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This paper studies the implications for general equilibnum asset pricing of a class of Kreps-Porteus 
nonexpected utility preferences characterized by a constant intertemporal elasticity of substitution 
and a constant, but unrelated, coefficient of relative risk aversion. It is shown that relaxing the 
parametric restriction on tastes imposed by the time-additive expected utility specification does 
not suffice to solve the Mehra-Prescott (1985) equity premium puzzle. An additional puzzle - the 
risk-free rate puzzle - emerges instead: why is the risk-free rate so low if agents are so averse to 
intertemporal substitution? 

1. Introduction 

The purpose of this paper is to study the implications for general equilib- 
rium asset pricing of the parametric class of Kreps-Porteus nonexpected 
utility preferences introduced recently by Epstein and Zin (1987a, b) and 

myself [Weil (1987)l.l These preferences generalize, in a nonexpected utility 
framework, the commonly used time-additive, isoelastic expected utility speci- 
fication to allow for an independent parametrization of attitudes toward risk 
and attitudes toward intertemporal substitution. They are characterized by a 
constant intertemporal elasticity of substitution and a constant, but unrelated, 
coefficient of relative risk aversion, and thus relax the well-known constraint 
intrinsic to time-additive, isoelastic expected utility that the intemporal elastic- 
ity of substitution be the inverse of the constant coefficient of relative risk 
aversion. 

Adopting this new class of preferences has clear benefits. Firstly, these 
preferences do not impose a behavioral restriction on tastes which is devoid of 

*I thank Roger Farmer and RaJnish Mehra for helpful discussions, participants in the July 1988 
NBER Summer Institute and in many workshops for useful comments, and the National Science 
Foundation (SES-8823040) for financial support. 

‘See Kreps and Porteus (1978, 1979a, b) for the axiomatic foundations of these preferences. 

0304-3932/89/$3,5O’Z’1989. Elsevier Science Publishers B.V. (North-Holland) 



402 P Werl. Equity premmn and rrsk-free rate pales 

any theoretical rationale and which has many unpleasant side-effects.’ 
Secondly, the data seem to reject the time-additive expected utility restriction, 
as established by Epstein and Zin (1987b) and Giovannini and Weil (1988). 
Thirdly, from an analytical point of view, this class of Kreps-Porteus prefer- 
ences is very simple to work with and a very natural generalization of 
isoelastic preferences to uncertainty. 

In spite of these advantages, it is legitimate and necessary to wonder 
whether these new preferences contribute, even partially, to the resolution of 
any the many outstanding asset pricing or consumption theory puzzles. Do 
these puzzles disappear once preferences are ‘correctly’ specified and the 
expected, time-additive utility restriction lifted? Can we conclude that the role 
we had attributed, in the empirical difficulties of frictionless asset pricing or 
permanent income theories, to incomplete markets or liquidity constraints was 
misplaced, and that the only problem was in reality one of misspecification of 
preferences? It would be surprising that the answer to these purposefully 
provocative questions be positive - and indeed it is not, as this paper will 
suggest. 

The test to which this study submits this new parametric class of nonex- 
petted utility preferences is the now standard one devised by Mehra and 
Prescott (1985): can an artificial representative agent economy, calibrated with 
plausible parameter values and output process, replicate the average secular 
level of the risk-free rate (0.75%) and of the risk premium on equity (6.20%)? 
We know, from Mehra and Prescott’s original work, that a representative 
agent economy with CES, time-additive, expected utility preferences and 
complete markets cannot pass this test - because of the inability of the model 
to fit both the level of the risk-free rate and the discrepancy between the safe 
and average risky rates. Does, however, an economy in which agents are 
endowed with the Kreps-Porteus generalization of CES preferences perform 
substantially better with respect to the Mehra-Prescott touchstone? While 
intuition suggests that it might - these new preferences afford an additional 
degree of freedom - the answer to this question is negative. 

As I demonstrate below, the risk premium depends, for plausible calibra- 
tions of tastes and technology, almost exclusively on the coefficient of relative 
risk aversion. But this implies that relaxing the time-additive expected utility 
restriction on tastes does not substantially alter the fact, documented by 
Mehra and Prescott, that the model can replicate the risk premium only for 
astronomically high levels of risk aversion - thus leaving the equity premium 

‘Among them figure prommently: (i) the impossibihty of replicatmg the behavior of agents who 
are both moderately risk-averse and yet very averse to intertemporal substitution (as most 
available empirical evrdence suggests is the case), and (u) the difficulty, pomted out by Hall (1985) 
of determining whether regressions of log growth rates of consumptron on mean log real interest 
rates provide an estimate of risk aversion or intertemporal substitution [see Well (1987) on this 
point]. 
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puzzle intact: there is simply not enough aggregate risk in the model to 
replicate the risk premium for plausibly risk-averse consumers. What emerges 
instead from the relaxation of this restriction and the appropriate calibration 
of tastes is, as we shall see, an additional puzzle, centered around the risk-free 
rate: why is it, if consumers are as averse to intertemporal substitution as some 
recent estimates suggest, that the risk-free rate is so low? 

