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MODIFIED-LIKELITHOOD ESTIMATION OF THE Bg-MODEL
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We consider point estimation and inference based on modifications of
the profile likelihood in models for dyadic interactions between n agents
featuring agent-specific parameters. This setup covers the S-model of
network formation and generalizations thereof. The maximum-likelihood
estimator of such models has bias and standard deviation of O(n™") and
so is asymptotically biased. Estimation based on modified likelihoods
leads to estimators that are asymptotically unbiased and likelihood-ratio
tests that exhibit correct size. We apply the modifications to versions of
the S-model for network formation and of the Bradley-Terry model for
paired comparisons.

1. Introduction. A growing literature has uncovered the importance of
interactions between agents through social networks as drivers for economic
outcomes. Examples include employment opportunities (Calvi-Armengol
and Jackson 2004), risk sharing (Fafchamps and Gubert 2007; Jackson,
Rodriguez-Barraquer and Tan 2012), and also educational achievements
(Calvé-Armengol, Patacchini and Zenou 2009).

A leading approach to statistical modelling of dyadic interaction is through
the inclusion of agent-specific parameters (see, e.g., Snijders 2011). One of
the most popular applications of this paradigm is the S-model for network
formation. In this model, agent fixed effects capture degree heterogeneity
in link formation (Chatterjee, Diaconis and Sly 2011, Rinaldo, Petrovic and
Fienberg 2013, and Yan and Xu 2013 are recent references). Graham [2015]
augments the standard S-model with observable dyad characteristics. This
allows to empirically distinguish degree heterogeneity from homophily (see
Jackson 2008 and McPherson, Smith-Lovin and Cook 2001 for discussion on
the importance of homophily in network formation). Clearly, estimation of

such fixed-effect models is non-standard as the number of parameters grows

Keywords and phrases: asymptotic bias, S-model, Bradley-Terry model, fixed effects,
modified profile likelihood, paired comparisons, matching, network formation, undirected
random graph
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with the sample size. Inference on the homophily parameter is plagued by
asymptotic bias that needs to be corrected for. The bias problem comes from
the presence of the agent-specific parameters in the model, and is similar to
the well-known incidental-parameter problem (Neyman and Scott 1948) in
models for panel data. The same problem appears in more general models for
dyadic interactions between heterogenous agents, such as in the references
given above.

The problem of inference in the presence of many nuisance parameters
has a long history in statistics. In this paper we look at generic estimation
problems for dyadic data and argue in favor of inference based on modified
likelihood functions. In its most general form, the modified likelihood is a
bias-corrected version of the profile likelihood, that is, of the likelihood after
having profiled-out the nuisance parameters. The adjustment is both general
and simple in form, involving only the score and Hessian of the likelihood
with respect to the nuisance parameters. The adjustment term removes the
leading bias from the profile likelihood and leads to asymptotically-unbiased
inference and likelihood ratio statistics that are y2-distributed under the
null. The form of the adjustment can be specialized by using the likelihood
structure (as in DiCiccio et al. 1996), in which case the modified likelihood
penalizes the profile likelihood for deviations from the information equality,
arising due to the estimation noise in the fixed effects.!

We work out the modifications to the profile likelihood in a linear version
of the f-model and in a linear version of the Bradley and Terry [1952] model
for paired comparisons. These simple illustrations give insight in how the
adjustments work. We next apply them to the S-model of Graham [2015],
and evaluate our approach using his simulation designs. We find that both
modifications dramatically improve on maximum likelihood in terms of bias
and mean squared error as well as reliability of statistical inference, and
that they can be more reliable than bias-correcting the maximum-likelihood

estimator.

Tt can be further simplified when an information-orthogonal reparametrization of §;
exist, as in Cox and Reid [1987] and Lancaster [2002]. However, as such reparametrizations
do not exist in general (see, e.g., Severini 2000) we do not consider such modifications
further here.
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2. Fixed-effect models for dyadic data. We consider data on dyadic
interactions between n agents. For each of n(n — 1)/2 distinct agent pairs
(¢,7) with @ < j we observe the random variable z;;. The data may be
multivariate. For example, we may observe an outcome y;; generated by
pair (7,7) together with a vector of dyad characteristics x;;, in which case
we have z;; = (yij, 7i;)".

