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Abstract

We consider a statistical model for network formation that features both node-specific
heterogeneity parameters and common parameters that reflect homophily among
nodes. The goal is to perform statistical inference on the homophily parameters
while allowing the distribution of the node heterogeneity to be unrestricted, that is,
by treating the node-specific parameters as fixed effects. Jointly estimating all the
parameters leads to asymptotic bias that renders conventional confidence intervals
incorrectly centered. As an alternative, we develop an approach based on a sufficient
statistic that separates inference on the homophily parameters from estimation of
the fixed effects. This estimator is easy to compute and is shown to have desirable
asymptotic properties. In numerical experiments we find that the asymptotic results
provide a good approximation to the small-sample behavior of the estimator. As
an empirical illustration, the technique is applied to explain the import and export
patterns in a cross-section of countries.
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1 Introduction

It is well recognized that network connections are important determinants of economic and

social outcomes (Jackson, 2008). Therefore, it is important to understand what drives

network formation. Models of link formation tend to be characterized by a large number of

parameters. For example, the classic model of Holland and Leinhardt (1981), a statistical

model for directed random graphs between n nodes, features O(n) parameters. Thus, under

asymptotics where n → ∞, the number of parameters grows with the sample size. Such

a problem is reminiscent of the classic incidental-parameter problem of Neyman and Scott

(1948) and presents a serious challenge for statistical inference. The first theoretical results

for maximum-likelihood estimation of Holland and Leinhardt type models have only been

obtained recently (Fernández-Val and Weidner 2015, Yan et al. 2015). Related work by

Chatterjee et al. (2011), Rinaldo et al. (2013), Yan and Xu (2013), and Graham (2015)

provides similar results for the undirected version of the Holland and Leinhardt model,

known as the β-model.1

In this paper we study a version of the Holland and Leinhardt (1981) model that

incorporates a set of observable dyad characteristics along with sender- and receiver-specific

effects. The motivation for this model is as in Graham (2015) and Dzemski (2014). The aim

is to conduct statistical inference on the effect of dyad characteristics on the probability

of link formation. This allows to investigate the importance of homophily in network

formation while controlling for (degree and other) unobserved heterogeneity among senders

and receivers of links. We treat the node-specific effects as fixed. While joint estimation

of these effects and the common homophily parameters leads to consistent estimators as

1 Alternative approaches aim to reduce the dimensionality of the problem and are based on stochastic

blockmodels (Holland et al. 1983), finite-mixture models (Hoff et al. 2002; Vu et al. 2013), and models

with random effects (van Duijn et al. 2004).
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the network grows large (Yan et al. 2015), the estimator of the homophily parameters

is asymptotically biased (Fernández-Val and Weidner 2015). Moreover, the maximum-

likelihood estimator suffers from an incidental-parameter problem akin to the one described

in Li et al. (2003) and Sartori (2003) in the context of longitudinal data analysis with

stratum-specific nuisance parameters.

We build on the conditioning argument of Hirji et al. (1987) and Charbonneau (2014) to

set up a statistical objective function for the homophily parameters. The objective function

can be understood to be a generalization of Rasch (1960, 1961) and does not depend on

the sender- and receiver-specific parameters. However, the objective function takes the

form of a U-statistic in both the senders and receivers of links and so standard theory for

conditional-likelihood estimators (Andersen, 1970) does not apply. Nonetheless, we show

that the estimator converges to the true parameter value at the rate n−1 and that its

asymptotic distribution is normal, with a variance that can be consistently estimated. In

numerical experiments we find that the asymptotic theory provides a good approximation

to the finite-sample behavior of the estimator.

As an empirical illustration we apply the estimator to investigate the importance of

geographical distance and other measures of proximity—such as the participation in a

preferential trade agreement, and sharing a common border and a common language—as

determinants of import and export patterns observed in a cross section of 136 countries.

Understanding the drivers behind these patterns of trade has recently received substantial

attention in the international-trade literature (see, e.g., Helpman et al. 2008). However, the

statistical methods used thus far do not properly account for the presence of the implied

incidental-parameter bias. We find smaller effects (in magnitude) of dyad characteristics

on the log-odds.
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2 Network formation

In this section we put forth our probabilistic model of network formation. Introduce a set

of n nodes, Nn = {1, 2, . . . , n}, and consider the decision of two distinct nodes i and j in

Nn to form an edge from i to j . Let uij denote the joint surplus of the dyad (i, j) from

creating an edge from i to j. Then the decision takes on the simple threshold-crossing form

yij =







1 if uij ≥ 0

0 if uij < 0
. (2.1)

Suppose the surplus decomposes as

uij = x′ijθ0 + αi + γj − ǫij, (2.2)

where xij is a vector of observable attributes of the dyad and θ0 is a parameter vector of

conformable dimension, αi and γj are unobserved characteristics specific to the nodes, and

ǫij is an unobserved idiosyncratic component. If the ǫij are independent and identically

distributed with distribution F , the probability of observing a link from i to j given the

characteristics of the nodes becomes

pij = Pr(yij = 1|xij, αi, γj) = F (x′ijθ0 + αi + γj).

