T T T T T T T
.06 .08 .1 .12 .14 .16 .06 .08 .1 .12 .14 .16 .06 .08 .1 .12 .14 .16
Sigma_z Sigma_z Sigma_z

1

12

6
1
A
1

1

1
°
[ ]

2
.02 .04 .06 .08
°
°
°

1

Mean leverage
4
1
Sensitivity of investment to real estate

0
1

1
°
°
°
°
°
°
Sensitivity of net debt to real estate
°
°
°

T T T T T T T T T T T T T T T T T T
.06 .08 .1 .12 .14 .16 .06 .08 .1 .12 .14 .16 .06 .08 .1 .12 .14 .16
Sigma_z Sigma_z Sigma_z

Note: In this figure, we set all estimated parameters (s, c,p,0 and H) at their SMM estimate
in our preferred specification — as per Column (4), Table 3. We fix w and Q at their reference
levels: w =0.03 and Q = 1. We then vary ¢ from 0 to 1. For each value of o that we choose,
we solve the model, simulate the data, and compute four target moments, plus the average
leverage ratio and the sensitivity of debt issuance to real estate value. Each panel corresponds
to one moment. The red vertical line corresponds to the SMM estimate of o.
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Figure C.4: Sensitivity of moments to productivity persistence p
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Note: In this figure, we set all estimated parameters (s, c,p,0 and H) at their SMM estimate
in our preferred specification — as per column 4, Table 3. We fix w and Q at their reference
levels: w =0.03 and Q =1. We then vary p from 0 to 1. For each value of p that we choose,
we solve the model, simulate the data, and compute four target moments, plus the average
leverage ratio and the sensitivity of debt issuance to real estate value. Each panel corresponds
to one moment. The red vertical line corresponds to the SMM estimate of p.
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