The density of z;; (relative to some dominating measure) takes the form
f (=539, Bi, Bj),

where ¥ and 3y, ..., 3, are unknown Euclidean parameters. Models of this
form are relevant for the analysis of network formation (see, for example,
Fafchamps and Gubert 2007 and Attanasio et al. 2009 for applications), for
studying strategic behavior among agents, or for the construction of rankings
(Bradley and Terry 1952).

Our goal will be to perform inference on ¥ treating the f3; as fixed effects.
As is well known, the maximume-likelihood estimator of ¢ generally performs
poorly when the number of nuisance parameters is large relative to the
sample size (see, for example, Neyman and Scott 1948 and Li, Lindsay and
Waterman 2003). We will consider modifications of the maximum-likelihood
method that yield estimators with good statistical properties. Before doing

so, we first discuss two leading types of models that fit into our framework.

2.1. Models with complementarity. In one important class of models the

parameters 5; and [3; enter the density of the dyad (7, j) additively, that is,
f(zi539, Bi, B;) = f(zi5:9, Bi + Bj)-

Such models arise, for example, when agents i and j interact to generate
output, and working together creates a surplus.

A leading example of such a model is the S-model of network formation
(Chatterjee, Diaconis and Sly 2011; Graham 2015). Here, z;; = (yij, %i;)’

and the probability distribution of y;; given x;; is Bernoulli with parameter
P(yi; = w539, Bi, B;) = F (B + Bj + x450)

for a cumulative distribution function F'. The likelihood of 7 and j to engage

in a relation with one another is increasing in 3; + 3; and also in ;9.
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The first factor represents degree heterogeneity among agents. Some agents
are more open to interaction than others, and engaging in a relation is a
reciprocal decision. The second factor can capture homophily, that is, the
fact that agents with similar characteristics are more likely to interact. If
xi; is a measure of distance (or dissimilarity), for example, homophily would
correspond to ¥ < 0. Disentangling these two factors is a long-standing
problem. See McPherson, Smith-Lovin and Cook [2001] for an overview on
the large literature on homophily.

More generally, one may wish to analyze an output y;; produced by the
dyad (7, j) rather than the production decision. Such a problem can often

be cast into a (nonlinear) regression model of the form
yij = t(Bi + Bj + xi;0, €i5)

for a transformation function ¢ and a latent disturbance €;;. The motivation
of the index would be as before. One application of this type of regression
model would be a gravity equation for bilateral trade flows featuring country
fixed effects (see Head and Mayer 2014 for an overview of the large literature

on gravity equations).

2.2. Models with competition. An alternative specification can feature
agent-specific parameters to express substitutability or competition effects.
An example is the model of Bradley and Terry [1952] for paired comparisons.

Again letting z;; = (vi5,2;;)’, this model has
P(yij = 1l2ij; 9, Bi, Bj) = F(Bi — Bj + wij9).

In contrast to the p-model, here, this probability is increasing in (; and
decreasing in 3;. In the same vain, z;; could be a the difference between
various characteristics of the agents in the dyad. One application of such a
framework is in modelling the outcome of contests (Simons and Yao 1999).
In an industrial-organization context, the framework could be used to model
strategic interactions such as market-entry decisions.

Generalizations of the Bradley and Terry [1952] model are derived in
Hunter [2004], and the techniques discussed below will equally be applicable
to such generalizations.

Contrary to in the models with complementarities above, here, the mean

of the f3; is undetermined. Therefore, a normalization needs to be imposed
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when estimating these models. One common normalization is ) ;" ; 5; = 0.
An alternative normalization would be to set §; = 0 for some chosen i. The

choice of normalization is irrelevant for estimation and inference on 1.