Following most of the literature since Holland and Leinhardt (1981) (see, e.g., Chatterjee

et al. 2011, Rinaldo et al. 2013, and Yan and Xu 2013) we will work with the logistic

specification

F (ǫ) =
1

1 + exp(−ǫ)
.

Our interest lies in estimation of and inference about the parameter θ0. As the log-odds

ratio is

log

(

pij
1− pij

)

= F−1(pij) = x′ijθ0 + αi + γj,
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this allows evaluating the importance of dyad characteristics on the probability that the

nodes form a link between them.

The covariates in our network-formation model capture homophily between nodes. In

a typical application, they will be measures of distance, similarity, or divergence between

sender i and receiver j. In our trade application, they include a measure of geographical

distance as well as several indicators of closeness, such as whether or not countries i and j

share a common language and have established a preferential trade agreement. In the work

of Jackson et al. (2012) on favor exchange among Indian villagers, the covariates measure

such things as whether or not the sender and receiver are members of the same caste and

have a common religion, and if they have a similar age, education level, and employment

background.

The model postulated in (2.1)–(2.2) also permits rich patterns of degree heterogeneity.

Moreover, unobserved node-specific factors affect edge creation in the same way as in the

model of Holland and Leinhardt (1981). While link formation decisions are independent

conditional on dyad and node characteristics, the distribution of {yij}n given {xij}n will

exhibit large dependence due to the presence of the {αi, γj}n. Thus, the model allows for

heterogeneity in link formation among observationally-equivalent nodes, and can equally

rationalize the large dependence between links across different nodes typically observed in

network data.

Treating {αi, γj}n as random effects by specifying their distribution conditional on

{xij}n gives a model as in van Duijn et al. (2004) and Hoff (2005). Here we aim to

perform statistical inference on the determinants of network formation without making

such functional-form restrictions. Thus, throughout the analysis, we treat {αi, γj}n as

fixed effects, that is, we condition on them. Henceforth, for notational convenience, we no

longer make this conditioning explicit.
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3 Identification

Treating {αi, γj}n as parameters and jointly estimating them with the common parameter

θ0 leads to incidental-parameter bias (Neyman and Scott, 1948) in the maximum-likelihood

estimator. Fernández-Val and Weidner (2015) characterize the asymptotic bias in the

maximum-likelihood estimator of θ0 and consider bias-reduction methods. On the other

hand, Charbonneau (2014) shows the existence of a sufficient statistic for the pair (αi, γj)

by building on the work of Cox (1958), Rasch (1960, 1961), and Hirji et al. (1987). Our

aim here is to develop the implied estimator and to derive its statistical properties. We

first give an alternative and more direct derivation to the sufficiency result of Charbonneau

(2014).

Fix a quadruple of distinct nodes {i1, i2; j1, j2} from Nn and define the random variable

z =
(yi1j1 − yi1j2)− (yi2j1 − yi2j2)

2
,

and collect x = (xi1j1 , xi1j2 , xi2j1 , xi2j2). Note that z can take on values from the set

{−1,−1/2, 0, 1/2, 1}. Conditional on x and the event z ∈ {−1, 1}, z follows a Bernoulli

distribution with

Pr(z = 1|x, z ∈ {−1, 1}) =
Pr(z = 1|x)

Pr(z = 1|x) + Pr(z = −1|x)
=

1

1 + Pr(z=−1|x)
Pr(z= 1|x)

.

Equations (2.1)–(2.2) together with the functional form of the logistic distribution imply

that
Pr(z = −1|x)

Pr(z = 1|x)
= exp(−r′θ0),

where we introduce r = (xi1j1 − xi1j2) − (xi2j1 − xi2j2). This yields the following simple

lemma.
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Lemma 1 (Sufficiency).

Pr(z = 1|x, z ∈ {−1, 1}) =
1

1 + exp(−r′θ0)
= F (r′θ0).

Proof. See the Appendix.

Lemma 1 states that, conditional on x and z ∈ {−1, 1}, the distribution of z is logistic

and does not depend on the parameters αi1 , αi2 and γj1 , γj2 . The conditional log-likelihood

of the quadruple is

1{z = 1} logF (r′θ0) + 1{z = −1} log(1− F (r′θ0)) (3.3)

and can form the basis for the construction of a conditional maximum-likelihood estimator

for θ0.

