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Abstract

When does the combination of flexible exchange rates and inflation-targeting mon-
etary policy guarantee insulation from global financial conditions? We examine a dy-
namic global game model of international investment flows where, for some combination
of parameters, the unique equilibrium exhibits the observed empirical feature of pro-
longed episodes of capital inflows and appreciation of the domestic currency, followed
by abrupt reversals where capital outflows go hand-in-hand with currency depreciation,
a domestic bond market crash, and inflationary pressure.
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1 Introduction

The flexible exchange rate version of the Mundell-Fleming model (Fleming (1962), Mundell

(1963)) lays out the case for how flexible exchange rates allow monetary authorities to pursue

domestic macroeconomic objectives in a world of free capital flows. Post-crisis discussions of

monetary spillovers have revisited this classic proposition. The BIS report on global liquidity

(BIS 2011) is a recent exposition of cross-border monetary spillovers and it has been followed

by an active literature which has examined the extent to which floating exchange rates fail to

insulate monetary policy from external developments (see, for instance, Agrippino and Rey

(2015), Rey, (2013, 2015), Bruno and Shin (2015a, 2015b)).

The broad picture emerging from this literature is that of a significant global comove-

ment in leverage and asset prices that is related to US monetary policy. This global factor

is associated with surge and sudden stops in capital flows, and with large exchange rate

fluctuations that deviate from uncovered interest parity (UIP).

This paper offers a theoretical model in which the differential between the interest rate

on an international funding currency and that of a small open economy generates excessive

fluctuations in leverage, bond prices, and inflation in the small open economy. This instability

is generated by the capital flows of global investors seeking to reap self-justified rents from

carry trades. The rents are self-justified in the sense that large capital inflows (outflows)

generate positive (negative) abnormal returns on carry trades that justify the flows in the

first place.

We contribute to the theoretical literature on self-fulfilling international crises pioneered

by Obstfeld (1996) along two dimensions. First, we write down a fully dynamic coordination

game among global investors in infinite horizon in which investors’ beliefs about each others’

future positions are uniquely determined along the equilibrium path. Shocks to the interest-

rate differential serve as their coordination device and affect their collective beliefs in a highly

non-linear fashion. This way, we show that coordination games are not only useful to model

snapshot crisis episodes, but can also help understand the protracted build-up of financial

fragility that precedes them. Second, we embed this coordination game in a simple but

standard monetary model of a small open economy. This enables us to identify the set of
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primitive parameters of the domestic economy under which it lends itself to such destabilizing

speculation.

We proceeds in two steps. We first couch the novel economic mechanism through which

global investors’ portfolio choice generates monetary spillovers in a small open economy in

the simplest possible environment: a perfect-foresight model. Monetary spillovers stem from

two ingredients. First, the central bank in the small open economy uses an interest-rate rule

that responds to global investors’ inflows only insofar as they affect the price level, but that

does not track their direct impact on asset prices (and thus on the real rate). As a result

inflows (outflows) are deflationary (inflationary). The second ingredient is the assumption

(borne out by the data) that the non tradable goods of the small economy have more rigid

prices than the tradable ones. This implies that the inflationary impact of capital flows

must operate through the prices of tradable goods, and thus leads to large fluctuations in

the nominal exchange rate. We show that for reasonable parameters of the model, there are

two stable steady-state solutions — one associated with capital inflows and the other with

capital outflows. The steady state with capital inflows is associated with an appreciation of

the domestic currency and a failure of uncovered interest parity (UIP) yielding an abnormal

positive return on carry trades, and the steady state with capital outflows is its mirror image.

In the second step of our analysis, we build a stochastic version of this perfect-foresight

model. We introduce exogenous shocks to the dollar interest rate and use the global-game

techniques of Burdzy, Frankel, and Pauzner (2000, 2001) to refine the outcome of the model

to a unique solution. We show that the state space can be partitioned into two regions—

a region where all global investors pile into the local currency bond, and one in which

they short these bonds to be long US dollar-denominated assets. The transition between

the two regions can be triggered by small fluctuations in the US dollar interest rate and

the endogenous changes in domestic financial conditions. The unique equilibrium features

dynamics that are reminiscent of boom-bust cycles. An easing of US monetary conditions

typically creates a prolonged episode of capital inflows, benign domestic financial conditions,

and appreciation of the currency for the small economy. Subsequent small increases in the US

rate do not immediately reverse the up-phase of the cycle but will abruptly reverse it when
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a “tantrum” boundary is reached. Hitting the “tantrum” boundary triggers a large currency

depreciation, capital outflows, a crash in the domestic bond market, and inflationary pressure.

These features are reminiscent of that experienced by a number of emerging economies during

the 2013 “taper tantrum” episode that followed the announcement of a possible tapering of

the highly accommodative US monetary policy.

Related Literature

Our approach is most closely related to models of financial instability which involve co-

ordination problems and self-fulfilling speculative episodes. In a similar spirit, Farhi and

Tirole (2012) and Schneider and Tornell (2004) offer related models of “collective moral haz-

ard” in which the government bails out speculators if their aggregate losses are sufficiently

large, thereby inducing a coordination motive among speculators. We formalise the dynamic

coordination game among investors using the dynamic extension of global-game methods de-

veloped by Frankel and Pauzner (2000) and Burdzy, Frankel, and Pauzner (2001) to obtain

a unique equilibrium outcome. We show that these global-game tools can be adapted to

the situation where coordination motives coexist with congestion effects. This is important

because most financial models with coordination motives also feature congestion effects. In

a model of bank run, Goldstein and Pauzner (2004) adapt static global-game techniques to

the case in which strategic complementarities similarly fail to hold everywhere. In a model of

sovereign-debt refinancing, He, Krishnamurthy, and Milbradt (2015) also apply global-game

techniques in a context in which a large debt size comes at the benefit of smaller congestion

effects but at the cost of a higher rollover risk.

Most closely related to our work, He and Xiong (2012) apply the equilibrium selection

techniques developed by Burdzy, Frankel, and Pauzner (2001) in a dynamic financial context

— the roll-over of short-term debt.

We also relate to the theoretical literature that seeks to model both crises and the build

up of fragility that precedes them. Lorenzoni (2008) builds a model in which commitment

problems on both lending and borrowing sides lead to excessive borrowing ex-ante and ex-

cessive volatility ex-post. Sannikov (2014) endogenizes the build up of fragility by assuming
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that two assets are available, an illiquid one that generates more with experts and less with

households than a liquid one. A key driver is that the illiquidity of an asset (the value it

generates when operated by households) has no impact on the steady-state target leverage

of experts, so that endogenous illiquidity risk taking by experts in quiet times alone can lead

to large crises even absent large fundamental risk.

Our paper also relates to the literature on portfolio choice in incomplete markets. In

a recent contribution, Gabaix and Maggiori (2015) introduce financial intermediaries that

operate in incomplete global financial markets by intermediating gains from trade between

countries. We also model global investors as financial institutions operating in incomplete

markets.1 Garleanu, Panageas and Yu (2015) present a model in which investors face costs

to extend their participation in markets located on a circle for diversification purposes. Our

result that the profitability of investment increases in the weight of others’ participation bears

similarities with their finding that participation and leverage reinforce each other, possibly

leading to multiple equilibria.

The relationship between exchange rates and leverage is our point of contact with the

literature on the determinants of vulnerability to financial crises. Gourinchas and Obstfeld

(2012) conduct an empirical study using data from 1973 to 2010 and find that two factors

emerge consistently as the most robust and significant predictors of financial crises, namely

a rapid increase in leverage and a sharp real appreciation of the currency. The build up of

leverage and currency appreciation also lead to a higher probability of future sharp delever-

aging and important capital outflows in our model. Schularick and Taylor (2012) similarly

highlight the role of leverage in financial vulnerability, especially that associated with the

banking sector.