Epstein’s (1988) model - a Lucas tree economy peopled by consumers with 
Kreps-Porteus preferences - is very similar to the one developed here. While 

the issues that he and I address are clearly related, they are distinct. His is a 
comparative statics study of the effects of risk aversion equilibrium asset prices 
in an economy with i.i.d. uncertainty, while my goal is to compare the 
equilibrium returns predicted by the model with historical data, and thus to 
provide a touchstone to evaluate the model. 

The analysis proceeds as follows. Section 2 presents the model, and solves 
for equilibrium asset prices and rates of return. Section 3 establishes the main 
result of the paper: separating risk aversion from intertemporal substitution 
cannot, on its own, explain away the equity premium puzzle documented by 
Mehra and Prescott (1985). but instead highlights the existence of a risk-free 
rate puzzle. The conclusion summarizes the paper and outlines directions for 
further research. 

2. The basic framework 

The economy is similar, except for the agents’ preferences, to the one 
studied by Lucas (1978) and Mehra and Prescott (1985). I first describe 
technology and consumer behavior, and then compute equilibrium asset 
returns. 

2.1, Technology 

There is one perishable consumption good, a fruit, which is produced by 
nonreproducible identical trees whose number is normalized, without loss of 

generality, to be equal to the size of the constant population. Let y, denote the 
number of fruits falling from a tree at time t, i.e., the dividend associated with 
holding a tree. It is assumed that the rate of growth of dividends, A,,, = 
y,+i/y,. is random and Markovian over a finite state space, with transition 
probabilities given by 3 

with i, j = 1,2,. . . , Z -C cc, A, > 0, and c~=i+,, = 1, Vi. The uncertainty on 

3The notation is purposefully smdar to the one used by Mehra and Prescott (1985) 
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dividends at t + 1, and thus on y,+i/y,, is assumed to be resolved at the 
beginning of period t + 1, before time t + 1 consumption and savings deci- 
sions are made. 

2.2. Consumers 

The economy is inhabited by many identical infinitely-lived consumers. Let 
pt, x,, and c, denote, respectively, the fruit price of a tree at t, the number of 
(shares of) trees held at the beginning of period t, and consumption at t of a 
representative agent. The one-period budget constraint facing a representative 
consumer is then simply 

c,+P,x,+l= (P,+Y,bt, t 2 0, (2) 

with x0> 0 given. Letting R,+i = [ p,+ 1 + y,, J/p, denote the one-period 
(random) rate of return on a tree and rvI = ( pr + v,)x, represent beginning-of- 

period wealth. the budget constraint (2) can be rewritten more compactly as 

wr+1= fc+,b, - 4 (3) 

I assume that agents are not indifferent to the timing of the resolution of 
uncertainty on temporal lotteries [as they are when preferences can be repre- 

sented by a Von Neumann-Morgenstern (VNM) utility index] and that their 
preference ordering can be represented recursively as 

v,= Lk,E,Y+i], (4 

where E, denotes expectation conditional on information available at t.4 
The aggregator function U[., .] is given by 

qc, VI 

= 
{ (1 _ p)cl-p + p [l + (1 - P)(l _ y)v](l-~~~(‘-y)}(l-y)‘(l-p) - 1 

(1 -P)(l -Y> 

(5) 

a parametrization of Kreps-Porteus preferences which, as Epstein and Zin 
(1987a) and Weil (1987) have independently shown, provides a generalization 

%ee Kreps and Porteus (1978, 1979a, b) for an exposition of the axiomatic foundations of these 
preferences, and Attanasio and Weber (1989), Epstein and Zin (1987a, b), Epstein (1988), Farmer 
(1989). Giovannini and Weil (1988). and Weil (1987) for specific parametrizations and macroeco- 
nomic apphcations. 
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of isoelastic utility which disentangles attitudes toward intertemporal substitu- 
tion and from behavior toward risk aversion.5 

The parameter p > 0 represents the inverse of the (constant) elasticity of 
intertemporal substitution, y > 0 is the Arrow-Pratt (constant) coefficient of 
relative aversion for static gambles, and p E (0,l) measures the subjective 
discount factor under certainty. 6 The VNM time-additive expected utility 
specification emerges, up to a monotone transformation, as the special case in 
which y = p, i.e., as the special case in which the coefficient of relative risk 
aversion is restricted to be the inverse of the elasticity of intertemporal 
substitution. 

To characterize the optimal consumption plan of the representative con- 
sumer, denote by V( w,, A,) the maximum utility attainable by an agent who 
has wealth w when the state of nature at t, summarized by the realized growth 
rate of dividends, is X,. This value function is the solution to the following 
functional equation: 

V(w,, h,) = maxU[c,,E,V(w,+,, A,,,)] subject to (3). (6) 
CI 

This functional equation of course reduces to the standard linear Bellman 
equation in the time-additive case y = p. The first-order condition for the 
maximization problem in (6) is simply 

where U,, denotes the derivative of the aggregator function with respect to its 
i th argument (i = 1,2) evaluated at (c,, E,V,+ t), and V,, the derivative of the 

value function with respect to wealth evaluated at (w,, X,). Using the envelope 
theorem and (7) one finds 

Notice, from eq. (8), that while it remains true, with Kreps-Porteus prefer- 
ences, that an optimum program is characterized by the equalization of the 
marginal utility of wealth, Vu, to the marginal utility of consumption, Ur,,’ the 
latter depends (unless utility is time-additive) on expected future value. For 
our consumer, changes in the marginal utility of wealth do not solely reflect, in 

‘The special cases p + 1 and y + 1 can be dealt with by applying de I’Hospttal’s rule to the 
aggregator function (5) Epstem (1988) chooses instead to write separate utility functions for these 
special cases. 