The conditioning event z ∈ {−1, 1} corresponds to only 2 of the 24 possible realizations

of the quadruple of link decisions. These are





yi1j1 yi1j2

yi2j1 yi2j2



 ∈











1 0

0 1



 ,





0 1

1 0











,

and so cover quadruples in which the senders i1, i2 form only one out of two possible links

to j1, j2 and make opposite decisions about the creation of these edges. This is an intuitive

generalization of the conditional-likelihood approach in the model of Rasch (1960, 1961),

where children answer two tests and only children who get one test right and the other

wrong contribute to the conditional likelihood. This subpopulation of observations in the

Rasch model is also frequently referred to as movers. In the current setting, the movers

are taken in pairs, and only those pairs consisting of movers in opposite directions are

retained for construction of the conditional likelihood. As such, the conditioning is akin to

a difference-in-differences strategy.

7



4 Estimation and inference

The argument from the previous section suggests estimating θ0 by maximizing the empirical

counterpart to (3.3) obtained on considering all distinct quadruples {i1, i2; j1, j2} from Nn.

There are

ρ =

(

n

2

)(

n− 2

2

)

=
n(n− 1)(n− 2)(n− 3)

4
=

1

4

n!

(n− 4)!

such quadruples. It will prove useful to introduce a function σ that maps these quadruples

to the index set Qρ = {1, 2, . . . , ρ}. Thus, each distinct quadruple {i1, i2; j1, j2} corresponds

to a unique σ{i1, i2; j1, j2} ∈ Qρ. We may then extend our notation by defining the random

variables

z(σ{i1, i2; j1, j2}) =
(yi1j1 − yi1j2)− (yi2j1 − yi2j2)

2
,

r(σ{i1, i2; j1, j2}) = (xi1j1 − xi1j2)− (xi2j1 − xi2j2).

When the dependence of these random variables on four nodes can be left implicit we will

use the simpler shorthand notation zσ, rσ, where σ ranges over the set Qρ.

With this notation at hand, our estimator may be written as

θn = argmax
θ∈Θ

Ln(θ),

where Θ is the parameter space searched over, and

Ln(θ) = ρ−1
∑

σ∈Qρ

1{zσ = 1} logF (r′σθ) + 1{zσ = −1} log(1− F (r′σθ)).

This objective function is a standard logit log-likelihood restricted to quadruples of data

for which zσ ∈ {−1, 1}. Hence, the estimator can be computed using standard statistical

software. The researcher is only required to construct the variables {zσ, rσ}ρ, which is easy

to do.
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The conditional-logit estimator is consistent under weak conditions. We denote the

logistic density function by f .

Assumption 1 (Sampling). The n nodes in Nn are sampled independently.

Assumption 2 (Parameter space). θ0 is interior to Θ, a compact subset of Rdim θ.

Assumption 3 (Identification). For all σ, E[‖rσ‖
2] < C, where C is a finite constant,

and

rank







lim
ρ→∞

ρ−1
∑

σ∈Qρ

E
[

rσr
′
σ f(r

′
σθ0) 1{zσ ∈ {−1, 1}}

]







= dim θ.

Assumptions 1 is a natural sampling scheme for network data. It permits dependence

of the covariates across dyads that have nodes in common. Assumption 2 is conventional.

Assumption 3 is a standard identification condition. Together with concavity of Ln(θ), the

rank requirement implies that θ0 is the global maximizer of the large-sample conditional

likelihood. Assumption 3 implies that

lim
ρ→∞

ρ−1
∑

σ∈Qρ

Pr(zσ ∈ {−1, 1}) > 0.

This means that the accummulation of informative quadruples does not cease as the sample

grows.

Theorem 1 formally states our consistency result.

Theorem 1 (Consistency). Let Assumptions 1–3 hold. Then θn
p
→ θ0 as n→∞.

Proof. See the Appendix.

Although Ln(θ) has the form of the log-likelihood for a standard cross-sectional logit

model, the conventional standard-error formula is not valid for θn. Indeed, the score (when
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evaluated at the true parameter value) is not a simple sample average of independent and

identically distributed random variables. Moreover, it is an average over quadruples of

nodes, with the same nodes showing up in multiple quadruples. This implies that some

more work is to be done to perform statistical inference. We use the following moment

condition in deriving distribution theory.

Assumption 4 (Moments). For all σ ∈ Qρ,

E[‖rσ‖
6] ≤ C,

where C is a finite constant.

The key to deriving the asymptotic distribution of θn is to note that the score function

has the form of a U-statistic in both the senders and receivers of edges. Moreover, we have

Sn(θ) =
∂Ln(θ)

∂θ
= ρ−1

∑

i1

∑

i1<i2

∑

j1 6=i1,i2

∑

j1<j2
j2 6=i1,i2

s(σ{i1, i2; j1, j2}; θ),

where we introduce the kernel function

s(σ; θ) = rσ {1{zσ = 1} (1− F (r′σθ))− 1{zσ = −1}F (r′σθ)} .

Note that the kernel s(σ{i1, i2; j1, j2}; θ) is permutation invariant in both senders (i1, i2)

and receivers (j1, j2).