Finally, our results complement the recent work on the risk-taking channel of currency

appreciation, introduced by Bruno and Shin (2015a, 2015b) in the context of cross-border

banking, whereby currency mismatches on borrowers’ balance sheets lead to credit supply

effects of exchange rate fluctuations. The risk-taking channel relies on Value-at-Risk (VaR)-

induced behaviour that is sensitive to tail risks of credit portfolios. Hofmann, Shim and Shin

1We discuss interesting differences between their conclusions and ours below in Section 2.4.
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(2015) apply the risk-taking channel to domestic currency sovereign yields through shifts in

the tail risk of diversified local currency sovereign bond portfolios. Whereas existing models

of the risk-taking channel are static, our global game model solves for the dynamic path of

the key macro variables.

2 A simple perfect-foresight model

Time is discrete and is indexed by t. There are two types of agents, households populating

a small open economy and global investors. There is a single tradable good that has a fixed

unit price in US dollars.

2.1 Households

The households live in a small open economy. They use a domestic currency that trades at

St dollars per unit at date t, where the exchange rate St will be determined in equilibrium.

At each date, a unit mass of households are born. Households live for two dates, consume

when young and old, and work when old. Each household receives an initial endowment

at birth with nominal value PtW ≥ 0, where Pt is the domestic price level.2 The cohort

that is born at date t has quasi-linear preferences over bundles of consumption and labor

(Ct, Ct+1, Nt+1)

U (Ct, Ct+1, Nt+1) = lnCt +
Ct+1 −N1+η

t+1

R
, (1)

where η > 0 and R > 1 is the subjective discount rate.

Domestic consumption services Ct are produced combining the tradable good CT
t and

two nontradable goods CN1
t and CN2

t according to the technology

Ct =

(
CT
t

)α (
CN1
t

)β (
CN2
t

)γ
ααββγγ

, (2)

where α, β, γ ∈ (0, 1) and α+β+γ = 1. Domestic firms set by old households use labor input

to produce. Due to quasi-linear preferences, our results do not depend on the specification

2If the endowment of young households is zero, then the global investors introduced below cannot have an
aggregate short position in domestic bonds. A strictly positive endowment plays no other role than allowing
such short positions.
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of the firms’ production functions. All that is needed is that both nontradable goods are

produced in finite, non zero quantities at each date. Households collect labor income and

the profits from their firms when old.

Nominal rigidities. An important ingredient of the model is that the prices of the

nontradable goods are less flexible than that of the tradable good.3 We formalize this as

follows. First, we posit that the tradable good has a flexible price P T
t in the domestic

currency, and that the law of one price holds (“PPP at the docks”). Second, the first

nontradable good N1 also has a fully flexible price PN1
t . A linear technology enables the

transformation of each date-t unit of N1 into F units of the tradable good, where F > 0.

The second nontradable good N2 has a fixed price that we normalize to 1 without loss of

generality. Denoting P T
t , P

N1
t , and PN2

t the respective prices of these three goods, we have:

P T
t St = 1, (3)

PN1
t = FP T

t , (4)

PN2
t = 1. (5)

Equation (3) is the statement of the law of one price. Equation (4) states that domestic

households are indifferent between purchasing the tradable good or producing it out of N1.

Finally, (5) is the statement of the rigidity of N2’s price.

The introduction of the nontradable good with flexible price N1 allows us to decouple the

“openness” of the economy as measured by α = 1− β − γ from the flexibility of the overall

price index to changes in the tradable goods price, as measured by 1− γ. As is well-known,

optimal spending across goods implies that prices must satisfy

Pt = (P T
t )α(PN1

t )β(PN2
t )γ

=
(
P T
t

)1−γ
F β, (6)

where (6) follows from (4) and (5).

Households have access to the domestic bond market, in which risk-free one-period bonds

denominated in the domestic currency are available in zero net supply. The nominal interest

3This is consistent with evidence documented by Burstein, Eichenbaum, and Rebelo (2005).
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rate on these bonds is set by the domestic central bank according to a rule to be described

below.

2.2 Global investors

A unit mass of global investors have access to both the local-currency bond market and to

US dollar-denominated one-period bonds. The exogenous nominal return on US dollar bonds

is denoted by I∗ > 0. Global investors consume outside the local economy, and their utility

is increasing in the consumption of the tradable good.4

In forming their financial portfolios, global investors face limits on the size of their expo-

sures in domestic bonds, reflecting leverage constraints or exposure caps imposed by internal

risk limits.5 We assume that the position in domestic bonds of any investor must lie in the

interval [PtL
−, PtL

+], where these limits are denominated in the domestic currency and

L− > −W,

which ensures that households always consume positively.6

The return to a global investor from investing in the local currency bond market relative

to the return on dollar bonds is given by

Θt+1 =
St+1

St

It+1

I∗
(7)

We may interpret Θt+1 as the return to a carry-trade position in which the investor borrows

dollars at rate I∗ and then invests the proceeds in the local currency bond yielding It+1.

Uncovered interest parity (UIP) holds when Θt+1 = 1.

We denote Lt ∈ [L−, L+] the real net aggregate borrowing by young households from

global investors at date t (possibly negative). Since the economy is deterministic, optimal

4Whether they also derive utility from consuming other goods, and the curvature of their utility function
are immaterial. This is only true because the economy is deterministic, and will no longer be so in Section 3.

5We do not consider the microfoundations of these limits. As is well-known, they could result from
example from agency problems within globally investing firms such as, for example, a cash-flow diversion
problem.

6Setting lending limits in real terms simplifies the exposition but is not crucial. Nominal rigidities in
trading limits would actually amplify our results.
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portfolio choice by global investors implies that Lt must satisfy:

Lt


= L+ if Θt+1 > 1,

= L− if Θt+1 < 1,

∈ (L−, L+) if Θt+1 = 1.

(8)

In words, global investors choose corner portfolios unless they are indifferent between invest-

ing in US-dollar denominated assets or in domestic bonds.

2.3 Monetary policy rule

We suppose that the domestic monetary authority sets the nominal interest rate between t

and t+ 1, It+1, following the interest-rate feedback rule:

It+1 = R

(
Pt
Pt−1

)1+Φ

(9)

where

Φ > 0 (10)

The interest rate rule (9) follows the Taylor principle from (10) in that the nominal

interest rate reacts more than one-for-one to the price level change. The Taylor principle

is necessary for a determinate solution in many classes of monetary models (Taylor, 1993;

Woodford, 2001), and our model also shares this feature as we see below. Setting the target

inflation rate to zero is only a normalization.

Given our quasi-linear preferences, households’ Euler equation can be written as

It+1 =
Pt+1

Pt

R

(Lt +W )
(11)

2.4 Steady-state solution

We are now equipped to solve for the perfect-foresight steady-states of this economy. A

steady state must be such that the domestic economy is in equilibrium and global investors

form optimal portfolios at each date. Formally, a perfect-foresight steady-state is a solution

to (3), (6), (8), (9), and (11).
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We introduce the following notation.

r = lnR,

δ = ln

(
R

I∗

)
,

θt = ln Θt,

it = ln It,

st = lnSt,

lt = ln(Lt +W ),

πt+1 = ln

(
Pt+1

Pt

)
.