6Under uncertamty, the subjective discount factor, 0; = au/l/aV, 1s in general time- and 
state-dependent: Kreps-Porteus preferences are a stochastic generalization of endogenous time 
preference. 

‘For a framework in which this equality is violated, see Grossman and Laroque (1987). 
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an optimal plan, changes in nondurable consumption, but also changes in 
expected future utility. Kreps-Porteus preferences thus introduce an effect 
very similar, at a formal level, to the one which would be associated with 
nonseparabilities in consumer durables or government purchases. This is the 
reason why they are, a priori, a good candidate for explaining asset pricing or 
consumption theory puzzles. 

Substituting (8) into (7) yields the following Euler equation: 

Et 
i 

wJ1*+ 1 
R 

4 
t+1 = 

1 

1. 

which reduces to its familiar VNM form when the aggregator function is linear 
in its second argument, i.e., when U,, is a constant. 

An analogous expression, 

Et 1 uJJ1,+ 1 
R 

Ul, 
!Tr+1 = 

I 

1, (10) 

applies to any asset with rate of return Rk,+l willingly held by our representa- 
tive consumer. Eq. (10) can be used, without rewriting the budget constraint 
(3) or redefining wealth, to price, in equilibrium, any inside asset in zero net 

supply. 
To complete the characterization of the optimal consumption program, it 

suffices to compute, from (3) and (5), the marginal rate of substitution 

UJJ,,+,/U,, along an optimal consumption path. After some tedious but 
straightforward computations (see the appendix), one finds that, for any asset 
with rate of return R,, which is voluntarily held and for p # l,* it is the case 
that 

an equation which holds, in particular, for the rate of return on trees 

(Rk, = R,). 
As Epstein and Zin (1987a) emphasize, this equation shows that the covari- 

ante between the return on asset k and the return on the market portfolio’ 
should be, in addition to covariance with consumption growth, a determinant 
of excess returns - unless, of course, utility is time- and state-additive, in 

‘The functional form of the Euler equation 1s different when p = 1; see the appendix for detals. 

9R f+, stands in for the rate of return on the market in this respectwe agent economy with only 
one type of tree and all other stores of value inside assets. 
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which case the standard consumption capital asset pricing model (C-CAPM) 
obtains. While this observation can be used to explain the unsatisfactory 
empirical performance of the C-CAPM relative to the portfolio-based CAPM,” 
its general equilibrium implications, which I examine next, do not lend much 
overall support to the model - in the sense that the departure from the 
C-CAPM embodied in (11) does not solve the equity premium puzzle. 

2.3. Equilibrium prrces and returns 

In equilibrium, each representative agent must hold one tree (remember the 
normalization of section 2.1), i.e., x, = 1 for all t. By Walras’ law, this requires, 
from (2). that the entirety of period t (perishable) output be consumed during 
that period, so that 

Turning first to the determination of the equilibrium price of tree, and 
proceeding as in Mehra and Prescott (1985), I look for a stationary equilib- 

rium such that pt = w,); if the level output at t is yt and i is the state of state 
of nature at t (the realized rate of growth of output between t - 1 and t was 
h,). Note that this implies that the rate of return on a tree if state i is realized 
today and state J tomorrow is simply 

p/+1 +Y,+l w +1 
R r+1= 

Pt 
= Lx, 

Y 
(13) 

Inserting this expression into the Euler equation (11) and using the market 
clearing condition (12) together with the specification (1) of the dividend 
process, one finds after a few straightforward manipulations that the w,‘s 
(i = 1,. . . , I ), which fully characterize equilibrium, are the nonnegative solu- 
tion, if it exists,” to the following system of 1 nonlinear equations: 

i 

(l-P)/(l--Y) 

w, = p i Q-q “I/ + q’l-y”‘l-p) I for i=l,...,I. 
/=1 

(14) 

“See Giovanmm and Well (1988) 

“Some restrictions on tastes and technology are of course necessary to ensure existence. They 
are henceforth assumed to be satlsfied 
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The expected rate of return on a tree (i.e., on equity) if today’s state is i is 
then simply, from (13), 

w+l 
ER’ = i +,,$L 

,=l w, . 

I now turn to the computation of the risk-free rate, RF’, prevailing if 
today’s state is i. The Euler equation (11) implies that the price of a safe unit 

of consumption tomorrow if today’s state is i, l/RF’, is 

(16) 

The (proportional) equity premium, LV = ER’/RF’, if today state is i is 
thus simply, using (14), (15) and (16), 

: 

I I 

c +,,qw, + 1) c +,,A;‘( w, + l)(p--y)‘(l--p) 

=,= J=l J=l 

r (17) 

1 $L$y WJ + ly)‘(l-) 
J=l 

In the absence of uncertainty one finds, as expected, that II’ = 1, i.e., that 
the (conventionally defined) net risk premium is zero. Notice, however, that 
risk neutrality for static gambles (y = 0) does not imply a zero net risk 
premium for the temporal one-period risk on trees unless utility is VNM and 
p = y = 0.12 