Standard results on U-statistics (as in, e.g., van der Vaart 2000, Chapter 12) are not

directly applicable to the current setup because the data are not identically distributed

and they are not independent across dyads. Nonetheless, under our conditions, the limit

distribution of the normalized score vector evaluated at the true parameter value co-incides

with that of its Hájek projection (van der Vaart, 2000, Section 11.3) conditional on the
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covariates. This projection is

Un =
1

n(n− 1)

n
∑

i=1

∑

j 6=i

υij,

where

υij = wij

(

yij (1− pij)− (1− yij) pij
pij (1− pij)

)

,

and we define

wij =
4

(n− 2)(n− 3)

∑

i′ 6=i,j

∑

j′ 6=i,j,i′

r(σ{i, i′; j, j′}) q(σ{i, i′; j, j′})

for

q(σ{i, i′; j, j′}) =
pij (1− pij) pij′ (1− pij′) pi′j (1− pi′j)pi′j′ (1− pi′j′)

pij (1− pij′) (1− pi′j) pi′j′ + (1− pij) pij′ pi′j (1− pi′j′)
.

Because pij = E[yij|xij], we have that E[υij] = 0 and E[υij υ
′
i′j′ ] = 0 unless i = i′ and

j = j′. Furthermore,
√

n(n− 1)Un
d
→ N (0, Υ ), (4.4)

where

Υ = lim
n→∞

1

n(n− 1)

n
∑

i=1

∑

j 6=i

E[υijυ
′
ij] = lim

n→∞

1

n(n− 1)

n
∑

i=1

∑

j 6=i

E

[

wij w
′
ij

pij(1− pij)

]

,

which exists by Assumption 4.

The Hessian matrix, in turn, is

Hn(θ) =
∂2Ln(θ)

∂θ∂θ′
= −ρ−1

∑

σ∈Qρ

rσr
′
σ f(r

′
σθ) 1{zσ ∈ {−1, 1}},

and Assumption 4 is sufficient to ensure that Hn(θn) converges in probability to the matrix

H(θ0) = lim
ρ→∞

−ρ−1
∑

σ∈Qρ

E[rσr
′
σ f(r

′
σθ0) 1{zσ ∈ {−1, 1}}]

= lim
ρ→∞

−ρ−1
∑

σ∈Qρ

E[rσr
′
σ q(σ)],

(4.5)
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which is non-singular by Assumption 3. It is apparent from inspection of Υ and H(θ0) that

the information equality does not hold.

Combining Equations (4.4) and (4.5) with a mean-value expansion of Sn(θn) around θ0

and letting

Ω = H(θ0)
−1ΥH(θ0)

−1

yields the following theorem.

Theorem 2 (Asymptotic distribution). Let Assumptions 1–4 hold. Then

√

n(n− 1) (θn − θ0)
d
→ N (0, Ω),

as n→∞.

Proof. See the Appendix.

To perform statistical inference, a consistent estimator of Ω is needed. Our assumptions

imply consistency of the estimator

Ωn = Hn(θn)
−1ΥnHn(θn)

−1,

where Hn(θn) is readily obtained when optimization of Ln(θ) is performed using standard

Newton-Raphson type algorithms, and

Υn =
1

n(n− 1)

n
∑

i=1

∑

j 6=i

υ̂ij υ̂
′
ij

with

υ̂ij =
4

(n− 2)(n− 3)

∑

i′ 6=i,j

∑

j′ 6=i,j,i′

s(σ{i, i′; j, j′}; θn).

In contrast to Hn(θn), the latter covariance matrix does not follow directly as output to any

numerical optimization routine and needs to be obtained in an additional post-estimation

step.
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5 Simulations

In this section we report results from a Monte Carlo experiment. We focus on inferring a

single homophily parameter, θ0, so that

uij = xijθ0 + αi + γj − ǫij.

We will generate the unobserved-heterogeneity parameters (αi, γj) independently from the

dyad characteristic xij. Experiments with correlated heterogeneity yielded similar results.

Under independence, the total variance of the surplus factors as

varuij = var xijθ0 + var (αi + γj) + var ǫij,

and we can vary the relative importance of homophily and unobserved degree heterogeneity

in forming a match by varying the relative contribution of xijθ0 and αi+γj to the variance

of uij.

We fix θ0 = 1 throughout and consider symmetric data generating processes in which

xij = δ vi vj = xji,

and

αi ∼ N (0, β2), γi ∼ N (0, β2),

where δ and β are positive scale parameters and vi for i ∈ Nn is a random variable on

which matching between nodes is based. We generated this variable as vi ∼ N (0, 1). The

model implies positive assortative matching in the sense that the propensity to form a

link from i to j is larger when both vi and vj are larger and of the same sign. The scale

parameters δ and β allow to vary the contributions of, respectively, homophily and latent

heterogeneity to the surplus. We consider three different choices for these parameters,
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yielding designs where homophily is of relatively equal, more, and less importance than the

degree heterogeneity parameters (αi, γj). Table 1 gives an overview of the three designs

(#). It states the relative contribution of each of the three components of the match surplus

to its total variance, together with the associated parameter values. The parameter values

are stated up to the factor of proportionality π2/3, which is the variance of the logistic

distribution.