The Euler equation (11) and the interest-rate rule (9) can be gathered as follows:

it+1 = r − lt + πt+1, (12)

it+1 = r + (1 + Φ) πt. (13)

Together, they define a linear-difference equation for the path of inflation:

πt =
πt+1 − lt

1 + Φ
(14)

which has a unique non-exploding solution:

πt = −
∑
k≥0

lt+k

(1 + Φ)k+1
. (15)

Equation (15) shows that current inflation is affected by current and future capital inflows

(lt+k)k≥0. The Taylor principle ensures that πt is well-defined, since lt+k is bounded and

Φ > 0.

This expression for πt highlights that our model shares the generic feature of standard

interest-rule based monetary models that inflation reflects anticipated future “shocks.” In

our context, the “shocks” are not the usual exogenously assumed policy shocks, but rather

are the consequence of optimal portfolio choice by global investors.

Using (6) and (3), we have:

πt+1 = − (1− γ) (st+1 − st) . (16)
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Equation (16) is our exchange rate pass-through equation that expresses inflation in terms

of exchange rate depreciation.

Plugging (16) and (11) in (7), we have

θt+1 = st+1 − st + it+1 − ln I∗,

= − 1

1− γ
πt+1 + πt+1 − lt + δ, (17)

=
γ

1− γ
∑
k≥0

lt+k+1

(1 + Φ)k+1
− lt + δ. (18)

where (17) follows from (16) and the Euler equation, and (18) follows from the solution for

πt+1 given by (15).

We now determine the steady states in which the debt level l is constant over time. We

introduce

l ≡ ln(W + L−), (19)

l ≡ ln(W + L+). (20)

For brevity the remainder fo the paper focusses on the case in which

l < 0 < l.

Proposition 1 (Multiplicity of steady-states) Suppose there exists l∗ ∈ (l, l) such that

γ − Φ (1− γ)

(1− γ) Φ
l∗ + δ = 0.

Then l = l∗ is a steady state in which uncovered interest parity (UIP) holds. If Φ(1−γ) > γ,

there is no other steady-state solution. However, if Φ(1 − γ) < γ, there are two further

steady-state solutions; there is a steady state with maximum capital inflows (l = l), and there

is a steady state with maximum capital outflows (l = l).

Proof of Proposition 1. First, note that for l fixed, the relative return to investing in the

local currency bond given by (18) can be written as

θ =
γ − Φ (1− γ)

(1− γ) Φ
l + δ (21)
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Let l∗ ∈ (l, l) be such that θ = 0. For such an l∗ investors are indifferent between investing

in the local currency bond or the dollar bond. Hence, l∗ is a steady-state solution of our

model. If Φ(1−γ) > γ, this is the only steady-state solution, since θ is decreasing in l: More

(less) foreign lending makes foreign lending unprofitable (profitable). This case corresponds

in particular to the fully flexible benchmark (γ=0).

Now consider the case where γ > Φ(1−γ). In this case, we have two further steady-state

solutions corresponding to the corner solutions l = l̄ and l = l.

First, suppose that all investors choose to invest in the local currency bond. Then l = l,

so that θ > 0, implying that investing in the local currency bond is strictly better than

investing in the dollar bond. Hence, all investors invest in the local currency bond, thereby

sustaining maximum inflows l = l as a steady-state solution. Conversely, suppose that all

investors choose to invest in the dollar bond. Then l = l, so that θ < 0, implying that

investing in the dollar bond is strictly better. Hence all investors invest in the dollar bond,

sustaining l = l as a steady state. �

Proposition 1 highlights the possibility of both self-fulfilling capital flow surges and out-

flows as extremal steady-state solutions of our model. These steady-states correspond to

binding risk limits for global investors, failure of UIP (θ 6= 1), and off-target inflation.

The intuition behind the multiplicity of steady states is as follows. First, as is transparent

from relation (15), capital inflows push local bond prices up and this compression in yields

leads inflation to be below target. Second, since the prices of nontradable goods are relatively

stickier than that of the tradable good, this deflationary impact must operate relatively more

through the prices of tradable goods, and thus through a large appreciation of the nominal

exchange rate, as formalized by (16). If these two effects are sufficiently important, then

capital inflows generate a sufficiently large exchange rate appreciation that this more than

compensates global investors for holding expensive local bonds. This yields arbitrage profits,

and the anticipation of future large capital inflows in the small open economy is self-fulfilling.

The model is essentially symmetric, so everything also works the mirror-image way in the

steady-state with extremal outflows.

It is interesting to contrast this mechanism with that in Gabaix and Maggiori (2015).
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In their setup, tighter financial constraints lead to larger excess returns on carry trades

because it forces global investors to leave carry-trade profits on the table. Here, conversely,

if one interprets tighter financial constraints as narrower trading limits, then such tighter

constraints lead to smaller excess returns on carry trades. This is because these excess

returns are generated by the destabilizing impact of foreign capital flows in or out of the

small economy. This impact increases in the size of the carry trade.

The condition γ > Φ(1− γ) is satisfied when nominal rigidities are sufficiently important

(γ sufficiently large) and monetary policy sufficiently passive (Φ sufficiently small). Both con-

ditions imply that small changes in inflation expectations are consistent with large swings

in the nominal exchange rate.7 Otherwise stated, the domestic monetary authority could

eliminate extremal steady-states by committing to a sufficiently large Φ, which means com-

mitting to a sufficiently large reduction in the policy rate in the presence of large capital

inflows and/or large appreciation of the exchange rate.

Remark on the monetary rule. The reader may have noticed that the interest-rate

rule (10) does not fully track the impact of foreign flows on domestic bond prices and thus

on the real rate. By doing so, a rule of the form

it+1 = r − lt + (1 + Φ)πt (22)

would eliminate the effect of inflows on the domestic CPI and thus on carry-trades returns.

We find it realistic, however, to assume that the flows of “hot money” are more nimble than

the domestic monetary authority. In addition, we believe that the extremal steady states

could still arise under a rule such as (22) in a richer model of nominal rigidities.8

The purpose of this perfect-foresight analysis is to present our novel mechanism for self-

justified destabilizing capital flows in the simplest and most transparent environment. Yet

this perfect-foresight analysis raises two obvious isses:

7The standard assumption Φ = 0.5 implies that extremal steady-states can occur as soon as γ > 1/3,
corresponding to a fairly low level of nominal rigidities.

8Suppose for example that the consumption boom due to inflows results in inflation in the price of
nontradable goods through overheating. If rule (22) maintains the overall price index constant, then this
inflationary pressure must be compensated with deflation in the price of the tradable good. Such a deflation, if
sufficiently large, will again create room for self-fulfilling excess returns on carry trades through the associated
increase in the nominal exchange rate.
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• The multiplicity of steady-states leaves unclear how agents can coordinate on any

equilibrium behavior at all.

• If carry traders hold the same position forever, then the prices of non tradables and

the real-rate target of the central bank should eventually adjust.

We now turn to a stochastic version of our benchmark model and employ global-game

techniques to tie down a unique dynamic solution that solves both issues. The goal of the

analysis is to provide the theoretical foundations of the dynamics of an open economy in

which surges of capital inflows can be explained alongside the sudden reversals that happen

in practice.

3 Stochastic model

We will proceed to develop a stochastic version of our model, and then solve for the uniquely

determined time paths by using perturbation methods that resemble global-game methods,

but which are better suited for dynamic contexts.

Begin by assuming that time is continuous. The fixed integer dates of the previous section

are replaced by the arrival times of a Poisson process with intensity µ > 0. Namely, at each

arrival time Tn, a new cohort of households are born, and die at the next arrival time Tn+1.