3. Kreps-Porteus preferences and asset pricing puzzles 

I now turn to the implications of this framework for the analysis of one of 
the most striking asset pricing puzzles uncovered by the literature. In a 
thought-provoking paper, Mehra and Prescott (1985) showed that the 
Arrow-Debreu, representative agent framework with time-additive, CES, ex- 
pected utility preferences cannot account, except for unplausibly high values 
of the coefficient of relative risk aversion (or, equivalently in that setting, 
extremely low values of the elasticity of intertemporal substitution), for both 

‘*See Dreze and Modigham (1972) for an exploration of the link between static and temporal 
risk aversion in a two-period model, and Giovannini and Weil (1989) for the multi-penod 
generalization of Dreze and Modigliani’s results and their implications for the term structure of 
interest rates. 
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the average level of the risk-free rate (0.75%) and the discrepancv (6.20%) 
between the average rates of return on equity (6.95%) and on riskless securities 
during the period 1889-1978. 

Mehra and Prescott present this puzzle in the illuminating form of a 
dilemma. In the time-additive, expected utility framework which they consider, 
a very high coefficient of relative risk aversion (of the order of 40 or 50) does 
make it possible to replicate the large secular risk premium on equity. Yet, 
because a high coefficient or relative risk aversion is synonymous in that 
framework with a very low elasticity of intertemporal substitution (the elastic- 
ity of intertemporal substitution is constrained to be the inverse of the 
coefficient of relative risk aversion), it also leads to the counterfactual predic- 
tion of an extremely high risk-free rate! Conversely, a low coefficient of 
relative risk aversion leads to a counterfactually low equity premium, although 
it does imply a relatively low risk-free rate. 

It thus might seem that the major hurdle to be overcome in solving the 
equity premium puzzle is a purely technical one. An independent parametriza- 
tion of the elasticity of intertemporal substitution and of the coefficient of 
relative risk aversion should provide the additional degree of freedom required 
to replicate both the level of the risk-free rate and the discrepancy between the 
safe and the average risky rates. The implicit reasoning is, of course, that the 
risk-free is mainly controlled by the magnitude of the elasticity of intertempo- 
ral substitution, while the risk premium is a reflection of the coefficient of 
relative risk aversion. 

I now demonstrate - both theoretically for the case of i.i.d. dividend growth 
processes and numerically for the non-i.i.d. case - that the logical conclusion 
of this (correct) argument is that separating risk aversion from intertemporal 
substitution cannot provide a solution to the equity premium puzzle: instead, 
it highlights the existence of a risk-free rate puzzle. 

3.1. I.i.d. dividend growth 

Suppose that the rate of growth of dividends is i.i.d., so that today’s state of 
nature conveys no information as to future dividends, and hence consumption, 
growth. l3 The fruit price of a tree, pt, should then be, relative to the size y, of 
the economy, a state-independent constant. Formally, the assumption of i.i.d. 
dividend growth is equivalent, from (1) to specifying 

9,, = G, 1 Vj,iE{l,..., I}. (18) 

It is then obvious, from the equilibrium asset pricing formulae given in (14), 

13As Mehra and Prescott (1985) note, this is not a blatantly counterfactual assumption: the rate 
of growth of consumption only exhibits a small negative senal correlation over the period. 
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U’, = K2’. Vi. 

The equilibrium price function is simply pt = w);, where w is 
determined by substituting (19) into (14); the price-dividend 
constant when dividend growth is i.i.d. 

09) 

a constant 
ratio is a 

An immediate implication of (19) is that, with i.i.d. dividend growth, the 
average risky and safe rates are state-independent [see eqs. (15) and (16)] and 
so is the equity premium II’. Its constant magnitude, denoted by 17. is, using 
eqs. (17) to (19). 

(20) 

From eq. (20) can be drawn an important conclusion: with i.i.d. drvidend 
growth, the equity premium, when defined in relative terms, is independent of the 

elasticity of intertemporal suhstltution, and reflects only the properties of the 
dividend growth process and, of course, the magnitude of the coefficient of 
relative risk aversion.14 

To understand this result, it suffices to remember that, with i.i.d. uncer- 
tainty, optimal consumption is a constant fraction of wealth.15 The rate of 
growth of consumption is, therefore, proportional to R,+l, the rate of return 
on the market portfolio [see eq. (3)]. As a consequence, the marginal rate of 

substitution depends only on R,,, and the Euler equation (11) reduces to 

(21) 

which is the condition characterizing the static optimal portfolio allocation 
chosen by an agent with a coefficient of relative risk aversion equal to y! Eq. 
(21) simply establishes l6 that the intertemporal program reduces, in practice, 

t4Analogous results have been obtamed by Barsky (1986) wtthm a two-penod framework based 
on Selden’s (1978) ordinal certainty eqmvalence preferences 

“Preferences are homothettc - so that the ratio of consumption to wealth depends, at most, on 
the state of nature Dividend growth is i.t.d., so that this ratio (equal to the marginal und average 
propensity to consume) 1s a constant - because today’s state of nature conveys no mformatlon as 
to the future. 

“See Huang and Litzenberger (1988) for a proof limited to the VNM case. 
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to a sequence of disconnected static problems when underlying uncertainty is 
i i d l7 But then it is not surprising that, as eq. (20) shows, the risk premium on . . . 
equity depends only (for a given output process) on y, and that p is 
irrelevant - since intertemporal considerations play no role in the determina- 
tion of the optimal program with i.i.d. uncertainty. 