3. Estimation and inference. The log-likelihood for our data is

n

00, 8) =Y log f(zi5; 0, Bi, B)),

i=1 i<j

where we let 8 = (B1,...,08,) . For simplicity of exposition we ignore any
normalization that may be needed on g to achieve identification. When a
normalization of the form ¢(f8) = 0 is needed, everything to follow goes
through on replacing ¢(¢, 5) by the constrained likelihood £(¥, 8) — A (),
where A\ denotes the Lagrange multiplier. We will give a detailed example
below.

It is useful to recall that the maximum-likelihood estimator of ¢} can be

expressed as

Y = arg max i),

where () = £(9, (1)), with

~

B(9) = arg max ((V, §),

is the profile likelihood.

Inference based on the profile likelihood performs poorly, even in large
samples, because the dimension of 3 is n, which grows with the sample size
n(n — 1)/2. Quite generally, estimating the n parameters (3; along with
will imply that

E(J —19) =0(n™Y).
As E((9 — 9)?) = O(n~2), bias and standard deviation are of the same

order of magnitude, and the maximum-likelihood estimator is asymptotically
biased.

3.1. Modified profile likelihood. Estimation and inference in the presence
of nuisance parameters has a long history in statistics. The seminal work of
Barndorff-Nielsen [1983] and Cox and Reid [1987] contains modifications

to the profile likelihood that lead to superior inference. More recent work



6

includes DiCiccio et al. [1996] and Severini [1998]. Modified likelihoods have
been found to solve the incidental-parameter problem in models for panel
data under so-called rectangular-array asymptotics (as defined in Li, Lindsay
and Waterman 2003). See, notably, Sartori [2003] and Arellano and Hahn
[2007]. We argue that they can equally be used to yield asymptotically-valid
inference in the current context.

In its simplest form, modified likelihoods can be understood as yielding

a superior approximation to the target likelihood
(W) =0, 5(9),  BV) = argmaxE(((¥, 5)).

Moreover, the profile likelihood is the sample counterpart to this infeasible
likelihood. Replacing 8(9) with 3(¢) introduces bias that leads to invalid
inference.

Under regularity conditions we have that
B(9) = BW) = 2(W) 'V (9) + Op(n™"),

where we introduce

00, B) _ (325(?9,5)>|
=55 B=B9) > ==F"50m B=B(9)

An expansion of the profile likelihood around £(1) yields

09) — () = (B(9) = BW)'V ()
1

- 5(3(9) = B(9) 2(@)(B(0) = B¥)) + Op(n~'/?).

Combining the two expansions and taking expectations then shows that the
bias of the profile likelihood is of the form

E(0(9) — £(9)) = %trace(ﬂ(ﬁ)_lﬁ(ﬁ)) +O(n12)
for
Q(9) = E[V () V(9)],

the variance of V(¢9).
A modified likelihood then is

00 = i) — %trace(ﬁ‘(ﬁ)_lﬁ(ﬁ)),



where we define the plug-in estimators

2W0)=20,809),  Q00)=20,5(9)),

for matrices

Zi<j62bgﬂ+w+2i>jazbgﬂ+w ifi=jy
—(2(9,8))i; = 22log [(0.00) "y
P log [leyitify o) ifi> g

and
S (%ﬂwm)izm (wy —_
(200, 8))i; = (%ﬂwmf i<
(MW)2 ifi>

In large samples, this modification removes the leading bias from the profile
likelihood. Consequently, in large samples, the likelihood-ratio statistic has
correct, size and

) = arg mguxé(ﬂ),

will have bias o(n~!). Furthermore, under regularity conditions, we have the
limit result
H@) (0 —0) % N(0, Tgim o)
as n — 00, where we let _
0%0(0)
990

be the observed Fisher information for ¢ derived from £(¥).