Table 1: Design parameters for simulations

# varxijθ0 var (αi + γj) var ǫij δ2 ∝ π2/3 β2 ∝ π2/3

1 1/4 1/4 2/4 1/2 1/4

2 2/6 1/6 3/6 2/3 1/6

3 1/6 2/6 3/6 1/3 1/3

These designs are difficult in the sense that, with relative contributions of 1/4, 1/3,

and 1/6 respectively, homophily contributes only little to the total variance of the link

surplus. Each of the designs was ran with n = 25 and n = 50, yielding 25× 24 = 600 and

50× 49 = 2450 link decisions, respectively.

We estimated θ0 by our conditional logit estimator (logit) and by (full-information)

maximum likelihood (mle), that is, estimating the nuisance parameters {αi, γj}n jointly

with the parameter θ0. In Table 2 we report the mean, median, standard deviation (std),

and interquartile range (iqr) of the two estimators, computed over 1, 000 Monte Carlo

replications with all random variables redrawn in each iteration. The table also contains

the ratio of the (average) estimated standard error to the standard deviation of the Monte

Carlo estimates (se/std) and the coverage rate of the associated 95% confidence intervals

(coverage).
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Table 2: Simulation results

# mean median std iqr se/std coverage

n = 25

mle logit mle logit mle logit mle logit mle logit mle logit

1 1.124 1.022 1.121 1.018 .157 .159 .205 .209 .910 1.069 .860 .959

2 1.136 1.021 1.125 1.012 .147 .138 .200 .174 .901 1.128 .839 .972

3 1.125 1.023 1.112 1.009 .173 .179 .228 .239 .920 1.055 .895 .966

n = 50

mle logit mle logit mle logit mle logit mle logit mle logit

1 1.055 1.003 1.052 .999 .066 .071 .087 .097 .995 1.015 .881 .950

2 1.058 1.001 1.058 1.001 .064 .065 .087 .065 .959 1.028 .857 .952

3 1.057 1.006 1.055 1.006 .076 .082 .106 .079 .949 1.034 .886 .968

The results confirm that the maximum-likelihood estimator is biased and that the bias

is O(n−1). Consequently, the bias is not negligible relative to the standard error and

confidence bounds based on the asymptotic distribution are not centered around the true

parameter value. This is apparent from inspection of the empirical coverage rates, which

show substantial undercoverage. For the designs with n = 25 the undercoverage problem is

exacerbated by an underestimation of the actual standard deviation of the point estimates

by the standard error. In contrast, the conditional estimator has bias that is small compared

to its standard error for all designs considered. The associated confidence intervals are

somewhat too wide when n = 25, and so inference is conservative, because, here, the

asymptotic-variance formula tends to slightly overestimate the small-sample variability

in the point estimates. When n increases the variance approximation rapidly improves

and the empirical coverage rate converges to the theoretical coverage rate of .95. Note

15



also that the standard deviation of the conditional estimator is very similar to that of

maximum likelihood. This suggests that, at least in the designs considered here, little to

no information is lost by conditioning.

Finally, Figure 1 contains plots of the histograms of the 1, 000 Monte Carlo replications

of the Studentized estimator

√

n(n− 1)Ω−1/2n (θn − θ0)

for each of the designs in Table 1 (top to bottom) and the two sample sizes considered

(n ∈ {25, 50}; left and right, respectively). In each plot, the histogram is accompanied by

the standard-normal density as a point of reference for the asymptotic approximation in

Theorem 2. The plots reveal that the asymptotic approximation is fairly accurate even for

the small sample sizes considered here.

6 Application

As an empirical application we investigate the determinants of trade from country-level

trade data. The network-formation model we estimate follows closely Helpman et al. (2008),

who provide a theoretical foundation for it. Our data set consists of a cross section of 136

countries. For each country pair (i, j) the outcome variable, trade decision, is a dummy

variable that registers whether or not trade occured from i to j. The data also contain

various dyad characteristics that we use as explanatory variables. All these variables are

measures of closeness between the two countries. Table 3 contains descriptive statistics. log

distance is the (log of the) geographical distance between the capitals of countries i and j.

common border and common language are dummy variables that take on the value one if i

and j share, respectively, a physical boundary or a common language. colonial ties takes
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Figure 1: Distributions of Studentized estimator
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on the value one if, at some point, i colonized j (or vice versa) and zero otherwise. Finally,

preferential trade agreement is a binary variable that indicates whether i and j take part

in a joint preferential trade agreement. Original data sources and additional details on the

data are available in Santos Silva and Tenreyro (2006).