While this result confirms the intuitive argument presented supru (the 
coefficient of relative risk aversion controls the risk premium and the elasticity 
of intertemporal substitution controls the level of the risk-free rate), it also 
proves that relaxing the time-additive expected utility restriction cannot possi- 
bly help solve the Mehra-Prescott equity premium puzzle when dividend 
growth is i.i.d. For any y, the equity premium is the same irrespective of 
whether p is equal to or different from y - i.e., irrespective of whether the 
expected, time-additive utility restriction is satisfied or not! Therefore, allow- 
ing attitudes toward risk to be parametrized independently from behavior 
towards intertemporal substitution cannot, with i.i.d. dividend growth, afford 
any improvement whatsoever over the results of Mehra and Prescott: indepen- 
dently of the value one might want to select for p (the inverse of the elasticity 
of intertemporal substitution), one will still need implausibly (of the order of 
40) high values of y {the coefficient of relative risk aversion) to replicate the 
observed 6.20% risk premium on equity. The equity premium puzzle (‘why is 
the risk premium so large if consumers are only moderately risk-averse?‘) thus 
remains intact. 

Another implication of the foregoing results is that relaxing, with i.i.d. 
uncertainty and for a given y, the time-additive, expected utility restriction in 
the direction of more plausible values might, while leaving the equity premium 
unchanged, deteriorate the ability of the model to replicate the level of the 
risk-free rate. It is commonly estimated that the coefficient of relative risk 
aversion is in the range of 1 to 5, with both theoretical [Arrow (1965)] and 
empirical [Epstein and Zin (1987b), Giovannini and Weil (1988)] grounds for 
thinking that it is in fact closer to 1. The implied value for the elasticity of 
intertemporal substitution under the expected, time-additive utility restriction, 
0.2 to 1, runs counter to the belief that consumers are in fact very averse to 
intertemporal substitution, and thus seems to overestimate the ‘ true’ intertem- 
poral elasticity of substitution (i.e., underestimate the ‘true’ p). But it is easy 
to show [from (16) and the assumption of i.i.d. growth] that increasing p while 
maintaining y fixed may very well result, depending on the specification of the 
output process, in an increase in the predicted risk-free rate far over and above 
the already too high levels associated with the expected utility restriction! 

The following section confirms and amplifies these results by turning to a 
numerical examination of the non-i.i.d. case. 

“See Giovannmi and Wed (1988) for an elaboration of this and other related mues. 
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3.2. Non-i. i. d. dividend growth process 

As the nonlinear nature of eq. (14) makes clear, one has to resort to 
numerical methods to solve for the equilibrium price function, as summarized 
by the u;‘s, when the dividend growth process is not i.i.d. 

Mehra and Prescott observe that the evolution of the rate of growth of 
aggregate consumption (and thus, in this model, dividends) is well approxi- 
mated, over the period 1889-1978, by a two-state stochastic process: 

A, = 1.054, h, = 0.984, 

with transition probabilities 

+it = +** = 0.43, @Ii2 = $21 = 0.57. 

(22) 

(23) 

These magnitudes are used to solve for the W~‘S in (14) as well as for the 
state-dependent riskless and expected risky rates. 

The Markov process in (22)-(23) has a probability @ = [l - $,,]/[2 - (ptl - 
+z2] = i of being in the good state, A,, in the long run. Given the three 
parameters p, y, and p which parametrize, respectively, consumers’ attitudes 
toward impatience, risk, and intertemporal substitution, this ergodic probabil- 
ity, @, can be used, as in Mehra and Prescott (1985) to compute the long-run 

average risk-free rate, RF = @RF' + (1 - @)RF2, and the long-run average 
equity premium, IT = @LTI’ + (1 - @)n2, which are implied by the model. 

Tables 1 and 2 report the average long-run risk premia and risk-free 
rate - for selected values of l/p between l/45 and infinity and y between 0 
and 45 - for the cases j? = 0.95 and 0.98. The result are as distressing for the 
representative agent, complete market models as are Mehra and Prescott’s. 

Under the expected time-additive utility restriction p = y,‘* decreasing the 
intertemporal elasticity of substitution amounts to increasing the coefficient of 
relative risk aversion, and results in the simultaneous rise of the risk premium 
and the risk-free rate - a property at the origin of the dilemma faced by 
Mehra and Prescott. There is no way to fit both the level of the risk-free rate 
and the risk premium when the VNM restrictions is imposed. If one wants to 
replicate the low observed secular risk-free rate, one needs to assume that the 
elasticity of intertemporal substitution is extremely large (by moving up the 
diagonal); but then agents are almost risk-neutral and the model cannot 
explain why the risk premium is so high. If one wants to fit the risk premium 
(by moving down the diagonal), one needs a coefficient of relative risk aversion 
of around 20: but the very small elasticity of intertemporal substitution which 

lXThe correspondmg entries are read along the NW-SE diagonal of the tables. 
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Table 1 

Net risk premium and net risk-free ratea (/3 = 0.95) 