H(V) =

Following the arguments in Arellano and Hahn [2007] we can exploit the
likelihood structure to get

o ~ 1 ~ ~
%trace(ﬂ(ﬂ)_lﬂ(ﬁ)) = 5 log(det 5(9)) + %log(det Q(9)) + O™,
which validates the alternative modified likelihood
() = 0(9) + %log(det 2(9)) — %log(det Q009));

see DiCiccio et al. [1996]. Tts maximizer, say 1 satisfies the same asymptotic
properties as ¥.



3.2. Illustration: A linear S-model. Consider the following extension of
the classic many normal means problem of Neyman and Scott [1948]. Data
are generated as

and are independent across dyads. The likelihood function for all parameters

(ignoring constants) is
In(n—1) (zij — Bi — Bj)?
(D, B)=—=———logt — = ot TV
(0.6) = —5 =5 —log? =53 > 9
=1 i<y
Its first two derivatives with respect to the j3; are

oL(d, B) i — Bi — B i — B — Bi
o :ZZ] 5 J+ZZ] 19]

1<j i>7

and
0x(9,8) [ -5 iti=
0808, —L ifi#j
Let z; = (n—2)7! dicy Zijt(n— 2)~1 Disj 2 and Z = (2A(n— ISP
Solving for the maximum-likelihood estimator of 5; gives 8; = z; — Zz for any
9. The profile likelihood is therefore

~ n(n — n Zij—Zi—E—Zj—§2
PRI PR IECE B

i=1 i<j
and its maximizer is
-2y 2 (52
= n(n—l);;(% —(Z—-2)-(5-2)"
Some tedious but straightforward calculations yield

2 n—3  29?
n—1"n—-1nn-1)/2)’

é—ﬁw\/(—

which confirms that the maximum-likelihood estimator of ¢ suffers from
asymptotic bias.

To set up the modified likelihood, first note that

2n—3
(n—1)(n—2)
m ifi#£j "

if § = j

<ﬁwm4—{f
9

NSNS

(ﬂﬂl%—{_



and that
zii—(Z;—2)—(Z;—2 2 zii—(Z2;—2)—(Z;—2 2 .. .
Zi<j(J( 19)2(J ))+Zi>j(g (gﬁ%( ) ifi=j
(2(9))i; = (zig=(i=2) ~(55=2))" i<
ISR e i g

It is then easily seen that

Zij — éi—z—éj—fg
%traoe( W) LOW)) = = 2 ZZ( )= =2)"

2n—1
=1 i<j

From this we obtain

: n(n — Zij — 21'—2—2]'—52
E(ﬁ):_(21>10g29_<1 >;ZZ ) — ( ))’

=1 1<j

and its maximizer 1. 5
L N S
n—1 n—

) = D.
1

Clearly, this estimator removes the leading bias from the maximum-likelihood

estimator. Moreover,

, 2\’ nnmn-1)—5) 292
19_19NN<_<71—1> S N E n(n_1)/z>’

which shows that the remaining bias in the point estimator is small relative

to its standard deviation.
As an alternative correction, we may exploit the likelihood structure to
adjust the profile likelihood by the term

—% log(det £(9)) + %log(det () =2 log i +c.

where c is a constant that does not depend on 9. This yields the modification

P n(n — n 2 — (3 — %) — (3 — 2))2
(UL IS o i C R Ch RICRE

i=1 i<j

whose maximizer satisfies

{9'—79~N<0,7m2_19;/2).
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This estimator is exactly unbiased.

To give an idea of the magnitude of the bias in this problem, Table 1
contains the bias and standard deviation of the estimators 1§, 19, and o for
various sample sizes n and variance parameter fixed to 9 = 1. These results
are invariant to the value of the f;.