They value consumption and leisure only at these two dates, with preferences that are the

same as that in our benchmark set-up:9

lnCTn +
1

R
ETn

[
CTn+1 −N

1+η
Tn+1

]
.

At each arrival date Tn, the central bank sets a nominal rate ITn+1 between Tn and Tn+1

according to the rule:

ITn+1 = R

(
PTn
PTn−1

)1+Φ

(23)

9The unconventional assumption that households discount consumption at a random future date at a
fixed discount factor R greatly simplifies the algebra but plays no other role. Accordingly, we will define the
interest rate on US and local bonds as a fixed coupon between two arrival dates.
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Replacing integer dates with dates that arrive at a constant rate is not essential, and our

set-up is designed for tractability. It is designed to ensure that the global investors’ portfolio

choice problem described below is time homogeneous.

We now are more specific than in the previous section about global investors’ preferences

in order to characterise their portfolio choice. We follow Gabaix and Maggiori (2015) and

model global investors as a unit-mass of financial institutions that can form zero-cost portfo-

lios in bonds denominated in either currency at each date Tn with size within [PTnL
−, PTnL

+]

(in units of the domestic currency). The date-Tn trade is unwound at the next date Tn+1 and

the realised profit or loss is paid to the old households at this date. Each firm maximises

the expected value of future consumption paid to all future households discounted at the

households’ subjective discount rate R between two arrival dates. We still suppose that

ln(L− +W ) ≡ l < 0 < ln(L+ +W ) ≡ l. (24)

The two following modifications to the benchmark model are key to generate equilibrium

uniqueness.

Shocks to the US dollar rate. First, we assume that the interest rate on US dollar-

denominated bonds between two arrival dates Tn and Tn+1 is given by

I∗Tn+1
= R (1− wTn) , (25)

where wt is a Wiener process with volatility σ and no drift.10

Imperfect liquidity. Second, we assume that the capital market is imperfectly liquid in

the following sense. Each investor can revise his investment strategy only at switching dates

that are generated by a Poisson process with intensity λ > 0. These switching dates are

independent across investors. In between two switching dates, each global investor commits

to a strategy and thus to lend to (or borrow from) households a committed amount within

[PTnL
−, PTnL

+] at each arrival date Tn (if any).

This form of execution uncertainty has a key property that will yield equilibrium unique-

ness: Every investor knows that some other investors will revise their trading strategy almost

surely between his current switching date and the next one.

10We will discuss more general stochastic processes below. Proofs are simpler in the case of a standard
Wiener process.
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Remark. (Arbitrage versus good deal and the role of trading limits) It is

important to stress that the exogenous trading limits [PTnL
−, PTnL

+] fulfill a very different

role from that played in Section 2. In the previous section, it was necessary to impose such

limits regardless of global investors’ preferences because carry trades were (possibly) textbook

arbitrage opportunities given the deterministic environment. As is well-known, any agent

with increasing utility over consumption has an infinite demand for an arbitrage opportunity

absent any financial constraint. In this stochastic environment, we will see that carry-trade

portfolios generate losses with a non-zero probability in equilibrium. Thus, any risk-averse

agent would form finite portfolios. Trading limits here only play the role of a very tractable

substitute for risk aversion that is commonplace in models in which agents’ attitude towards

risk is not the main focus.11 An interesting extension consists in studying risk limits that

vary with exchange rate movements, as is the case in practice (see Hofmann, Shim and Shin

(2015)).

Local risk-neutrality implies that global investors choose corner portfolios. We deem

“long” a global investor who committed to maximum lending L+ at his last switching date,

and “short” one who committed to the maximum borrowing L−. We let xt denote the

fraction of long global investors at date t. Note that the paths of the process (xt)t∈R must

be Lipschitz continuous, with a Lipschitz constant smaller than λ. The aggregate real net

lending LTn taking place at an arrival date Tn is then equal to

LTn = xTnL
+ + (1− xTn)L−. (26)

It corresponds to stopping the process of the (real) aggregate committed amount by global

investors Lt at the arrival dates Tn at which this amount is actually lent (or borrowed).

Suppose that a global investor has a chance to revise his position at a date t such that

Tn−1 < t < Tn. (27)

Denoting Tλ his next switching date, the expected unit return from the carry trade — the

11In recent work, Albagli, Hellwig, and Tsyvinski (2015) use a similar assumption to generate a high
tractability and thus new insights in a standard noisy REE asset-pricing model. The binary portfolio choice
of risk-neutral carry traders is particularly suited to our iterated-dominance solution.
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expected value from committing to lend one additional real unit to each future cohort until

Tλ — is

Πt = Et

[∑
m≥0

1{Tλ>Tn+m}
Rm

PTn+mSTn+m
PTn+m+1STn+m+1

(
STn+m+1ITn+m+1

STn+mR
− 1 + wTn+m

)]
. (28)

Expression (28) states that the global investor earns the carry-trade return associated

with each arrival date until he gets a chance to revise his position.12

The evolution of the economy is then fully described by two state variables, the exogenous

state variable wt and the endogenous state variable xt. The exogenous state variable wt

directly affects only the expected return on carry trade Πt while the endogenous one xt

directly affects both the carry trade return and the equilibrium variables (LTn , ITn , PTn , STn)

of the domestic economy. We are now equipped to define an equilibrium.

An equilibrium is characterized by a process xt that is adapted to the filtration of wt and

has Lipschitz-continuous paths such that:

12To arrive at (28), note that investing one real unit at arrival date Tj costs USD PTjSTj . The net rate of
return (STj+1/STj )ITj+1 − I∗Tj+1

applies to this dollar amount. The resulting consumption for old households
at date Tj+1 is then this USD profit divided by PTj+1STj+1 . Re-arranging and discounting these terms yields
(28).
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ITn+1 = R

(
PTn
PTn−1

)1+Φ

, (29)

ETn

[
ITn+1PTn
PTn+1

]
=

R

LTn +W
, (30)

STn+1

STn
=

(
PTn+1

PTn

) −1
1−γ

, (31)

dxt
dt

=

{
−λxt if Πt < 0,

λ(1− xt) if Πt > 0,
(32)

where

Πt = Et

[∑
m≥0

1{Tλ>Tn+m}
Rm

PTn+mSTn+m
PTn+m+1STn+m+1

(
STn+m+1ITn+m+1

STn+mR
− 1 + wTn+m

)]
.

Exactly as in the perfect-foresight case, equilibrium in the domestic economy is character-

ized by the Taylor rule (29), households’ Euler equation (30), and the pass-through equation

(31). Equation (32) states that global investors make optimal portfolio choices. They become

long at switching dates at which the expected return on the carry trade is positive (or remain

long if this was their previous positions), and short if this is negative (or remain short if this

was their previous positions).

Note that relations (29) and (31) are identical to their counterparts in the perfect-foresight

case except for the re-labelling of dates. They are in particular log-linear. Conversely,

the Euler equation (30) now features an expectation over the inverse of inflation given the

stochastic environment. As a result, the system of equations defining the equilibrium is no

longer log-linear in Lt + W . For the remainder of the paper, we will solve for a linearized

version of these equilibrium equations:

Linear approximation. We solve for an equilibrium process xt that satisfies the first-

order expansions of (29), (30), (31), and (32) in l and l.

This boils down to normalizing W = 113 and assuming that L+ and L− are sufficiently

small that global investors have a small impact on the domestic real rate, the rate of inflation

13so that the real rate is R when xt = 0.
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and the appreciation/depreciation of the nominal exchange rate between two arrival dates.