Table 3: Descriptive statistics

mean standard deviation

trade decision 0.5236 0.4995

log distance 8.7855 0.7418

common border 0.0196 0.1387

common language 0.2097 0.4071

colonial ties 0.1705 0.3761

preferential trade agreement 0.0155 0.1234

We estimated the parameters of this model by maximum likelihood and by conditional

logit. The point estimates, along with their standard errors (stated in parentheses below

the point estimates), are collected in Table 4. The signs of all parameter estimates agree

with those of Helpman et al. (2008). Geographical distance decreases the propensity to

trade while homophily tends to increase the likelihood of trade. Indeed, speaking a common

language and having a colonial history positively affect the probability of trading. Trade

agreements have a large positive impact on trade decisions, which more than offsets the

negative influence of distance. A, perhaps, somewhat surprising finding is the negative point

estimate on common border. It should be noted that, when not controlling for preferential

trade agreements, the sign of this coefficient changes. Also, of the 136 × 135 = 18, 360

country dyads in the data, relatively few (360 dyads) share a border and even less (285
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Table 4: Trade estimates

mle logit

log distance −1.3490 −1.0920

(0.0504) (0.0573)

common border −1.2070 −0.8220

(0.2089) (0.2668)

common language 0.5851 0.4672

(0.0906) (0.1031)

colonial ties 0.5206 0.5925

(0.0962) (0.1047)

preferential trade agreement 2.0444 1.3038

(0.3056) (0.2913)

dyads) have established preferential trade agreements; see Table 3. In the raw data, the

dyads that allow to discriminate between the impact of common border and preferential

trade agreement we have the following pattern. Of the country pairs that do not have a

common border but have established a preferential trade agreement, 85% are engaged in

trade. On the other hand, of the country pairs that do have a common border but have

not established a preferential trade agreement, only 58% trade. Again, the positive effect

of a preferential trade agreement outweighs the negative border effect. On comparing

the maximum-likelihood estimates with those obtained by conditional logit we see that

the latter tend to be smaller (in absolute value), with similar standard errors. The one

exception is colonial ties, where the difference is nonetheless very small and statistically

insignificant at conventional significance levels. The ratio of the other conditional estimates

to their maximum-likelihood counterparts ranges from 63% to 81%.
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Appendix

Proof of Lemma 1. Equations (2.1)–(2.2) together with the functional form of the standard

logistic distribution imply that

Pr(z = 1|x) =
1

1 + exp(−αi1 − γj1 − x′i1j1θ0)

exp(−αi1 − γj2 − x′i1j2θ0)

1 + exp(−αi1 − γj2 − x′i1j2θ0)

×
exp(−αi2 − γj1 − x′i2j1θ0)

1 + exp(−αi2 − γj1 − x′i2j1θ0)

1

1 + exp(−αi2 − γj2 − x′i2j2θ0)

and, similarly, that

Pr(z = −1|x) =
exp(−αi1 − γj1 − x′i1j1θ0)

1 + exp(−αi1 − γj1 − x′i1j1θ0)

1

1 + exp(−αi1 − γj2 − x′i1j2θ0)

×
1

1 + exp(−αi2 − γj1 − x′i2j1θ0)

exp(−αi2 − γj2 − x′i2j2θ0)

1 + exp(−αi2 − γj2 − x′i2j2θ0)
.

Therefore,

Pr(z = −1|x)

Pr(z = 1|x)
=

exp(−αi1 − γj1 − x′i1j1θ0) exp(−αi2 − γj2 − x′i2j2θ0)

exp(−αi1 − γj2 − x′i1j2θ0) exp(−αi2 − γj1 − x′i2j1θ0)
= exp(−r′θ0),

from which Lemma 1 follows.

Proof of Theorem 1. Let

L(θ) = ρ−1
∑

σ∈Qρ

E [1{zσ = 1}F (r′σθ) + 1{zσ = −1} log(1− F (r′σθ))] .

Note that, by Assumption 3, θ0 is the unique global maximizer of limn→∞ L(θ) on Θ.

Because Ln(θ) is concave, θn
p
→ θ0 will follow from pointwise convergence in probability of

Ln(θ) to L(θ) (Newey and McFadden, 1994, Theorem 2.7).

Write,

Ln(θ)− L(θ) = ρ−1
∑

σ∈Qρ

ℓσ(θ)− E[ℓσ(θ)].
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Because |ℓσ(θ)| ≤ log 2 + 2‖rσ‖ ‖θ‖, and E[‖rσ‖
2] is finite and Θ is compact, the variance

of ℓσ(θ) exists and is uniformly bounded in σ. Therefore, by Chebychev’s inequality, for

any ǫ > 0,

Pr(|Ln(θ)− L(θ)| > ǫ) ≤
E(|Ln(θ)− L(θ)|)2

ǫ2
,

for each θ ∈ Θ. Now,

E(|Ln(θ)− L(θ)|)2 = E







ρ−1
∑

σ∈Qρ

ℓσ(θ)− E[ℓσ(θ)]







ρ−1
∑

σ′∈Qρ

ℓσ′(θ)− E[ℓσ′(θ)]







 .