TABLE 1
Many normal means

n 9 ] 9 9 ) 9

bias standard deviation
5 -0.5000 -0.2500 0.0000 0.3162 0.4743 0.6325
10 -0.2222 -0.0494 0.0000 0.1859 0.2272 0.2390
15  -0.1429 -0.0204 0.0000 0.1278 0.1460 0.1491
20 -0.1053 -0.0111 0.0000 0.0970 0.1073 0.1085
25 -0.0833 -0.0069 0.0000 0.0782 0.0847 0.0853
50 -0.0408 -0.0017 0.0000 0.0396 0.0412 0.0413
75 -0.0270 -0.0007 0.0000 0.0265 0.0272 0.0272
100 -0.0202 -0.0004 0.0000 0.0199 0.0203 0.0203

3.3. Illustration: A linear Bradley-Terry model. As an alternative to the

Neyman and Scott [1948] model with complementarities, now suppose that

zij ~ N(Bi — Bj,9)

independently across dyads. This model is overparametrized as, clearly, the
mean of the §; is not identified. A common normalization in this type of
model is Y " | 8; = 0 (Simons and Yao 1999), and we will maintain it here.

The constrained likelihood is
1n(n—1) 1< (zij — Bi + Bj)? "

where ) is the Lagrange multiplier for our normalization constraint. The

first-order condition for the constrained problem for 3; for a given ¥ equals

Zi<j Zij — Zi>j Zji
9

n
- Eﬂi =0.

This gives
5 Zi<j Zij — Zi>j Zji

Bi = - =Z (say)
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for all 7 and any v. Observe that the sign of j3; is driven by the comparison of
the magnitudes of 37, . z;; and 37, ; zj;. Also note that Y7, B = 0 holds.
We therefore have

- In(n—1) 1 & (zij — % + %)?
00) = —iTlogﬁ — 522 —
=1 i<j

and with it, the maximum-likelihood estimator
2 n
V)= —— (z~—2+2-)2.
n(n—1) ; ; K v

A calculation shows that E(J — 9) = —2n~1.

It is immediate that

() =diag (1), £(0)" = diag (i) ,

and that
2ij—%i+%5)? 2ii—Zi 52 . ]
Zi<j%#+2i>jm++) if i =
(2(9))ig = ley=Eiri)? i<
(4129732“)2 ifi >y
Therefore,
i(9) = —Lnn=1) 1 2\ \ (2ij — % + %)°
i) = =50 o — 5 (142) Sy B0

i=1 i<j

. In(n—3 1 < 2ij — % + 2)?
5(19):—57( 5 )1og19—522—( — i)
i=1 i<j

The corresponding estimators are

. 2\ . -1 4 2 A
n n—3 n—3

Both remove the leading bias from the maximum-likelihood estimator, as

3

B — d) = —% —0(n™?), E@-9)=

2

n(n—3) =0(n"7),
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but, in this case, neither is exactly unbiased. The first estimator has bias
that is strictly negative (for any finite n). The second estimator overcorrects
and has strictly positive bias. The second-order bias is monotone in n. We
have

4 2

nz n(n —3)

forall n > 7. As n — oo,

n(n—1

5 )(19 —9) %5 N(0,20%),

and |9 — 9| = o,(n~1); that is, the two modifications to the likelihood yield
asymptotically-equivalent estimators.

4. Application to the S-model. The S-model of network formation
(Chatterjee, Diaconis and Sly 2011) generates Bernoulli outcome variables

with success probability
P(yij = 1lzij; 9, 8i, Bj) = F(Bi + Bj + z;0),
where F(a) = (1 +e~%)~! is the logistic cumulative distribution function.

4.1. Modified profile likelihood. The likelihood function, conditional on

the regressors, is

00, 8) = ZZ%J log Fij (9, Bi, B)) + (1 = yi5) log (1 = Fi;(9, Bi, B;)),

=1 i<j

where we let Fy;(9, Bi, 8;) = F(Bi + Bj + ;).
For a given value of 9, the score the incidental parameters has elements

aeﬁﬁ Zylj Zjﬁﬂwﬁj Jrzyjz* ]2196]7ﬁ2)

861 1<j >
while the n x n Hessian matrix has (i, j)th-entry equal to
—[ii(9, Bi, B;) ifi<j ,
—15i(9, Bj, Bi) ifi>j

909, 8)
oBioB;
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for fi; (9, Bi, B;) = Fij (9, Bi, B5) (1 — Fi;(V, Bs, Bj)). The maximum-likelihood
estimator of the (; for a given value of ¥ is not available in closed form
and needs to be computed numerically. Because the likelihood is globally
concave, Newton’s algorithm is well-suited for the task, and will typically
find the solution in two or three iterations.