EIS CRRA (u) 

l/P) 0 0.5 1 5 10 20 45 

m 0 00 0.05 0.10 
5.25 5.24 5.21 

2 0.01 006 0.11 
6.20 6.16 6.12 

1 001 0.07 012 
7.14 7.08 7.03 

0.2 0.10 0.18 0 26 
15.02 14.81 14.61 

0.1 0.24 0.35 0.45 
25.73 25.32 24.96 

0.05 0 56 0 72 0 87 
50.51 49.55 48.61 

l/45 1.13 1.36 1.60 
138.91 135.56 132.25 

0.48 0.94 1 17 
5.01 4.78 4.40 

0.51 101 1.89 
5.79 5.40 4.73 

0.55 1.08 2.00 
6.56 6.02 5.06 

0 88 1.64 2 91 
13.02 11.11 7.75 

1.31 2.33 4.04 
21.68 17.87 11.23 

2.12 3 66 6.25 
41.26 32.80 18.65 

3.58 6.22 11.22 
107.44 80.69 40.39 

3 01 
4.99 

3 14 
3.93 

3 21 
3.76 

4.34 
2.45 

5 72 
0.85 

8 66 
- 2.23 

17.11 
- 9.22 

‘In percent The bold number is the net risk-free rate. 

EIS 
(l/P) 

w 

2 

1 

0.2 

01 

0.05 

l/45 

Table 2 

Net risk premium and net risk-free ratea (/3 = 0.98) 

CRRA (7) 

0 0.5 1 5 10 20 45 

0.00 005 0.09 0.47 0.93 1.76 3 00 
2.94 2.02 1.99 1.80 1.58 1.21 0.91 

0.01 0.06 . 0.11 0.51 1.00 1.88 3 13 
2.95 2.91 2.87 2.55 2.17 1.53 0.75 

0.01 007 0 12 0.55 1 07 2 00 3 27 
3.86 3.81 3.75 3.31 2.77 1.85 0.59 

0.10 0.18 0.26 0 89 1.65 2.93 4 37 
11.49 11.29 11.10 9.56 7.12 4.4s -0.68 

025 036 047 1.33 2 37 4 10 5.79 
21.87 21.47 21.08 17.9s 14.26 7.83 - 2.24 

0.59 0.75 0.89 2.18 3 73 6 37 8 82 
45.89 44.95 43.98 36.92 28.72 15.01 - 5.22 

119 142 1.66 3.70 6 40 11.50 17.53 
131.52 128.87 125.96 101.02 75.11 36.96 - 12.00 

“In percent The bold number is the net risk-free rate 
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this magnitude implies under the restriction p = y yields a much too large 
risk-free rate (at least 15%)! 

Relaxing the restriction p = y clearly does eliminate, as hypothesized above. 
this dilemma. For any intertemporal elasticity of substitution l/p, increasing 

the coefficient of relative risk aversion y raises the risk premium and lowers 
the risk-free rate. For any coefficient of relative risk aversion y, decreasing the 
intertemporal elasticity of substitution raises the risk-free rate and the risk 
premium. l9 For given p and y, an increase in p from 95% to 98% has almost 
no effect on the risk premium but, of course, decreases the risk-free rate by 
approximately 3%,.“O 

One can exploit these properties to fit almost perfectly both the level of the 
risk-free rate and the risk premium on equity. For instance, choosing a very 
high coefficient of relative risk aversion (around 45) and an elasticity of 
intertemporal substitution not as small as the VNM would imply (around 0.10 
instead of l/45 = 0.022) results, for p = 0.95, in a risk premium of 5.72% and 
a risk-free rate of 0.85%!” 

While this clearly constitutes an improvement over what the Mehra- 
Prescott model with VNM utility could achieve, it is clear that this purported 
fit relies on an implausibly high coefficient of relative risk aversion. For more 
realistic configurations of the parameters, the numbers in tables 1 and 2 
suggest instead that our representative agent, complete markets setup is unable 
to replicate the historical rates of return. If, for instance, one assumes that the 
coefficient of relative risk aversion is equal to 122 and the elasticity of 
intertemporal substitution is equal to 0.1, 23 the model predicts a risk premium 
of 0.45% (instead of 6.2%) and a risk-free rate between 20% and 25% (instead 

of 0.75%)! 
This failure of the model is, in fact, more serious than when the VNM 

restriction was imposed. It cannot be attributed anymore to the inability to 
control the levels of and the discrepancy between rates independently - since 
KP preferences lift this restriction and there is no dilemma anymore. It is now 

“While the explanatton of the first effect ts straightforward m each of these two comparative 
statics general equilibrium experiments, the rattonale of the second result is more obscure These 
results are moreover not independent of the specification of the output process. 

““A larger B stgnals less impattence. htgher savmgs, and thus results m a lower equihbrium 
nsk-free rate 

lt1 do not allow for values of /3 above 1 - i.e., a negative subjective discount rate - although 
this 1s what one would find if one were to try to estimate /3. Analogously, in a Blanchard (1985) 
model with stochasttc lifetimes. estimates of the condttional death probabrhty are almost always 
negative - because thev decrease the effective subjective discount rate. A value of B above 1 or a 
negative death probability are a computer’s solution of the risk-free rate puzzle! 

‘“See suprcr for the theoretical and empirical rationale of this choice. The argument also goes 
through with. say, y = 3. 