Importantly, this does not rule out that the domestic price level PTj and nominal exchange

rate level STj possibly reach large or small values because the cumulative impact of inflows

can be large if global investors trade in the same direction for a long time. Nor does it

imply restrictions on the size of the interest rate differential since wt is unbounded. All that

it imposes is that the domestic real rate and nominal variables do not fluctuate too much

between two arrival dates.

Up to this approximation, we have:

Proposition 2 (Unique equilibrium) Suppose that

γ > Φ (1− γ) . (33)

For µ/λ sufficiently large, there exists a unique equilibrium defined by a decreasing Lipschitz

function f such that

dxt = λ
(
1{wt>f(xt)} − xt

)
dt, (34)

where 1{.} denotes the indicator function.

Stochastic bifurcations. Equation (34) states that the equilibrium aggregate position

of global investors xt obeys an ordinary differential equation controlled by the stochastic

process wt. Such processes are known as stochastic bifurcation models, and are extensively

studied in Bass and Burdzy (1999) and Burdzy et al. (1998). These mathematics papers

establish in particular that for almost every sample path of wt, there exists a unique Lips-

chitz solution xt to the differential equation (34) defining the price dynamics for f Lipschitz

decreasing. We will repeatedly use this result throughout the proof of Proposition 2.14

Equilibrium dynamics. The frontier f divides the (w, x)-space into two regions.

Proposition 2 states that in the unique equilibrium, any investor decides to be long when the

system is to the right of the frontier f at his switching date, and short when it is on the left

of the frontier. Thus, net lending (and therefore the nominal exchange rate) will tend to rise

14These papers also establish convergence results ensuring that the process xt that we obtain when lin-
earizing in l and l converges to the exact equilibrium process as l, l→ 0.
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w = f (x)

x 

w 

dx = λ 1− x( )dt

dx = −λxdt

Figure 1: Equilibrium dynamics. The frontier f divides the (w,x)-space into two regions. In the unique equilibrium, 
lending increases in the right-hand region and declines in the left.  
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in the right-hand region, and tend to fall in the left-hand region, as indicated by the arrows

in Figure 1.

The main features of these dynamics can be seen from Figure 1. Starting from the red

dot on the frontier, a positive shock on w will pull the system to the right of it. Unless the

path of wt is such that a larger negative shock brings it back on the frontier immediately, a

more likely scenario is that lending grows for a while so that xt becomes close to 1, in which

case dxt
dt

becomes close to 0. If cumulative negative shocks on w eventually lead the system

back to the left of the frontier, then there are large outflows

dxt
dt
' −λ.

These dynamics therefore correspond to prolonged episodes of appreciation of the do-

mestic currency, large cumulated capital inflows, and benign domestic financial conditions

following a negative shock on the US interest rate. Subsequent small increases in the US

interest rate do not reverse these dynamics until a tipping point is reached. This point trig-

gers a large currency depreciation, important capital outflows, a crash in the domestic bond

market, domestic inflation, and a tightening of domestic monetary policy. These features of

sudden stops correspond to that experienced by the “Fragile Five” (Brazil, Indonesia, India,

South Africa and Turkey) following Bernanke’s testimony about the possible “tapering” of

the highly accommodative US monetary policy (see Aoki, Benigno, and Kiyotaki, 2015).

It is admittedly not surprising that the equilibrium displays periods of capital inflows or

outflows given that investors’ positions are assumed to be sticky and bounded. The interest-

ing part of these dynamics lies in our view in the subtle nonlinear impact of the fundamental

(the US interest rate) on investors’ coordination. After they have reaped positive excess

returns on carry trades for a long time, only a large accumulation of negative news can

lead investors to switch beliefs about each others’ future positions and thus about the prof-

itability of carry trades. When the tipping point is reached, however, a small incremental

negative news has a disproportionate impact on investors’ position. We consider this to be a

signature pattern of episodes of destabilizing speculation that stochastic-bifurcation models

capture parsimoniously.

Expected return on carry trades. The expected return on the carry trade at date t,
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Πt, is zero if and only if wt = f(xt). It is positive if (wt, xt) is on the right of the frontier f

in the (w, x)-space and negative if it is on the left of f . Thus, carry trades exhibit abnormal

expected returns that increase in the net open interest. They are risky trades though, as an

investor can be stuck in a position that generates losses when other investors revert their

trade before his trade unwinds.

Congestion effects. Condition (33) is already the one that generates multiple steady-

states in the perfect-foresight case. Here, it is necessary in order to obtain a decreasing

frontier f , and thus large bifurcations, for exactly the same economic reasons.15 It is not

sufficient, however. The additional condition that µ/λ be sufficiently large is also required in

order to obtain a decreasing frontier. It means that capital must flow sufficiently smoothly

into the domestic economy: The arrival rate of domestic trading counterparties for global

investors must be sufficiently large relative to the frequency at which global investors can

revise their committed position. We offer detailed explanations for this condition in the proof

of Proposition 2 below. The broad intuition is that if this condition is not satisfied, then

global investors create sufficiently large congestion externalities for each other that this acts

as a stabilizing force that more than offsets the destabilizing ones presented in the perfect-

foresight case. Otherwise stated, if the capital market is too congested, then capital inflows

cannot destabilize the small open economy even when its monetary rule is sufficiently passive

that (33) holds. This interplay between the stance of monetary policy and the ability of the

domestic capital market to channel foreign flows is novel, to our knowledge.

Proof of Proposition 2

Our proof follows the same roadmap as that in Frankel and Pauzner (2000), with additional

complexity induced by the congestion effects.

More precisely, the first step consists in using relations (29) to (31) to express the nominal

exchange rate and interest rate as functions of the expected future paths of capital inflows

Lt. This yields in turn a relatively simple expression for the expected return on the carry

trade Πt as a function of these expected capital inflows:

15Absent this condition, the frontier would be increasing, and small shocks on wt would translate into
small shocks on xt in the same direction so that the system remains close to the frontier.
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Lemma 3 (Linearized expected return) At first-order w.r.t. l, l, the expected return

on the carry trade is

Πt =

∫ +∞

0

ξ(v)Et

[
lt+ v

µ

]
dv +

wt
λ
µ

+ ρ
, (35)

where

ξ(v) =

(
χω

ω − ρ− λ
µ

− 1

)
e−(ρ+λ

µ)v − χω

ω − ρ− λ
µ

e−ωv, (36)

lt = xtl + (1− xt) l, (37)

ρ = 1− 1

R
, (38)

ω =
Φ

1 + Φ
, (39)

χ =
γ

(1− γ) Φ
. (40)

Proof. See the appendix. �

The factor ξ(v) that discounts future capital inflows in (35) is first negative, then positive

as v spans [0,+∞).16 Thus, an increase in the expected net inflow Et[lt+s] raises the date-t

expected return on the carry trade only for s sufficiently large, and reduces it otherwise. This

is the key technical difference between our setup and the abstract games studied by Burdzy,

Frankel, and Pauzner, in which the expected payoff at date-t increases in (their equivalent

of) lt+s for each s, t.

This property of ξ(v) reflects congestion externalities. Whereas an investor benefits from

the long positions of his successors after he has lent to the domestic economy, inflows occur-

ring between a switching date and the next arrival date at which he will actually lend are

conversely detrimental to him. They lead to a currency appreciation that reduces the upside

from the carry trades executed once the arrival dates occur. With constant inflows (as was

the case in the perfect-foresight economy), this congestion effect is not sufficient to stabilize

the economy when χ > 1.17 In this stochastic version of the model, however, expecting

higher future inflows does not always necessarily translate into higher expected profits if the

16Notice that this is so regardless of the sign of ω − ρ− λ
µ .