Introduce the shorthands

Eij(0) = Fij (90, 5:(9), 5;(9)),  fij(0) = £i(0, 5i(9), ;(9))-
The profile likelihood is
R n
00y =" wij log Fyj(9) + (1 — yi) log (1 — Ey(9)),
i=1 i<j
and a modified likelihood is readily constructed by appropriately combining

the matrices 3(9) and 2(09).

4.2. Simulation experiments. We next present the results from a Monte
Carlo experiment. The designs are borrowed from Graham [2015]. All designs
are of the following form. Let u; € {—1,1} so that P(u; = 1) = 1. We

generate the dyad covariate as

xij = U; Uj,
and the fixed effects as
1+ u 11—y
Bi=pn+m 5 L 47 5 Lt g,

where v; ~ Beta(\1, \2). We set = —A1(\1 + A2)~L, so that p + v; has
mean zero, and will consider several choices for the parameters (71, 72) and
(A1, A2). The parameter choices are summarized in Table 2. In the first four
designs (A1-A4), the f; are drawn independently of x;; from symmetric
Beta distributions. In the next four designs (B1-B4) the §; are generated
from skewed distributions that depend on u; (and thus correlate with the
regressor ;).

We simulate 10,000 data sets for each design for n € {25,50, 75,100} and
¥ = 1. Because the results across designs are qualitatively very similar, we
present the full set of results only for Design A1 (Table 3). Tables 4 and 5
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TABLE 2
Simulation designs for the f-model

Design Y1 V2 A1 A2
Al 0 0 1 1
A2 -0.25  -0.25 1 1
A3 -0.75  -0.75 1 1

A4 -1.25  -1.25 1 1
B1 0 050 0.25 0.75
B2 -0.50 0 025 0.75

B3 -1.00 -0.50 0.25 0.75
B4 -1.50  -1.00 0.25 0.75

provide and results for n € {50,100} for all designs. Each table contains the
mean and median bias of 9, 19, and 1§, along with their standard deviation
and their interquartile range (both across the Monte Carlo replications).
The tables also provide the empirical size of the likelihood ratio test for
the null that ¢ = 1 for theoretical size « € {.05,.10}. Because the results
for n = 100 can be compared (up to Monte Carlo error) to the numerical
results collected in Graham [2015, Table 2], Table 5 contains two additional
columns in which we reproduce the results for his analytically bias-corrected
maximum-likelihood estimator () and his ‘tetrad logit’ estimator (1J). The
latter is based on moment conditions that are free of 3; using a sufficiency
argument. Bias correcting ¥ does not salvage the likelihood ratio statistic,
and the conditional likelihood function of the ‘tetrad logit’ estimator does
not satisfy the information equality. Hence, the results on size for these two
estimators are based on the Wald statistic.

Table 3 clearly shows that both the bias and standard deviation of J are
O(n~1). Consequently, the likelihood ratio test is size distorted even in large
samples. Point estimation through the modified likelihoods gives estimators
with small bias relative to their standard error. Even for n = 25, the bias
is only about 20% of the bias in maximum likelihood estimator. In larger
samples, the estimators are essentially unbiased. Interestingly, both ¥ and 9
are also less volatile than is . Thus, at least here, bias correction does not
come at the cost of an increase in dispersion. Together with the substantial
decrease in mean squared error, inference, too, improves dramatically. The
likelihood ratio statistic for both £(¢) and £(1)) have near theoretical size for
all n.
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TABLE 3
B-model. Design Al for alln