A pair of quadruples σ = σ{i1, i2, j1, j2} and σ′ = σ{i′1, i
′
2, j

′
1, j

′
2} will deliver a non-zero

contribution to this covariance as long as σ and σ′ have at least one node in common.

Quadruples involving only distinct nodes are independent by Assumption 1. There are

O(n7) terms with at least one node in common. The number of terms with two or more

nodes in common is O(n6). Because, ρ = O(n4) we have

E(|Ln(θ)− L(θ)|)2 =
O(n7)

ρ2
=

O(n7)

O(n8)
= O(n−1),

and so limn→∞ Pr(|Ln(θ)− L(θ)| > ǫ) = 0 for any ǫ > 0 and all θ ∈ Θ. Therefore, θn
p
→ θ0

as n→∞ and the proof is complete.

Proof of Theorem 2. A mean-value expansion around θ0 gives

√

n(n− 1) (θn − θ0) = H(θ0)
−1

√

n(n− 1)Sn(θ0) + op(1)

= H(θ0)
−1

√

n(n− 1)Un + op(1),

where the first equality follows from the uniform convergence ofHn(θ) toH(θ) and Theorem

1, and the second equality follows from the asymptotic equivalence of
√

n(n− 1)Sn(θ0) and
√

n(n− 1)Un. The validity of each of these two transitions is shown below (under (i) and
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(ii), respectively). As will also be discussed below (under (iii)), our assumptions further

imply that
√

n(n− 1)Un
d
→ N (0, Υ ),

as n→∞. Therefore, Slutsky’s theorem yields

√

n(n− 1) (θn − θ0)
d
→ N (0, H(θ0)

−1ΥH(θ0)
−1),

as n→∞, which is the result of Theorem 2. We now turn to demonstrating Points (i)–(iii)

in turn.

(i) Convergence of the Hessian. We need to show that Hn(θ∗)
p
→ H(θ0) as n→∞, for any

θ∗ that lies in between θn and θ0. Because θn
p
→ θ0 as n → ∞ and Hn(θ) is a continuous

function of θ, it suffices to show that

sup
θ∈Θ

‖Hn(θ)−H(θ)‖ = op(1).

To show this we verify the conditions of Lemma 2.9 of Newey and McFadden (1994).

Because

Hn(θ) = −ρ
−1

∑

σ∈Qρ

rσr
′
σ f(r

′
σθ) 1{zσ ∈ {−1, 1}},

and f has bounded derivative f ′,

‖Hn(θ1)−Hn(θ2)‖ ≤



ρ−1
∑

σ∈Qρ

‖rσ‖
3 1{zσ ∈ {−1, 1}}



 sup
ǫ

f ′(ǫ) ‖θ1 − θ2‖

= Op(1) ‖θ1 − θ2‖,

for any θ1, θ2 ∈ Θ. Here, the second transition follows from the moment requirements

in Assumption 4, as can be shown using the same steps as those used to prove Theorem

1. Therefore, the matrix Hn(θ) is stochastically equicontinuous, and uniform convergence
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follows from pointwise convergence on Θ. Now, as E [‖rσ‖
4|zσ ∈ {−1, 1}] is uniformly

bounded in σ by Assumption 4, and because the density f is bounded on R, the same

argument as above equally gives ‖Hn(θ) −H(θ)‖ = op(1) as n → ∞ for all θ ∈ Θ. Thus,

uniform convergence has been shown.

(ii) Projection of the score. We will first show that the Sn(θ0) is asymptotically equivalent

to its Hájek projection, Un, conditional on the covariate sequence {xij}n. Introduce E

as a notational shorthand for the expectation given {xij}n (and the fixed effects). The

expression for the projection of Sn(θ0) given in the main text follows from a small calculation

of the expectation in

Un =
4

n(n− 1)(n− 2)(n− 3)

n
∑

i=1

∑

i′ 6=i

∑

j 6=i,i′

∑

j′ 6=i,i′,j

E[s(σ{i, i′; j, j′})| yij]

and uses the fact that

Pr(zσ = 1|xσ) = F (r′σθ0) Pr(zσ ∈ {−1, 1}| xσ),

Pr(zσ = −1|xσ) =
(

1− F (r′σθ0)
)

Pr(zσ ∈ {−1, 1}| xσ),
(A.1)

where we abuse notation slightly by denoting by xσ the collection of covariates for the nodes

in the quadruple σ. To show that the scaled score vector
√

n(n− 1)Sn(θ0) is asymptotically

equivalent to its projection
√

n(n− 1)Un, conditional on covariates, we need to verify that

n2 E[(Un − Sn(θ0)) (Un − Sn(θ0))
′] = o(1), (A.2)

as n→∞.