17To see this, note that
∫
ξ = (χ− 1)/(λ/µ+ ρ) > 0.
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market is too congested, as an investor would rather see outflows and dollar appreciation

between his switching date and the date at which he starts his streak of carry trades. The

following lemma is instrumental. It shows that this effect is not sufficient to stabilize capital

flows when markets are not too congested—a situation that seems empirically plausible.

Lemma 4 (Uncongested capital market) Suppose that χ > 1. There exists M such that

for all µ/λ > M , the following is true. Suppose that two processes x1
t and x2

t satisfy

0 < x1
0 ≤ x2

0 < 1,

For i = 1, 2, dxit = λ
(

1{wt>f i(xit)} − x
i
t

)
dt,

where f i is decreasing Lipschitz and f 2 ≤ f 1. Then the expected profit at date 0 is smaller

under x1
t than x2

t , strictly so if f 1 6= f 2 and/or x1
0 6= x2

0.

Proof. See the appendix. �

Lemma 4 states that if (33) holds and µ/λ is sufficiently large, then future inflows make

current carry trades more attractive because the reinforcing effect overcomes the congestion

effect. In the balance of the paper, we suppose that the conditions in Lemma 4 are satisfied.

We now show that there is in this case a unique Lipschitz process xt that satisfies the

equilibrium conditions.18

First, the proof of Lemma 4 also shows that the case in which xt obeys dxt
dt

= −λxt for

all u ≥ 0 corresponds to a lower bound on the expected carry-trade return. When xt obeys

such dynamics, there exists a frontier f0 such that

wt = f0(xt) =⇒ Πt = 0. (41)

The frontier f0 is decreasing from Lemma 4 (with f 1 = f 2 = +∞) and is clearly affine and

thus Lipschitz.19 Thus an admissible equilibrium process must be such that investors who

have a chance to switch when the system is on the right of f0 become long.

18One can see by inspection fo the proof of Lemma 4 that M does not depend on the volatility σ of wt, a
useful property when we will let σ → 0 in the following.

19The frontier simply obtains from writing Et

[
lt+ v

µ

]
= l +

(
l − l

)
xte

−λv
µ in (35).
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Define now f1 such that

wt = f1(xt) =⇒ Πt = 0 (42)

if for all u ≥ 0,

dxt+u
du

=

{
−λxt+u if wt+u < f0(xt+u),

λ(1− xt+u) if wt+u > f0(xt+u).
(43)

That is, f1 is such that an investor is indifferent between being long or short when the system

is on f1 at his switching date if he believes that other investors become long if and only if

they are on the right of f0. This function f1 must be decreasing. Suppose otherwise that

two points (w, x) and (w′, x′) on f1 satisfy

x′ > x,

w′ ≥ w.

Then applying Lemma 4 with f 2 = f0, f
1 = f0 +w′−w contradicts that both points generate

the same expected carry-trade return. We also show in the appendix that f1 is Lipschitz,

with a Lipschitz constant smaller than that of f0.

By iterating this process, we obtain a limit f∞ of the sequence of frontiers (fn)n≥0 that

is decreasing Lipschitz as a limit of decreasing Lipschitz functions with decreasing Lipschitz

constants. The process

dxt
dt

=

{
−λxt if wt < f∞(xt),

λ(1− xt) if wt > f∞(xt)
(44)

is an admissible equilibrium since by construction, if all investors switch to being short to

the left of f∞ and to being long to the right, the indifference point for an investor also lies

on f∞. We now show that this is the only equilibrium process.

Consider a translation to the left of the graph of f∞ in (w, x) so that the whole of the

curve lies in a region where wt is sufficiently small that being short is dominant regardless of

the dynamics of xt. Call this translation f ′0. To the left of f ′0, going short is dominant. Then

construct f ′1 as the rightmost translation of f
′
0 such that an investor must choose to be short

to the left of f
′
1 if he believes that other investors will play according to f

′
0. By iterating this
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Figure 2: Uniqueness of the limiting boundary. This figure illustrates the argument for the uniqueness of the 
equilibrium boundary separating the two regions. The boundary f’∞ coincides with f∞. 
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process, we obtain a sequence of translations to the right of f
′
0. Denote by f ′∞ the limit of

the sequence. Refer to Figure 2.

The boundary f ′∞ does not necessarily define an equilibrium strategy, since it was merely

constructed as a translation of f
′
0. However, we know that if all others were to play according

to the boundary f ′∞, then there is at least one point A on f ′∞ where the investor is indifferent.

If there were no such point as A, this would imply that f ′∞ is not the rightmost translation,

as required in the definition.

We claim that f ′∞ and f∞ coincide exactly. The argument is by contradiction. Suppose

that we have a gap between f ′∞ and f∞. Then, choose point B on f∞ such that A and B have

the same height - i.e. correspond to the same x. But then, since the shape of the boundaries

of f ′∞ and f∞ and the values of x are identical, the paths starting from A must have the

same distribution as the paths starting from B up to the constant difference in the initial

values of w. This contradicts the hypothesis that an investor is indifferent between the two

actions both at A and at B. If he were indifferent at A, he would strictly prefer being long

at B, and if he is indifferent at B, he would strictly prefer being short when in A. But we

constructed A and B so that investors are indifferent in both A and B. Thus, there is only

one way to make everything consistent, namely to conclude that A = B. Thus, there is no

“gap”, and we must have f ′∞ = f∞. �

Proposition 2 shows that adding exogenous shocks wt to the carry return eliminates the

indeterminacy of the perfect-foresight case. More precisely, equilibrium uniqueness stems

from the interplay of these shocks with the fact that each investor, when he receives a

switching opportunity, needs to form beliefs about the decisions of the investors that will

have an opportunity to switch between now and his next switching date. Suppose that (wt, xt)

is close to a dominance region in which investors would prefer a course of action for sure,

but just outside it. If wt was fixed, it may be possible to construct an equilibrium for both

actions, but when wt moves around stochastically, it will wander into the dominance region

between now and the next opportunity that the trader gets to switch with some probability.

This gives the investor some reason to hedge his bets and take one course of action for sure.

But then, this shifts out the dominance region, and a new round of reasoning takes place
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given the new boundary, and so on.

Remark 1. (Bounded shocks to the US rate) We model the interest-rate differential

as a Brownian motion for expositional simplicity. It is easy to see that we could write it

as d(wt), where wt is a standard Brownian motion, and d a Lipschitz increasing function,

possibly bounded as long as there are still dominant actions for wt sufficiently large or small.

Remark 2. (Transitory shocks to the US rate) While a strong persistence in shocks

to the US rate is undoubtedly realistic, extensions of this framework can also accommodate

for various forms of mean-reversion (Burdzy, Frankel, and Pauzner, 2001, or Frankel and

Burdzy, 2005).

The case of small shocks

The limiting case in which the volatility σ of the interest-rate differential tends to zero yields

useful insights. It is possible to characterize the shape of the frontier f in this case.

In this section we denote the frontier fσ to emphasize its dependence on σ. Suppose the

economy is in the state (fσ(xt) , xt) at date t. That is, it is on the equilibrium frontier. For

some arbitrarily small ε > 0, introduce the stopping times

T1 = inf
u≥0
{xt+u /∈ (ε, 1− ε)} ,

T0 = sup
0≤u<T1

{wt+u 6= fσ (xt+u)} .