n ) ) J 9 9 J
mean bias standard deviation
25 0.1098 0.0204 0.0304 0.1897 0.1560 0.1572
50 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681
75 0.0320 0.0020 0.0032 0.0467 0.0450 0.0451
100 0.0237 0.0011 0.0017 0.0341 0.0332 0.0332
median bias interquartile range
25 0.1029 0.0154 0.0253 0.2069 0.1873 0.1889
50 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914
75 0.0316 0.0017 0.0028 0.0630 0.0607 0.0608
100 0.0236 0.0010 0.0017 0.0464 0.0450 0.0451
empirical size (o = .10) empirical size (o = .05)
25 0.1937 0.1134 0.1147 0.1142 0.0627 0.0637
50 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555
75 0.1866 0.1092 0.1081 0.1142 0.0575 0.0569
100 0.1890 0.1042 0.1025 0.1103 0.0520 0.0513

Tables 4 and 5 show that all conclusions from Design A1 carry over to the
other designs. Moreover, the introduction of correlation between regressors
and heterogenous coefficients or skewing the distribution from which the
latter are drawn does not prevent the modified likelihood to improve on
maximum likelihood both in terms of point estimation and inference. A
comparison of the two tables clearly shows that both the bias and standard
deviation of 9 shrink by a factor of one half as n doubles, again illustrating
that both are of order n~!. The subsequent reduction in bias by considering
¥ and U and improvement in the likelihood ratio test are manifest for all
designs.

Table 5 further shows that the modified-likelihood approach outperforms
bias correction of the maximum-likelihood estimator in Designs A3 and B3
and, in particular, in Designs A4 and B4, where bias correction of maximum
likelihood introduces additionial bias relative to ). The additional bias also
leads to a large deterioration of the empirical size of the Wald statistic
associated with 9. The performance of the modified likelihood is comparable
to Graham’s ‘tetrad logit’ estimator 9 in terms of bias, and it tends to be
somewhat more accurate in terms of the empirical size of the associated

hypothesis tests.
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B-model. All designs for n = 50

TABLE 4

Design

Al
A2
A3
A4
B1
B2
B3
B4

Al
A2
A3
A4
B1
B2
B3
B4

Al
A2
A3
A4
B1
B2
B3
B4

J 9 J
mean bias
0.0492  0.0045 0.0071
0.0499  0.0054  0.0079
0.0467  0.0033  0.0047
0.0497  0.0049  0.0024
0.0526  0.0073  0.0096
0.0490  0.0035  0.0059
0.0493  0.0046  0.0060
0.0500  0.0043  0.0005
median bias
0.0487  0.0042  0.0067
0.0482  0.0040  0.0064
0.0441  0.0008  0.0022
0.0412 -0.0032 -0.0059
0.0513  0.0061 0.0084
0.0479  0.0024  0.0049
0.0470  0.0024  0.0039
0.0438 -0.0018 -0.0052
empirical size (o = .10)
0.1896  0.1128  0.1125
0.1857  0.1135  0.1118
0.1565  0.1098  0.1082
0.1287  0.1095  0.1083
0.1902  0.1141 0.1112
0.1801  0.1081 0.1049
0.1498  0.1052  0.1030
0.1236  0.1064  0.1067

9 9 J
standard deviation
0.0717 0.0679 0.0681
0.0742  0.0704 0.0705
0.0933 0.0890 0.0891
0.1391 0.1335 0.1335
0.0768 0.0728 0.0729
0.0747  0.0707 0.0708
0.0936  0.0891 0.0891
0.1380 0.1320 0.1316
interquartile range
0.0961 0.0913 0.0914
0.0995 0.0943 0.0945
0.1247 0.1191 0.1191
0.1827 0.1748 0.1748
0.1034  0.0981 0.0982
0.0999  0.0948 0.0949
0.1252 0.1195 0.1196
0.1827 0.1740 0.1743
empirical size (o = .05)
0.1178 0.0558 0.0555
0.1139  0.0602 0.0603
0.0878 0.0581 0.0563
0.0664 0.0594 0.0592
0.1146  0.0582 0.0579
0.1040 0.0574 0.0564
0.0830 0.0554 0.0538
0.0634 0.0543 0.0551
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