The main task in establishing (A.2) is the calculation of the asymptotic variance of the

normalized score. Moreover, we need to show that

n(n− 1)E[Sn(θ0)Sn(θ0)
′] = Υ + o(1),
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as n → ∞. Because E[s(σ; θ0)|xσ] = 0 for all σ ∈ Qρ and link decisions are conditionally

independent,

E[s(σ; θ0) s(σ
′; θ0)

′|xσ, xσ′ ] = 0

unless σ and σ′ have at least one dyad in common. There are O(n6) terms with only

one dyad in common. The number of terms with more than one dyad in common is

o(n6). Therefore, varSn(θ0) = ρ−1 O(n6) = O(n−2) and its leading term is comprised of

correlations between s(σ; θ0), and s(σ′; θ0) for which the quadruples σ, σ′ have exactly one

dyad in common. By symmetry of s(σ, θ) in the sender and receiver nodes, we can fix this

to be the first sender-receiver dyad and multiply the expression for s(σ; θ0) through by 4.

We may then write the dominant part of n(n− 1)E[Sn(θ0)Sn(θ0)
′] as

42

n(n− 1)

n
∑

i=1

∑

j 6=i

(

∑

i′ 6=i,j

∑

j′ 6=i,i′,j

∑

i′′ 6=i,j

∑

j′′ 6=i,i′′,j

E [s(σ{i, i′; j, j′}; θ0) s(σ{i, i
′′; j, j′′}; θ0)

′]

(n− 2)2(n− 3)2

)

.

Fix σ = σ{i, i′; j, j′} and σ′ = σ{i, i′′; j, j′′}. Then

s(σ; θ0) s(σ
′; θ0)

′ = rσr
′
σ′ 1{zσ = 1, zσ′ = 1} (1− F (r′σθ0)) (1− F (r′σ′θ0))

+ rσr
′
σ′ 1{zσ = −1, zσ′ = −1} F (r′σθ0) F (r′σ′θ0)

− rσr
′
σ′ 1{zσ = 1, zσ′ = −1} (1− F (r′σθ0)) F (r′σ′θ0)

− rσr
′
σ′ 1{zσ = −1, zσ′ = 1} F (r′σθ0) (1− F (r′σ′θ0)).

(A.3)

Take expectations (given covariates). The last two terms on the right-hand side of (A.3)

drop out, while the expectations of the first and second right-hand side term are equal to

rσ r
′
σ′

F (r′σθ0) (1− F (r′σθ0))F (r′σ′θ0) (1− F (r′σ′θ0))

pij
Pr(zσ ∈ {−1, 1}) Pr(zσ′ ∈ {−1, 1})

and

rσ r
′
σ′

F (r′σθ0) (1− F (r′σθ0))F (r′σ′θ0) (1− F (r′σ′θ0))

1− pij
Pr(zσ ∈ {−1, 1}) Pr(zσ′ ∈ {−1, 1}),
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respectively. By (A.1), and observing that

q(σ) =
Pr(zσ = 1| xσ) Pr(zσ = −1| xσ)

Pr(zσ ∈ {−1, 1}| xσ)
,

we therefore have

E[s(σ; θ0) s(σ
′; θ0)

′ | xσ, xσ′ ] = rσr
′
σ′

q(σ) q(σ′)

pij(1− pij)
.

Averaging across all quadruples and using the definition of wij given in the main text we

find

n(n− 1)E[Sn(θ0)S(θ0)
′] =

1

n(n− 1)

n
∑

i=1

∑

j 6=i

wijw
′
ij

pij(1− pij)
+ o(1) = ΥX + o(1), (say). (A.4)

Assumptions 1 and 4 imply that ‖ΥX −Υ‖ = Op(n
−1/2); the proof of this result follows the

same pattern as that of the pointwise-convergence statement in the proof of Theorem 1.

Therefore,

lim
n→∞

n(n− 1)E[S(θ0)S(θ0)
′] = lim

n→∞
n(n− 1)E[Un U

′
n] = Υ,

as claimed.

Making use of the above calculations, it is readily deduced that we equally have that

lim
n→∞

n(n− 1)E[Un Sn(θ0)
′] = Υ,

that is, that the asymptotic covariance between Un and Sn(θ0) equals their variance. Put

together, these results imply (A.2).

(iii) Asymptotic normality. To conclude the proof of Theorem 2 it remains only to show

that
√

n(n− 1)Υ−1/2 Un
d
→ N (0, I) (A.5)
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as n→∞, where I denotes the identity matrix of conformable dimension. Recall that

Un =
1

n(n− 1)

n
∑

i=1

∑

j 6=i

υij

and that the υij are independent conditional on the covariates {xij}n (and the fixed effects).

A conditional central limit theorem (e.g., Prakasa Rao 2009, Theorem 8) then implies that

√

n(n− 1)Υ
−1/2
X Un

d
→ N (0, I), (A.6)

conditional on the covariates. Now, E[Un] = E[Un] = 0 and, as was established above,

‖ΥX − Υ‖ = Op(n
−1/2). Therefore, the limit distribution is independent of the covariate

values, and (A.6) continues to hold unconditionally, with Υ replacing ΥX . This is (A.5).

This concludes the proof of Theorem 2.
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