In words, T1 is the first date at which xt gets close to 0 or 1, and T0 is the last date at which

xt crosses the frontier before T1. If T0 is small in distribution, it means that the economy is

prone to bifurcations. That is, it never stays around the frontier for long. Upon hitting it, it

quickly heads towards extreme values of x. The next proposition shows that this is actually

the most likely scenario when σ is small. This, in turn, yields a simple explicit determination

of the frontier.

Proposition 5 (Small shocks)

1. As σ → 0, T0 converges to 0 in distribution, and the probability that dxt
dt
> 0 (respectively

dxt
dt
< 0) over [T0, T1] converges to 1− xt (xt respectively).
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2. As σ → 0, the frontier fσ tends to an affine function. For µ/λ sufficiently large, the

slope of this function is increasing in Φ and decreasing in γ.

Proof. See the appendix. �

First, Proposition 5 clears the concern that in equilibrium, x would only exhibit small

fluctuations around a fixed value because Brownian paths cross the frontier too often. As σ

becomes smaller, the system exhibits more frequent bifurcations towards extremal values of

x. When the system reaches the frontier, it is all the more likely to bifurcate towards capital

outflows when cumulative inflows have been large (x large). Thus the model does generate

“destabilizing carry trades,” whereby global investors generate self-justified excess returns

on the carry trade that persist beyond the exogenous trigger until a large reversal occurs.

The second point in Proposition 5 relates the slope of the frontier fσ to the monetary

parameters of the model Φ and γ in this case of small shocks. The slope of the frontier affects

the dynamics of capital inflows and in turn the exchange-rate dynamics. If the graph of the

frontier is closer to being horizontal in the (w, x) plane, then the system should cross the

frontier less often, and thus do so only for more extreme values of x. Carry-trade returns

should in this case exhibit more serial correlation and fatter tails. Point 2 states that, at

least for µ/λ sufficiently large, the frontier is flatter when Φ is smaller, and γ larger. In other

words, if monetary policy does not respond much to capital inflows, then carry trade returns

should exhibit more skewness.

4 Empirical content

Our model generates a rich set of qualitative features, of which many have empirical impli-

cations. As a by-product of our analysis, we provide in particular a novel explanation for

the seemingly high Sharpe ratio generated by carry-trade strategies.

Profitability of FX carry trades

The equilibrium expected return on the carry trade increases with respect to w and x, it is

positive on the right of the frontier f in the (w, x) plane and negative on the left. On the

other hand, the interest-rate differential increases in w and decreases in x. We have indeed:
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Lemma 6 (Interest-rate differential) At first-order, the interest-rate differential at a

given arrival date Tn is given by

R

(
wTn − lTn −

1

1 + Φ

∫ +∞

0

e−ωsETn

[
lTn+ s

µ

]
ds

)
. (45)

Proof. See the appendix. �

The interest-rate differential increases w.r.t. w but decreases w.r.t. l (and thus x) because

the current domestic real rate is lower and future deflation more likely when l is large. Thus

the expected return on the carry trade is not unambiguously increasing in the interest-rate

differential. Yet, when the interest-rate differential is sufficiently large in absolute terms, it

must be that the system is on the right (left) of the frontier when the differential is positive

(negative). Thus, we have:

A positive (negative) interest-rate differential predicts a positive (negative) return on the

carry-trade for sufficiently large absolute differentials.

In particular, for l, l sufficiently small, most of the interest-rate differential is due to

the exogenous component w. The threshold above which a positive (negative) interest-

rate differential is associated with a positive (negative) excess return on the carry trade is

arbitrarily small. This rationalization of carry-trade returns as self-fulfilling genuine excess

returns contrasts with existing theories that seek to explain the return on carry trades as a

compensation for (possibly mismeasured) risk. Farhi and Gabaix (2015) thorougly survey

this existing literature. We do not deny that a significant fraction of carry-trade returns may

reflect risk premia, and view our theory as a complement to such risk-based considerations

rather than a competing alternative.

Peso problem

A large literature argues that the return on the carry trade partly reflects a risk premium for

rare and extreme events that may not show in finite samples (see, e.g., Farhi and Gabaix,

2015, or Lewis, 2007, and the references herein). We closely connect to this literature as

follows. Fix ε > 0 small. The expected return on the carry trade is 0 starting both from

(f(ε), ε) and (f(1− ε), 1− ε) in the (w, x) plane. Yet from Proposition 5, as σ becomes small,

30



most paths starting from (f(ε), ε) will exhibit long periods of appreciation of the domestic

currency ended with rare (and large) depreciations, while paths starting from (f(1−ε), 1−ε)
will feature a symmetric prolonged depreciation. The interest-rate differential is positive in

the former case and negative in the latter. Thus, due to rare reversals, finite samples should

yield that a positive interest-rate differential predicts a positive excess return on the carry

trade even when the true expected return is zero. More generally, rare reversals imply that

finite samples should lead to an overestimation of the absolute magnitude of abnormal returns

on the carry trade.

Profitability of FX momentum strategies

Proposition 5 shows that as σ → 0, the system often bifurcates in one direction. This

implies that, at least at a sufficiently short horizon, returns are positively autocorrelated, so

that momentum strategies in FX markets should generate a positive excess return. The key

economic force behind this profitability of momentum strategies is that once carry traders

coordinate on a course of action, they stick to it until a sufficiently large reversal of the

interest-rate differential leads them to switch to a different strategy. Such a rationalization

of momentum returns with coordination motives is novel to our knowledge.

Monetary policy and carry-trade returns

In addition to relating to the above existing empirical findings, the model also generates a

new range of predictions on the relationship between the stance of monetary policy and the

distribution of the returns on carry-trade strategies. Proposition 5 suggests that the frontier

is flatter when Φ is smaller and γ larger. Otherwise stated, if an economy is such that the CPI

is not too sensitive to the exchange rate, and/or the central bank not too aggressive, then

this economy should be more prone to large fluctuations in carry-trade activity because it

will experience more prolonged bifurcations. Thus the returns on carry-trade and momentum

strategies should have fatter tails.
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5 Concluding remarks

The independence of monetary policy under liberalised capital flows and floating exchange

rates has been a benchmark principle in international finance. In our paper, we have explored

a parsimonious model of global investors facing each other in a dynamic global game and

found that under plausible conditions, the model generates boom bust cycles associated with

coordinated capital inflows and outflows. In such a setting, monetary conditions depend on

the coordination outcome of investors who have access to the domestic bond market, as well

as on the economic fundamentals. Thus, we qualify the proposition that a floating exchange

rate guarantees monetary autonomy by showing that as capital flows more smoothly into a

small open economy, then a commitment to a more aggressive monetary response to capital

flows is required in order to discourage destabilizing carry trades.

Assuming that households are risk-neutral over late consumption dramatically simpli-

fies the analysis. With strictly concave preferences, the current real rate would depend on

consumption growth, so that we could no longer abstract from the impact of foreign lend-

ing on quantities and thus production in the domestic economy as we are able to do here.