‘3Thts is Hall’s (1988) estimate, as well as Campbell and Mankiw’s (1989). 
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to be ascribed to two much more basic facts: 

* there is not enough individual consumption riskz4 in this economy to 
explain why, if agents are only moderately risk-averse, the risk premium is 
so high; 

l the average rate of growth of individual consumption is too high (1.8% per 
year) to be consistent, if agents are extremely averse to intertemporal 
substitution, with the very low risk-free rate. 

There are, therefore, two distinct puzzles, which Mehra and Prescott could 
not clearly distinguish because of the restriction on preferences which they had 
imposed: the equity premium puzzle (H&Y is the risk predict so high?) and the 
risk-free rate puzzle (why the risk-free rate so iow?). 

The latter puzzle is, of course, already apparent (but cannot be easily 
int~~reted) when the VNM restriction is imposed: for p = 0.98 and p = y = 1. 
the predicted safe rate is 4%. But it is made much starker when the elasticity of 
intertemporal substitution is allowed to decrease from the relatively high level 
implied by the VNM restriction towards smaller and more realistic values, as 
the safe rate increases very rapidly when l/p declines. 

3.3. Robustness 

The conclusion that there is both an equity premium puzzle and a risk-free 
rate puzzle is robust, as were Mehra and Prescott’s original results, to modifi- 
cations of the output growth process which maintain its first two moments set 
at their historical vafues. This is hardly surprising as, loosely speaking, the 
risk-free rate puzzle has to do with the average rate of growth of consumption 
and the equity premium puzzle with its variability. 

It is not robust to the introduction of extremely catastrophic2s scenarios B la 
Rietz (1988). but survives, for reasonable degrees of risk aversion. the intro- 
duction of mildly disastrous states of nature - as do Mehra and Prescott’s 
results.26 

An often raised question is whether the claims being priced correspond to 
the names being attached to them: is ‘equity’ truly equity? Within the confine 
of the model. yes. 

Is the exchange economy assumption constraining? No, in the sense that, as 
Mehra (1987) has shown, the set of equilibrium asset returns obtained in a 
production economy is included in the set of equilibrium returns computed 
from an exchange economy. Yes, however. in the sense that the model is 

“4The appropriate measure of risk is the one implied by the Euler equatlon (11) 

“And, m my view, somewhat absurd 

%ee their (1988) rejomder to Rietz, whxh applies, after suitable rn~i~eatl~ns of preferences. 
to the framework analyzed here. 
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calibrated by assuming that aggregate dividends are equal to aggregate con- 
sumption of nondurables and services - a somewhat arbitrary and not incon- 
sequential choice. 

The assumption that the economy is closed to foreign trade is restrictive, for 
it imposes that consumption be equal to domestic output - which clearly 
needs not be the case in a multi-country world. 

Is the assumption of generalized isoelastic utility constraining? It is, for 
recent work by Constantinides (1987) suggests that habit formation prefer- 
ences (which yields time-nonseparable but state-separable representation of 
tastes) replicate first moments (but not second moments) of asset returns much 
more satisfactorily. 

4. Conclusion 

This paper has studied the implications for general equilibrium asset pricing 
of a recently introduced class of Kreps-Porteus nonexpected utility prefer- 
ences, which is characterized by a constant intertemporal elasticity of substitu- 
tion and a constant, but unrelated, coefficient of relative risk aversion. 

It has been shown that the solution to the equity premium puzzle docu- 
mented by Mehra and Prescott (1985) cannot be found by simply separating 
risk aversion for intertemporal substitution. If the dividend growth process is 
i.i.d., the risk premium, when appropriately defined, is independent of the 
intertemporal elasticity of substitution, and thus is the same whether or not 
the time-additive, expected utility restriction is imposed. When the dividend 
growth process is non-i.i.d., relaxing the parametric restriction on tastes 
imposed by the time-additive, expected utility specification adds, for plausible 
parameter values, a risk-free rate puzzle to Mehra and Prescott’s equity 

premium puzzle. 

In the search for a solution to these puzzles, one could relax some of the 
simplifying assumptions pointed out in the previous section: this clearly 
cannot but improve the fit of the model. Nevertheless, the empirical potential 
of such modifications pales, in my view, before the extreme restrictiveness of 
two other fundamental tenets of the model: the existence of a representative 
agent and the assumption of complete Arrow-Debreu security markets. 

As first hinted by Mehra and Prescott, and as confirmed by some recent 
results,27 introducing heterogeneity between agents in the form of undiversifi- 
able individual consumption risk goes a long way towards explaining both the 
equity premium and risk-free rate puzzles. If individual consumption is more 
risky than aggregate consumption, one can explain why the risk premium is 
large even though agents are only moderately risk-averse in the aggregate. At 
the same time, the price a consumer will be willing to pay for a safe unit of 

“See Ma&w (1986), Ben Zvi and Sussmann (1988), or Kahn (1988) 
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consumption tomorrow will rise - i.e., the risk-free rate will decrease. There- 

fore, the existence of heterogeneity and of market imperfections is likely to 
hold center stage in the explanation of the equity premium and risk-free rate 
puzzles. 