We find it useful to derive our novel mechanism for self-fulfilling profitable carry trades in

a highly tractable framework that describes the interplays of the ingredients at work in a

fully transparent fashion. An interesting avenue for future research, which would be more

simulation-based, is the study of the impact of such carry trades on quantities under more

standard preferences.
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A Appendix

A.1 Proof of Lemma 3

The first-order expansion of the Euler equation (30):

ln ITn+1 + lnEt

[
PTn
PTn+1

]
= lnR− ln(LTn +W ) (46)

in l, l yields:

ln ITn+1 − Et
[
ln
PTn+1

PTn

]
= lnR− lTn (47)

where

lTn = l(1− xTn) + lxTn . (48)

Combined with the Taylor rule (29), this yields domestic inflation as a function of future
expected inflows as in the perfect-foresight case:

ln
PTn
PTn−1

= −
∑
k≥0

ETn
[
lTn+k

]
(1 + Φ)k+1

, (49)

As in the perfect-foresight case, (31) yields in turn:

ETn

[
ln
STn+1ITn+1

RSTn

]
=

γ

1− γ
∑
k≥0

ETn
[
lTn+k+1

]
(1 + Φ)k+1

− lTn . (50)

One can write (28) as

Πt = Et

[∑
m≥0

1{Tλ>Tn+m}
Rm

ETn+m

[
PTn+mSTn+m

PTn+m+1STn+m+1

(
STn+m+1ITn+m+1

RSTn+m
− 1 + wTn+m

)]]
. (51)

At first-order w.r.t. l, l,

ETn+m

[
PTn+mSTn+m

PTn+m+1STn+m+1

(
STn+m+1ITn+m+1

RSTn+m
− 1

)]
= ETn+m

[
ln
STn+m+1ITn+m+1

RSTn+m

]
(52)

=
γ

1− γ
∑
k≥0

ETn+m
[
lTn+m+k+1

]
(1 + Φ)k+1

− lTn+m . (53)
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Thus,

Πt = Et

[∫ +∞

0

∑
m≥1

µm
( s
R

)m−1 e−(λ+µ)s

(m− 1)!

[∫ +∞
0

γ
1−γ
∑

k≥1 µ
k uk−1

(k−1)!
e−µu

(1+Φ)k
lt+s+udu

−lt+s + wt

]
ds

]
,

(54)

= Et

[∫ +∞

0

e−(λµ+ρ)s
(∫ +∞

0

χωe−ωult+ s+u
µ
du− lt+ s

µ
+ wt

)
ds

]
, (55)

=

∫ +∞

0

e−(λ
µ

+ρ)v

(
χω

∫ v

0

e−(ω−λ
µ
−ρ)udu− 1

)
Et

[
lt+ v

µ

]
dv +

wt
λ
µ

+ ρ
, (56)

and integrating yields the result. (Note that we ignored here the terms in wtlt because we
use this approximation of Πt only for initial values wt of the same order of magnitude as lt.)

A.2 Proof of Lemma 4

Suppose χ > 1. Consider two processes x1
t and x2

t that satisfy the conditions stated in Lemma
4 with x1

0 < x2
0. Lemma 2 in Burdzy, Frankel and Pauzner (1998) states that almost surely,

x2
t ≥ x1

t for all t ≥ 0. (57)

This implies in particular that whenever investors switch to being long along a sample path
of (wt, x

1
t ), so do they along the sample path of (wt, x

2
t ) that corresponds to the same sample

path of wt. This is because it must be that (wt, x
2
t ) is on the right of the frontier f 2 whenever

(wt, x
1
t ) is on the right of the frontier f 1. Thus, the process

yt = x2
t − x1

t (58)

satisfies

0 < y0 < 1, (59)

dyt
dt

= λ(εt − yt), (60)

In order to prove the Lemma, we only need to find M such that for all µ/λ > M ,

∆ =

∫ +∞

0

((
χω

ω − ρ− λ
µ

− 1

)
e−(λµ+ρ)v − χω

ω − ρ− λ
µ

e−ωv

)
y v
µ
dv ≥ 0. (61)

for all deterministic process yt that obeys (59) and (60). The result then obtains from taking
expectations over all paths of wt.
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To prove (61), we introduce the function ζ that satisfies
dζ(v)

dv
= −

((
χω

ω−ρ−λ
µ

− 1

)
e−(λµ+ρ)v − χω

ω−ρ−λ
µ

e−ωv
)
,

lim+∞ ζ = 0.

Integrating by parts, we have

∆ = ζ(0)y0 +
1

µ

∫ +∞

0

ζ(v)
dy v

µ

dv
dv, (62)

= ζ(0)y0 +
λ

µ

∫ +∞

0

ζ(v)(ε v
µ
− y v

µ
)dv. (63)

Further,

y v
µ

= y0e
−λv
µ +

λ

µ

∫ v

0

e−
λ
µ

(v−u)εu
µ
du, (64)

and thus

∆ = y0

(
ζ(0)− λ

µ

∫ +∞

0

ζ(v)e−
λv
µ dv

)
(65)

+
λ

µ

[∫ +∞

0

ε v
µ

(
ζ(v)− λ

µ

∫ +∞

v

ζ(u)e−
λ
µ

(u−v)du

)]
. (66)

We have

lim
λ
µ
→0
ζ(0) =

χ− 1

ρ
> 0, (67)

ζ is increasing then decreasing beyond a value that stays bounded as λ/µ tends to zero, and∫ +∞
0

ζ converges. Thus for λ/µ sufficiently small,

ζ(v)− λ

µ

∫ +∞

v

ζ(u)e−
λ
µ

(u−v)du (68)

is positive for all v ≥ 0, which yields that ∆ is positive, and concludes the proof.

A.3 Complement to the proof of Proposition 2

We prove here that f1 is Lipschitz with a constant that is smaller than that of f0, that we
denote K0. Suppose by contradiction that two points (wt, xt) and (w′t, x

′
t) on f1 satisfy

x′ > x, (69)

x′t − xt
wt − w′t

<
1

K0

. (70)
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We compare the paths x′t+u and xt+u corresponding to pairs of paths of w′t+u and wt+u that
satisfy for all u ≥ 0

wt+u − w′t+u = wt − w′t. (71)

It must be that for such pairs of paths:

x′t+u − xt+u ≤ (x′t − xt)e−λu. (72)

Otherwise it would have to be the case that (w′, x′) can be on the right of f0 when (w, x) is
not. Suppose by contradiction that this can be. Let T denote the first time at which this
occurs. It must be that

K0e
−λT (x′t − xt) ≥ wt+T − w′t+T = wt − w′t, (73)

a contradiction with (70).
Thus along such paths of w′t+u−wt+u, x′t+u−xt+u shrinks at least as fast as when investors

switch to being short all the time. Together with (70), this implies that the expected return
on the carry trade cannot be the same in (wt, xt) and (w′t, x

′
t), a contradiction.

A.4 Proof of Proposition 5

The first point is a particular case of Theorem 2 in Burdzy, Frankel, and Pauzner (1998). To
prove the second point, notice that as σ → 0, starting from a point on the frontier,

Et [xt+v] ' (1− xt)
(
1− (1− xt)e−λv

)
+ x2

t e
−λv (74)

because the system bifurcates upwards with probability 1 − xt and downwards with proba-
bility xt in the limit. Plugging this in (35) and writing that the expected return is zero yields
a slope of the frontier equal to

−(l − l)(χ− 1)

as λ/µ→ 0. This means that the absolute value of the slope of the frontier varies as χ w.r.t.
γ, Φ for σ, λ/µ sufficiently small. This proves the proposition.
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A.5 Proof of Lemma 6

We have

ITn+1 −R(1− wTn) = R

((
PTn
PTn−1

)1+Φ

− 1 + wTn

)
, (75)

' R

(
wTn − ETn

[∑
k≥0

lTn+k

(1 + Φ)k

])
, (76)

= R

(
wTn − lTn −

∫ +∞

0

∑
k≥1

µksk−1e−µs

(k − 1)!(1 + Φ)k
ETn [lTn+s] ds

)
, (77)

= R

(
wTn − lTn −

1

1 + Φ

∫ +∞

0

e−ωsETn

[
lTn+ s

µ

]
ds

)
. (78)

This proves the lemma.
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