Appendix A: Euler equation and outline of the numerical solution 

This appendix derives eq. (11) in the text for the case p # 1, outlines the 
pecularities of the case p = 1, and sketches the procedure used to numerically 
solve the model.28 

A. 1. General case (p # 1) 

We need to compute the marginal rate of substitution, 

M, = ~2*~,,+,/~,,1 (A.1) 

and to prove that it can be written as in eq. (11). 
Because of the homogeneity properties of the aggregator function, of the 

interpretation of y as the coefficient of relative risk aversion, and of the fact 
that preferences are isoelastic, guess that the value function can be written in 
the form 

A(h)w’-Y- 1 

T/(w,h)= (l-p)(I_+ 64.2) 

where A(. ) is an unknown function, and that the consumption function is 
linear in wealth: 

where p( A,) is the state-dependent marginal propensity to consume. It is easy 
to show, performing the maximization called for by (6), that the functions 
A( .) and p( .) are related by the following two conditions: 

and 

(1 - P)[PL(&)l -p= Pm- PO,)1 -p (A-4) 

A(A,) = (1 _ p)(l-Y)/(iLP)[P(Xr)] -PKwA-P)l, 
(A4 

28The Gauss programs are available on request. 
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where 4= %{A(~,+l)[R,+lI - > ’ Y c1 -P)/(l -y). The solution to these functional 
equations is closed in only a few cases. 

Using the budget constraint (3) along with (A.3) (A.4). and (AS) imply 
that, along an optimal program, 

/j(l-Y)/(l-P) 

(1 y)/(l--P) c,,1 
[ 1 

PN-Y)/(l--P)l 

A;h,+,)R:;: = p - c, 
R$Y)/(~-P). (~.6) 

an expression which will be used infra. 
From (5) it is straightforward to show that the marginal rate of substitution 

defined in (A.1) is 

(A.71 

where y+ 1 denotes the value function evaluated at ( w~+~, A,,,). Using the 
budget constraint (3) along with (A.2) and (A.3) one finds that 

WC+1 
OCl-YM-P) 

-= 
V lil &,+,)R:;: ’ (A-8) 

so that, substituting (A.6) and (A.8) into (A.7) we find that 

R[#t;:)/(l-P)l--l (A.9) 

an expression which, inserted in (lo), yields the Euler equation (11). 
Given the specification in (1) of a discrete state space, this Euler equation 

yields, in equilibrium, Z equations in the Z unknown price-dividend ratios 
(the w,‘s). This (in general nonlinear) system of equations must be solved 
numerically. 

The special case of a unit coefficient of relative risk aversion can be dealt 
with by directly setting y = 1 (or, when necessary, using de 1’Hospital’s rule) in 
the above equations. 

A.2. Unit elasticity of intertemporal substitution 

For a unit elasticity of intertemporal substitution, the functional form of the 
consumer’s Euler equation is not the one given in eq. (11) and the solution 
procedure therefore differs slightly from what was outlined above. In the 
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general case, we could avoid solving the functional equation for the value 
function, but needed to use a numerical procedure to obtain (for non-i.i.d. 
uncertainty) the price-dividend ratios - i.e., the w,‘s. When p = 1. the reverse 
obtains: we can always write the equilibrium price function for trees explicitly; 
to price other assets, however, one needs to solve the functional equation for 
the value function numerically. 

When p = 1, the recursive representation of preferences becomes [applying 
de 1’Hospital’s rule to the aggregator function (5)] 

cjl-P)(‘-y)(E,~+,)‘- 1 

(1 -Y)(l -P) . 

(A.lO) 

The value function can be written as in (A.2). One can check that the 
consumption function is simply 

c,= (1 -P)w,, (A.ll) 

and that A ( .) solves the following functional equation: 

A(h) =BIW(X,,,)R:,:lp, (A.12) 

where 

B = (1 _ ,fj)(1-‘-y)p8(1-~). 

Since market clearing requires w, = pt + y, and c, = y,, eq. (A.ll) implies that 
the equilibrium price of a tree is 

P 
PI= l_ pJ+ (A.13) 

With a unit elasticity of intertemporal substitution and irrespective of the 
value of the coefficient of relative risk aversion, the price-dividend ratio is 
constant, independent of the specification of the output process, and ‘myopic’. 
This property was first pointed out by Epstein (1988). 

The equilibrium rate of return on tree is then simply 

R 1+1= 
pt+1 +yt+1 = pA,+,_ 

Pt 
(A.14) 
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Inserting this expression into the functional equation (A.12). and using the 
assumption of a finite state space, one obtains a system of I (in general 
nonlinear) equations in the I unknowns A, = A( A,), which must be solved 
numerically. 

To compute the equilibrium risk-free rate 29 it suffices to then note that eqs. 
(3) (7). (A.2), and (A.14) imply that 

so that the equilibrium risk-free rate in state i is 

The risk premium in state i is thus simply 

(A.15) 

(~.i6) 

(A- 17) 

c +,J”J- yA, 
J=l 

This expression is formally similar to eq. (17), and identical to eq. (20) in the 
i.i.d. case. It can, in fact, be derived by directly applying de 1’Hospital’s rule to 
eqs. (14) and (17) although the roundabout procedure followed here is both 
simpler and more illuminating economically. 

There is, therefore, no discontinuity in the solution at p = 1: the limit of the 
risk premium obtained when p + 1 by using the algorithm designed for the 

case p # 1 is the same as the solution obtained using the algorithm constructed 
for the case p = 1. The latter numerical procedure is simply more efficient and 
converges faster. 
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